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Abstract

Speculative decoding (SD) has emerged as a powerful method for accelerating
autoregressive generation in large language models (LLMs), yet its integration into
vision-language models (VLMs) remains underexplored. We introduce DREAM,
a novel speculative decoding framework tailored for VLMs that combines three
key innovations: (1) a cross-attention-based mechanism to inject intermediate
features from the target model into the draft model for improved alignment, (2)
adaptive intermediate feature selection based on attention entropy to guide efficient
draft model training, and (3) visual token compression to reduce draft model
latency. DREAM enables efficient, accurate, and parallel multimodal decoding
with significant throughput improvement. Experiments across a diverse set of recent
popular VLMs, including LLaVA, Pixtral, SmolVLM and Gemma3, demonstrate
up to 3.6× speedup over conventional decoding and significantly outperform prior
SD baselines in both inference throughput and speculative draft acceptance length
across a broad range of multimodal benchmarks. The code is publicly available at:
https://github.com/SAI-Lab-NYU/DREAM.git.

1 Introduction

Large language models (LLMs) have shown impressive performance across diverse tasks, but their
inference speed remains limited due to the standard autoregressive process, which includes both
prefilling and decoding stages. To overcome this limitation, speculative decoding (SD) [48, 5, 19]
accelerates the autoregressive process by splitting it into a low-cost drafting stage and a parallel
verification stage, enabling multiple drafted tokens to be validated in a single pass through the target
LLM. This approach accelerates the decoding stage while preserving the output quality of the target
model through a mechanism of acceptance and rejection.

While these techniques have been extensively developed to accelerate inference in text-only LLMs [25,
24, 26, 4, 2, 55, 61, 40, 6, 50, 15], there has been limited work integrating SD into multimodal LMs
(MLLM) [20, 43], especially vision-language models (VLM) [10]. VLMs differ from their text-only
counterparts by requiring seamless integration of visual and textual information. This integration
process typically occurs in two stages: first, extracting meaningful representations from images, and
second, applying language reasoning capabilities to generate appropriate responses. For example, in
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LLaVA [29], a vision encoder transforms images using 24 layers of self-attention and feed-forward
networks. These features are then projected into the text space and fused with text embeddings within
the language model’s backbone. The effectiveness of this process heavily depends on the model’s
ability to maintain coherent representations across modalities, which presents unique challenges for
acceleration techniques.

In this paper, we propose Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention
Fusion for Multimodal Speculative Decoding (DREAM). Specifically, DREAM employs a specialized
cross-attention mechanism that enhances the interaction between visual and textual features, ensuring
that key information in the target model is adequately captured even in the draft generation stage.
Another key innovation of DREAM lies in its selective use of intermediate-layer representations,
which encapsulate the most informative features from both modalities to effectively supervise the
draft model with high accuracy. Finally, DREAM introduces a visual input compression scheme
for the draft model, guided by the intermediate features from the target model, which substantially
reduces processing latency without compromising accuracy.

We evaluate DREAM on a diverse set of popular VLMs, including LLaVA-v1.6-Vicuna-7B/13B [29],
SmolVLM-2B [38], Pixtral-12B [1], and Gemma3-12B [3], across multiple multimodal tasks. Our
extensive experiments demonstrate that DREAM substantially outperforms well-established SD
methods, while consistently achieving high acceptance rates across various multimodal applications,
such as table structure recognition, interactive segmentation, animal keypoint detection, and chart
question answering. Our main contributions are summarized as follows:

• DREAM incorporates a cross-attention mechanism to leverage intermediate outputs from the
target model, facilitating more effective knowledge transfer to the draft model and leading
to significant performance gains.

• During DREAM training phase, intermediate features from the middle layers of the target
model are dynamically selected based on their entropy and used to supervise the draft model.
This enhances the draft model’s predictive accuracy and increases token acceptance lengths.

• We investigate the relative importance of visual input and show that visual input in the draft
model can be effectively compressed using a scheme guided by intermediate target features,
reducing draft processing time and overall speculative decoding latency.

• Evaluation results show that these three strategies enable DREAM to achieve up to a 3.6×
reduction in latency compared to conventional decoding methods across a range of VLMs
and tasks, outperforming existing speculative decoding approaches.

2 Background and Related Work

2.1 Speculative Decoding
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Figure 1: (a) Standard VLM. (b) DREAM overview.

Speculative decoding (SD) [48] has
proven effective in mitigating the se-
quential bottleneck in language model
inference. It operates in two stages:
a lightweight draft model rapidly gen-
erates a sequence of candidate tokens,
which are then verified in parallel by
a more accurate target model. Specifi-
cally, the draft model generates tokens
d1, d2, . . . , dγ , where γ is a predefined
number of tokens. These candidates are
verified concurrently by the target model
but accepted sequentially. Specifically, a
draft token di is accepted with probabil-
ity min(1, Ptarget(di)/Pdraft(di)), where
Pdraft and Ptarget are the probabilities as-
signed by the draft and target models, respectively. Otherwise, the token is rejected. This acceptance
rule is compatible with various sampling temperatures. If a rejection occurs at di, all subsequent
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draft tokens from di onward are discarded, and the target model’s token ti is used by draft model to
continue generation. If all tokens are accepted, the draft model proceeds to generate next batch.

Building on this foundation, researchers have proposed a range of techniques to enhance the efficiency
of the draft-verify process. For drafting, various approaches have been developed to eliminate or
improve draft models. Medusa [4] introduces lightweight decoding heads on the target model itself,
eliminating the need for a separate drafter. Self-speculative techniques include layer skipping [14,
61, 8, 28, 32, 56], which accelerates draft generation by selectively processing fewer transformer
layers. Other strategies leverage token distillation [64], N-gram prediction [42, 49, 34], and retrieval-
augmented drafting [57, 13, 54] to improve draft quality while minimizing computational overhead.
Tree-based verification methods [40, 52, 6, 47, 4] support parallel exploration of multiple completion
paths, substantially improving throughput over traditional linear verification. EAGLE [25] introduces
feature-based uncertainty estimation for tree construction, while EAGLE-2 [24] further improved
this with dynamic context-aware trees. Numerical optimization-inspired approaches include Jacobi
iterations [45] and Lookahead decoding [9], which reformulate autoregressive generation as parallel
optimization problems. For production deployment, various frameworks enhance system-level
efficiency. TRIFORCE [50] employs hierarchical speculative decoding combined with a sparse KV
cache to support ultra-long sequences exceeding 100,000 tokens. Parallel scheduling approaches [41,
33] enable draft generation to run concurrently with target verification, while heterogeneous compute
solutions like Dovetail [62] optimally distribute models across CPU/GPU resources.

While the aforementioned techniques focus on SD for language-only models, there has been limited
exploration of SD in MLLMs. In speech synthesis, VADUSA [20] applies SD to accelerate inference
in text-to-speech systems, simultaneously improving synthesis quality. Building on the principles
of SD, the authors of [43] propose a multi-token prediction mechanism that significantly boosts
inference efficiency for speech generation. In the VLM context, [10] applies speculative decoding to
the LLaVA-7B model, demonstrating up to 2.37× speedup by utilizing a lightweight, language-only
draft model under memory constraints. IbED [18] proposes an In-batch Ensemble Drafting strategy
that employs ensemble techniques at the batch level without introducing additional model parameters.
In contrast, DREAM introduces a novel cross-attention mechanism and adaptive intermediate feature
selection to enhance draft model training, resulting in substantial latency reductions.

2.2 Vision Language Model and Computation Profiling
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Figure 2: Computational cost of
VLMs processing text only (Txt)
and multi-modal (Img+Txt) inputs.

Vision-Language Models (VLMs) are designed to jointly pro-
cess visual and textual inputs, allowing machines to interpret
and generate content that combines both modalities. As illus-
trated in Figure 1 (a), a typical VLM consists of a visual encoder
and a language model. The input image is first processed by the
visual encoder to generate visual tokens, which are then con-
catenated with the textual tokens. These combined tokens are
passed to the language model, which generates the final textual
outputs. Several VLMs [23, 22] have been developed. Recent
works like LLaVA [31], InstructBLIP [7] and Pixtral [1] aim to
enhance the zero-shot capabilities of VLMs by better aligning
them with human preferences. While the large model sizes
have resulted in significant performance improvements, their
computational complexity and storage requirements limit their deployment on resource-constrained
devices. Lightweight VLMs, such as TinyGPT-V [59] and TinyLLaVA [63], explore the potential of
small-scale models and focus on developing efficient VLM architectures. The recent development of
SmolVLM [38] introduces a family of compact VLMs with parameters ranging from 256M to 2B,
achieving exceptional performance while maintaining smaller model sizes.

To quantify the computational cost introduced by visual inputs processing in VLMs, we profile
the floating point operations (FLOPs) required by various models, including LLaVA-v1.6-Vicuna-
7B [31], LLaVA-v1.6-Vicuna-7B, Pixtral-12B [1], SmolVLM-2B [38], and Gemma3-12B [11] over
the ScienceQA dataset. We select a typical sample which contains a 480× 300 image, a prompt with
166 tokens, and use the model to generate 500 tokens, representing an average case across the dataset.
FLOPs are measured using PyTorch Profiler. Figure 2 compares the TFLOPs for each model when
processing text-only (Txt) versus multimodal (Img+Txt) inputs, revealing an average 2.1× increase
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Figure 3: (a) illustrates the training paradigm of DREAM, while (b) and (c) depict its inference
workflow. For simplicity, the tree decoding is not shown in (b) and (c).

in computation with the inclusion of visual data and highlighting the need for more efficient visual
processing methods.

2.3 Intermediate Feature Distillation

Intermediate Feature Distillation (IFD) enhances traditional knowledge distillation by aligning
student models not only with the teacher’s final outputs but also with its intermediate representations.
FitNets [44] introduced the idea of using intermediate hints, showing that projecting selected teacher
layers through lightweight adapters can improve compact student models. Later methods refine
this by identifying high-similarity layers [60], using attention-based weighting [27], or dynamically
selecting task-relevant features, as in TED [27]. CoDIR [51] further introduces contrastive losses
for tighter feature alignment. In multimodal contexts, OLA-VLM [16] and VLsI [17] adapt these
ideas to distill visual embeddings into language representations. Recently, Skean et al. [46] proposed
evaluating per-layer representations using information compression, geometric separability, and
robustness, showing that mid-layer features often outperform final-layer ones across tasks, revealing
a non-monotonic trade-off between information richness and task relevance.

3 Methodology

Figure 1 (b) provides an overview of DREAM, where the draft model receives the textual input
alongside a subsampled visual input to accelerate output generation. Additionally, the intermediate
features are adaptively selected to better guide the training of the draft model. Figure 3 presents
the detailed training and inference scheme of DREAM. Specifically, let Mta and Mda represent the
target and draft models, respectively, with a total of L and M transformer blocks, respectively. let
tn and dn denote the n-th token produced by Mta and Mda. For Mta, assume the textual prompt
consists of q tokens and the visual input comprises v tokens, respectively. We use sj−1

n and ej−1
n to

denote the n-th intermediate feature token at layer j for Mta and Mda, respectively.

Figure 3 (b) highlights the DREAM inference process. Let r denote the subsampling factor, and
q and v represent the number of prompt and visual tokens, respectively. As illustrated in Figure 3
(b), the target model processes all q + v input feature vectors (s01, . . . , s

0
q+v). In contrast, with

our subsampling method applied, the draft model processes only q + ⌊v/r⌉ tokens, substantially
lowering the computational load and improving the decoding speed of the draft model, as motivated
in Section 2.2. Next, we depict the cross-attention architecture of DREAM (Section 3.1), followed by
the adaptive intermediate feature selection strategy for training the draft model (Section 3.2). Finally,
we introduce the visual token compression method used to accelerate the draft model in Section 3.3.

3.1 Cross-attention Mechanism for Efficient Knowledge Injection

To more effectively transfer knowledge from the target model and enhance the performance of
the draft model, we introduce a cross-attention mechanism to fuse features from the target model
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to the draft model. This mechanism naturally aligns with the dual-model setup, using the draft’s
newly generated token embeddings as queries to efficiently retrieve cached target features. This
lightweight attention layer integrates long-range, multimodal context into the decoding process.
The attention weights act as soft gating, enabling adaptive selection of the refined target visual and
textual cues. Crucially, unlike the EAGLE family of methods [25, 24], which concatenate draft
token embeddings with precomputed target features and process them jointly, DREAM adopts a
more structured fusion strategy. While EAGLE’s concatenation approach is effective for purely
textual tasks, it tends to weaken structured visual representations by treating visual and textual
features as a simple concatenated sequence, potentially disrupting the spatial relationships learned by
the vision encoder. In contrast, our cross-attention mechanism adaptively retrieves relevant visual
and textual cues, preserving the integrity of multimodal information. This leads to more effective
knowledge transfer and improved draft model performance, as demonstrated in our evaluation results
in Section 4.2.

As depicted in Figure 3 (b), in the beginning decoding stage, both textual and visual prompt tokens
t1, . . . , tn are initially fed into the target model, which then begins generating the next token tn+1,
where n = q + v. The draft model Mda subsequently predicts the (n+ 2)-th token, denoted as dn+2.
To better help the draft token generation, the cached last-layer features from the target model Mta,
denoted as SL = (sL1 , s

L
2 , . . . , s

L
n), and the intermediate features from the draft model Mda, denoted

as Ej = (ej1, e
j
2, . . . , e

j
n′), where n′ = q+ ⌊ v

r ⌉+1, are integrated using a cross-attention mechanism.
In this setup, Ej is used as the query, while SL provides the keys and values. With z denoting the
dimensionality of queries and keys, the cross-attention is then computed as follows:

Q = EjWQ, K = SLWK , V = SLWV , F = softmax

(
QK⊤
√
z

)
V (1)

where WQ,WK ,WV denote the weight matrices in the draft model. The fused features F replace the
original first-layer features and are propagated through the subsequent decoder block. For simplicity,
we assume a single attention head in this illustration. After generating the first token dn+2, the draft
model leverages cross-attention over both the previously verified features from the target model and
its own final-layer features. Specifically, we concatenate the target features S = (sL1 , s

L
2 , . . . , s

L
n)

with the latest draft feature eMn′ to form the key and value set S = (sL1 , s
L
2 , . . . , s

L
n , e

M
n′ ) for generating

the next draft token dn+3, as described in Figure 3 (c).

Moreover, we adopt the top-k reordering logic and tree-masking strategy introduced in EAGLE-2 [24].
Specifically, we use the newly generated first-layer draft tag features and perform a tree-based width-k
expansion to construct the candidate feature set E = (e1n′+1, . . . , e

1
n′+k). The tree mask is then

applied to filter out irrelevant tags, resulting in the final representations Etree = (eMn′+1, . . . , e
M
n′+k),

which are used to simultaneously generate k new draft tokens. This approach enables efficient
parallel decoding, and the same tree mask is also leveraged during verification to reduce computation
overhead. More details are provided in the supplementary materials on tree.

3.2 Adaptive Intermediate Feature Selection for Draft Training

In this section, we detail the training strategy for the draft model. To help the draft model effectively
learn the behavior of the target model Mta, we utilize intermediate-layer features from the target
model as supervision signals. For these features to effectively guide the training of the draft model
Mda, they must satisfy two key criteria: they can provide key information and capture rich semantic
content, and they should be essential, exhibiting low variability across tokens, to enable faster and
more stable learning in the draft model. As discussed in Section 2.3, intermediate features with
low token-level attention entropy are well-suited for distillation, as they focus on salient content
and offer stable guidance. DREAM implements a simple yet effective mechanism to select such
features from each layer of the target model to guide the efficient training of the draft model, which is
shown in Figure 3 (a). For the l-th decoder block, its input tokens and output tokens are denoted as
Sℓ−1 =

(
sℓ−1
1 , sℓ−1

2 , . . . , sℓ−1
n

)
and Sℓ =

(
sℓ1, s

ℓ
2, . . . , s

ℓ
n

)
, respectively. Let the attention matrix Aℓ

associated with l-th layer as Aℓ = softmax(
QℓK

⊤
ℓ√

z
), where Qℓ = Sℓ−1WQ and Kℓ = Sℓ−1WK , the

average attention entropy (AE) is calculated as:

AE(ℓ) = − 1

n

n∑
i=1

n∑
j=1

Aℓ,i,j logAℓ,i,j (2)
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where Aℓ,i,j denotes the (i, j)-th element of Aℓ. In practice with multiple heads, AE(ℓ) is also
averaged over all attention heads. During each decoding step n, we dynamically select the layer ℓ⋆
with the lowest average entropy, defined as ℓ∗ = argminℓ∈L [AE(ℓ)]. We then distill the information
from sℓ

⋆

i into the initial decoder block of the draft model using a smooth ℓ1 loss, guiding the
draft model to align with the most informative intermediate representation of the target model. This
adaptive feature distillation strategy leads to improved performance by minimizing the ℓ1 loss between
the feature vector of the m-th layer of the draft model Em = (em1 , ..., emn ) and Sℓ∗ = (sℓ

∗

1 , ..., sℓ
∗

n ),
namely:

Lintermed = smoothL1
(
Em, Sℓ∗), (3)

where smoothL1(x, y) equals
1

2
(x− y)2 if |x− y| < 1, and |x− y| − 1

2
otherwise [12].

3.2.1 Loss Functions

As shown in Figure 3 (a), the loss function of DREAM comprises three components. First, we
encourage the output features of the draft model to closely match those of the target model by
minimizing the difference between the final-layer features EM = (eM1 , . . . , eMn ) from the draft model
and SL = (sL1 , . . . , s

L
n) from the target model, using a smooth L1 loss: Lfeat = smoothL1(EL, SL).

This will improve the acceptance rate of the draft tokens. Second, following the adaptive feature
selection strategy described in Section 3.2, we minimize the difference between an early-layer feature
Em and the selected intermediate target feature Sℓ⋆ . For DREAM, we set m = 1, yielding the loss:
Lintermed = smoothL1(Em, Sℓ⋆). Finally, to ensure the token outputs from the draft model Mda

align with those from the target model Mta, we apply a KL divergence loss between their softmax
outputs: LKL = KL (softmax(D), softmax(T )), where D = (d1, . . . , dn) and T = (t1, . . . , tn)
are the predicted token logits from the draft and target models, respectively. Finally, the overall loss
function can be described as:

Lfinal = λfeat Lfeat + λintermed Lintermed + λKL LKL, (4)

where λfeat, λintermed and λKL denotes the relative importance between the loss functions.

3.3 Visual Token Compression

Given the high computational cost of visual tokens, as discussed in Section 2.2, DREAM adopts
subsampling strategy to reduce this overhead. A naive solution would be to uniformly subsample
the visual tokens. However, this approach risks discarding crucial visual information necessary
for accurate draft model predictions, while retaining redundant regions that could be aggressively
compressed or removed. To address this, DREAM incorporates a simple yet effective token selection
mechanism, as illustrated in the visual token selection block of Figure 3 (b). Specifically, it computes
importance scores for the final-layer features (sL1 , . . . , s

L
q+v) by summing each token’s attention

weights across all other tokens, as derived from the attention matrix. These scores reflect the relative
importance of each token in the last layer with respect to the final model accuracy.

Among the attention scores, we isolate those corresponding to the visual input and sort this subset by
magnitude. We then record the indices of the top scores based on the subsampling ratio r. These
indices are used to subsample the visual tokens (s1q+1, . . . , s

1
q+v) with the top high scores, where

they are considered critical to the final output. This strategy significantly reduces the number of
tokens while retaining the most important visual information. Although visual token subsampling
may cause a slight decrease in the draft model’s accuracy, our evaluation in Section 4 shows that it
can effectively reduce speculative decoding latency.

4 Empirical Results

We conduct experiments on five VLMs representing a range of parameter scales, including LLaVA-
v1.6-Vicuna (7B, 13B) [30], Pixtral (12B) [1], SmolVLM (2B) [38], and Gemma3 (12B) [53].
DREAM is evaluated across eight diverse benchmarks: MMT-Bench [58], SEED-Bench-2 [21],
ScienceQA [37], OCRBench [35] , ChartQA [39], and MathVista [36]. All evaluations are performed
under two softmax temperature settings: Temp = 0 and Temp = 1. We report two key metrics:
(1) Speedup ratio over standard autoregressive generation, defined as tAR/tmethod, where tAR is

6



the average wall-clock time per token for standard decoding, and tmethod is the corresponding time
for each evaluated method. A larger speedup directly corresponds to lower end-to-end latency in
real-world use. (2) Average token acceptance length τ , representing the number of consecutive
draft tokens accepted by the verification model. A larger τ implies fewer verification steps and higher
effective decoding throughput. We adapt six recent SD baselines, originally developed for text-only
LLMs, for use with VLMs, including SPD [10], Kangaroo [28], Medusa [4], Hydra [2], and EAGLE
1 and 2 [25, 24].

We freeze the target VLMs and train only the draft model using the LLaVA mix665k dataset, with
55,000 training samples and 1,000 training samples from each corresponding evaluation benchmark
dataset. For benchmarks without predefined train–test splits (MMT-Bench, SEED-Bench-2, Math-
Vista, and OCRBench), we applied stratified random sampling using train_test_split (with
random_state=42 for reproducibility) to select 1,000 training samples and up to 3,000 test samples
per dataset. For ChartQA and ScienceQA, which already provide official splits, we randomly sampled
1,000 training examples from their respective training sets. All selected training samples were then
processed through the target model to generate ground-truth responses in conversational form.

Training is performed for 68,000 iterations using AdamW optimizer (β1 = 0.9, β2 = 0.95), a
learning rate of 3 × 10−5, and gradient clipping set to 0.5. Each draft model consists of an initial
decoder block, an intermediate cross-attention block, and a final decoder block. The weights for
the loss terms Lfeat, Lintermed, and LKL are set to 0.2, 0.2, and 1.0. The parameter sizes are 0.65B
for LLaVA-v1.6-Vicuna-7B, 0.98B for LLaVA-v1.6-Vicuna-13B, 0.9B for Pixtral-12B, 0.28B for
SmolVLM-2B, and 0.9B for Gemma3-12B. Training is conducted on two NVIDIA A100 80 GB
GPUs with batch size set to 4. Our training procedure adopts a two-stage pipeline: (1) offline
calibration for feature selection, and (2) draft model training. During the calibration stage, we
compute the attention entropy for each sample once to identify the optimal intermediate layer ℓ∗, and
cache these selections for subsequent training.

During the DREAM evaluation, we use speculative sampling with a batch size of 1, following prior
work. The tree structure is configured with k = 4 child nodes, a depth of 6, and a maximum draft
length of 32 tokens. Note that the average accepted token length (τ ) reported in Table 1 may exceed
a depth of 6, as the target model generates an additional token once all drafts are verified, resulting
in up to 7 tokens per round [19]. 75% of the visual tokens are retained. These values were chosen
based on preliminary experiments to balance aggressive speculation against verification overhead. A
full sensitivity analysis and ablation study on these hyperparameters can be found in supplementary
materials. All models are evaluated on a single NVIDIA A100 80GB GPU.

All models are based on their official Hugging Face implementations. Baseline methods, including
Kangaroo [28], Medusa [4], EAGLE [25] and EAGLE-2 [24], are executed using their publicly
released code and default configurations, with minimal modifications to support VLM inputs. During
inference, all models are run with KV caching enabled to ensure efficient autoregressive decoding.
To ensure a fair comparison, all methods are trained and evaluated using the same dataset, number of
training epochs, learning rate, batch size, and hardware environment. We fix random seeds across all
runs to reduce performance variance and report the average over three runs.

4.1 Evaluation Results

Table 1 presents the speedup ratios and average acceptance lengths τ for DREAM compared to
baseline methods. Across all tasks and target models, DREAM consistently achieves the highest
speedup and longest acceptance lengths. Notably, DREAM delivers a 1.5× to 3.6× speedup over
standard autoregressive decoding with the target model, and achieves a 20% to 40% improvement
over EAGLE-2. Particularly, we observe that larger models gain greater benefits from DREAM. At
T = 0, DREAM achieves an average speedup of 3.06× on LLaVA-v1.6-Vicuna-7B and 2.65× on
Pixtral-12B, whereas the speedups are lower for smaller models, with 2.27× on SmolVLM-2B and
2.23× on LLaVA-v1.6-Vicuna-7B. This is because larger models experience more severe decoding
bottlenecks, allowing the draft model to more effectively substitute the costly decoding process of
them. Furthermore, models like LLaVA and Pixtral embed visual features directly into the language
decoder, offering clearer multimodal cues. This allows DREAM to achieve higher acceptance lengths,
for example, τ = 5.51 on LLaVA-v1.6-Vicuna-7B. In contrast, models such as Gemma3-12B, which
handle cross-modal information through more complex processing pathways, reach lower acceptance
rates, with τ = 2.36.
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Table 1: Evaluation of SD methods through speedup ratio (S) and average accepted token length (τ ).
MMT SEED ScienceQA OCRBench ChartQA MathVista Average

Models Methods S τ S τ S τ S τ S τ S τ S τ

Temperature = 0

LLaVA-v1.6
Vicuna-7B

SPD [10] 1.10 1.88 0.81 1.17 1.08 1.87 0.89 1.25 0.91 1.24 1.06 1.76 0.97 1.53
Kangaroo [28] 1.32 2.11 1.33 2.12 1.31 2.09 1.17 1.89 1.18 1.98 1.15 1.86 1.24 2.01

Medusa [4] 1.58 2.88 1.59 3.01 1.44 2.77 1.22 2.33 1.25 2.41 1.22 2.34 1.38 2.62
Hydra [2] 1.78 3.86 1.72 3.88 1.68 3.79 1.41 3.21 1.35 3.11 1.42 3.25 1.56 3.52

EAGLE [25] 2.10 5.04 2.09 5.01 1.98 4.88 1.72 4.13 1.56 3.98 1.78 4.25 1.87 4.55
EAGLE-2 [24] 2.31 5.48 2.31 5.61 2.15 5.22 1.92 4.88 1.77 4.22 1.87 4.67 2.05 5.01

DREAM 2.52 6.40 2.48 6.20 2.33 5.82 2.05 4.88 1.89 4.44 2.11 5.32 2.23 5.51

LLaVA-v1.6
Vicuna-13B

SPD 1.07 1.78 1.06 1.79 1.09 1.88 0.86 1.12 0.89 1.25 0.87 1.22 1.00 1.58
Kangaroo 1.43 1.77 1.51 1.87 1.22 1.55 1.21 1.54 1.27 1.61 1.53 2.01 1.36 1.72
Medusa 1.99 2.67 1.96 2.76 1.93 2.77 1.40 2.92 1.51 2.82 1.51 2.62 1.72 2.76
Hydra 2.12 2.87 2.08 2.99 2.21 3.12 1.49 3.07 1.65 3.03 1.66 2.87 1.87 2.99

EAGLE 2.45 3.56 2.19 3.24 2.63 3.98 1.65 3.31 1.85 3.27 1.8 3.09 2.10 3.41
EAGLE-2 2.89 4.05 3.18 4.33 3.09 4.97 2.20 4.12 2.41 4.15 2.39 3.76 2.69 4.23
DREAM 3.68 5.58 3.51 5.34 3.36 5.29 2.69 4.64 2.59 4.20 2.53 4.18 3.06 4.87

Pixtral-12B

SPD 1.08 1.51 1.03 1.47 1.05 1.49 1.05 1.49 1.04 1.43 1.04 1.46 1.05 1.47
Kangaroo 1.26 1.54 1.09 1.39 1.14 1.51 1.16 1.52 1.12 1.47 1.13 1.49 1.15 1.49
Medusa 1.37 1.81 1.37 1.81 1.35 1.87 1.24 1.69 1.22 1.68 1.16 1.47 1.28 1.72
Hydra 1.58 2.24 1.47 2.04 1.53 2.06 1.38 1.81 1.34 1.79 1.36 1.78 1.44 1.95

EAGLE 2.38 3.47 1.97 2.53 2.31 3.64 1.69 2.73 1.78 2.84 1.64 2.47 1.96 2.95
EAGLE-2 2.81 3.95 2.31 3.07 2.64 4.03 2.12 3.25 2.14 3.17 1.81 2.73 2.31 3.37
DREAM 2.93 4.52 2.61 3.67 2.98 4.33 2.38 3.55 2.35 3.49 2.36 3.42 2.65 3.78

SmolVLM-2B

SPD 1.02 1.33 1.04 1.41 1.06 1.43 1.06 1.42 1.07 1.46 1.02 1.34 1.04 1.40
Kangaroo 1.28 1.48 1.08 1.18 1.03 1.17 1.06 1.22 1.04 1.14 1.08 1.23 1.10 1.24
Medusa 2.12 2.71 1.51 2.00 1.72 2.22 1.20 1.61 1.15 1.55 1.35 1.75 1.51 1.97
Hydra 2.33 3.07 1.62 2.08 1.98 2.66 1.32 1.74 1.22 1.58 1.51 1.98 1.66 2.19

EAGLE 2.57 3.42 1.85 2.56 2.16 2.76 1.42 1.88 1.34 1.77 1.65 2.22 1.83 2.44
EAGLE-2 2.96 3.89 2.12 2.93 2.39 3.21 1.65 2.11 1.51 2.13 1.81 2.63 2.07 2.82
DREAM 3.05 3.97 2.24 3.18 2.85 3.62 1.85 2.56 1.62 2.33 2.01 2.88 2.27 3.09

Gemma3-12B

Kangaroo 1.37 1.66 1.47 1.79 1.52 1.57 3.17 2.28 2.28 1.85 1.18 1.64 1.83 1.80
EAGLE 1.73 1.98 1.69 2.52 1.72 1.97 4.26 2.42 3.40 1.99 1.42 1.89 2.37 2.13

EAGLE-2 2.92 1.99 1.74 2.79 1.92 1.98 4.68 2.57 3.48 2.23 1.52 1.91 2.71 2.25
DREAM 2.99 2.13 3.53 2.84 2.60 2.05 4.81 2.58 3.68 2.56 1.98 1.99 3.27 2.36

Temperature = 1

LLaVA-v1.6
Vicuna-7B

SPD 0.83 1.19 0.81 1.15 0.85 1.18 0.75 1.06 0.72 1.08 0.92 1.48 0.81 1.19
Kangaroo 1.20 1.97 1.26 2.03 1.23 2.01 1.09 1.80 1.11 1.89 1.07 1.77 1.16 1.91
EAGLE-2 2.19 5.37 2.20 5.48 2.04 5.12 1.82 4.77 1.68 4.13 1.76 4.56 1.95 4.91
DREAM 2.39 6.29 2.35 6.07 2.25 5.68 1.99 4.88 1.84 4.41 2.02 5.23 2.14 5.43

LLAVA-v1.6
Vicuna-13B

SPD 0.88 1.22 0.84 1.25 0.84 1.32 0.79 1.18 0.81 1.14 0.88 1.24 0.84 1.22
Kangaroo 1.23 1.57 1.17 1.53 1.07 1.44 1.01 1.24 1.07 1.34 1.21 1.67 1.13 1.46
EAGLE-2 2.35 3.75 3.02 4.30 3.03 4.67 2.03 3.87 2.18 3.83 2.18 3.41 2.46 3.97
DREAM 3.34 5.38 3.32 5.06 3.20 5.98 2.22 3.89 2.43 4.04 2.29 4.03 2.80 4.73

Pixtral-12B

SPD 0.81 1.15 0.79 1.11 0.80 1.12 0.80 1.13 0.75 1.07 0.77 1.09 0.79 1.11
Kangaroo 1.18 1.41 1.08 1.35 1.03 1.36 1.19 1.48 1.14 1.45 1.09 1.41 1.12 1.41
EAGLE-2 2.76 3.81 2.24 3.01 2.76 3.87 2.23 3.24 2.03 3.09 1.79 2.69 2.30 3.28
DREAM 2.90 4.02 2.47 3.57 2.93 3.94 2.29 3.46 2.21 3.21 2.16 3.27 2.49 3.58

SmolVLM-2B

SPD 1.07 1.47 1.01 1.33 1.07 1.46 0.97 1.26 1.06 1.44 0.85 1.20 1.00 1.36
Kangaroo 1.37 1.59 1.12 1.24 1.22 1.41 1.12 1.29 1.18 1.36 1.28 1.42 1.22 1.39
EAGLE-2 2.62 3.60 1.92 2.67 2.24 3.11 1.41 1.77 1.60 2.18 1.77 2.49 1.93 2.64
DREAM 2.88 3.66 2.25 3.33 2.91 3.74 1.54 2.12 1.77 2.51 1.97 2.70 2.22 3.01

Gemma3-12B

Kangaroo 1.83 1.66 1.23 2.61 1.56 2.29 3.34 2.27 2.23 1.86 1.16 1.65 1.89 2.06
EAGLE 2.23 1.96 1.60 2.52 2.16 1.97 3.74 2.65 3.30 2.03 1.59 1.86 2.44 2.16

EAGLE-2 2.73 1.94 2.13 2.79 2.21 2.07 4.67 2.47 3.35 2.23 1.65 1.89 2.79 2.23
DREAM 2.88 2.07 3.49 2.84 2.39 2.12 4.79 2.56 3.61 2.43 1.96 1.91 3.19 2.32

Second, the task-level analysis reveals that long-form QA tasks such as MMT-Bench and ScienceQA
benefit most from speculative decoding. These tasks require generating structured answers grounded
in high-level visual semantics, which DREAM captures efficiently. For example, on ScienceQA
with LLaVA-v1.6-Vicuna-7B, DREAM achieves a speedup of 3.36× with τ = 5.32, outperforming
Kangaroo (1.22×) and EAGLE-2 (3.09×). In contrast, OCR-style datasets such as MathVista pose
greater challenges due to their reliance on fine-grained character-level recognition, which current draft
models struggle to replicate. As a result, all methods show lower τ and speedup on this benchmark.

Finally, temperature settings critically impact performance. At low temperature (T = 0), determinis-
tic decoding leads to higher token alignment and longer acceptance spans. For instance, DREAM
achieves τ = 4.52 on MMT-Bench with Pixtral-12B. When sampling is enabled (T = 1), perfor-
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Figure 4: Normalized speedup S and normalized accepted token length τ across (a) intermediate
feature selection strategies. (b) chain-based and tree-based decoding. (c) visual token compression
ratios, where 1 and 3/4 denote 100% and 75% of the visual tokens are retained, respectively. (d) loss
weight settings, where the number is the value for λfeat and λintermed. λKL is fixed to 1.

mance moderately degrades due to increased token variance, yet DREAM’s tree-based architecture
maintains robust performance. On MMT-Bench with Pixtral-12B, DREAM still delivers a speedup
of 2.90× and τ = 4.02, outperforming all baselines under the same temperature.

4.2 Ablation Study

Table 2: Comparison over different model architectures. Numbers
are normalized to DREAM results.

MMT-Bench SEED-Bench ScienceQA

Baseline Speedup τ Speedup τ Speedup τ

DREAM 1 1 1 1 1 1
w/o Initial 0.60 0.59 0.60 0.58 0.64 0.61
w/o CA 0.48 0.44 0.46 0.41 0.41 0.32

w/o Final 0.73 0.63 0.71 0.65 0.67 0.71
2 CA 0.99 1.09 1.02 1.13 0.79 1.10
E2-1B 0.82 0.71 0.81 0.77 0.80 0.75
E2-3B 0.88 0.86 0.89 0.88 0.91 0.88
E2-4B 0.63 0.92 0.63 0.92 0.68 0.93

Impact of Draft Model Archi-
tecture In this section, we eval-
uate the impact of draft model ar-
chitecture by testing DREAM on
LLaVA-v1.6-Vicuna-7B across
multiple datasets, with VTC dis-
abled for all. We design six vari-
ants of the DREAM draft model
to assess architectural contribu-
tions. In the first three baseline
configurations, we remove one
component at a time: the initial
decoder block, denoted as w/o
Initial, the cross-attention block
(w/o CA), or the final decoder
block (w/o Final). Additionally, we include a variant with an extra cross-attention block to evaluate
the effect of deeper feature fusion, denoted as 2 CA. We further evaluate EAGLE-2 by varying its
draft model depth, using one, three, and four decoder blocks, denoted as E2-1B (default setting in
EAGLE-2), E2-3B, and E2-4B, respectively. Table 2 summarizes the results. Notably, the removal of
the cross-attention block causes the most substantial performance drop, showing its essential role in
the draft model architecture. Adding an extra cross-attention block increases the accepted sequence
length, indicating improved draft quality. However, the larger draft model also incurs additional
latency, which offsets the overall speedup gains. Similarly, increasing the number of blocks in the
EAGLE-2 draft model improves the average acceptance length, but speedup diminishes once the
depth reaches four blocks. Overall, DREAM outperforms EAGLE-2 in both speedup and acceptance
length, highlighting the importance of the cross-attention block in DREAM.

Impact of Intermediate Feature Selection In this section, we evaluate DREAM’s intermediate
feature selection strategy for draft model training, referred to as Dynamic Entropy (Dyn. Ent.), against
four baseline methods on the LLaVA-v1.6-Vicuna-7B model across the MMT-Bench, SEED-Bench,
and ScienceQA datasets. The first baseline, No Mid Tuning (No Mid), trains the draft model without
using any intermediate features. The second baseline, Static-25% (S-25%), uses intermediate features
from the 25% depth of the target model (the 10th layer in LLaVA-v1.6-Vicuna-7B) for training.
Similarly, Static-50% (S-50%) and Static-75% (S-75%) use features from the 50% and 75% depths,
corresponding to the 20th and 30th layers, respectively. Figure 4 (a) presents the results. The
draft model trained without intermediate features achieves limited speedup, as fewer tokens are
accepted. Static-25% and Static-50% yield comparable speedup, while Static-75% performs best
among the static approaches, suggesting that deeper intermediate layers provide more informative
guidance. Dynamic Entropy applied by DREAM outperforms all baselines with the highest speedup.
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Impact of Tree Structure As shown by prior work, tree-structured drafts improve the accepted
sequence length compared to chain-structured drafts [25, 24, 6]. Figure 4 (b) shows the performance
of DREAM with both chain- and tree-structured drafts on the LLaVA-v1.6-Vicuna-7B (LV) and
Pixtral-12B (PX) models across the MMT-Bench (MMT) and ScienceQA (SQ) datasets. Tree
decoding provides an average of 1.32× speedup on top of our proposed methods described in
Section 3. It is important to note that all the baseline algorithms we compared except Kangaroo
utilize tree-structured decoding. Even without the help of tree decoding, compared with Kangaroo,
DREAM achieves an average of 56% and 75% speedup on LLaVA and Pixtral, respectively.

Impact of Visual Token Compression Rate To improve decoding efficiency, DREAM subsamples
and retains only a fraction of visual tokens from the ViT encoder, as detailed in Section 3.3. In
Figure 4 (c), we evaluate the effect of different visual token compression ratios, where a fraction of 1
indicates no compression, and 3/4 means 75% of the tokens are kept. Experiments on the LLaVA-
v1.6-Vicuna-7B model across MMT-Bench, SEED-Bench, and ScienceQA show that retaining 3/4 of
the tokens yields 7% speedup with only a minor reduction in acceptance length. However, when only
1/2 and 1/4 of the tokens are retained, the reduced visual input leads to noticeable information loss,
lowering acceptance length and diminishing the speedup.

Table 3: Effect of Visual Token Compression Rate on Speedup
and Token Acceptance

Models VTC Rate MMT-Bench SEED-Bench ScienceQA

S τ S τ S τ

LLaVA-v1.6
Vicuna-13B

100% 3.53 5.67 3.32 5.40 3.18 5.33
75% 3.68 5.58 3.51 5.34 3.36 5.29
50% 3.19 4.96 3.13 5.04 3.11 4.98
25% 2.44 4.78 2.31 4.38 2.31 4.36

Pixtral-12B

100% 2.88 4.48 2.55 3.87 2.91 4.52
75% 2.93 4.52 2.61 3.67 2.98 4.03
50% 1.51 2.68 1.58 2.83 1.53 2.77
25% 1.24 2.18 1.51 2.35 1.33 2.64

Specifically, we examine how
the visual token compression
(VTC) rate affects both inference
speed and draft token accuracy in
DREAM. We test four compres-
sion levels (100%, 75%, 50%,
and 25%) and evaluate their ef-
fects using two key metrics: the
speedup ratio (S) and the average
accepted token length (τ ) across
three benchmarks: MMT-Bench,
SEED-Bench, and ScienceQA.

As presented in Table 3, the re-
sults show that a 75% VTC rate
generally offers the best balance between speed and accuracy. For LLaVA-13B and Pixtral-12B,
this setting achieves the highest or second-highest speedups (3.68× and 2.93× on MMT-Bench,
respectively) while keeping τ within about 2% of the full-token baseline. In comparison, reducing
the visual tokens to 50% or 25% yields only minor speed improvements but causes τ to drop by
10–25%, indicating that excessive visual compression leads to more draft token rejections due to
reduced contextual information.

Impact of Lambda Settings The weights λfeat, λintermed, and λKL balance different supervisory
signals. Since Lfeat and Lintermed are smooth L1 losses of similar scale and play comparable
roles in guiding the model by promoting feature alignment, we set λfeat = λintermed to simplify
tuning. The KL loss is typically smaller in magnitude and is fixed at λKL = 1 to maintain consistent
influence. As shown in Figure 4 (d), on LLaVA-v1.6-Vicuna-7B, increasing λfeat from 0.05 to 0.2
improves speedup and average accepted token length. However, at 0.4, both metrics drop, indicating
that excessive feature supervision may harm generalization.

5 Conclusion and Limitation

We present DREAM, a speculative decoding framework optimized for VLMs. By integrating visual
token compression, cross-attention feature fusion, and adaptive intermediate distillation, DREAM
achieves up to 3.6× speedup over standard decoding while maintaining high accuracy, offering a
scalable and efficient solution for fast multimodal inference.

Although DREAM shows strong performance, its evaluation is limited to NVIDIA GPUs. As future
work, it is important to assess its effectiveness across a broader range of hardware platforms, datasets,
and VLMs. Moreover, although DREAM improves the efficiency of VLM, enabling faster and more
accessible deployment in real-world applications such as assistive technologies and interactive agents.
However, care should be taken to prevent misuse in generating harmful multimodal content.
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