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Abstract

Reliable evaluation of adversarial defenses is a challenging task, currently limited to an
expert who manually crafts attacks that exploit the defenses inner workings, or to approaches
based on ensemble of fixed attacks, none of which may be effective for the specific defense
at hand. Our key observation is that custom attacks are composed from a set of reusable
building blocks, such as fine-tuning relevant attack parameters, network transformations,
and custom loss functions. Based on this observation, we present an extensible tool that
defines a search space over these reusable building blocks and automatically discovers an
effective attack on a given model with an unknown defense by searching over suitable
combinations of these blocks. We evaluated our approach on 23 adversarial defenses and
showed it outperforms AutoAttack (Croce and Hein, 2020), the current state-of-the-art tool
for reliable evaluation of adversarial defenses: our discovered attacks are either stronger,
producing 3.0%-50.8% additional adversarial examples (10 cases), or are typically 2x faster
while enjoying similar adversarial robustness (13 cases).

1. Introduction

To address the challenge of adversarial robustness evaluation (Szegedy et al., 2014; Goodfellow
et al., 2015), two recent works approach the problem from different perspectives. Tramer
et al. (2020) outline an approach for manually crafting adaptive attacks that exploit the
weak points of each defense. Here, a domain expert starts with an existing attack, such as
PGD (Madry et al., 2018) (denoted as • in Figure 1), and adapts it based on knowledge of
the defense’s inner workings. This approach was demonstrated to be effective in breaking all
of the considered 13 defenses. However, a downside is that it requires substantial manual
effort and is limited by the domain knowledge of the expert – for instance, each of the 13
defenses came with an adaptive attack which was insufficient, in retrospect.

At the same time, Croce and Hein (2020) proposed to assess adversarial robustness using
an ensemble of four diverse attacks. While these do not require manual effort and have been
shown to provide a better robustness estimate for many defenses, the approach is limited by
the fact that the attacks are fixed apriori without any knowledge of the particular defense
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Figure 1: Illustration of recent works and ours. Adaptive attacks (a) rely on a human expert
to adapt an existing attack to exploit the defense weak points. AutoAttack (b)
evaluates defenses using an ensemble of diverse attacks. Our work (c) defines a
search space of adaptive attacks ( ) and performs search steps automatically.

at hand. This is visualized in Figure 1 (b) where even though the attacks are designed to be
diverse, they cover only a small part of the entire space.

This work: discovery of adaptive attacks We present a new method that automates
the process of crafting adaptive attacks, combining the best of both prior approaches –
the ability to evaluate defenses automatically while producing attacks tuned for the given
defense. Our work is based on the key observation that we can identify common techniques
used to build existing adaptive attacks and extract them as reusable building blocks in a
common framework. Then, given a new model with an unseen defense, we can discover an
effective attack by searching over suitable combinations of these building blocks.

To identify reusable techniques, we analyze existing adaptive attacks and organize their
components into three groups: Attack algorithm and parameters, Network transformations,
and Loss functions. These components collectively formalize an attack search space induced
by their different combinations. We present an algorithm that effectively navigates the
search space, and implemented in a tool called Adaptive AutoAttack (A3). The source code
of A3 and our scripts for reproducing the experiments are available online at:

https://github.com/eth-sri/adaptive-auto-attack

2. Automated Discovery of Adaptive Attacks

We use D = {(xi, yi)}Ni=1 to denote a training dataset where x ∈ X is a natural input and y
is the label. An adversarial example is a perturbed input x′, such that: (i) it satisfies an
attack criterion c, e.g., a K-class classification model f : X → RK predicts a wrong label,
and (ii) the distance d(x′, x) between the adversarial input x′ and the input x is below a
threshold ε under a distance metric d (e.g., an Lp norm). Formally, this can be written as:

Adversarial Attack : d(x′, x) ≤ ε such that c(f, x′, x) (1)

Problem Statement Given a model f equipped with an unknown set of defenses and a
dataset D, our goal is to find an adaptive attack a ∈ A that is best at generating adversarial
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samples x′ according to the attack criterion c and the attack capability d(x′, x) ≤ ε:

max
a∈A, d(x′,x)≤ε

E(x,y)∼D c(f, x′, x) where x′ = a(x, f) (2)

Here, A denotes the search space of all possible attacks, where the goal of each attack
a : X× (X→ RK)→ X is to generate an adversarial sample x′ = a(x, f) for a given input x
and model f . For example, solving this optimization problem with respect to the L∞
misclassification criterion corresponds to optimizing the number of adversarial examples
misclassified by the model.

In our work, we consider an implementation-knowledge adversary, who has full access
to the model’s implementation at inference time (e.g., the model’s computational graph).
We chose this threat model as it matches our problem setting – given an unseen model
implementation, we want to automatically find an adaptive attack that exploits its weak
points, but without the need of a domain expert. To solve the optimization problem from
Equation 2, we address two key challenges: Defining a suitable attacks search space A
(Section 3), and Searching over the space A efficiently (Section 4 and Appendix A).

3. Adaptive Attacks Search Space

We define the adaptive attack search space to be A : S× T, where S consists of sequences of
backbone attacks along with their loss functions, selected from a space of loss functions L, and
T consists of network transformations. Given an input x and a model f , the goal of adaptive
attack (s, t) ∈ S × T is to return an adversarial example x′ by computing s(x, t(f)) = x′.
That is, it first transforms the model f by applying the transformation t(f) = f ′, and then
executes the attack s on the surrogate model f ′. Note that the surrogate model is used only
to compute the candidate adversarial example, not to evaluate it.

Attack Algorithm & Parameters (S) The attack search space consists of a sequence
of adversarial attacks. We formalize the search space with the grammar:

(Attack Search Space)
S ::= S; S | randomize S | EOT S, n |, repeat S, n | try S for n |

Attack with params with loss ∈ L

• S; S: composes two attacks, which are executed independently and return the first
adversarial sample in the defined order. That is, given input x, the attack s1; s2 returns
s1(x) if s1(x) is an adversarial example, and otherwise it returns s2(x).

• randomize S: enables the attack’s randomized components, which correspond to ran-
dom seed and/or selecting a starting point within d(x′, x) ≤ ε, uniformly at random.

• EOT S, n: uses expectation over transformation, a technique designed to compute
gradients for models with randomized components (Athalye et al., 2018).

• repeat S, n: repeats the attack n times (useful only if randomization is enabled).

• try S for n: executes the attack with a time budget of n seconds.
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• Attack with params with loss ∈ L: is a backbone attack Attack executed with
parameters params and loss function loss. We provide the full list of parameters,
including their ranges and priors in Appendix C.

Network Transformations (T) At a high-level, the network transformation search space
T takes as input a model f and transforms it to another model f ′, which is easier to attack.
To achieve this, the network f can be expressed as a directed acyclic graph, where each
vertex denotes an operator (e.g., convolution, residual blocks, etc.), and edges correspond
to data dependencies. Note that the computational graph includes both the forward and
backward versions of each operation, which can be changed independently of each other. In
our work, we include two types of network transformations:

• Layer Removal, which removes an operator from the graph. Each operator can be
removed if its input and output dimensions are the same, regardless of its functionality.

• Backward Pass Differentiable Approximation (BPDA) (Athalye et al., 2018), which
replaces the backward version of an operator with a differentiable approximation of
the function. In our search space we include three different function approximations:
(i) an identity function, (ii) a convolution layer with kernel size 1, and (iii) a two-layer
convolutional layer with ReLU activation in between. The weights in the latter two
cases are learned through approximating the forward function using the test dataset.

Loss Function (L) Selecting the right objective function to optimize is an important
design decision for creating strong adaptive attacks. The recent work of Tramer et al. (2020)
uses 9 different objective functions to break 13 defenses, showing the importance of this step.
We formalize the space of possible loss functions as follows (see Appendix C for details):

(Loss Function Search Space)

L ::= targeted Loss, n with Z | untargeted Loss with Z |
targeted Loss, n - untargeted Loss with Z

Z ::= logits | probabilities

Loss ::= CrossEntropy | HingeLoss | L1 | DLR | LogitMatching

4. Search Algorithm

Here we briefly describe the main components of our search algorithm. As the search space
of attacks S is large, we employ three techniques to improve scalability and attack quality:

• First, to generate a sequence of m attacks, we perform a greedy search – that is, in
each step, we find an attack with the best score on the samples not circumvented by
any of the previous attacks.

• Second, we use a parameter estimator model M to select the suitable parameters. In
our work, we use Tree of Parzen Estimators (Bergstra et al., 2011), but the concrete
implementation can vary.
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• Third, because evaluating the adversarial attacks can be expensive, and the dataset
D is typically large, we employ successive halving technique (Karnin et al., 2013;
Jamieson and Talwalkar, 2016).

We provide the full algorithm, including a more detailed description and time complexity
analysis, in Appendix A.

5. Evaluation

We now evaluate A3 on 23 models with diverse defenses on CIFAR-10 dataset. The result
shows A3 finds stronger or similar attacks than AutoAttack for virtually all defenses:

• In 10 cases, the attacks found by A3 are significantly stronger than AutoAttack,
resulting in 3.0% to 50.8% additional adversarial examples.

• In the other 13 cases, A3’s attacks are typically 2x and up to 5.5x faster while enjoying
similar attack quality.

The A3 tool The implementation of A3 is based on PyTorch (Paszke et al., 2019), the
implementations of FGSM, PGD, NES, and DeepFool are based on FoolBox (Rauber et al.,
2017) version 3.0.0, C&W is based on ART (Nicolae et al., 2018) version 1.3.0, and the attacks
APGD, FAB, and SQR are from Croce and Hein (2020). We use AutoAttack’s rand version
if a defense has a randomization component, and otherwise we use its standard version.
To allow for a fair comparison, we extended AutoAttack with backward pass differential
approximation (BPDA), so we can run it on defenses with non-differentiable components;
without this, all gradient-based attacks would fail.

We instantiate our search algorithm by setting: the attack sequence length m=3, the
number of trials k=64, the initial dataset size n=100, and we use a time budget of 0.5 to
3 seconds per sample depending on the model size. The only exception is A1, which uses
ε = 0.03, m = 8 and A10, which uses time budget of 30 seconds and m = 1. We use TPE for
parameter estimation, which is implemented as part of the Hyperopt framework (Bergstra
et al., 2013). All of the experiments are performed using a single RTX 2080 Ti GPU.

Comparison to AutoAttack Our main results, summarized in Table 1, show the robust
accuracy (lower is better) and runtime of both AutoAttack (AA) and A3 over the 23 defenses.
Overall, A3 significantly improves upon AA or provides similar but faster attacks.

We note that the attacks from AA are included in our search space (although without the
knowledge of their best parameters and sequence), and so it is expected that A3 performs at
least as well as AA, provided sufficient exploration time. The only case where the exploration
time was not sufficient was for B14 where our attack is slightly slower (114 min for A3 vs.
107 min for AA), yet still achieves the same robust accuracy (5.16% for A3 vs. 5.15% for AA).
Importantly, A3 often finds better attacks: for 10 defenses, A3 reduces the robust accuracy
by 3% to 50% compared to that of AA. In what follows, we discuss the results in more detail
and highlight important insights.

Defenses based on Adversarial Training. Defenses A2, B11, B12, B16, B17 and B18 are
based on variations of adversarial training. A3 obtains very close results while bringing
1.5–5.5× speedups. Closer inspection reveals that AA includes two attacks, FAB and SQR,
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Table 1: Comparison of AutoAttack (AA) and our approach (A3) on 23 defenses.

Robust Accuracy (1 - Rerr) Runtime (minutes) Search

CIFAR-10, l∞, ε = 4/255 AA A3 ∆ AA A3 Speed-up A3

A1∗ Stutz et al. (2020) 77.64 26.87 -50.77 101 205 0.49× 659

A2 Madry et al. (2018) 44.78 44.69 -0.09 25 20 1.25× 88

A3† Buckman et al. (2018) 2.29 1.96 -0.33 9 7 1.29× 116

A4† Das et al. (2017) + Lee
et al. (2018)

0.59 0.11 -0.48 6 2 3.00× 40

A5 Metzen et al. (2017) 6.17 3.04 -3.13 21 13 1.62× 80

A6 Guo et al. (2018) 22.30 12.14 -10.16 19 17 1.12× 99

A7† Ensemble of A3, A4, A6 4.14 3.94 -0.20 28 24 1.17× 237

A8 Papernot et al. (2015) 2.85 2.71 -0.14 4 4 1.00× 84

A9 Xiao et al. (2020) 19.82 11.11 -8.71 49 22 2.23× 189

A10 Xiao et al. (2020)ADV 64.91 17.70 -47.21 157 2,280 0.07× 1,548

CIFAR-10, l∞, ε = 8/255

B11∗ Wu et al. (2020)RTS 60.05 60.01 -0.04 706 255 2.77× 690

B12∗ Wu et al. (2020)TRADES 56.16 56.18 0.02 801 145 5.52× 677

B13∗ Zhang and Wang (2019) 36.74 37.11 0.37 381 302 1.26× 726

B14 Grathwohl et al. (2020) 5.15 5.16 0.01 107 114 0.94× 749

B15 Xiao et al. (2020)ADV 5.40 2.31 -3.09 95 146 0.65× 828

B16 Wang et al. (2019) 50.84 50.81 -0.03 734 372 1.97× 755

B17∗ Wang et al. (2020) 50.94 50.89 -0.05 742 486 1.53× 807

B18∗ Sehwag et al. (2020) 57.19 57.16 -0.03 671 429 1.56× 691

B19† B11 + Defense in A4 60.72 60.04 -0.68 621 210 2.96× 585

B20† B14 + Defense in A4 15.27 5.24 -10.03 261 79 3.30× 746

B21 B11 + Rand Rotation 49.53 41.99 -7.54 255 462 0.55× 900

B22 B14 + Rand Rotation 22.29 13.45 -8.84 114 374 0.30× 1,023

B23 Hu et al. (2019) 6.25 3.07 -3.18 110 56 1.96× 502

∗model available from the authors, †model with non-differentiable components.

which are not only expensive but also ineffective on these defenses. A3 improves the runtime
by excluding them from the generated adaptive attack.

Obfuscation Defenses. Defenses A4, A9, A10, B15, B19, and B20 are based on gradient
obfuscation. A3 discovers stronger attacks that reduce the robust accuracy for all defenses
by up to 47.21%. Here, removing the obfuscated defenses in A4, B19, and B20 provides
better gradient estimation for the attacks. Further, the use of more suitable loss functions
strengthens the discovered attacks and improves the evaluation results for A9 and B15.

Randomized Defenses. For the randomized input defenses A9, B21, and B22, A3 discovers
attacks that, compared to AA’s rand version, further reduce robustness by 8.71%, 7.54%,
and 8.84%, respectively.

Detector based Defenses. For A1, A5, and B23 defended with detectors, A3 improves
over AA by reducing the robustness by 50.77%, 3.13%, and 3.18%, respectively. This is
because none of the attacks discovered by A3 are included in AA. Namely, A3 found SQRDLR
and APGDHinge for A1, untargeted FAB for A5 (FAB in AA is targeted), and PGDL1 for B23.
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6. Conclusion

We presented the first tool that aims to automatically find strong adaptive attacks specifically
tailored to a given adversarial defense. Our key insight is that we can identify reusable
techniques used in existing attacks and formalize them into a search space. Then, we
can phrase the challenge of finding new attacks as an optimization problem of finding the
strongest attack over this search space. Our approach is a step towards automating the
tedious and time-consuming trial-and-error steps that domain experts perform manually
today, allowing them to focus on the creative task of designing new attacks. By doing so,
we also immediately provide a more reliable evaluation of new and existing defenses, many
of which have been broken only after their proposal because the authors struggled to find an
effective attack by manually exploring the vast space of techniques.
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Appendix A. Search Algorithm

Here, we describe our search algorithm that optimizes the problem statement from Equation 2.
Since we do not have access to the underlying distribution, we approximate Equation 2
using the dataset D as follows:

score(f, a,D) =
1

|D|

|D|∑
i=1

−λla + max
d(x′,x)≤ε

c(f, a(x, f), x) (3)

where a ∈ A is an attack, la ∈ R+ denotes untargeted cross-entropy loss of a on the input,
and λ ∈ R is a hyperparameter. The intuition behind −λ · la is that it acts as a tie-breaker in
case the criterion c alone is not enough to differentiate between multiple attacks. While this
is unlikely to happen when evaluating on large datasets, it is quite common when using only
a small number of samples. Obtaining good estimates in such cases is especially important
for achieving scalability since performing the search directly on the full dataset would be
prohibitively slow.

Algorithm 1: A search algorithm that given a model f with unknown defense,
discovers an adaptive attack from the attack search space A with the best score.

def AdaptiveAttackSearch
Input: dataset D, model f , attack search space A = S× T, number of trials k,

initial dataset size n, attack sequence length m, criterion function c,
initial parameter estimator model M , default attack ∆ ∈ S

Output: adaptive attack from a[s,t] ∈ A achieving the highest score on D
1 t← arg maxt∈T score(f, a[∆,t],D) . Search for surrogate model t

2 S ← ⊥ . Initialize attack to be no attack, which returns the input image
3 for j ← 1:m do . Run m iterations to get sequence of m attacks
4 D ← D \ {x | x ∈ D ∧ c(f, a[S,t](x, f), x)} . Remove non-robust samples

5 Dsample ← sample(D, n) . Initial dataset with n samples
6 H ← ∅
7 for i← 1:k do . Select candidate adaptive attacks
8 θ′ ← arg maxθ∈S P (θ |M) . Best unseen parameters according to the

model M
9 q ← score(f, a[θ′,t],Dsample)

10 H ← H∪ {(θ′, q)}
11 M ← update model M with (θ′, q)

12 H ← keep |H|/4 attacks with the best score
13 while |H| > 1 and Dsample 6= D do . Successive halving (SHA)
14 Dsample ← Dsample ∪ sample(D \ Dsample, |Dsample|)
15 H ← {(θ, score(f, a[θ,t],Dsample)) | (θ, q) ∈ H}
16 H ← keep |H|/4 attacks with the best score

17 S ← S; best attack in H
18 return a[S,t]
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Search Algorithm We present our search algorithm in Algorithm 1. We start by searching
through the space of network transformations t∈T to find a suitable surrogate model (line 1).
This is achieved by taking the default attack ∆ (in our implementation, we set ∆ to APGDCE),
and then evaluating all locations where BPDA can be used, and subsequently evaluating all
layers that can be removed. Even though this step is exhaustive, it takes only a fraction of
the runtime in our experiments, and no further optimization was necessary.

Next, we search through the space of attacks S. As this search space is enormous, we
employ three techniques to improve scalability and attack quality. First, to generate a
sequence of m attacks, we perform a greedy search (lines 3-17). That is, in each step, we
find an attack with the best score on the samples not circumvented by any of the previous
attacks (line 4). Second, we use a parameter estimator model M to select the suitable
parameters (line 8). In our work, we use Tree of Parzen Estimators Bergstra et al. (2011),
but the concrete implementation can vary. Once the parameters are selected, they are
evaluated using the score function (line 9), the result is stored in the trial history H (line
10), and the estimator is updated (line 11). Third, because evaluating the adversarial
attacks can be expensive, and the dataset D is typically large, we employ successive halving
technique Karnin et al. (2013); Jamieson and Talwalkar (2016). Concretely, instead of
evaluating all the trials on the full dataset, we start by evaluating them only on a subset of
samples Dsample (line 5). Then, we improve the score estimates by iteratively increasing the
dataset size (line 14), re-evaluating the scores (line 15), and retaining a quarter of the trials
with the best score (line 16). We repeat this process to find a single best attack from H,
which is then added to the sequence of attacks S (line 17).

A3 Time Complexity We give the worst-case time analysis for Algorithm 1. We denote
Ta to be the attack time and Tr to be the search time. We will show that under the per
sample per attack time limit of Tc:

Ta ≤ m×N × Tc (4)

Tr ≤ 2×m× n× k × Tc (5)

Where m, n, k are the number of attacks, initial dataset size, number of trials respectively.

In Algorithm 1, only steps on lines 1,4,8,14 are timing critical as they apply the expensive
attack algorithms. Since line 4 is essentially applying the attack on all the samples, the
runtime of line 4 counts as Ta. The runtime of lines 1,8,14 counts as Tr.

Ta consists of the time to apply m attacks. The worst-case runtime here is when each of
the m attacks use the full time budget Tc on all the samples (denoted as N). This gives the
bound shown in Equation 4. For Tr, we first analyze the time in lines 8 and 14 for a single
attack. In line 8, the maximum time to perform k attacks on n samples is: n× k × Tc. In
line 14, the cost of the first iteration is: 1

2n× k×Tc as there are k/4 attacks and 2n samples.
By design, the cost of SHA iteration is halved for every subsequent iteration, which leads to
time for line 14 to be n× k × Tc. As there are m attacks, the total time bound for lines 8
and 14 is: 2×m× n× k × Tc.

The runtime for line 1 is bounded by N × Tfast as we run single attack on all the
samples. Here, we use Tfast to denote the maximum runtime of a fast attack that we
run at this stage. This step is typically negligible compared to the subsequent search, i.e.,
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N × Tfast � 2×m× n× k × Tc. Overall, we can therefore bound the search runtime by
considering the lines and 8 and 14, which leads to the bound from Equation 5.

In our evaluation, we use m = 3, k = 64, n = 100, N = 10000. Substituting into
Equation 5 leads to Tr ≤ 2× 3× 100× 64× Tc ≤ 4×N × Tc. This means the total search
time is bounded by the time bound of executing a sequence of 4 attacks on the full dataset.
Further, Tr ≤ 4

3 ×m×N × Tc, which means the search time of an attack is bounded by 4
3

of the allowed runtime to execute the attack.

Appendix B. Evaluation Metrics Details

We use the following L∞ criteria in the formulation:

‖x′ − x‖∞ ≤ ε s.t. f̂(x′) 6= f̂(x)

Misclassification

L∞ Attack

f̂(x′) 6= f̂(x)

g(x′) = 1
‖x′ − x‖∞ ≤ ε s.t.

Misclassification
L∞ Attack

with Detector g

For both, we remove the misclassified clean input as a pre-processing step, such that the
evaluation is performed only on the subset of correctly classified samples (i.e. f̂(x) = y).

Sequence of Attacks Sequence of attacks defined in Section 3 is a way to calculate the
per-example worst-case evaluation, and the four attack ensemble in AutoAttack is equivalent
to sequence of four attacks [APGDCE, APGDDLR, FAB, SQR]. Algorithm 2 elaborates how the
sequence of attacks is evaluated. That is, the attacks are performed in the order they were
defined and the first sample x′ that satisfies the criterion c is returned.

Algorithm 2: Sequence of attacks

def SeqAttack
Input: model f , data x, sequence attacks S ⊆ S, network transformation t ∈ T,

criterion function c
1 for θ ∈ S do
2 x′=a[θ,t](x, f);

3 if c(f, x′, x) then
4 return x′

5 return x′

Evaluation Metric Following Stutz et al. (2020), we use the robust test error (Rerr)
metric to combine the evaluation of defenses with and without detectors. Rerr is defined as:

Rerr =

∑N
n=1 maxd(x′,x)≤ε,g(x′)=1 1f(x′)6=y∑N

n=1 maxd(x′,x)≤ε 1g(x′)=1

(6)

where g : X→ {0, 1} is a detector that accepts a sample if g(x′) = 1, and 1f(x′) 6=y evaluates
to one if x′ causes a misprediction and to zero otherwise. The numerator counts the number
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of samples that are both accepted and lead to a successful attack (including cases where
the original x is incorrect), and the denominator counts the number of samples not rejected
by the detector. A defense without a detector (i.e., g(x′) = 1) reduces Equation 6 to the
standard Rerr. Finally, we define robust accuracy simply as 1− Rerr.

Robust Test Error (Rerr) Rerr in Equation 6 has intractable maximization problem in
the denominator, so Equation 7 is the empirical equation used to give an upper bound of
Rerr. This empirical evaluation is the same as the evaluation in Stutz et al. (2020).

Rerr =

∑N
n=1max{1f(xn)6=yng(xn),1f(x′n)6=yng(x′n)}∑N

n=1max{g(xn), g(x′n)}
(7)

Detectors For a network f with a detector g, the criterion function c is misclassification
with the detectors, and it is applied in line 3 in Algorithm 2. This formulation enables
per-example worst-case evaluation for detector defenses.

Randomized Defenses If f has randomized component, f(xn) in Equation 7 means to
draw a random sample from the distribution. In the evaluation metrics, we report the mean
of adversarial samples evaluated 10 times using f .

Appendix C. Search Space of S× L

C.1 Loss function space L

In Figure 2 we defined the five loss functions we used in the experiments: Cross Entropy
(CE), HingeLoss (Hinge) (Carlini and Wagner, 2017), Difference in logit ratio (DLR) (Croce
and Hein, 2020), Logit Matching (LM). For Hinge, the confidence value κ is set to infinity as
to encourage stronger adversarial examples, and κ can be a loss parameter in future work.

Recall from Section 3 that the loss function search space is defined as:

(Loss Function Search Space)

L ::= targeted Loss, n with Z | untargeted Loss with Z |
targeted Loss, n - untargeted Loss with Z

Z ::= logits | probabilities

Loss ::= CrossEntropy | HingeLoss | L1 | DLR | LogitMatching

To refer to different settings, we use the following notation:

• U: for the untargeted loss,

• T: for the targeted loss,

• D: for the targeted − untargeted loss

• L: for using logits, and

• P: for using probs

For example, we use DLR-U-L to denote untargeted DLR loss with logits. The loss
space in evaluation is shown in Table 2. Effectively, the search space includes all the
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Table 2: Loss functions and their modifiers. 3 means the loss supports the modifier. P means
the loss always uses Probability.

Name Targeted Logit/Prob Loss

`CE 3 P `CrossEntropy = −
∑K

i=1 yi log(Z(x)i)

`Hinge 3 3 `HingeLoss = max(−Z(x)y + max
i 6=y

Z(x)i,−κ)

`L1 3 3 `L1 = −Z(x)y

`DLR 3 3 `DLR = −
Z(x)y −maxi 6=y Z(x)i
Z(x)π1 − Z(x)π3

`LogitMatching 3 3 `LogitMatching = ‖Z(x′)− Z(x)‖22

Table 3: Generic parameters and loss support for each attack in the search space. For the
loss column, ”-” means the loss is from the library implementation, and 3 means
the attack supports all the loss functions defined in Table 2. In other columns
3 means the attack supports all the values, and the attack supports only the
indicated set of values otherwise.

Attack Randomize EOT Repeat Loss Targeted logit/prob

FGSM True Z[1, 200] ∗Z[1, 10000] 3 3 3
PGD True Z[1, 40] Z[1, 10] 3 3 3
DeepFool False 1 1 3 D 3
APGD True Z[1, 40] Z[1, 10] 3 3 3
C&W False 1 1 - {U, T} L
FAB True 1 Z[1, 10] - {U, T} L
SQR True 1 Z[1, 3] 3 3 3
NES True 1 1 3 3 3

possible combinations expect that the cross-entropy loss supports only probability. Note
that although `DLR is designed for logits, and `LogitMatching is designed for targeted attacks,
the search space still makes other possibilities an option (i.e., it is up to the search algorithm
to learn which combinations are useful and which are not).
C.2 Attack Algorithm & Parameters Space S

Recall the attack space defined in Section 3 as:

S ::= S; S | randomize S | EOT S, n | repeat S, n | try S for n |
Attack with params with loss ∈ L

randomize, EOT, repeat are the generic parameters, and for params are attack specific
parameters. The type of every parameter is either integer or float. An integer ranges from p
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Table 4: List of attack specific parameters. The parameter names correspond to the names
in the library implementation

Attack Parameter Range and prior

NES
step Z[20, 80]
rel stepsize ∗R[0.01, 0.1]
n samples Z[400, 4000]

C&W

confidence R[0, 0.1]
max iter Z[20, 200]
binary search steps Z[5, 25]
learning rate ∗R[0.0001, 0.01]
max halving Z[5, 15]
max doubling Z[5, 15]

Attack Parameter Range and prior

PGD
step Z[20, 200]
rel stepsize ∗R[1/1000, 1]

APGD
rho R[0.5, 0.9]
n iter Z[20, 500]

FAB
n iter Z[10, 200]
eta R[1, 1.2]
beta R[0.7, 1]

SQR
n queries Z[1000, 8000]
p init R[0.5, 0.9]

to q inclusive is denoted as Z[p, q]. A float range from p to q inclusive is denoted as R[p, q].
Besides value range, prior is needed for parameter estimator model (TPE in our case), which
is either uniform (default) or log uniform (denoted with ∗). For example, ∗Z[1, 100] means
an integer value ranges from 1 to 100 with log uniform prior; R[0.1, 1] means a float value
ranges from 0.1 to 1 with uniform prior.

Generic parameters and the supported loss for each attack algorithm are defined in
Table 3. The algorithm returns a deterministic result if randomize is False, and otherwise the
results might differ due to randomization. Randomness can come from either perturbing the
initial input or randomness in the attack algorithm. Input perturbation is deterministic if the
starting input is the original input or an input with fixed disturbance, and it is randomized
if the starting input is chosen uniformly at random within the adversarial capability. For
example, the first iteration of FAB uses the original input but the subsequent inputs are
randomized (if the randomization is enabled). Attack algorithms like SQR, which is based on
random search, has randomness in the algorithm itself. The deterministic version of such
randomized algorithms is obtained by fixing the initial random seed.

The definition of randomize for FGSM, PGD, NES, APGD, FAB, DeepFool, C&W is whether
to start from the original input or uniformly at random select a point within the adversarial
capability. For SQR random means whether to fix the seed. We generally set randomize to
be True to allow repeating the attacks for stronger attack strength, yet we set DeepFool
and C&W to False as they are minimization attacks designed with the original inputs as the
starting inputs.

The attack specific parameters are specified in Table 4, and the ranges are chosen to be
representative by setting reasonable upper and lower bounds to include the default values
of parameters. Note that DeepFool algorithm uses the loss D to take difference between
the predictions of two classes by design (i.e., targeted − untargeted loss). C&W uses the
hinge loss, and FAB uses loss similar to DeepFool. For C&W and FAB, we just take the library
implementation of the loss (i.e. without our loss function space formulation).
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C.3 Search space conditioned on network property

In our work, properties of network defenses (e.g. randomized, detector, obfuscation) are
used to reduce the search space. EOT is set to be 1 for deterministic networks. Repeat is
set to be 1 for randomized networks, following the practise of AA setting repeat to 1 in its
rand version. Logit Matching is enabled only when detectors are present since the loss is
considered as a loss to bypass detectors.
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