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Abstract

With the rise of non-autoregressive approach,
some non-autoregressive models for joint mul-
tiple intent detection and slot filling have ob-
tained the promising inference speed. However,
most existing SLU models (1) suffer from the
multi-modality problem that leads to reference
intents and slots may not be suitable for train-
ing; (2) lack of alignment between the correct
predictions of the two tasks, which extremely
limits the overall accuracy. Therefore, in this
paper, we propose Modifying the Reference
via Reinforcement Learning (MRRL), a novel
method for multiple intent detection and slot
filling, which introduces a modifier module and
employs reinforcement learning. Specifically,
we try to provide the better training target for
the non-autoregressive SLU model via modify-
ing the reference based on the output of the non-
autoregressive SLU model, and propose a suit-
ability reward to ensure that the output of the
modifier module could fit well with the output
of the non-autoregressive SLU model and does
not deviate too far from the reference. In addi-
tion, we also propose a compromise reward to
realize a flexible trade-off between the two sub-
tasks. Experiments on two multi-intent datasets
and non-autoregressive baselines demonstrate
that our MRRL could consistently improve the
performance of baselines. More encouragingly,
our best variant achieves new state-of-the-art re-
sults, outperforming the previous best approach
by 3.6 overall accuracy on MixATIS dataset.

1 Introduction

As a crucial task in dialogue systems, spoken lan-
guage understanding (SLU) aims to understand the
user’s current goal through constructing semantic
frames (Tur and De Mori, 2011; Young et al., 2013;
Zhu et al., 2023b; He and Garner, 2023b). Intent
detection and slot filling are two common subtasks
of SLU, where intent detection is an utterance-level
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classification task and slot filling could be regarded
as a sequence labeling task (He and Garner, 2023a;
Cheng et al., 2023a).

However, an utterance often contains more than
a just single intent in the real scenarios (Zhu et al.,
2023a; Xing and Tsang, 2023; Cheng et al., 2023f).
With this in mind, multi-intent SLU has received
more and more attention (Xu and Sarikaya, 2013;
Kim et al., 2017; Shet et al., 2019). Gangadharaiah
and Narayanaswamy (2019) proposes a multi-task
framework to jointly model intent detection and
slot filling. Qin et al. (2020) introduces graph atten-
tion networks (GAT) (Velickovic et al., 2018) to de-
velop a fine-grained multi-intent prediction frame-
work called AGIF, which aims to incorporate intent
information into the slot filling decoding process
in an adaptive manner. Qin et al. (2021b) proposes
a novel global-locally graph interaction network
GL-GIN, which appplies the non-autoregressive
modeling techniques to parallelize the decoding
process, resulting in significant speedup compared
to the traditional autoregressive SLU models. Xing
and Tsang (2022a) further designs a two-stage SLU
framework and achieves the mutual guidance be-
tween intent and slot, which enhances the overall
accuracy of SLU. Song et al. (2022) explores atten-
tion mechanisms to extract the relevant information
from the independent utterance contexts and cap-
ture shared label-specific features across all utter-
ances in the training set. Xing and Tsang (2022b)
proposes ReLa-Net, which utilizes a heterogeneous
label graph to represent the statistical dependencies
and hierarchies. Cheng et al. (2023d) applies con-
trastive learning to explore and leverage the inher-
ent relationships in multi-intent SLU. Cheng et al.
(2023a) proposes a scope-sensitive SLU model SS-
RAN to reduce the distraction of the out-of-scope
tokens and mitigate the error propagation problem
caused by the bidirectional interaction.

Though existing non-autoregressive multi-intent
SLU models have made the promising progress, we



Tokens Possibility Reference

new intent:atis_quantity, atis_flight atis_distance, atis_day_name
slot: B-fromloc.city_name B-city_name

guardia intent:atis_airport, atis_airline atis_distance, atis_day_name
slot: B-fromloc.airport_name I-airport_name

downtown intent: atis_city, atis_airfare atis_distance, atis_day_name
slot: B-city_name O

Table 1: The examples of the multi-modality problem.
The gold intent label of the utterance is utilized as the
intent of each token in the utterance.

find that most of them still face two issues:
(1) Suffer from the multi-modality problem.

Although non-autoregressive models have proven
the effectiveness in terms of high inference speed,
they still suffer from the multi-modality problem,
which has been pointed out in several prior works
in other tasks (Ran et al., 2020; Zhang et al., 2022a).
However, this serious problem is still ignored in
non-autoregressive SLU task. As shown in Table 1,
for each token, there may be multiple possible cor-
rect slots. Besides, due to the widespread use of the
token-level intent detection decoder, this problem
also occurs in intent detection. Despite the utiliza-
tion of GAT (Velickovic et al., 2018), these models
still have little prior knowledge about the reference
during the inference progress, which leads to some
errors not commonly seen in autoregressive SLU
models. For example, an I- slot might erroneously
appear before its corresponding B- slot in the slot
sequence output by a non-autoregressive model. As
a result, the original reference intents and slots are
not very suitable for model training.

(2) Lack of the alignment between the cor-
rect predictions of the two subtasks. Most of
existing SLU models decode the hidden stats of
the two subtasks independently without leverag-
ing the correlations between them, which leads to
the misalignment of the correct predictions of the
two subtasks. As shown in Figure 1, the F1 score
of slot filling and the accuracy of intent detection
might increase or decrease asynchronously. Over-
all accuracy is an important metric and it denotes
the ratio of the utterances for which both intents
and slots are predicted correctly. Due to the lack
of alignment, overall accuracy on utterance-level
semantic frame parsing is much worse than these
two subtasks, which is not conducive to deploying
the SLU model in actual scenarios.

In this paper, we propose a novel model termed
MRRL to tackle the above two issues, which intro-
duces a modifier and applies reinforcement learn-
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Figure 1: An example of the misalignment between the
correct predictions of intent detction and slot filling. As
the F1 score of slot filling (red) increases, the accuracy
of intent detection (green) may decrease, which limits
the overall accuracy of the utterance.

ing to provide a better training target for the non-
autoregressive model. Since the reference intents
and slots may not be suitable for training, we mod-
ify the reference intents and slots according to the
output of the non-autoregressive SLU model. For
the first problem, we propose a suitability reward to
ensure that the output of the modifier fits well with
the output of the non-autoregressive model and still
maintain the original information. The first part of
suitability reward is related to the training loss on
the output of the modifier, and the second part is the
similarity between the reference and the output of
the modifier. For the second problem, we propose
a compromise reward to improve the overall accu-
racy. We directly utilize the overall accuracy as the
compromise reward to achieve a flexible trade-off
between the accuracy of intent detection and the F1
score of slot filling. Experiment results show that
MRRL consistently improves the performance of
baselines on two benchmark datasets MixATIS and
MixSNIPS (Hemphill et al., 1990; Coucke et al.,
2018; Qin et al., 2020). Further analysis also veri-
fies the advantages of our method.

The contributions of our work are three-fold:
• To the best of our knowledge, our work is the

first attempt to employ reinforcement learning
to solve the multi-modality problem and the
misalignment problem in non-autoregressive
multi-intent SLU models.

• We propose a novel method termed MRRL for
non-autoregressive multi-intent SLU, which
introduces a modifier and applies reinforce-



ment learning to modify the reference utter-
ance into a form suitable for model training.

• Experimental results demonstrate that MRRL
can efficiently improve the performance of the
baselines and the best variant achieves the new
state-of-the-art results.

2 Background

In this section, we first introduce the problem defi-
nition of the multi-intent SLU task and then intro-
duce several multi-intent SLU models.

Given an input utterance x = (x1, x2, . . . , xn),
where n denotes the length of the utterance x, mul-
tiple intent detection is a multi-label classification
task and the token-level predicted intent sequence
is denoted as yI′ = (y(1,I

′), y(2,I
′), . . . , y(n,I

′)).
The final utterance-level predicted intent sequence
yI is obtained by the token-level intent voting strat-
egy (Qin et al., 2021b; Xing and Tsang, 2022a).
The reference intent sequence is denoted as ŷI =
(ŷ(1,I), ŷ(2,I), . . . , ŷ(m,I)), where m denotes the
number of intents in x. Slot filling is a sequence
labeling task (Qin et al., 2022; Cheng et al., 2023c;
Zhu et al., 2023c). The predicted slot sequence
is denoted as yS = (y(1,S), y(2,S), . . . , y(n,S)) and
the reference slot sequence is denoted as ŷS =
(ŷ(1,S), ŷ(2,S), . . . , ŷ(n,S)). For simplicity, we use
ŷ to denote the union of ŷI and ŷS .

2.1 Multi-Intent Spoken Language
Understanding

Due to the interaction between the two subtasks of
multiple intent detection and slot filling, joint mod-
els are widely used to consider the two tasks and
update parameters. The multiple intent detection
objective is defined as:

CE(ŷ, y) = ŷ log (y) + (1− ŷ) log (1− y) (1)

LI = −
n∑

i=1

NI∑
j=1

CE(ŷ
(j,I)
i , y

(j,I)
i ) (2)

where NI denotes the number of single intent la-
bels, ŷ(j,I)i denotes the reference intent, and y

(j,I)
i

denotes its corresponding predicted intent.
Similarly, the slot filling objective is defined as:

LS = −
n∑

i=1

NS∑
j=1

ŷ
(j,S)
i log

(
y
(j,S)
i

)
(3)

where NS denotes the number of slot labels, ŷ(j,S)i

denotes the reference slot, and y
(j,S)
i denotes its

corresponding predicted slot.

The final joint objective is formulated as:

L = αLI + βLS (4)

where α and β are hyper-parameters.

2.2 AGIF

AGIF (Qin et al., 2020) is a token-level adaptive
interaction network that implements fine-grained
integration of multi-intent information. An intent-
slot graph interaction layer is used to model the
strong correlation between slots and intents. Such
an interaction layer is applied adaptively to each to-
ken of an utterance, with the advantage that relevant
intent information can be automatically extracted.
Restricted by the autoregressive paradigm, during
the inference, the previously predicted tokens must
be fed to the decoder to generate the next token step
by step, which leads to slower inference speed.

2.3 GL-GIN

GL-GIN (Qin et al., 2021b) is a global-locally
graph-interaction network, including a local slot-
aware graph layer and a global intent-slot interac-
tion layer. Owing to the non-autoregressive archi-
tecture, GL-GIN achieves to generate intents and
slots sequence simultaneously, thus increasing the
inference speed. However, we find that it is not
enough to just rely on the local graph interaction
layer to model the slot dependencies, which limits
the performance (see Sec.4.5 for more details).

2.4 Co-guiding Net

Co-guiding Net (Xing and Tsang, 2022a) is a two-
stage framework that allows intent detection and
slot filling to learn from each other. The first stage
produces initial estimated labels for the two tasks
and the second stage leverages estimated labels as
prior label information. Two heterogeneous graph
attention networks are proposed to work on the two
aforementioned graphs for modeling the guidance
between intent and slot.

2.5 ReLa-Net

ReLa-Net (Xing and Tsang, 2022b) improves joint
multiple intent detection and slot filling from a new
perspective, which exploits the label typologies and
relations through a heterogeneous label graph and
a recurrent heterogeneous label matching network.
The heterogeneous label graph includes both the
global statistical dependencies and slot label hierar-
chies, which is proposed to represent the statistical
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Figure 2: The main architecture of MRRL. Two modifiers are trained to optimize the suitability reward and the
compromise reward, where suitability reward is the weighted sum of fit reward and similarity reward. Fit reward
relates to the joint training loss of the modifiers and similarity reward relates to the similarity with the reference.
Compromise reward is related to the overall accuracy.

dependencies and hierarchies in rich relations. And
a recurrent heterogeneous label matching network
is proposed to end-to-end capture the beneficial in-
formation from the heterogeneous label graph and
use them for tackling the joint task.

3 Approach

In this section, we first present the overview of our
model (§3.1), which introduces the modifier mod-
ule including a intent modifier and a slot modifier
into the original architecture. Then, we introduce
the pretrain-finetune paradigm (§3.2), where pre-
training could establish a better initial state for the
fine-tuning of the modifier module. Finally, we in-
troduce the reinforcement learning module, which
is applied to make the output of the modifier more
suitable for model training (§3.3). Figure 2 illus-
trates the overview of our proposed method.

3.1 Model Overview

To alleviate the problem of multi-modality and mis-
alignment, in addition to the conventional encoder-
decoder architecture, we introduce a modifier mod-
ule including a intent modifier and a slot modifier
to modify the reference according to the output of
the non-autoregressive model. Note that the mod-
ifier module only affect the training stage, so the
inference cost does not change.

The modifier module is designed as a key com-
ponent capable of transforming the reference into a
more suitable form for training. The transformation
process takes into account both the reference itself
and the output generated by the non-autoregressive
model. Through leveraging this dual information,

the modifier module has the potential to optimize
the reference, making it more aligned with the train-
ing objectives and enhancing the overall training
process. Thus, we utilize two non-autoregressive
decoders as the architecture of the modifier mod-
ule. Similarly, the token-level predicted intent se-
quence of the intent modifier is denoted as yMI′ =
(y(1,MI′), y(2,MI′), . . . , y(n,MI′)), the output of the
intent modifier yMI is also obtained by the voting
technique. The output of the slot modifier is de-
noted as yMS =

(
y(1,MS), y(2,MS), . . . , y(n,MS)

)
,

and the union of yMI and yMS is denoted as yM .
We use PM to denote the probability distribution
of the modifier module:

PM (yMI′ ,yMS |x, ŷ) =
n∏

i=1

pM (y(i,MI′),

y(i,MS)|x, ŷ)

(5)

Diverging from conventional SLU models, the
non-autoregressive SLU model is trained with the
output of the modifier module yMI and yMS rather
than the original reference ŷI and ŷS . Then the
multiple intent detection objective LMI and slot
filling objective LMS are formulated as:

LMI = −
n∑

i=1

NI∑
j=1

CE(ŷ
(j,I)
i , y

(j,MI)
i ) (6)

LMS = −
n∑

i=1

NS∑
j=1

ŷ
(j,S)
i log

(
y
(j,MS)
i

)
(7)

where y(j,MI)
i denotes the predicted intent of the in-

tent modifier and y
(j,MS)
i denotes the predicted slot



of the slot modifier. Then the final joint objective
of the modifier module LM is defined as:

LM = αLMI + βLMS (8)

3.2 Pretrain-Finetune Paradigm

When directly applying reinforcement learning to
train the modifier, a common problem arises where
the modifier become trapped in a non-optimal state,
resulting in the generation of sequences with mean-
ingless intents and slots. The issue is inherent to
reinforcement learning due to its sensitivity to ini-
tial states (Mihatsch and Neuneier, 2002; Fei et al.,
2020; Shao et al., 2023).

To address this challenge, we utilize a pretrain-
finetune paradigm. During the pre-training phase,
we employ a joint objective L as defined in Eq.4 to
establish a better initial state for the modifier. This
pre-training strategy aims to provide the modifier
with a more favorable starting point, making subse-
quent fine-tuning easier and reducing the likelihood
of falling into local optimization.

Following the pre-training phase, we proceed to
fine-tune the modifier using reinforcement learning,
incorporating suitability reward and compromise
reward to further guide the learning process. This
fine-tuning approach enables the designed modifier
to refine its behavior and adjust its outputs based
on the reinforcement signals received.

3.3 Reinforcement Learning

The primary objective of the modifier module is to
generate a training target which is better suited for
non-autoregressive models. Motivated by Wu et al.
(2018); Rao et al. (2021); Lu et al. (2022); Shao
et al. (2023), we quantify the requirements for the
modifier module into two reward functions and op-
timize them via reinforcement learning. The level
of appropriateness of this target could be quantified
using two reward functions.

Firstly, it is crucial for the output of the modifier
module to align closely with the output of the SLU
model. We employ a fitting reward Rfit that shares
a formal resemblance to the loss function LM , aim-
ing to incentivize the reduction of the training loss.

For the output of the intent modifier yMI and
the output of the slot modifier yMS , we apply the
length normalization to keep the scale of reward sta-
ble and combine the normalized LMI and LMS to
obtain the intent fit reward RI

fit, the slot fit reward

RS
fit and the final fit reward Rfit:

RI
fit = − 1

m
LMI (9)

RS
fit = − 1

n
LMS (10)

Rfit = αRI
fit + βRS

fit (11)

where m is the length of the output of the intent
modifier yMI and n is the length of the output of
the slot modifier yMS .

Secondly, the output of the modifier should not
deviate too far from the reference, so we utilize a
similarity reward Rsim to measure the similarity
between the reference and the output of the modi-
fier module. We use the accuracy of multiple intent
detection and F1 score of slot filling as the simi-
larity function to measure the similarity between
y1 and y2, which are denoted as SI(y1,y2) and
SS(y1,y2), respectively. Then the intent similarity
reward RI

sim, the slot similarity reward RS
sim and

the final similarity reward Rsim are formulated as:

RI
sim = SI(ŷ

I ,yMI) (12)

RS
sim = SS(ŷ

S ,yMS) (13)

Rsim = αRI
sim + βRS

sim (14)

where ŷI is the reference intent and ŷS is and the
reference slot. The suitability reward Rsuit is the
weighted sum of Rfit and Rsim:

Rsuit = λfRfit + λsRsim (15)

where λf and λs are two hyper-parameters.
Another common problem in many multi-intent

SLU models is that the F1 score of slot filling and
the accuracy of intent detection might increase or
decrease asynchronously. As the F1 score of slot
filling increases, the accuracy of intent detection
might begin to decrease. Overall accuracy denotes
the ratio of utterances whose intents and slots are
all correctly predicted. As a result, it is crucial to
achieve a trade-off between the accuracy of intent
detection and the F1 score of slot filling.

Intuitively, we apply the overall accuracy to mea-
sure the similarity between y1 and y2, and denote
it as SA(y1,y2). We directly apply SA as the com-
promise reward Rcom to improve the overall accu-
racy. The compromise reward Rcom is:

Rcom = SA(ŷ,y
M ) (16)

The final reward R for the modifier module is:

R = Rsuit + λcRcom (17)



Model MixATIS MixSNIPS
Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Attention BiRNN (Liu and Lane, 2016) 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated (Goo et al., 2018) 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model (Wang et al., 2018b) 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID (E et al., 2019) 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation (Qin et al., 2019) 40.1 87.8 72.1 72.9 94.2 96.0
AGIF (Qin et al., 2020) 40.8 86.7 74.4 74.2 94.2 95.1
LR-Transformer (Cheng et al., 2021b,a) 43.3 88.0 76.1 74.9 94.4 96.6
GISCo (Song et al., 2022) 48.2 88.5 75.0 75.9 95.0 95.5
SSRAN (Cheng et al., 2023a) 48.9 89.4 77.9 77.5 95.8 98.4
GL-GIN (Qin et al., 2021b) 43.0 88.2 76.3 73.7 94.0 95.7

w/ MRRL 47.2† 88.7† 78.4† 75.8† 95.2† 96.5†

Co-guiding Net (Xing and Tsang, 2022a) 51.3 89.8 79.1 77.5 95.1 97.7
w/ MRRL 54.8† 90.6† 79.5† 79.0† 96.4† 98.6†

ReLa-Net (Xing and Tsang, 2022b) 52.2 90.1 78.5 76.1 94.7 97.6
w/ MRRL 55.8† 92.4† 79.8† 79.3† 96.8† 99.1†

Table 2: Results comparison. † denotes our model significantly outperforms baselines with p < 0.01 under t-test.

where λc is a hyper-parameter. We utilize the RE-
INFORCE algorithm (Williams, 1992; Zhang et al.,
2021) to optimize the reward R:

∇J = ∇
∑
yM

PM (yMI′ ,yMS |x, ŷ)R

= E
yM∼PM

[∇ logPM (yMI′ ,yMS |x, ŷ)R]
(18)

4 Experiments

4.1 Datasets and Metrics
We conduct our experiments on two public multi-
intent datasets1: cleaned version of MixATIS and
MixSNIPS (Qin et al., 2020). MixATIS dataset
is collected from ATIS dataset (Hemphill et al.,
1990) and MixSNIPS dataset is collected from
SNIPS dataset (Coucke et al., 2018). MixATIS
includes 13,162 utterances for training, 756 utter-
ances for validation and 828 utterances for testing.
MixSNIPS includes 39,776 utterances for training,
2,198 utterances for validation and 2,199 utterances
for testing. Compared to single-domain MixATIS
dataset, MixSNIPS dataset is more complicated be-
cause of the intent diversity and large vocabulary.

Following Goo et al. (2018); Qin et al. (2021b),
we evaluate accuracy (Acc) for multiple intent de-
tection, F1 score for slot filling, and overall accu-
racy for the utterance-level semantic frame parsing.
Overall accuracy denotes the ratio of the utterances
whose intents and slots are all correctly predicted.

4.2 Implementation Details
We pre-train the model for 5K steps with a batch
size 16 on each dataset. During both pre-training

1https://github.com/LooperXX/AGIF

and fine-tuning, we use Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98, and
4k warm-up updates to optimize parameters in our
model. For all the experiments, we select the model
which works the best on the dev set and then evalu-
ate it on the test set. α is set to 0.9, β is set to 0.1,
λf is set to 0.3, λs is set to 0.2, and λc is set to 0.5.
All parameters are obtained by the annealing strat-
egy (Ahn et al., 2019). Experiments are conducted
at GeForce RTX 2080Ti and TITAN Xp.

4.3 Main Results

We introduce MRRL to many baselines. The results
on the test sets is listed in Table 2, from which we
have the following observations:

(1) Our MRRL consistently improves the perfor-
mance of several baselines on all tasks and datasets.
More encouragingly, our best variant (i.e. ReLa-
Net w/ MRRL) achieves new state-of-the-art results.
Specifically speaking, on MixATIS dataset, it over-
passes the previous state-of-the-art model ReLa-
Net by 3.6 and 2.3 on overall accuracy and slot
filling, and overpasses the previous state-of-the-art
model Co-guiding Net by 0.7 on multiple intent
detection; on MixSNIPS dataset, it overpasses SS-
RAN by 1.8, 1.0 and 0.7 on utterance-level seman-
tic frame parsing, slot filling and multiple intent
detection, respectively. This is because our meth-
ods provide a better training target for the non-
autoregressive model by modifying the reference,
which might be not be suitable for training due to
the multi-modality problem.

(2) It is worth noting that the improvement on
the MixATIS dataset is more obvious than that on

https://github.com/LooperXX/AGIF


Model MixATIS MixSNIPS
Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

ReLa-Net w/ MRRL 55.8 92.4 79.8 79.3 96.8 99.1
w/o Rsuit 53.6 (↓1.8) 91.3 (↓1.1) 78.8 (↓1.0) 78.1 (↓1.2) 95.3 (↓1.5) 98.2 (↓0.9)
w/o Rfit 54.4 (↓1.4) 91.6 (↓0.8) 79.2 (↓0.6) 78.4 (↓0.9) 95.6 (↓1.2) 98.5 (↓0.6)
w/o Rsim 54.2 (↓1.6) 91.8 (↓0.6) 79.4 (↓0.4) 78.6 (↓0.7) 95.8 (↓1.0) 98.7 (↓0.4)
w/o Rcom 53.0 (↓2.8) 92.0 (↓0.4) 79.5 (↓0.3) 77.2 (↓2.1) 96.5 (↓0.3) 98.8 (↓0.3)
w/o Rsuit + More Parameters 53.8 (↓2.0) 91.4 (↓1.0) 79.2 (↓0.6) 78.5 (↓0.8) 95.7 (↓1.1) 98.4 (↓0.7)
w/o Rcom + More Parameters 53.4 (↓2.4) 92.2 (↓0.2) 79.6 (↓0.2) 78.8 (↓0.5) 96.6 (↓0.2) 98.9 (↓0.2)

Table 3: Results of ablation experiments of ReLa-Net on MixATIS dataset and MixSNIPS dataset.

the MixSNIPS dataset. We suspect that this is be-
cause MixSNIPS dataset is more complicated than
MixATIS dataset. MixATIS dataset has a smaller
vocabulary and fewer kinds of intentions and slots,
where it is easier to propose a more suitable training
target for non-autoregressive multi-intent models.
As a result, the gain is greater on MixATIS dataset.

(3) The improvements in terms of overall accu-
racy are much sharper. This is because our method
includes the compromise reward to overcome the
misalignment problem. In this way, the correct pre-
dictions of the two tasks can be better aligned. As a
result, more test samples get the correct utterance-
level semantic frame parsing results, and then the
overall accuracy is improved more significantly.

4.4 Analysis

We conduct a set of ablation experiments on ReLa-
Net w/ MRRL to verify the advantages of MRRL
from different perspectives, and the experimental
results are shown in Table 3.

4.4.1 Effectiveness of Suitability Reward
Suitability reward is one of the key contributions
of our MRRL, which is dedicated to solving the
problem of unsuitability of the reference caused
by the multi-modality problem. To verify this, we
remove the suitability reward and refer it to w/o
Rsuit in Tabel 3. We can clearly observe that over-
all accuracy drops by 1.8 on MixATIS and 1.2 on
MixSNIPS, the slot F1 drops by 1.1 on MixATIS
and 1.5 on MixSNIPS, and intent accuracy drops by
1.0 on MixATIS and 0.9 on MixSNIPS. When we
only remove a component of Rsuit (i.e. w/o Rfit

and w/o Rsim), the performance also degrades in
varying degrees. Following previous works (Qin
et al., 2020, 2021b), to verify that the proposed
suitability reward rather than the added parameters
works, we increase the layers of intent decoder and
slot decoder when Rsuit is removed and refer it to
w/o Rsuit + More Parameters. We could observe
that despite the added parameters, it still performs

worse than ReLa-Net w/ MRRL, which suggests
that the improvements come from the proposed
suitability reward rather than involved parameters.

4.4.2 Effectiveness of Compromise Reward
To verify the effectiveness of compromise reward,
we remove it and refer it to w/o Rcom. We can
find that the performance is decreased on all tasks
and datasets. Moreover, the drop in overall accu-
racy is more pronounced than that of slot F1 and
intent accuracy on the two datasets, which suggests
that compromise reward can efficiently improve
the overall accuracy. It is worth noting that slot F1
and intent accuracy do not drop when compromise
reward is introduced. We believe that the reason
is that compromise reward can further achieve the
mutual guidance between intent and slot indirectly
when realizing the flexible trade-off between the
two subtasks. Like Sec.4.4.1, we also increase the
layers of intent decoder and slot decoder to verify
that the compromise reward rather than the added
parameters works, which is named as w/o Rcom +
More Parameters. The result also suggests that the
improvements come from the compromise reward.

4.5 Case Study

To further demonstrate how our approach allevi-
ates the multi-modality problem, we provide sev-
eral cases generated from GL-GIN, ReLa-Net and
ReLa-Net + MRRL in Figure 3.

It is obvious that despite the utilization of GAT,
GL-GIN is still impacted by multi-modality issue,
where B-airport_name is incorrectly predicted as
B-fromloc.airport_name. We believe this is be-
cause GL-GIN has little prior knowledge about the
reference during the inference progress, so milwau-
kee is incorrectly predicted as the departure place
when there is no destination in the utterance. Com-
pared to GL-GIN, ReLa-Net performs a little better,
where the predicted intent is right but there are still
some mistakes in the predicted slots. When MRRL
is introduced to Rela-Net, the prediction is abso-



Utterance: what ground transportation is available between milwaukee airport and

Slot: O O O O O O B-airport_name I-airport_name O

Intent:

Slot: O O O O O O B-fromloc.airport_name I-fromloc.airport_name O

Intent:

Slot: O O O O O O B-fromloc.airport_name I-fromloc.airport_name O

Intent:

Slot: O O O O O O B-airport_name I-airport_name O

Intent:

ReLa-Net
atis_ground_service

ReLa-Net + 
MRRL atis_ground_service

Ref.
atis_ground_service

GL-GIN
atis_distance

Models

Figure 3: Cases that generated from GL-GIN (Qin et al., 2021b), ReLa-Net (Xing and Tsang, 2022b) and ReLa-Net
w/ MRRL. The red text indicates the incorrect predictions.

lutely right, which indicates that MRRL can indeed
alleviate the multi-modality problem.

5 Related Work

5.1 Intent Detection and Slot Filling

As deep learning obtains impressive performance
on various tasks (Li et al., 2021, 2022; Zhang et al.,
2022b; Yu et al., 2023; Zhang et al., 2023b; Li et al.,
2023; Zhang et al., 2023a), more and more studies
utilize deep learning to SLU and achieve notable
achievements (Hakkani-Tür et al., 2016; Xia et al.,
2018; Liu et al., 2019; Huang et al., 2020; Wu et al.,
2020; Qin et al., 2021a,b; Huang et al., 2021, 2022;
Chen et al., 2022a,b; Cheng et al., 2023e,b). Re-
cently, the multi-intent SLU problem has garnered
the significant attention, leading to the emergence
of several graph-based models which have demon-
strated promising results. AGIF (Qin et al., 2020)
applies graph attention to directly connect the slot
nodes of each token with all predicted intent nodes.
GL-GIN (Qin et al., 2021b) further introduces a
global-local graph interaction network specifically
and leverages graph-based techniques to capture
interactions between different parts of the input ut-
terance. More recently, Xing and Tsang (2022a)
proposes Co-guiding Net to enhance the overall
performance via enabling slot and intent to guide
and influence each other during the training pro-
cess. Xing and Tsang (2022b) proposes ReLa-Net
to further exploit label typologies and relations.

However, most of the previous models neglect
the multi-modality problem and the misalignment
problem, which are both detrimental to the perfor-

mance of the SLU model. Therefore, we introduce
a modifier and propose a suitability reward to over-
come the multi-modality problem and a compro-
mise reward to overcome the misalignment prob-
lem and improve the overall accuracy.

5.2 Reinforcement Learning
Several NLP tasks have been solved through rein-
forcement learning techniques, such as dialogue
generation (Li et al., 2016, 2017), question answer-
ing (Xiong et al., 2018; Lu et al., 2022), machine
translation (Wu et al., 2018; Shao et al., 2023),
sentiment transfer (Xu et al., 2018), and essay scor-
ing (Wang et al., 2018c). In SLU task, Wang et al.
(2018a) applies reinforcement learning to learn the
wrong labeled slots with or without user’s feedback,
Rao et al. (2021) proposes a reinforce framework to
enhance automatic speech recognition robustness
in SLU. In our work, we apply reinforcement learn-
ing to alleviate the multi-modality problem and the
misalignment problem in non-autoregressive SLU.

6 Conclusion

In this paper, we propose MRRL, a simple yet effec-
tive method to alleviate the multi-modality problem
and misalignment problem in non-autoregressive
multi-intent SLU. We introduce a modifier to pro-
vide a more suitable training target for the model,
and apply reinforcement learning with the suitabil-
ity reward and compromise reward. Experiments
and analysis demonstrate the effectiveness of our
proposed method, which can consistently improve
the performance of baselines and the best variant
achieves new state-of-the-art performance. Future



work will focus on how to further alleviate the two
problems for non-autoregressive multi-intent SLU.

Limitations

Although our MRRL consistently improve the per-
formance of the baselines, and the best variant (i.e.
ReLa-Net + MRRL) achieves new state-of-the-art
results, it does not change the inherent structure of
the model. In fact, the BiLSTM used is relatively
simple, which limits the performance of SLU. In
the future, we will pay more attention to these de-
ficiencies and try to design better frameworks for
non-autoregressive multi-intent SLU.
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