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Abstract

In this paper, we introduce SemiRES, a semi-
supervised framework that effectively leverages a
combination of labeled and unlabeled data to per-
form RES. A significant hurdle in applying semi-
supervised techniques to RES is the prevalence
of noisy pseudo-labels, particularly at the bound-
aries of objects. SemiRES incorporates the Seg-
ment Anything Model (SAM), renowned for its
precise boundary demarcation, to improve the ac-
curacy of these pseudo-labels. Within SemiRES,
we offer two alternative matching strategies: IoU-
based Optimal Matching (IOM) and Composite
Parts Integration (CPI). These strategies are de-
signed to extract the most accurate masks from
SAM'’s output, thus guiding the training of the
student model with enhanced precision. In in-
stances where a precise mask cannot be matched
from the available candidates, we develop the
Pixel-Wise Adjustment (PWA) strategy, guid-
ing the student model’s training directly by the
pseudo-labels. Extensive experiments on three
RES benchmarks—RefCOCO, RefCOCO+, and
G-Ref reveal its superior performance compared
to fully supervised methods. Remarkably, with
only 1% labeled data, our SemiRES outperforms
the supervised baseline by a large margin, e.g.
+18.64% gains on RefCOCO val set. The project
code is available at https://github.com/
nini0919/SemiRES.
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Figure 1. (a) A large number of noisy and incomplete cases exist
in pseudo-labels. The proposed SemiRES can address this issue.
(b) Analysis shows labeling a small portion of RefCOCO data
can greatly reduce costs. (c) Our method substantially improves
performance, even with a small number of annotated samples.

1. Introduction

Referring Expression Segmentation (RES) has attracted con-
siderable attention from the fields of vision and language
research (Hu et al., 2016; Chen et al., 2019b; Huang et al.,
2020; Liu et al., 2019; 2023b). Unlike common visual
grounding tasks such as phrase localization (Bajaj et al.,
2019; Chen et al., 2017; Dogan et al., 2019; Plummer et al.,
2015; 2017) and referring expression comprehension (Yang
et al., 2020; Yu et al., 2018; Deng et al., 2021; Kamath et al.,
2021; Huang et al., 2021), RES requires precise pixel-level
segmentation of an object within an image, as directed by a
referring expression, which goes beyond simple bounding
box identification.

Despite advancements, the high demand for labeled data
presents a significant barrier to the deployment of RES,
particularly in domains where labeling is prohibitively ex-
pensive, such as medical imaging and autonomous driving.
The labor intensity of the task is underscored by findings
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from (Kim et al., 2023a), indicating that an average mask
segmentation requires approximately 79.1 seconds. This
is further exemplified by the extensive annotation efforts
needed for benchmark datasets like RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), and G-Ref (Mao et al.,
2016; Nagaraja et al., 2016), which consist of tens of thou-
sands of labeled instances and necessitate substantial time
investments, as illustrated in Fig. 1 (b). The cost and time im-
plications, alongside the potential for inaccuracies in manual
labeling, present considerable challenges for the scalability
and reliability of RES models, highlighting the urgent need
for more efficient methodologies.

To address the challenges outlined above, we pioneer a semi-
supervised learning framework tailored for RES, utilizing
a combination of a small subset of image-text pairs with
segmentation annotations and a large corpus of unannotated
pairs to train the model. This approach has been widely vali-
dated across the fields of computer vision (Sohn et al., 2020;
Olsson et al., 2021; Chen et al., 2023), natural language
processing (Miyato et al., 2016; Cheng & Cheng, 2019; Zou
& Caragea, 2023), and vision-language research (Yang et al.,
2023; Sun et al., 2023; Jin et al., 2023). Yet, its application
in RES has not yet been explored. We establish a baseline
for semi-supervised RES, encompassing a comprehensive
pipeline that goes beyond data augmentation (Zhang et al.,
2017; Hendrycks et al., 2019; Cubuk et al., 2019; Zhao
et al., 2023a) and Exponential Moving Average (Kingma
& Ba, 2014; He et al., 2020; Grill et al., 2020; Tarvainen &
Valpola, 2017) training mechanisms. However, this baseline
encounters a substantial challenge: pseudo-labels are signif-
icantly noisy, particularly at the edges of instances, which
can trap the model in suboptimal performance, as depicted
in Fig. 1 (a). The crux of semi-supervised learning lies in
refining these pseudo-labels to enhance their quality. Previ-
ous methods have addressed this by employing confidence-
based pseudo-label filtering strategies (Sohn et al., 2020) or
auxiliary correcting networks (Kwon & Kwak, 2022; Kim
et al., 2023a). While intuitively appealing, relying solely on
confidence for filtering may lead to the under-utilization of
unlabeled data and lack flexibility in handling diverse noise
in pseudo-labels.

To tackle the aforementioned issues, we introduce a novel
semi-supervised RES framework named SemiRES. The mo-
tivation behind SemiRES is to leverage the robust segmen-
tation capabilities of SAM (Kirillov et al., 2023) to rec-
tify pseudo-labels, especially around the edges of instances.
Specifically, we employ SAM to extract multi-scale masks
from original images to build a proposal library. The central
concept of SemiRES is to retrieve one or multiple proposals
from this library to reconstruct pseudo-labels. To achieve
this, we propose two alternative strategies: loU-based Opti-
mal Matching (IOM) and Composite Parts Integration (CPI).
The first assumes that the proposal library contains masks

closely approximating the target instance, thus utilizing IoU
to directly identify and replace the pseudo-label with the
most corresponding mask from the library. The second strat-
egy moves away from this assumption, instead using the
pseudo-label to select different part-specific proposals from
the library to assemble a complete mask. In cases where a
suitable replacement cannot be retrieved from the proposal
library, we default to optimizing the student model using the
pseudo-label itself. To enhance training in such scenarios,
we have devised a Pixel-Wise Adjustment (PWA) strategy
that adjusts the final loss on a per-pixel basis according to
the confidence levels on the pseudo-label.

To further qualitatively validate the effectiveness of our
proposed SemiRES, we conduct extensive experiments on
three RES benchmark datasets—RefCOCO, RefCOCO+,
and G-Ref. Our experiments show that SemiRES notably
surpasses both supervised and semi-supervised baselines
in all settings, for example, gaining +18.64% and +8.28%
on 1% labeled RefCOCO as shown in Fig. 1 (c), which
highlights its significant real-world application potential.

To sum up, the contributions of this paper are three-fold:

* We first present SemiRES, a semi-supervised frame-
work tailored for RES that efficiently trains models
using a minimal amount of labeled data, thus reducing
dependence on expensive pixel-level annotations.

* We introduce two alternative strategies, loU-based Op-
timal Matching (IOM) and Composite Parts Integration
(CPI), that leverage the SAM’s edge-segmentation pro-
ficiency to produce superior-quality pseudo-labels.

* Our SemiRES framework achieves notable perfor-
mance improvements on three benchmark datasets Re-
fCOCO, RefCOCO+, and G-Ref, demonstrating sig-
nificant gains in model accuracy while concurrently
cutting down on labeling costs.

2. Related Work

2.1. Referring Expression Segmentation

Referring Expression Segmentation (Chen et al., 2019b;
Huang et al., 2020; Liu et al., 2023b;a; Hu et al., 2023;
Kim et al., 2023b; Yang et al., 2022b) is a multimodal task
involving both image segmentation and natural language un-
derstanding. It aims to identify specific target regions within
an image according to natural language expressions. In re-
cent years, RES methods have made significant progress,
with Transformer-based backbones emerging as the predom-
inant choice for this task. Additionally, RES methods can be
categorized into two main types: one-stage and two-stage ap-
proaches. One-stage methods (Chen et al., 2019a; Hu et al.,
2020; Hui et al., 2020) usually use end-to-end networks for
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prediction, while two-stage methods (Yu et al., 2018; Liu
et al., 2022) employ an instance segmentation network to
generate a set of instance proposals before selecting the tar-
get instance. Recently, GRES (Liu et al., 2023a)introduces
multi-target and no-target expressions, extending the classic
RES to refer to an arbitrary number of target objects.

2.2. Semi-Supervised Semantic Segmentation

Semi-supervised learning (French et al., 2019; Xu et al.,
2021; Wu et al., 2021; Olsson et al., 2021; Jiang et al.,
2022; Yang et al., 2023), using a small amount of labeled
data alongside a larger pool of unlabeled data for training,
has widespread applications in computer vision and natu-
ral language processing. In recent years, semi-supervised
semantic segmentation has developed rapidly, with many
new research works emerging (Ouali et al., 2020; Chen
etal., 2021; Wang et al., 2022; Yang et al., 2022a). Building
upon FixMatch (Sohn et al., 2020), PseudoSeg (Zou et al.,
2020) extends weak consistency to strong consistency in
segmentation scenarios and incorporates a calibration mod-
ule for pseudo-label refinement. ReCo (Liu et al., 2021a)
samples classes prone to confusion across all categories to
assist the segmentation network for better representations.
AugSeg (Zhao et al., 2023b), a simple yet effective method,
primarily enhances the performance of semi-supervised se-
mantic segmentation through data augmentation.

2.3. Segment Anything Model

The recent Segment Anything Model (SAM) (Kirillov et al.,
2023) has made significant advancements in pushing the
boundaries of segmentation, greatly boosting the develop-
ment of foundational models for computer vision. Trained
on SA-1B of over 1 billion masks, it aims to segment any
object in any given image without requiring any additional
task-specific adaptation. SAM is proved to be capable of
solving various tasks, such as medical image analysis (Ma
& Wang, 2023; Shi et al., 2023), adversarial attacks (Guan
et al., 2023; Zhang et al., 2023a), image inpainting (Yu
et al., 2023), image editing (Xie et al., 2023), image cap-
tioning (Wang et al., 2023). Recently, several works (Zhang
et al., 2023b; Liu et al., 2023c) have incorporated SAM
for one-shot learning, contributing significantly to SAM’s
multifaceted development. In this paper, we investigate how
to leverage SAM to enhance pseudo-labels and improve the
performance of semi-supervised learning.

3. Method
3.1. Task Definition

Before diving into SemiRES, we begin with illustrating
the task definition of semi-supervised referring expression
segmentation (RES). We usually have a small labeled dataset

1
D, = {((Z, 7)), YY) }511 and a much larger unlabeled
dataset D, = {((Z*,T*), @)}, where I!, T denote the

i=1°
i-th labeled and unlabeled image, respectively; 7;! and 7;*
are the corresponding language expressions; N! and N* are
the number of labeled and unlabeled data, with N! <« N“,
It is crucial to note that the unlabeled set D,, lacks ground
truth mask labels, utilizing language expressions solely as
input. Our primary aim is to leverage this small labeled
set alongside a large unlabeled set to achieve competitive
performance in the RES task.

3.2. Semi-Supervised Baseline

We introduce a semi-supervised baseline for RES based on
a teacher-student network structure. This approach unfolds
in two stages:

Stagel: Burn-In Stage. In the semi-supervised teacher-
student framework, achieving proper parameter initializa-
tion is crucial for accelerating the convergence of training
during the mutual learning stage (Liu et al., 2021b). Dur-
ing the Burn-In stage, we train the pre-trained model using
only labeled data. The optimization objective is defined as
follows:

1 HxW
— l !

Lo = Fr77 Z} Lpce (M, V), (D

j=
where Mf ; denotes the prediction mask of Burn-In model
for the j-th pixel of ¢-th labeled image, Yj ; denotes the
corresponding ground truth, £pcg denotes binary cross
entropy loss (Csiszér, 2008).
Stage2: Mutual-Learning Stage. After the Burn-In stage,
we use the trained weights 6 to initialize both the teacher
and student models. This process is defined as follows:

0 < 0,0, + 0, 2)

where 0, 05, 0 denote the parameters of the teacher, student
and Burn-In model, respectively.

During the mutual learning stage, the teacher generates
pseudo-labels for unlabeled data to supervise the training of
the student, which is defined as follows:

1 HxW R
Lunswn = 770 O Locs (M5 015), ()
J

1

where M;'; and ML“] denote the predicted mask for j-th
pixel of i-th unlabeled image by student and teacher, respec-
tively.

Simultaneously, the student continues to train on a small
subset of labeled data, jointly optimizing with these two
components of loss function, which is defined as follows:

L= )\supcsup + )\unsupﬁunsupv (4)
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Figure 2. An overview of the proposed SemiRES, featuring a teacher-student network with data augmentation and mutual learning. It
includes SAM-based pseudo-label refinement using IOM or CPI strategies, and PWA supervision when matches are not found.

where Ay, and Ay, s0p s the hyperparameter of supervised
loss L, and unsupervised 1oss Lo, up-

To maintain the stability of pseudo-labels, we forego gradi-
ent backpropagation for updating the teacher model’s param-
eters. Instead, we employ the Exponential Moving Average
(EMA) method to create an aggregated model reflecting
both the current and previous states. EMA’s effectiveness
has been substantiated in numerous studies (Kingma & Ba,
2014; Toffe & Szegedy, 2015; He et al., 2020; Grill et al.,
2020; Tarvainen & Valpola, 2017). The use of EMA not
only improves the teacher model’s accuracy but also its sta-
bility, making it a valuable tool during the mutual learning
stage, which is formulated as follows:

9,5 — oz@t + (1 — CV)057 (5)

where « is the decay coefficient of EMA, typically set within
the small range of 0.9 to 0.999.

3.3. The Proposed SemiRES
3.3.1. OVERVIEW

The overview of our proposed SemiRES is depicted in
Fig. 2. SemiRES inherits the semi-supervised framework
introduced in Sec. 3.2 and proposes new strategies to ad-
dress the challenges of noisy pseudo-labels encountered by
regular semi-supervised frameworks, which limit the extrac-
tion of knowledge from unlabeled data. The core idea is
to exploit the powerful edge segmentation capabilities of
SAM. The central question of our research is how to utilize
these masks to refine the noisy pseudo-labels. In this paper,
we propose two alternative matching strategies, loU-based
Optimal Matching (IOM) and Composite Parts Integration

(CPD), to select masks that contribute to the final pseudo-
labels, as detailed in Sec. 3.3.2. Moreover, when segments
generated by SAM cannot be matched with pseudo-labels,
we introduce a Pixel-Wise Weighted Adjustment (PWA)
scheme to focus the model on more reliable pixels, thereby
improving performance, as outlined in Sec. 3.3.3.

3.3.2. SAM-BASED PSEUDO-LABEL REFINEMENT

Despite SAM’s powerful segmentation capabilities, effec-
tively harnessing these for pseudo-label refinement is an area
ripe for investigation. We have formulated two strategies
for matching SAM-generated segments with the original
pseudo-labels to improve their accuracy. Before deploying
these strategies, we utilize SAM’s “Segment Everything”
feature to create an extensive proposal library of multi-scale
candidate segments for our dataset offline, eliminating the
need for specific prompts. To optimize storage space, we
implement the Run Length Encoding (RLE) algorithm'.
Considering that SAM is capable of producing hundreds to
thousands of intricate segments per image, adopting efficient
storage solutions is crucial. Importantly, while the RLE al-
gorithm achieves high compression rates, it also preserves
the precision of the candidate masks.

IoU-based Optimal Matching (IOM). To achieve our
goal, we initially consider a more straightforward approach,
premised on the robust multi-scale segmentation ability of
the Segment Anything Model (SAM). We hypothesize that
the proposal library, constructed as previously mentioned,
likely contains a close approximation of the ideal target seg-

"https://en.wikipedia.org/wiki/
Run-length_encoding
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Figure 3. Visualization of the principles behind IOM and CPI ad-
dressing pseudo-label issues in different cases.

mentation. Therefore, our task simplifies devising a method
to retrieve this optimal mask from the library.

Our method involves an IoU-based selection process, which
computes the similarity between the pseudo-labels and each
segment generated by SAM. We aim to identify the seg-
ment with the highest similarity score, ensuring it aligns
closely with the overall target mask. The similarity measure
is calculated using the Intersection over Union (IoU) met-
ric, a standard in object detection and segmentation tasks
that quantifies the extent of overlap between two areas. By
selecting the segment with the top-1 IoU score from the
candidate pool, we can effectively align our model’s out-
put with the most accurate representation of the intended
segmentation, as detailed below:

W (M“ avin k)

S (i vty

k:

; (6)

j=1

where M ..; and M i'j r, denote the pseudo-labels and k-th
segment mask generated by SAM for j-th pixel of ¢-th unla-
beled image T, respectively. When the score s* exceeds
a certain threshold IoU,.,¢., the matched mask will replace
the pseudo-label. The detailed matching schemes can be
found in Algorithm 1, particularly within lines 4 to 9.

Composite Parts Integration (CPI). In our exploration of
semi-supervised referring expression segmentation, we rec-
ognize that while the IoU-based Optimal Matching (IOM)
strategy is generally straightforward and effective, it may
falter in certain scenarios. One such instance occurs when
the proposal library lacks an ideal target segmentation, ren-
dering even the most sophisticated matching algorithm in-
capable of finding an appropriate guide mask. Another
instance is when the disparity between the pseudo-labels
and the desired segmentation is too substantial to allow
for effective correction. We have noted that the original
pseudo-labels generated by the teacher model can suffer
from either under-segmentation or over-segmentation of the
target instances, as depicted in Fig. 3. These inaccuracies di-
minish the quality of the pseudo-labels, providing erroneous
guidance to the student model and impeding its learning.

Under-segmentation is characterized by incomplete cover-
age of the target instance, missing activation for certain
region pixels. To address this, we aim to identify larger
regions within the proposal library to rectify the pseudo-
labels. Our selection is based on the overlap ratio with the
pseudo-labels, calculated as follows:

S (0 8T

Zf:XlW (Mluj) +e

where € is the smoothing factor to prevent a denomina-
tor of zero. When the overlap ratio s¥ exceeds a prede-

k _
S1 =

@)

fined threshold inter;, the k-th segment ]\Z“ . generated
by SAM is selected and subsequently merged to replace the
pseudo-labels. This method is referred to as Composite Parts
Integration for Under-segmentation (CPI-U). Conversely,
over-segmentation introduces erroneous regions into the
segmentation. To mitigate this, we seek to leverage SAM’s
segmentation to filter out the extraneous noise. The selec-
tion is based on the overlap ratio with the candidate mask,
computed as:
HxW w
g (480 ) ®)
S ()

Likewise, when the ratio s& is above the set threshold inters,

the segment ]\Z“ i generated by SAM is chosen and inte-
grated to refine the pseudo-labels. This approach is termed
Composite Parts Integration for Over-segmentation (CPI-O).
When both conditions are met, we form the overarching CPI
strategy. The detailed matching schemes can be found in
Algorithm 1, particularly within lines 10 to 15.

3.3.3. PIXEL-WISE WEIGHTED ADJUSTMENT

Despite the effectiveness of our two strategies for refining
pseudo-labels, there are cases where the scores do not ex-
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Algorithm 1 Pseudo code for our proposed SemiRES

Input: Teacher’s predicted pseudo mask M  for ¢-th unla-
beled image Z, the multi-scale mask { k} k1 gener-
ated by SAM, the number of masks N; generated by SAM
for Z}*, selected strategy S, current top-1 score Sop
Output: Enhanced pseudo mask M}

1: Initialize Mﬂ — 0, s10p < 03

2: forkin1...N; do

3:  Get k-th SAM’s segment J\Z“ i, for image Z;
4 if S == “IOM” then h
5 Compute the score s” by Eq.(6);
6: if s* > IoUmte and s* > Stop then
7 M“(—Mtk,stop<—s
8 end if
9: endif
10:  if S == “CPI” then
11: Compute the score 51, s% by Eq.(7) and Eq.(8);
12: if 81 > intery or 52 > mterg then
13: M 2 M U M “
14: end lf
15:  endif
16: end for

17: if M == () then

18: Replace the enhanced pseudo-label M * with the
teacher’s predicted pseudo-labels: M b M It

19: end if

ceed a certain threshold, indicating a mismatch between
SAM-generated segments and the current pseudo-labels. In
such situations, as inspired by previous work (Yang et al.,
2023), we implement the Pixel-Wise Weighted Adjustment
(PWA). PWA'’s core objective is to assign weights to pixels
based on their confidence levels. High-confidence pixels,
with scores near O or 1, indicate certainty in foreground
or background prediction and are given higher weights. In
contrast, pixels with scores around 0.5, often associated
with noise or ambiguity, receive lower weights to reduce
their influence on training. The mapping function ¥ for
translating pixel confidence into weights is defined as:

- 1 (M — p)?
(MY =y — ——— S R 9
( 7,,]) ’y /727_(_0' eXp ( 20_2 ? ( )
where 7, 02, i1 are hyperparameters, which are set to 1.3,

0.1, and 0.5 respectively.

Therefore, the loss for i-th unlabeled image Z* is defined as
follows:

[/unsup -

Z )+ Lpce (M”,M“).

10)

4. Experiment
4.1. Datasets

We verify the effectiveness of our proposed method on three
standard RES benchmark datasets, RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), and G-Ref (Mao et al.,
2016; Nagaraja et al., 2016). Images in these datasets are
collected from the MS-COCO dataset (Lin et al., 2014) and
are attached with one or more short captions.

RefCOCO & RefCOCO+ contains 19,994, 19,992 im-
ages, with 50,000, 49,856 annotated objects and 142,209,
141,564 annotated expressions, respectively. RefCOCO and
RefCOCO+ are split into four parts, i.e., train, val, testA
and testB. The expressions of RefCOCO are mainly about
absolute position, while the ones of RefCOCO+ includes
more information related to attributes.

G-Ref contains 26,711 images, with 54,822 annotated ob-
jects and 104,560 annotated expressions. In contrast, G-Ref
contains more intricate expressions, with an average length
of 8.4 words, making the dataset more challenging. More-
over, the G-Ref dataset is split into two distinct partitions,
one maintained by UMD and the other by Google, and we
present results for UMD split.

4.2. Implementation Details

Our experimental setup uses LAVT (Yang et al., 2022b)
as the baseline for the RES network, employing the same
Swin Transformer (Liu et al., 2021¢) and BERT (Devlin
et al., 2018) backbones for visual and linguistic modali-
ties, respectively. We implement our SemiRES model in
PyTorch (Paszke et al., 2019), training it on 4 RTX3090
GPUs with 3 labeled and 3 unlabeled samples per GPU.
Optimization is done using the AdamW optimizer, with an
initial learning rate of 5 x 10> and weight decay of 10~2.
Data augmentation includes RandomColorJitter and Ran-
domGaussianBlur. We set the EMA rate at 0.996 and use
pre-trained weights of the ViT-Huge version for SAM in
generating multi-scale masks.

We use the overall Intersection-over-Union (oloU) met-
ric (Ding et al., 2021; Yang et al., 2022b; Liu et al., 2023b),
a standard in RES, to measure the overlap ratio between
predicted masks and ground truth.

4.3. Experimental Results

4.3.1. COMPARISON WITH SUPERVISED MODEL AND
BASELINE

In Tab. 1, we conduct experiments on RefCOCO, Ref-
COCO+ and G-Ref under the setting of 0.5%, 1%, 2%
and 5% labeled data. From the results, it can be observed
that the performance of the supervised model dramatically
drops when lacking sufficient labeled data. For instance,
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Table 1. Comparison of supervised, baseline and our proposed SemiRES on RefCOCO, RefCOCO+ and G-Ref. For all approaches,
we use LAVT (Yang et al., 2022b) as the RES model. “Supervised” denotes the fully-supervised training with only labeled data. “Baseline”
denotes the plain semi-supervised training with data augmentation using both labeled and unlabeled data.

RefCOCO
Methods 05% 1% 2% 5%
val testA  testB val testA  testB val testA  testB val testA  testB
Supervised 22.37 25.35 19.28 3226 3571 28.02 3946 4250 35.26 49.40 53.72 44.87
Baseline 30.33 35.18 25.74 42.62 48.86 3743 51.05 5475 46.34 60.58 6498 54.85
SemiRES 40.31 46.48 34.88 50.90 57.54 4448 54.85 60.39 48.52 61.31 66.64 5594
RefCOCO+
Methods 0.5% 1% 2% 5%
val testA  testB val testA  testB val testA testB val testA testB
Supervised 20.83 24.53 16.25 2476 29.11 20.29 28.88 3241 24.49 37.60 4232 32.39
Baseline 25.89 30.42 20.23 3091 35.83 24.98 3698 41.44 30.63 46.29 5246 38.61
SemiRES 31.99 38.06 2592 36.49 42.86 28.58 40.41 46.84 33.30 47.00 5442 38.74
G-Ref
Methods 05% 1% 2% 5%
val(U) test(U) val(U) test(U) val(U) test(U) val(U) test(U)
Supervised 18.33 18.69 24.31 24.72 28.23 29.86 37.25 38.62
Baseline 26.02 27.62 30.91 31.51 37.07 38.55 46.67 48.39
SemiRES 31.81 33.40 34.76 36.18 42.15 43.49 47.61 50.11

with 0.5% labeled data, the overall IoU on RefCOCO val set
is only 22.37%. We also compare the plain semi-supervised
baseline, as mentioned in Sec. 3.2, which surpasses the su-
pervised method in all settings, i.e., exhibiting a +7.96%
improvement on RefCOCO val set, with 0.5% labeled data.
Most importantly, our proposed SemiRES achieves state-of-
the-art performance compared to baseline. In comparison to
the supervised model, SemiRES gains +17.94%, +18.64%,
+15.39%, and +11.91% on RefCOCO val set under the set-
ting of 0.5%, 1%, 2%, and 5% labeled data, respectively.

4.3.2. ABLATION STUDY

To validate the effectiveness of components in SemiRES,
we conduct the ablation study on the 1% labeled data and
the remaining 99% unlabeled data on RefCOCO.

The comparison of different matching strategies. In
Tab. 2, we evaluate our two proposed matching strategies:
IOM and CPI. Both strategies significantly surpass the base-
line, demonstrating their effectiveness. IOM, which matches
the top-1 IoU mask from SAM, attains 49.66% oloU on the
RefCOCO val set. This result not only indicates the sim-
plicity and efficacy of IOM but also corroborates SAM’s
exceptional segmentation ability, capable of producing ideal
masks in most instances. However, IOM is slightly less
effective compared to CPI, particularly when pseudo-labels
segment only a small part of the target.

CPI-O, tailored for over-segmentation scenarios, effec-

Table 2. Ablation study of SAM Matching Strategy.

SAM Matching Strategy | val testA  testB
baseline 42.62 48.86 3743

IOM 49.66 55.26 44.09

CPI-O 45.23 5253 38.30

CPI-U 50.90 57.54 44.48

CPI 50.37 56.88 44.52

tively eliminates noise by filtering out excessively seg-
mented small regions. Nonetheless, its performance in-
crement is less pronounced (45.23% vs. 42.62%) when
the noisy region enlarges and starts matching with new
noisy areas. In contrast, CPI-U, designed to tackle under-
segmentation, emerges as the most performant strategy
(50.90% vs. 42.62%). This superior performance of CPI-U
can be attributed to its efficient resolution of the common
under-segmentation problem in pseudo-labels. When CPI-O
and CPI-U are combined into a CPI strategy, there is a minor
decrease in performance, likely due to CPI-U inadvertently
introducing noise in the pseudo-label refinement process.

The impact of the matching threshold. In the proposed
SemiRES, we use specific thresholds to optimize the match-
ing rates for the IOM and CPI strategies. Our ablation
study, shown in Tab. 3, reveals that IOM achieves its best
performance with an IoU,.4. of 0.5. For CPI, a higher per-
formance is observed when inter, and inters are both set
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Input img Supervised

Exp-1: far right luggage.

Baseline

Ours Ground Truth

Figure 4. Qualitative analysis for SemiRES, supervised model, semi-supervised baseline and ground truth. The white number in
the bottom right corner represents the IoU value between predicted image and ground truth. The object enclosed by the red dashed box
represents incorrect segmentation. Here we use supervised and semi-supervised model trained on 1% labeled data for visualization.

Table 3. Ablation study of different thresholds for matching.

intery intery  IoUpge | val  testA  testB
- - 0.7 4824 5534 41.83

- - 0.6 49.36 56.35 4294

- - 0.5 49.66 5526 44.09
0.7 0.7 - 50.37 56.88 44.52
0.6 0.6 - 50.18 5697 4451
0.5 0.5 - 49.38 56.40 43.07
0.7 - - 5090 57.54 44.48
0.6 - - 50.13 57.66 43.71
0.5 - - 50.21 57.03 44.17

to 0.7. This setting is crucial as lower thresholds in CPI
could include noise, especially in the CPI-U variant, where
inter; = 0.7 yields the best results. By default, unless
specified otherwise, IoU,.,¢¢, intery, and intery are set to
0.5, 0.7, and 0.7, respectively.

Comparison with filtering-based method. In our analy-
sis, as presented in Tab. 4, we compare SemiRES with a
confidence filtering method that eliminates the lowest 5%
of pseudo-labels based on confidence scores. SemiRES
demonstrates superior performance, achieving 50.90% ver-
sus 42.99% on the 1% RefCOCO validation set. This result
suggests that the filtering-based method is overly rigid, lead-
ing to suboptimal use of pseudo-labels.

Effectiveness of different Components. We present our

Table 4. Comparison of SemiRES and filtering-based method.

Semi-Supervised Settings | val testA  testB
Supervised 3226 3571 28.02
baseline 42.62 48.86 3743
+confidence filtering 42.99 48.78 35.96
+SemiRES 50.90 57.54 44.48

Table 5. Ablation study on various components: MLT (mutual
learning training), DA (data augmentation), PWA (pixel-wise ad-
justment), and Refine (SAM matching refinement).

MLT DA PWA Refine | val testA testB
X x X X | 3226 3571 28.02
A X | 40.84 4646 3522
A | X | 42062 4886 3743
v/ X | 4309 4972 37.10
oo/ X v | 4996 57.12 4386
v/ v | 5090 57.54 44.48

experimental analysis in Tab. 5, systematically ablated to
evaluate each component of SemiRES. The first row uses
only 1% labeled data for supervised training. The second
row adds the remaining 99% as unlabeled data for basic
semi-supervised learning. The third and fourth rows include
data augmentation and the PWA module, demonstrating
their effectiveness with incremental improvements (40.84%
vs. 42.62% vs. 43.09%). The fifth row shows a significant
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gain from using SAM for pseudo-label refinement, with a
7.34% increase (49.96% vs. 42.62%). Finally, the sixth
row indicates that PWA continues to improve performance
even when SAM candidates do not match the pseudo-labels,
highlighting the synergistic effect of these modules.

4.4. Qualitative Analysis

We showcase qualitative results in Fig. 4, comparing
SemiRES with a supervised model, a semi-supervised
baseline, and ground truth. Impressively, SemiRES cor-
rects errors from both the supervised model and the semi-
supervised baseline. For instance, in the first example, while
the supervised and baseline models fail to interpret “far
right” correctly, leading to inaccurate identification of the
luggage, SemiRES precisely localizes the target. In the sec-
ond example, SemiRES effectively understands “smile” and
accurately segments the correct pizza. In a more complex
third scenario with several elephants, SemiRES successfully
identifies the elephant facing towards us, demonstrating its
advanced understanding.

5. Conclusion

In this work, we present a novel semi-supervised frame-
work, namely SemiRES, to address the challenge of costly
annotations in RES. SemiRES incorporates two innovative
matching strategies that leverage the robust segmentation
capabilities of SAM to refine the quality of pseudo-labels.
In situations where SAM is unable to rectify the pseudo-
labels, we employ the Pixel-Wise Adjustment (PWA) strat-
egy, which utilizes the original pseudo-labels for efficient
training directly. Our extensive experiments demonstrate
that SemiRES achieves competitive results on three RES
benchmark datasets, underscoring its viability and effective-
ness for real-world applications.
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A. The Labeling Cost at Different Ratios

In semi-supervised learning, the more labeled data there is,
the higher the cost of annotation. The three RES benchmark
datasets RefCOCO, RefCOCO+, G-Ref contain 50000,
49856 and 54822 annotated objects, respectively. Following
the label budget calculation in (Kim et al., 2023a) , manu-
ally labeling a mask for one instance takes approximately
79.1 seconds. Therefore, it can be observed that annotating
masks for the entire dataset is a very time-consuming task.
Based on this, we calculate the required annotation time for
labeling 0.5%, 1%, 2%, 5%, 10%, 20%, and 50% of the
data on the RefCOCO as follows:

0.5%: 50000 % 0.005 x 79.1 /60 /60 /24 = 0.2 day
* 1%: 50000 x 0.01 x 79.1/60/60 /24 =0.5 day

* 2%: 50000 % 0.02 x 79.1/60/60 /24 = 1.0 day

* 5%: 50000 x 0.05 x 79.1/60/60 /24 =2.3 day

* 10%: 50000 x 0.1 x 79.1/60/ 60 / 24 = 4.6 day

* 20%: 50000 x 0.2 x 79.1/60/60 /24 =9.2 day

* 50%: 50000 x 0.5 x79.1/60/60/24 =229 day

* Fully-supervised: 50000 x 79.1/60/60 /24 =45.8
day

B. The Impact of the Proportion of Labeled
Data

We further conduct the experiment using our SemiRES
framework with a larger proportion of labeled data under
the settings of 10%, 20%, 30%, 40%, and 50% of labeled
data, as shown in Tab. 6. We observe that when the labeled
data approaches 30%, the performance of our method nearly
matches that of fully supervised models. This validates
that our proposed SemiRES maintains great segmentation
performance with a significant reduction in annotation costs.

C. The Impact on Different RES Frameworks

To assess the generalizability of SemiRES, we integrate it
with the region-based GRES baseline ReLA (Liu et al.,
2023a). As Tab. 7 shows, SemiRES significantly en-
hances performance compared to the “Supervised” approach
(43.57% vs. 31.54%), demonstrating its robust generaliza-
tion capabilities across different RES frameworks.

D. The Working Principles of IOM and CPI

To provide a clearer understanding of the working principles
underlying the two SAM-based Pseudo-Label Refinement
modules we have introduced, namely the IOM and CPI
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Table 6. The impact of the proportion of labeled data.

Setting Labeled Fraction ‘ val  testA testB
10% 63.60 68.43 60.20

20% 65.97 69.15 62.08

SemiRES 30% 68.54 70.62 63.90
40% 68.76 71.69 65.23

50% 69.45 7294 65.68

Fully-Supervised - ‘ 7273 75.82 68.79

Table 7. Results of different state-of-the-art (SOTA) RES ap-
proaches equipped with the SemiRES strategy.

RES Baseline Settings \ val testA  testB
Supervised | 32.26 35.71 28.02

LAVT (Yang etal, 2022b) - "pi cline | 42.62 48.86 37.43
SemiRES | 50.90 57.54 44.48

) Supervised | 3154 3593 2537

GRES (Liuetal, 2023)  "pcoline | 38.65 4353 34.63
SemiRES | 43.57 49.05 39.05

method, as depicted in Fig. 5. Specifically, we select a
sample to elucidate how IOM and CPI operate in matching
pseudo-labels. Specifically, IOM selects the best-matching
segment proposal that meets the criteria from the candidate
pool within SAM and uses it as the refined pseudo-label.
IOM algorithm selects the segment with index 7 as the op-
timal match to refine the pseudo-label. On the other hand,
CPI leverages the multi-scale characteristics obtained from
SAM segmentation, systematically selecting qualifying par-
tial segments, and eventually merging them together to form
the final result. For CPI, it selects all segments that meet
the conditions, such as indices 3, 4, 5, 6, and 7. In the
end, it takes the union of these segments as the final re-
fined pseudo-label. Observably, IOM and CPI, while both
aimed at refining pseudo-labels within the SAM differ sig-
nificantly in their operational approach and specialization.
IOM is tailored for simpler, less noisy label refinement tasks,
while CPI is designed to address more complex segmenta-
tion errors, together providing a comprehensive solution for
enhancing the accuracy of pseudo-labels in segmentation
tasks.

E. Comparasion with other class-agnostic
proposal network

To validate the tight combination between our SemiRES
and SAM, we replace SAM with SEEM (Zou et al., 2024)
for generating class-agnostic mask proposals and applied
our matching strategy to refine pseudo-labels. As shown in
Tab. 8, the results maintained under the same configurations
as detailed in our paper, indicated that the performance did
not match that achieved using SAM for proposal extraction.
Our analysis suggests that this discrepancy stems from the
designed CPI algorithm capitalizing on SAM’s strong seg-



SAM as the Guide: Mastering Pseudo-Label Refinement in Semi-Supervised Referring Expression Segmentation

Candidate segment
generated by SAM

Matching Results

Pseudo Label

incomplete@

SAM

-

[0.00, 0.00,0.00]

[0.12, 0.99,0.12]

[0.11,0.99,0.11]

'

[0.84, 0.87,0.96]

N

N

[0.01, 0.02,0.01]

[0.06, 0.97,0.06]

[0.63, 0.98,0.71]

Example:

1.2
[ Sk,Sk, Skl /

Peee®

[0.12,0.99,0.12] ~
[0.06, 0.97.0.06]
[0.11,0.99,0.11]

[0.63, 0.98,0.71]

[0.84, 0.87,0.96]

IOM

CPI

search part one by one!

Figure 5. Demonstration of how IOM and CPI operate in matching pseudo-labels. The caption for this image is “kid looking at you”.

Table 8. Comparison with other class-agnostic proposal network.

Table 9. The potential of SemiRES for detecting small objects.

Semi-Supervised Settings ‘ val  testA testB Setting Method ‘ val  testA testB
Supervised ‘ 3226 3571 28.02 Tob 5% small obiects Supervised | 11.37 13.84 11.75
SemiRES(+SEEM) 47.61 56.28 43.62 p o7 ) SemiRES | 2045 27.21 17.04
SemiRES(+SAM) 50.90 57.54 44.48 Ton 10% small obiects Supervised | 13.70 14.88 12.59
P ) SemiRES | 24.98 29.76 18.05

mentation capability and its ability to extract multi-scale
proposal masks, which facilitated effective pseudo-label
optimization, a feat not typically achievable with general
class-agnostic proposal networks.

F. The potential of SemiRES for detecting
small objects

To explore the potential of our proposed SemiRES method
for detecting small objects, we curated samples from the Ref-
COCO training, validation, and test sets, organizing them by
the size of the ground truth masks from smallest to largest,
and specifically selected the top 5% and 10% of samples
featuring small objects. As shown in Tab. 9, experiments
conducted on these subsets serve to validate the efficacy
of our SemiRES approach in comparison to traditional su-
pervised methods when focusing on small objects. Our
findings reveal that our method significantly outperforms
the supervised approach in this area. This improvement is
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attributed to the SAM’s ability to utilize a multi-scale library
of offline-generated masks, which includes candidates for
small objects, allowing for the refinement of pseudo-labels.

G. Quantitative Statistics for Pseudo-label
Refinement

Due to the presence of noise and incompleteness in pseudo-
labels, our proposed two SAM-based Pseudo-Label Refine-
ment modules effectively enhance the quality of pseudo-
labels, facilitating the mutual learning process between
teacher and student models. To further analyze the roles of
the designed IOM and CPI, along with their variants, we
numerically compute their frequency for positive, negative
corrections and no correction of pseudo-labels, as illustrated
in Fig. 6. Here we use the ground truth of all unlabeled data
in three RES datasets to validate the correction performance
of our methods. Positive correction indicates that, after
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Figure 6. Quantitative statistics of positive, negative corrections and no corrections(PWA) for IOM, CPI and variants.
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Figure 7. Training curves of two matching strategies of SemiRES
and semi-supervised baselines.

the matching refinement, the corrected pseudo-label has a
higher IoU with the ground truth than the original pseudo-
label, thereby improving the quality of the pseudo-label.
Negative correction, on the other hand, is the opposite; the
quality of the updated pseudo-label is worse, exacerbating
the misguidance in student learning. No correction indicates
that the matching algorithms do not find a suitable correction
for the pseudo label, thus the Pixel-Wise Adjustment (PWA)
strategy mentioned in this paper is used for adjustment. The
histogram results show that, among the three datasets for
RES, the CPI method performs best in positive correction,
while its variant CPI-U has the least occurrence of negative
correction. And CPI-U exhibits faster convergence as shown
in Fig. 7.

H. Additional Visualizations

We present more comparative visualizations of our proposed
SemiRES with both supervised and baseline models, along-
side the ground truth, as illustrated in Fig. 8. Through these
extensive examples, it becomes apparent that our proposed
SemiRES excels in understanding semantic attributes such
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Input img Supervised Baseline Ours Ground Truth

Exp-19: man in blue.

Figure 8. More visualization results of our proposed SemiRES, compared with the supervised and baseline model. The red dashed
bounding boxes denote regions where our model has made accurate predictions, while other models have made inaccurate predictions.
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