
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VARIANCE REDUCED DISTRIBUTED NONCONVEX OP-
TIMIZATION USING MATRIX STEPSIZES

Anonymous authors
Paper under double-blind review

ABSTRACT

Matrix-stepsized gradient descent algorithms have been shown to have superior
performance in non-convex optimization problems compared to their scalar coun-
terparts. The det-CGD algorithm, as introduced by Li et al. (2024b), leverages
matrix stepsizes to perform compressed gradient descent for non-convex objec-
tives and matrix-smooth problems in a federated manner. The authors establish
the algorithm’s convergence to a neighborhood of a weighted stationarity point un-
der a convex condition for the symmetric and positive-definite matrix stepsize. In
this paper, we propose two variance-reduced versions of the det-CGD algorithm,
incorporating MARINA and DASHA methods. Notably, we establish theoreti-
cally and empirically, that det-MARINA and det-DASHA outperform MARINA,
DASHA and the distributed det-CGD algorithms in terms of iteration and com-
munication complexities.

1 INTRODUCTION

We focus on optimizing the finite sum non-convex objective

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

In this context, each function fi : Rd → R is differentiable and bounded from below. This type
of objective function finds extensive application in various practical machine learning algorithms,
which increase not only in terms of the data size but also in the model size and overall complexity
as well. As a result, most neural network architectures result in highly non-convex empirical losses,
which need to be minimized. In addition, it becomes computationally infeasible to train these mod-
els on one device, often excessively large, and one needs to redistribute them amongst different
devices/clients. This redistribution results in a high communication overhead, which often becomes
the bottleneck in this framework.

In other words, we have the following setting. The data is partitioned into n clients, where the i-
th client has access to the component function fi and its derivatives. The clients are connected to
each other through a central device, called the server. In this work, we are going to study iterative
gradient descent-based algorithms that operate as follows. The clients compute the local gradients in
parallel. Then they compress these gradients to reduce the communication cost and send them to the
server in parallel. The server then aggregates these vectors and broadcasts the iterate update back to
the clients. This meta-algorithm is called federated learning. We refer the readers to Konečný et al.
(2016); McMahan et al. (2017); Kairouz et al. (2021) for a more thorough introduction to federated
learning.

1.1 CONTRIBUTIONS

In this paper, we introduce two novel federated learning algorithms named det-MARINA and
det-DASHA. These algorithms extend a recent method called det-CGD (Li et al., 2024b), which
aims to solve problem (1) using matrix stepsized gradient descent. Under the matrix smoothness
assumption proposed by Safaryan et al. (2021), the authors demonstrate that the matrix stepsized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

version of the Distributed Compressed Gradient Descent (Khirirat et al., 2018) algorithm enhances
communication complexity compared to its scalar counterpart. However, in their analysis, Li et al.
(2024b) show stationarity only within a certain neighborhood due to stochastic compressors. Our al-
gorithm addresses this issue by incorporating previously known variance reduction schemes, namely,
MARINA (Gorbunov et al., 2021) and DASHA (Tyurin & Richtárik, 2024). We establish theoret-
ically and empirically, that both algorithms outperform their scalar alternatives, as well as the dis-
tributed det-CGD algorithms. In addition, we describe specific matrix stepsize choices, for which
our algorithms beat MARINA, DASHA and distributed det-CGD both in theory and in practice.

2 BACKGROUND AND MOTIVATION

For a given ε > 0, finding an approximately global optimum, that is xε such that f(xε) −
minx f(x) < ε, is known to be NP-hard (Jain et al., 2017; Danilova et al., 2022). However, gradient
descent based methods are still useful in this case. When these methods are applied to non-convex
objectives, they treat the function f as locally convex and aim to converge to a local minimum.
Despite this simplification, such methods have gained popularity in practice due to their superior
performance compared to other approaches for non-convex optimization, such as convex relaxation-
based methods (Tibshirani, 1996; Cai et al., 2010).

2.1 STOCHASTIC GRADIENT DESCENT

Arguably, one of the most prominent meta-methods for tackling non-convex optimization problems
is stochastic gradient descent (SGD). The formulation of SGD is presented as the following iterative
algorithm: xk+1 = xk − γgk. Here, gk ∈ Rd serves as a stochastic estimator of the gradient
∇f(xk). SGD essentially mimics the classical gradient descent algorithm, and recovers it when
gk = ∇f(xk). In this scenario, the method approximates the objective function f using a linear
function and takes a step of size γ in the direction that maximally reduces this approximation. When
the stepsize is sufficiently small, and the function f is suitably smooth, it can be demonstrated that
the function value decreases, as discussed in (Bubeck et al., 2015; Gower et al., 2019).

However, computing the full gradient can often be computationally expensive. In such cases,
stochastic approximations of the gradient come into play. Stochastic estimators of the gradient can
be employed for various purposes, leading to the development of different methods. These include
stochastic batch gradient descent (Nemirovski et al., 2009; Johnson & Zhang, 2013; Defazio et al.,
2014), randomized coordinate descent (Nesterov, 2012; Wright, 2015), and compressed gradient
descent (Alistarh et al., 2017; Khirirat et al., 2018; Mishchenko et al., 2019). The latter, compressed
gradient descent, holds particular relevance to this paper, and we will delve into a more detailed
discussion of it in subsequent sections.

2.2 SECOND ORDER METHODS

The stochastic gradient descent is considered as a first-order method as it uses only the first order
derivative information. Although being immensely popular, the first order methods are not always
optimal. Not surprisingly, using higher order derivatives in deciding update direction can yield to
faster algorithms. A simple instance of such algorithms is the Newton Star algorithm (Islamov et al.,
2021):

xk+1 = xk −
(
∇2f(x⋆)

)−1 ∇f(xk), (NS)

where x⋆ is the minimum point of the objective function. The authors establish that under specific
conditions, the algorithm’s convergence to the unique solution x⋆ in the convex scenario occurs at a
local quadratic rate. Nonetheless, its practicality is limited since we do not have prior knowledge of
the Hessian matrix at the optimal point. Despite being proposed recently, the Newton-Star algorithm
gives a deeper insight on the generic Newton method (Gragg & Tapia, 1974; Miel, 1980; Yamamoto,
1987):

xk+1 = xk − γ
(
∇2f(xk)

)−1 ∇f(xk). (NM)

Here, the unknown Hessian of the Newton-Star algorithm, is estimated progressively along the it-
erations. The latter causes elevated computational costs, as the inverting a large square matrix is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

expensive. As an alternative, quasi-Newton methods replace the inverse of the Hessian at the it-
erate with a computationally cheaper estimate (Broyden, 1965; Dennis & Moré, 1977; Al-Baali &
Khalfan, 2007; Al-Baali et al., 2014).

2.3 FIXED MATRIX STEPSIZES

The det-CGD algorithm falls into this framework of the second order methods as well. Proposed
by Li et al. (2024b)1, the algorithm suggests using a uniform “upper bound” on the inverse Hessian
matrix. Assuming matrix smoothness of the objective (Safaryan et al., 2021), they replace the scalar
stepsize with a positive definite matrix D. The algorithm is given as follows:

xk+1 = xk −DSk∇f(xk). (det-CGD)

Matrix D. Here, D plays the role of the stepsize. Essentially, it uniformly lower bounds the
inverse Hessian. The standard SGD is a particular case of this method, as the scalar stepsize γ can
be seen as a matrix γId, where Id is the d-dimensional identity matrix. An advantage of using a
matrix stepsize is more evident if we take the perspective of the second order methods. Indeed, the
scalar stepsize γId uniformly estimates the largest eigenvalue of the Hessian matrix, while D can
capture the Hessian more accurately. The authors show both theoretical and empirical improvement
that comes with matrix stepsizes.

Matrix Sk. We assume that Sk is a positive semi-definite, stochastic sketch matrix. Furthermore,
it is unbiased: E[Sk] = Id. We notice that det-CGD can be seen as a matrix stepsize instance of
SGD, with gk = Sk∇f(xk). The sketch matrix can be seen as a linear compressing operator, hence
the name of the algorithm: Compressed Gradient Descent (CGD) (Alistarh et al., 2017; Khirirat
et al., 2018). A commonly used example of such a compressor is the Rand-τ compressor. This
compressor randomly selects τ entries from its input and scales them using a scalar multiplier to
ensure an unbiased estimation. By adopting this approach, instead of using all d coordinates of the
gradient, only a subset of size τ is communicated. Formally, Rand-τ is defined as follows:

S =
d

τ

τ∑
j=1

eije
⊤
ij . (2)

Here, eij denotes the ij-th standard basis vector in Rd. For a more comprehensive understanding of
compression techniques, we refer to Safaryan et al. (2022b).

2.4 THE NEIGHBORHOOD OF THE DISTRIBUTED DET-CGD1

The distributed version of det-CGD follows the standard federated learning paradigm (McMahan
et al., 2017). The pseudocode of the method, as well as the convergence result of Li et al. (2024b),
can be found in Appendix F. Informally, their convergence result can be written as

min
k=1,...,K

E
[∥∥∇f(xk)

∥∥2
D

]
≤ O

(
(1 + α)K

K

)
+O (α) ,

where α > 0 is a constant that can be controlled. The crucial insight from this result is that the
error bound does not diminish as the number of iterations increases. In fact, by controlling α and
considering a large K, it is impossible to make the second term smaller than ε. This implies that the
algorithm converges to a certain neighborhood surrounding the (local) optimum. This phenomenon
is a common occurrence in SGD and is primarily attributable to the variance associated with the
stochastic gradient estimator. In the case of det-CGD the stochasticity comes from the sketch Sk.

2.5 VARIANCE REDUCTION

To eliminate this neighborhood, various techniques for reducing variance are employed. One of
the simplest techniques applicable to CGD is gradient shifting. By replacing Sk∇f(xk) with

1In the original paper, the algorithm is referred to as det-CGD, as there is a variant of the same algorithm
named det-CGD2. Since we are going to use only the first one and our framework is applicable to both, we will
remove the number in the end for the sake of brevity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sk(∇f(xk)−∇f(x⋆))+∇f(x⋆), the neighborhood effect is removed from the general CGD. This
algorithm is an instance of a more commonly known method called SGD⋆ (Gower et al., 2020).
However, since the exact optimum x⋆ is typically unknown, this technique encounters similar chal-
lenges as the Newton-Star algorithm mentioned earlier. Fortunately, akin to quasi-Newton methods,
one can employ methods that iteratively learn the optimal shift (Shulgin & Richtárik, 2022). A line
of research focuses on variance reduction for CGD based algorithms on this insight.

To eliminate the neighborhood in the distributed version of CGD, denoted as det-CGD1, we apply
a technique called MARINA (Gorbunov et al., 2021). MARINA cleverly combines the general
shifting (Shulgin & Richtárik, 2022) technique with loopless variance reduction techniques (Qian
et al., 2021). This approach introduces an alternative gradient estimator specifically designed for
the federated learning setting. Thanks to its structure, it allows to establish an upper bound on the
stationarity error that diminishes significantly with a large number of iterations. In this paper, we
construct the analog of the this algorithm called det-MARINA, using matrix stepsizes and sketch
gradient compressors. For this new method, we prove a convergence guarantee similar to the results
of Li et al. (2024b) without a neighborhood term.

Furthermore, we also propose det-DASHA, which is the extension of DASHA in the matrix step-
size setting. The latter was proposed by Tyurin & Richtárik (2024) and it combines MARINA
with momentum variance reduction techniques (Cutkosky & Orabona, 2019). DASHA offers better
practicality compared to MARINA, as it always sends compressed gradients and does not need to
synchronize among all the nodes.

2.6 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section 3 discusses the general mathematical frame-
work. Section 4 and Section 5 present the det-MARINA and det-DASHA algorithms, respectively.
We show the superior theoretical performance of our algorithms compared to the relevant existing
algorithms, that is MARINA, DASHA and det-CGD in Section 6. The experimental results validat-
ing our theoretical findings are presented in Section 7, with additional details and setups available in
the Appendix. We conclude the paper by outlining several directions of future work in Section 8.

3 MATHEMATICAL FRAMEWORK

In this section we present the assumptions that we further require in the analysis.
Assumption 1. (Lower Bound) There exists f⋆ ∈ R such that, f(x) ≥ f⋆ for all x ∈ Rd.

This is a standard assumption in optimization, as otherwise the problem of minimizing the objective
would not be correct mathematically. We then need a matrix version of Lipschitz continuity for the
gradient.
Definition 1. (L-Lipschitz Gradient) Assume that f : Rd → R is a continuously differentiable
function and matrix L ∈ Sd++. We say the gradient of f is L-Lipschitz if for all x, y ∈ Rd

∥∇f(x)−∇f(y)∥L−1 ≤ ∥x− y∥L . (3)

In the following, we will assume that (3) is satisfied for component functions fi.
Assumption 2. Each function fi is Li-gradient Lipschitz, while f is L-gradient Lipschitz.

In fact, the second half of the assumption is a consequence of the first one. Below, we formalize this
claim.
Proposition 1. If fi is Li-gradient Lipschitz for every i = 1, . . . , n, then function f has L-Lipschitz
gradient with L ∈ Sd++ satisfying

1

n

n∑
i=1

λmax

(
L−1

)
· λmax (Li) · λmax

(
LiL

−1
)
= 1.

Remark 1. In the scalar case, where L = LId, Li = LiId, the relation becomes L2 = 1
n

∑n
i=1 L

2
i .

This corresponds to the statement in Assumption 1.2 in (Gorbunov et al., 2021).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Nevertheless, the matrix L found according to Proposition 1 is only an estimate. In principle, there
might exist a better Lf ⪯ L such that f has Lf -Lipschitz gradient.

More generally, this condition can be interpreted as follows. The gradient of f naturally belongs
to the dual space of Rd, as it is defined as a linear functional on Rd. In the scalar case, ℓ2-norm is
self-dual, thus (3) reduces to the standard Lipschitz continuity of the gradient. However, with the
matrix smoothness assumption, we are using the L-norm for the iterates, which naturally induces
the L−1-matrix norm for the gradients in the dual space. This insight, which is originally presented
by Nemirovski & Yudin (1983), plays a key role in our analysis.

See Appendix C for a more thorough discussion on the properties of Assumption 2, as well as its
connection to matrix smoothness (Safaryan et al., 2021).

4 MARINA-BASED VARIANCE REDUCTION

In this section, we present our algorithm det-MARINA with its convergence result. We construct
a sequence of vectors gk which are stochastic estimators of ∇f(xk). At each iteration, the server
samples a Bernoulli random variable (coin flip) ck and broadcasts it in parallel to the clients, along
with the current gradient estimate gk. Each client, then, does a det-CGD-type update with the
stepsize D and a gradient estimate gk. The next gradient estimate gk+1 is then computed. With a
low probability, that is when ck = 1, we take the gk+1 to be the full gradient ∇f(xk+1). Otherwise,
we update it using the compressed gradient differences at each client. See Algorithm 1 for the
pseudocode of det-MARINA.

Algorithm 1 det-MARINA
1: Input: starting point x0, stepsize matrix D, probability p ∈ (0, 1], number of iterations K
2: Initialize g0 = ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, 2, . . . in parallel do
7: xk+1 = xk −D · gk
8: if ck = 1 then
9: gk+1

i = ∇fi(x
k+1)

10: else
11: gk+1

i = gk + Sk
i

(
∇fi(x

k+1)−∇fi(x
k)
)

12: end if
13: end for
14: gk+1 = 1

n

∑n
i=1 g

k+1
i

15: end for
16: Return: x̃K chosen uniformly at random from {xk}K−1

k=0

4.1 CONVERGENCE GUARANTEES

In the following theorem, we formulate one of the main results of this paper, which guarantees the
convergence of Algorithm 1 under the above-mentioned assumptions.
Theorem 1. Assume that Assumptions 1 and 2 hold, and the following condition on stepsize matrix
D ∈ Sd++ holds,

D−1 ⪰
(
(1− p) ·R(D,S)

np
+ 1

)
L, (4)

where R(D,S) := 1
n

∑n
i=1 λmax (Li)λmax

(
L− 1

2LiL
− 1

2

)
×λmax

(
E
[
Sk
i DSk

i

]
−D

)
. Then,

after K iterations of det-MARINA, we have

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/d ·K

. (5)

Here, x̃K is chosen uniformly randomly from the first K iterates of the algorithm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The criterion ∥·∥2D/ det(D)1/d is the same as that used in Li et al. (2024b), known as determinant
normalization. The weight matrix of the matrix norm has determinant 1 after normalization, which
makes it comparable to the standard Euclidean norm.

Remark 2. We notice that the right-hand side of the algorithm vanishes with the number of itera-
tions, thus solving the neighborhood issue of the distributed det-CGD. Therefore, det-MARINA is
indeed the variance reduced version of det-CGD in the distributed setting and has better conver-
gence guarantees.

Remark 3. Theorem 1 implies the following iteration complexity for the algorithm. In order to get
an ε2 stationarity error2, the algorithm requires K iterations, with

K ≥ 2(f(x0)− f⋆)

det(D)1/d · ε2
.

Remark 4. In the case where no compression is applied, that is we have Sk
i = Id, condition (4)

reduces to D ⪯ L−1. The latter is due to E
[
Sk
i DSk

i

]
= D, which results in R(D,S) = 0. This

is expected, since in the deterministic case det-MARINA reduces to GD with matrix stepsize.

The convergence condition and rate of matrix stepsize GD can be found in (Li et al., 2024b). Below
we do a sanity check to verify that the convergence condition for scalar MARINA can be obtained.

Remark 5. Let us consider the scalar case. That is Li = LiId,L = LId,D = γId and ω =

λmax

(
E
[(
Sk
i

)⊤
Sk
i

])
− 1. Then, the condition (4) reduces to

γ ≤

[
L

(
1 +

√
(1− p)ω

pn

)]−1

.

The latter coincides with the stepsize condition of the convergence result of scalar MARINA.

4.2 OPTIMIZING THE MATRIX STEPSIZE

Now let us look at the right-hand side of (5). We notice that it decreases in terms of the determinant
of the stepsize matrix. Therefore, one needs to solve the following optimization problem to find the
optimal stepsize:

minimize log det(D−1)

subject to D satisfying (4).

The solution of this constrained minimization problem on Sd++ is not explicit. In theory, one may
show that the constraint (4) is convex and attempt to solve the problem numerically. However, as
stressed by Li et al. (2024b), the similar stepsize condition for det-CGD is not easily computed using
solvers like CVXPY (Diamond & Boyd, 2016). Instead, we may relax the problem to certain linear
subspaces of Sd++. In particular, we fix a matrix W ∈ Sd++, and define D := γW . Then, the
condition on the matrix D becomes a condition for the scalar γ, which is given in the following
corollary.

Corollary 1. Let W ∈ Sd++, defining D := γ ·W , where γ ∈ R+. then the condition in (4) reduces
to the following condition on γ

γ ≤ 2λW

1 +
√
1 + 4αβ · ΛW ,SλW

, (6)

where ΛW ,S = λmax

(
E
[
Sk
i WSk

i

]
−W

)
, λW = λ−1

max

(
W

1
2LW

1
2

)
, α = 1−p

np and β =
1
n

∑n
i=1 λmax (Li) · λmax

(
L−1Li

)
.

2We say a (possibly random) vector x ∈ Rd is an ε-stationary point of a possibly non-convex function
f : Rd 7→ R, if E

[
∥∇f(x)∥2

]
≤ ε2. The expectation is over the randomness of the algorithm

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This means that for every fixed W , we can find the optimal scaling coefficient γ. In section Sec-
tion 6, we will use this corollary to prove that a suboptimal matrix step size, determined in this
efficient way, is already better than the optimal scalar step size.

Extension to det-CGD2. A variant of det-CGD, called det-CGD2, was also proposed by Li
et al. (2024b). This algorithm, has the same structure as det-CGD with the sketch and stepsize
interchanged. It was shown, that this algorithm has explicit stepsize condition in the single node
setting. In Appendix G, we propose the variance reduced extension of the distributed det-CGD2
following the MARINA scheme.

5 DASHA-BASED VARIANCE REDUCTION

In this section, we present our second algorithm based on DASHA. The latter utilizes a different type
of variance reduction based on momentum (MVR). Compared to MARINA, dasha makes simpler
optimization steps and does not require periodic synchronization with all the nodes. Notice that one
may further simplify the notations here used in the algorithm. However, we keep it this way as it is
consistent with (Tyurin & Richtárik, 2024).

Algorithm 2 det-DASHA
1: Input: starting point x0 ∈ Rd, stepsize matrix D ∈ Sd++, momentum a ∈ (0, 1], number of

iterations K
2: Initialize g0i , h

0
i ∈ Rd on the nodes and g0 = 1

n

∑n
i=1 g

0
i on the server

3: for k = 0, 1, . . . ,K − 1 do
4: xk+1 = xk −D · gk
5: Broadcast xk+1 to all nodes
6: for i = 1, 2, . . . n in parallel do
7: hk+1

i = ∇fi(x
k+1)

8: mk+1
i = Sk

i

(
hk+1
i − hk

i − a
(
gki − hk

i

))
9: gk+1

i = gki +mk+1
i

10: Send mk+1
i to the server.

11: end for
12: gk+1 = gk + 1

n

∑n
i=1 m

k+1
i

13: end for
14: Return: x̃K chosen uniformly at random from {xk}K−1

k=0

5.1 THEORETICAL GUARANTEES

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let us initialize g0i = h0
i = ∇fi(x

0) for all
i ∈ [n] in Algorithm 2, and define

ΛD,S = λmax

(
E
[
Sk
i DSk

i

]
−D

)
, ωD = λmax

(
D−1

)
· ΛD,S .

If a = 1
2ωD+1 , and the following condition on stepsize D ∈ Sd++ is satisfied

D−1 ⪰ L− 4λmax (D)ωD (4ωD + 1)

n2

n∑
i=1

λmax (Li)Li,

then the following inequality holds for the iterates of Algorithm 2

E
[∥∥∇f(x̃K)

∥∥2
D/(det(D))1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
.

Here x̃K is chosen uniformly randomly from the first K iterates of the algorithm.
Remark 6. The term ΛD,S can be viewed as the matrix version of γ ·ω, where ω is associated with
the sketch, and γ is the scalar stepsize. On the other hand, the ωD is the extension of ω in matrix
norm. Similar to Remark 5, plugging in scalar arguments in the algorithm, we recover the result
from Tyurin & Richtárik (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Following the same scheme as in Section 4, we choose D = γW · W , where W ∈ Sd++. Thus,
for a fixed W , we relax the problem of finding the optimal stepsize to the problem of finding the
optimal scaling factor γW > 0.

Corollary 2. For a fixed W ∈ Sd++, the optimal scaling factor γW ∈ R+ is given by

γW =
2λW

1 +
√
1 + 16CWλmin (L) · λW

,

where CW := λmax (W) · ωW (4ωW + 1)/n, and λW := λ−1
max

(
L

1
2WL

1
2

)
.

We observe that the structure of the optimal scaling factor for obtained above is similar to the one
obtained in Corollary 1.

The availability of L: For both det-MARINA and det-DASHA, in order to determine the matrix
stepsize, the knowledge of L is needed, if L is known, better complexities are guaranteed. When
L is unknown, a closed-form solution can be obtained for generalized linear models. In more gen-
eral cases, Li can be treated as hyperparameters and estimated using first-order information via a
gradient-based method (Wang et al., 2022). One can think of this as some type of preprocessing
step, after which the matrices are learnt.

6 COMPLEXITIES OF THE ALGORITHMS

6.1 DET-MARINA

The following corollary formulates the iteration complexity for det-MARINA for W = L−1.

Corollary 3. If we take W = L−1, then the condition (6) on γ is given by

γ ≤ 2
(
1 +

√
1 + 4αβ · ΛL−1,S

)−1

. (7)

In order to satisfy ε-stationarity, that is E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤ ε2, we require

K ≥ O

(
∆0 · det(L)

1
d

ε2
·
(
1 +

√
1 + 4αβ · ΛL−1,S

))
,

where ∆0 := f(x0) − f(x⋆). Moreover, this iteration complexity is always better than the one of
MARINA.

The proof can be found in the Appendix. In fact, we can show that in cases where we fix W = Id
and W = diag−1 (L), the same conclusion also holds, relevant details can be found in Ap-
pendix D.3. This essentially means that det-MARINA always has a “larger” stepsize compared
to MARINA, even if the stepsize is suboptimal for the sake of efficiency, which leads to a better iter-
ation complexity. In addition, because we are using the same compressor for those two algorithms,
the communication complexity of det-MARINA is also provably better than that of MARINA.

In order to compute the communication complexity, we borrow the concept of expected density from
Gorbunov et al. (2021).

Definition 2. For a given sketch matrix S ∈ Sd+, the expected density is defined as

ζS = sup
x∈Rd

E [∥Sx∥0] ,

where ∥x∥0 denotes the number of non-zero components of x ∈ Rd.

In particular, we have ζRand-τ = τ . Below, we state the communication complexity of det-MARINA
with W = L−1 and the Rand-τ compressor.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Corollary 4. Assume that we are using sketch S ∼ S with expected density ζS . Suppose also we
are running det-MARINA with probability p and we use the optimal stepsize matrix with respect to
W = L−1. Then the overall communication complexity of the algorithm is given by O

(
(Kp +

1)d+ (1− p)KζS
)
. Specifically, if we pick p = ζS/d, then the communication complexity is given

by

O

(
d+

∆0 det(L)
1
d

ε2

(
ζS +

√
β

n
ΛL−1,SζS(d− ζS)

))
.

Notice that in case where no compression is applied, the communication complexity reduces to
O(d∆0·det(L)

1
d/ε2). The latter coincides with the rate of matrix stepsize GD (see (Li et al., 2024b)).

Therefore, the dependence on ε is not possible to improve further since GD is optimal among first
order methods (Carmon et al., 2020).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a1a, n = 150, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

0 1 2 3 4 5 6 7

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

w2a, n = 200, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a3a, n = 300, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

Figure 1: Comparison of DCGD with optimal scalar stepsize, det-CGD with matrix stepsize D∗
3 ,

MARINA with optimal scalar stepsize, DASHA with optimal scalar stepsize, det-MARINA with
optimal stepsize D∗

L−1 and det-DASHA with optimal stepsize D∗∗
L−1 . Throughout the experiment,

we are using Rand-τ sketch with τ = 60, and each algorithm is run for a fixed number of iterations
K = 10000. The GK,D in the y-axis is defined in (63), which is the average squared matrix norm
of the gradients.

6.2 DET-DASHA

The difference of compression mechanisms, does not allow to have a direct comparison of the com-
plexities of these algorithms. In particular, det-MARINA compresses the gradient difference with
some probability p, while det-DASHA compresses the gradient difference with momentum in each
iteration.
Corollary 5. If we pick D = γL−1 ·L−1, then in order to reach an ε2 stationary point, det-DASHA
needs K iterations with

K ≥ f(x0)− f⋆

det(L)−
1
d ε2

(
1 +

√
1 + 16CL−1λmin (L)

)
.

The following corollary compares the complexities of DASHA and det-DASHA. For the sake of
brevity, we defer the complexities and other details to the proof of this corollary.
Corollary 6. Suppose that the conditions in Theorem 2 hold, then compared to DASHA, det-DASHA
with W = L−1 always has a better iteration complexity, therefore, communication complexity as
well.

The following corollary suggests that the communication complexity of det-DASHA is better than
that of det-MARINA,
Corollary 7. The iteration complexity of det-MARINA with p = 1/(ωL−1+1) and det-DASHA with
momentum 1/(2ωL−1+1) is the same, therefore the communication complexity of det-DASHA is better
than the communication complexity of det-MARINA.

This is expected since the same relation occurs between MARINA and DASHA as it is described by
Tyurin & Richtárik (2024, Table 1). We refer the readers to Appendix E.2.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 EXPERIMENTS

This section contains several plots which confirm our theoretical improvements on the existing meth-
ods. Figure 1 shows that the performance in terms of communication complexity of det-DASHA
and det-MARINA is better than their scalar counterpart DASHA and MARINA respectively. This
validates the efficiency of using a matrix stepsize over a scalar stepsize. Further, we notice that
det-DASHA and det-MARINA have better communication complexity in this case, compared to
det-CGD. This demonstrates the effectiveness of applying variance reduction. Finally, as expected,
det-DASHA has better communication complexity than det-MARINA. We refer the readers to the
appendix for more technical details of the experiments.

8 FUTURE WORK

i) In this paper, we have only considered (linear) sketches as the compression operator. However,
there exists a variety of compressors which are useful in practice that do not fall into this category.
Extending det-CGD and det-MARINA for general unbiased compressors is a promising future work
direction. ii) Additionally, given recent successes with adaptive stepsizes (e.g., (Loizou et al., 2021;
Orvieto et al., 2022; Schaipp et al., 2023)), designing an adaptive matrix stepsize tailored to our
case could be viable. iii) Finally, recent advances suggest that server step sizes play a key role in
accelerating federated learning algorithms (Jhunjhunwala et al., 2023; Li et al., 2024a). Designing a
matrix version of the server step size could also be interesting.

REFERENCES

Mehiddin Al-Baali and H Khalfan. An overview of some practical quasi-Newton methods for uncon-
strained optimization. Sultan Qaboos University Journal for Science [SQUJS], 12(2):199–209,
2007.

Mehiddin Al-Baali, Emilio Spedicato, and Francesca Maggioni. Broyden’s quasi-Newton methods
for a nonlinear system of equations and unconstrained optimization: a review and open problems.
Optimization Methods and Software, 29(5):937–954, 2014.

Foivos Alimisis, Peter Davies, and Dan Alistarh. Communication-efficient distributed optimization
with quantized preconditioners. In International Conference on Machine Learning, pp. 196–206.
PMLR, 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in Neural In-
formation Processing Systems, 30, 2017.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1200–1205,
2017.

Rajendra Bhatia. Positive definite matrices. Princeton University Press, 2009.

Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics
of Computation, 19(92):577–593, 1965.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1-2):71–120, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, and Martin Takáč. Dis-
tributed fixed point methods with compressed iterates. arXiv preprint arXiv:1912.09925, 2019.

Rixon Crane and Fred Roosta. Dingo: Distributed Newton-type method for gradient-norm optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
Advances in Neural Information Processing Systems, 32, 2019.

Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov,
Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in non-convex optimiza-
tion. In High-Dimensional Optimization and Probability: With a View Towards Data Science, pp.
79–163. Springer, 2022.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

John E Dennis, Jr and Jorge J Moré. Quasi-Newton methods, motivation and theory. SIAM Review,
19(1):46–89, 1977.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.

Canh T Dinh, Nguyen H Tran, Tuan Dung Nguyen, Wei Bao, Albert Y Zomaya, and Bing B Zhou.
Federated learning with proximal stochastic variance reduced gradient algorithms. In Proceedings
of the 49th International Conference on Parallel Processing, pp. 1–11, 2020.

Darina Dvinskikh, Aleksandr Ogaltsov, Alexander Gasnikov, Pavel Dvurechensky, Alexander
Tyurin, and Vladimir Spokoiny. Adaptive gradient descent for convex and non-convex stochastic
optimization. arXiv preprint arXiv:1911.08380, 2019.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798. PMLR, 2021.

Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pp. 5200–5209. PMLR, 2019.

William B Gragg and Richard A Tapia. Optimal error bounds for the Newton–Kantorovich theorem.
SIAM Journal on Numerical Analysis, 11(1):10–13, 1974.

SV Guminov, Yu E Nesterov, PE Dvurechensky, and AV Gasnikov. Accelerated primal-dual gra-
dient descent with linesearch for convex, nonconvex, and nonsmooth optimization problems. In
Doklady Mathematics, volume 99, pp. 125–128. Springer, 2019.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, and Sebastian Stich.
Stochastic distributed learning with gradient quantization and double-variance reduction. Opti-
mization Methods and Software, 38(1):91–106, 2023.

Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates
and compressed communication. In International Conference on Machine Learning, pp. 4617–
4628. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. Advances in Neural Information Processing
Systems, 29, 2016.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations
and Trends® in Machine Learning, 10(3-4):142–363, 2017.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. FedExP: Speeding up federated averaging
via extrapolation. In International Conference on Learning Representations, 2023.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023.

Prashant Khanduri, Pranay Sharma, Swatantra Kafle, Saikiran Bulusu, Ketan Rajawat, and
Pramod K Varshney. Distributed stochastic non-convex optimization: Momentum-based variance
reduction. arXiv preprint arXiv:2005.00224, 2020.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with com-
pressed gradients. arXiv preprint arXiv:1806.06573, 2018.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 8, 2016.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove those
loops: SVRG and Katyusha are better without the outer loop. In Algorithmic Learning Theory,
pp. 451–467. PMLR, 2020.

Hanmin Li, Kirill Acharya, and Peter Richtárik. The power of extrapolation in federated learning.
arXiv preprint arXiv:2405.13766, 2024a.

Hanmin Li, Avetik Karagulyan, and Peter Richtárik. Det-CGD: Compressed gradient descent with
matrix stepsizes for non-convex optimization. In International Conference on Learning Repre-
sentations, 2024b.

Junyi Li, Feihu Huang, and Heng Huang. Local stochastic bilevel optimization with momentum-
based variance reduction. arXiv preprint arXiv:2205.01608, 2022.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. arXiv preprint arXiv:2002.11364, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International Conference on Machine
Learning, pp. 6286–6295. PMLR, 2021.

Deyi Liu, Lam M Nguyen, and Quoc Tran-Dinh. An optimal hybrid variance-reduced algorithm for
stochastic composite nonconvex optimization. arXiv preprint arXiv:2008.09055, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
step-size for SGD: An adaptive learning rate for fast convergence. In International Conference
on Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. GradSkip: Communication-accelerated
local gradient methods with better computational complexity. arXiv preprint arXiv:2210.16402,
2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

George J Miel. Majorizing sequences and error bounds for iterative methods. Mathematics of
Computation, 34(149):185–202, 1980.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes!
Local gradient steps provably lead to communication acceleration! Finally! In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 15750–15769. PMLR, 17–23 Jul 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

Arkadi Semenovič Nemirovski and David Borisovich Yudin. Problem complexity and method effi-
ciency in optimization. Wiley-Interscience, ISSN 0277-2698, 1983.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of SGD with stochastic
Polyak stepsizes: Truly adaptive variants and convergence to exact solution. Advances in Neural
Information Processing Systems, 35:26943–26954, 2022.

Jie Peng, Zhaoxian Wu, Qing Ling, and Tianyi Chen. Byzantine-robust variance-reduced federated
learning over distributed non-iid data. Information Sciences, 616:367–391, 2022.

Xun Qian, Zheng Qu, and Peter Richtárik. L-SVRG and L-Katyusha with arbitrary sampling. The
Journal of Machine Learning Research, 22(1):4991–5039, 2021.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smoothness constants:
Better communication compression techniques for distributed optimization. Advances in Neural
Information Processing Systems, 34:25688–25702, 2021.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtarik. FedNL: Making Newton-type
methods applicable to federated learning. In International Conference on Machine Learning, pp.
18959–19010. PMLR, 2022a.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication com-
pression in distributed and federated learning and the search for an optimal compressor. Informa-
tion and Inference: A Journal of the IMA, 11(2):557–580, 2022b.

Fabian Schaipp, Robert M Gower, and Michael Ulbrich. A stochastic proximal Polyak step size.
Transactions on Machine Learning Research, 2023.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Egor Shulgin and Peter Richtárik. Shifted compression framework: Generalizations and improve-
ments. In Uncertainty in Artificial Intelligence, pp. 1813–1823. PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Robert Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal Statis-
tical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. A hybrid stochastic opti-
mization framework for composite nonconvex optimization. Mathematical Programming, 191
(2):1005–1071, 2022.

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with commu-
nication compression and optimal oracle complexity. In International Conference on Learning
Representations, 2024.

Bokun Wang, Mher Safaryan, and Peter Richtárik. Theoretically better and numerically faster dis-
tributed optimization with smoothness-aware quantization techniques. Advances in Neural Infor-
mation Processing Systems, 35:9841–9852, 2022.

Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approx-
imate Newton method for distributed optimization. Advances in Neural Information Processing
Systems, 31, 2018.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Tetsuro Yamamoto. A convergence theorem for Newton-like methods in banach spaces. Numerische
Mathematik, 51:545–557, 1987.

Jiaqi Zhang, Keyou You, and Tamer Başar. Achieving globally superlinear convergence for dis-
tributed optimization with adaptive Newton method. In 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 2329–2334. IEEE, 2020a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS

A Additional details 16

A.1 Notations . 16

A.2 Additional prior work . 17

B Basic facts 18

C Properties of matrix smoothness 20

C.1 The matrix Lipschitz-continuous gradient . 20

C.1.1 Quadratics . 20

C.2 Comparison of the different smoothness conditions 21

C.3 Proofs of the propositions regarding smoothness 21

C.3.1 Proof of Proposition 1 . 21

C.3.2 Proof of Proposition 2 . 22

C.3.3 Proof of Proposition 3 . 22

C.3.4 Proof of Proposition 4 . 23

C.3.5 Proof of Proposition 5 . 24

C.3.6 Proof of Proposition 6 . 24

C.3.7 Proof of Proposition 7 . 25

C.3.8 Proof of Proposition 8 . 25

D Analysis of det-MARINA 26

D.1 Technical lemmas . 26

D.2 Proof of Theorem 1 . 26

D.3 Comparison of different stepsizes . 29

D.3.1 The diagonal case . 30

D.3.2 The identity case . 30

D.4 Proofs of the corollaries . 30

D.4.1 Proof of Corollary 1 . 30

D.4.2 Proof of Corollary 3 . 31

D.4.3 Proof of Corollary 4 . 32

D.4.4 Proof of Corollary 8 . 32

D.4.5 Proof of Corollary 9 . 33

E Analysis of det-DASHA 34

E.1 Proof of Theorem 2 . 34

E.2 Proofs of the corollaries . 36

E.2.1 Proof of Corollary 2 . 36

E.2.2 Proof of Corollary 5 . 37

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E.2.3 Proof of Corollary 6 . 37

E.2.4 Proof of Corollary 7 . 37

F Distributed det-CGD 38

G Extension of det-CGD2 in MARINA form 38

G.1 Extension of det-CGD2 to its variance reduced counterpart 38

G.2 Analysis of Algorithm 4 . 40

G.3 Proof of Theorem 4 . 40

H Proofs of the technical lemmas 42

H.1 Proof of Lemma 1 . 42

H.2 Proof of Lemma 2 . 43

H.3 Proof of Lemma 4 . 44

H.4 Proof of Lemma 5 . 45

H.5 Proof of Lemma 6 . 46

H.6 Proof of Lemma 7 . 46

I Experiments 47

I.1 The setting . 47

I.2 Comparison of all the methods . 47

I.3 Improvements over MARINA . 47

I.4 Improvements on non variance reduced methods 49

I.5 Improvements over det-CGD . 51

I.6 Comparing different stepsize choices . 51

I.7 Comparing communication complexity . 53

I.8 Comparison of DASHA and det-DASHA . 54

I.9 Comparison of DCGD, det-CGD, DASHA and det-DASHA 56

I.10 Comparison of det-DASHA and det-CGD with different stepsizes 56

I.11 Comparison of different stepsizes of det-DASHA 57

I.12 Comparison of det-MARINA and det-DASHA 57

I.13 Comparison in terms of function values . 58

A ADDITIONAL DETAILS

A.1 NOTATIONS

The standard Euclidean norm on Rd is defined as ∥·∥. We use Sd++ (resp. Sd+) to denote the positive
definite (resp. semi-definite) cone of dimension d. Sd is used to denote all symmetric matrices of
dimension d. We use the notation Id to denote the identity matrix of size d × d, and Od to denote
the zero matrix of size d× d. Given Q ∈ Sd++ and x ∈ Rd,

∥x∥Q :=
√
x⊤Qx =

√
⟨x,Qx⟩,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where ⟨·, ·⟩ is the standard Euclidean inner product on Rd. For a matrix A ∈ Sd, we use λmax (A)
(resp. λmin (A)) to denote the largest (resp. smallest) eigenvalue of the matrix A. For a function
f : Rd 7→ R, its gradient and its Hessian at a point x ∈ Rd are respectively denoted as ∇f(x) and
∇2f(x). For the sketch matrices Sk

i used in the algorithm, we use the superscript k to denote the
iteration and subscript i to denote the client, the matrix Sk

i is thus sampled for client i in the k-th
iteration from the same distribution S. For any matrix A ∈ Sd, we use the notation diag (A) ∈ Sd
to denote the diagonal of matrix A.

A.2 ADDITIONAL PRIOR WORK

Numerous effective convex optimization techniques have been adapted for application in non-convex
scenarios. Here’s a selection of these techniques, although it’s not an exhaustive list: adaptivity
(Dvinskikh et al., 2019; Zhang et al., 2020b), variance reduction (J Reddi et al., 2016; Li et al.,
2021), and acceleration (Guminov et al., 2019). Of particular relevance to our work is the paper by
Khaled & Richtárik (2023), which introduces a unified approach for analyzing stochastic gradient
descent for non-convex objectives. A comprehensive overview of non-convex optimization can be
found in (Jain et al., 2017; Danilova et al., 2022).

An illustrative example of a matrix stepsized method is Newton’s method, which has been a long-
standing favorite in the optimization community (Gragg & Tapia, 1974; Miel, 1980; Yamamoto,
1987). However, the computational complexity involved in computing the stepsize as the inverse of
the Hessian of the current iteration is substantial. Instead, quasi-Newton methods employ a readily
computable estimator to replace the inverse Hessian (Broyden, 1965; Dennis & Moré, 1977; Al-
Baali & Khalfan, 2007; Al-Baali et al., 2014). An important direction of research that is relevant to
our work, studies distributed second order methods. Here is a non-exhaustive list of papers in this
area: (Wang et al., 2018; Crane & Roosta, 2019; Zhang et al., 2020a; Islamov et al., 2021; Alimisis
et al., 2021; Safaryan et al., 2022a).

The Distributed Compressed Gradient Descent (DCGD) algorithm, initially proposed by Khirirat
et al. (2018), has seen improvements in various aspects, as documented in works such as (Li et al.,
2020; Horváth et al., 2022). Its variance reduced version with gradients shifts was studied by Shulgin
& Richtárik (2022) in the (strongly) convex setting. Additionally, there exists a substantial body of
literature on other federated learning algorithms employing unbiased compressors (Alistarh et al.,
2017; Mishchenko et al., 2019; Gorbunov et al., 2021; Mishchenko et al., 2022; Maranjyan et al.,
2022; Horváth et al., 2023).

Variance reduction techniques have gained significant attention in the context of stochastic batch
gradient descent that is prevalent in machine learning. Numerous algorithms have been developed
in this regard, including well-known ones like SVRG (Johnson & Zhang, 2013), SAG (Schmidt
et al., 2017), SDCA(Richtárik & Takáč, 2014), SAGA (Defazio et al., 2014), MISO (Mairal, 2015),
and Katyusha (Allen-Zhu, 2017). An overview of more advanced methods can be found in (Gower
et al., 2020). Notably, SVRG and Katyusha have been extended with loopless variants, namely
L-SVRG and L-Katyusha (Kovalev et al., 2020; Qian et al., 2021). These loopless versions stream-
line the algorithms by eliminating the outer loop and introducing a biased coin-flip mechanism at
each step. This simplification eases both the algorithms’ structure and their analyses, while preserv-
ing their worst-case complexity bounds. L-SVRG, in particular, offers the advantage of setting the
exit probability from the outer loop independently of the condition number, thus, enhancing both
robustness and practical efficiency.

This technique of coin flipping allows to obtain variance reduction for the CGD algorithm. A rele-
vant example is the DIANA algorithm proposed by Mishchenko et al. (2019). Its convergence was
proved both in the convex and non-convex cases. Later, MARINA (Gorbunov et al., 2021) obtained
the optimal convergence rate, improving in communication complexity compared to all previous
first order methods. Finally, there is a line of work developing variance reduction in the federated
setting using other methods and techniques (Chraibi et al., 2019; Hanzely & Richtárik, 2020; Dinh
et al., 2020; Peng et al., 2022).

Another method to obtain variance reduction is based on momentum. It was initially studied by
Cutkosky & Orabona (2019), where they propose the STORM algorithm, which is a stochastic gra-
dient descent algorithm with a momentum term for non-convex objectives. They obtain stationarity
guarantees using adaptive stepsizes with optimal convergence rates. However, they require the vari-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ance of the stochastic gradient to be bounded by a constant, which is impractical. Using momentum
for variance reduction has since been widely studied (Liu et al., 2020; Khanduri et al., 2020; Tran-
Dinh et al., 2022; Li et al., 2022).

B BASIC FACTS

In this section, we present some basic facts along with their proofs that will be used later in the
analysis.
Fact 1. For two matrices A,B ∈ Sd+, denote the i-th largest eigenvalues of A,B as λi(A), λi(B),
if A ⪰ B, then the following holds

λi(A) ≥ λi(B). (8)

Proof. According to the Courant-Fischer theorem, we write

λi(B) = max
S:dimS=i

min
x∈S\{0}

x⊤Bx

x⊤x
.

Let Si
max be a subspace of dimension i where the maximum is attained, we then have

λi(B) = min
x∈Si

max\{0}

x⊤Bx

x⊤x

≤ min
x∈Si

max\{0}

x⊤Ax

x⊤x
≤ max

S:dimS=i
min

x∈S\{0}

x⊤Ax

x⊤x
= λi(A).

The following is a generalization of the bias-variance decomposition for the matrix norm.
Fact 2. (Variance Decomposition) Given a matrix M ∈ Sd++, any vector c ∈ Rd, and a random
vector x ∈ Rd such that E [∥x∥] ≤ +∞, the following bound holds

E
[
∥x− E [x]∥2M

]
= E

[
∥x− c∥2M

]
− ∥E [x]− c∥2M . (9)

Proof. We have

E
[
∥x− c∥2M

]
− ∥E [x]− c∥2M

= E
[
x⊤Mx

]
− 2E [x]

⊤
Mc+ c⊤Mc− E [x]

⊤
ME [x] + 2E [x]

⊤
Mc− c⊤Mc

= E
[
x⊤Mx

]
− E [x]

⊤
ME [x]

= E
[
x⊤Mx

]
− 2 · E [x]

⊤
ME [x] + E [x]

⊤
ME [x]

= E
[
∥x− E [x]∥2M

]
.

This completes the proof.

Fact 3. The map (A,B,X) 7→ A − XB−1X is jointly concave on Sd+ × Sd++ × Sd. It is also
monotone increasing in variables A and B.

We refer the reader to Corollary 1.5.3 of Bhatia (2009) for the details and the proof. The following
is a result of Fact 1 and Fact 3.
Fact 4. Suppose Li ∈ Sd++, for i = 1, . . . , n. Then, for every matrix X ∈ Sd++, we define the
following mapping

f(X,L1, . . . ,Ln) =
1

n

n∑
i=1

λmax(Li) · λmax

(
LiX

−1
)
· λmax

(
X−1

)
.

Then the above mapping is monotone decreasing in X .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. First we notice that from Fact 3 the mapping X 7→ X−1 is monotone decreasing. The latter
means that if we have any X1,X2 ∈ Sd++ such that X1 ⪰ X2, we have

X−1
1 ⪯ X−1

2 .

Then it immediately follows, due to Fact 1, that

0 < λmax(X
−1
1) ≤ λmax(X

−1
2).

We also notice that the relation λmax

(
LiX

−1
)
= λmax

(
L

1
2
i X

−1L
1
2
i

)
= λmax

(
X−1Li

)
, and

that the mapping X 7→ L
1
2
i X

−1L
1
2
i is also monotone decreasing for every i ∈ [n], so we have

0 < λmax

(
LiX

−1
1

)
≤ λmax

(
LiX

−1
2

)
.

Since we have the coefficient λmax (Li) > 0, it follows that,

f(X1,L1, . . . ,Ln) ≤ f(X2,L1, . . . ,Ln).

This means that f(X) is monotone decreasing in X .

Fact 5. For any two matrices A,B ∈ Sd++, the following relation regarding their largest eigenvalue
holds

λmax (AB) ≤ λmax (A) · λmax (B) . (10)

Proof. Using the Courant-Fischer theorem, we can write

λmax (AB) = min
S:dimS=d

max
x∈S\{0}

x⊤ABx

x⊤x

= max
x∈Rd\{0}

x⊤ABx

x⊤x

≤ max
x∈Rd\{0}

x⊤Ax

x⊤x
· max
x∈Rd\{0}

x⊤Bx

x⊤x

= λmax (A) · λmax (B) .

Fact 6. Given matrix Q ∈ Sd++ and its matrix norm ∥·∥Q, its associated dual norm is ∥·∥Q−1 .

Proof. Let us first recall the definition of the dual norm ∥·∥∗. For any vector z ∈ Rd, it is defined as

∥z∥∗ := sup{z⊤x : ∥x∥Q ≤ 1}.

Solving this optimization problem is equivalent to solving sup{z⊤x : ∥x∥2Q = 1}. The Lagrange
function is given as

f(x, λ) = z⊤x− λ
(
∥x∥2Q − 1

)
= z⊤x− λ

(
x⊤Qx− 1

)
.

Computing the derivatives we deduce that

∂f(x, λ)

∂x
= z − 2λ ·Qx = 0,

∂f(x, λ)

∂λ
= ∥x∥2Q − 1 = 0.

This leads to

λ =
∥z∥Q−1

2
, x =

Q−1z

∥z∥Q−1

.

As a result, we have

sup{z⊤x : ∥x∥Q ≤ 1} = sup{z⊤x : ∥x∥2Q = 1}

= z⊤z =
z⊤Q−1z

∥z∥Q−1

= ∥z∥Q−1 .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C PROPERTIES OF MATRIX SMOOTHNESS

C.1 THE MATRIX LIPSCHITZ-CONTINUOUS GRADIENT

In this section we describe some properties of matrix smoothness, matrix gradient Lipschitzness and
their relations. The following proposition describes a sufficient condition for the matrix Lipschitz-
continuity of the gradient.
Proposition 2. Given twice continuously differentiable function f : Rd 7→ R with bounded Hessian,

∇2f(x) ⪯ L, (11)

where L ∈ Sd++ and the generalized inequality holds for any x ∈ Rd. Then f satisfies (3) with the
matrix L.

The below proposition is a variant of Proposition 1 and it characterizes the smoothness matrix of the
objective function f , given the smoothness matrices of the component functions fi.
Proposition 3. Assume that fi has Li-Lipschitz continuous gradient for every i ∈ [n], then function
f has L-Lipschitz gradient with L ∈ Sd++ satisfying

L · λmin (L) =
1

n

n∑
i=1

λmax (Li) ·Li. (12)

C.1.1 QUADRATICS

Given a matrix A ∈ Sd++ and a vector b ∈ Rd, consider the function f(x) = 1
2x

⊤Ax + b⊤x + c.
Then its gradient is computed as ∇f(x) = Ax + b and ∇2f(x) = A. Inserting gradients formula
into (3) we deduce √

(x− y)⊤AL−1A(x− y) ≤
√

(x− y)⊤L(x− y),

for any x, y ∈ Rd. This reduces to
AL−1A ⪯ L. (13)

Since A ∈ Sd++, we can also rewrite (13) as

A
1
2L−1A

1
2 ⪯ A− 1

2LA− 1
2 ,

which is equivalent to
A ⪯ L. (14)

Therefore, the “best” L ∈ Sd++ that satisfies (3) is L = A = ∇2f(x), for every x ∈ Rd. Now, let
us look at a more general setting. Consider f given as follows,

f(x) =

s∑
i=1

ϕi(Mix),

where Mi ∈ Rqi×d. Here f : Rd 7→ R is the sum of functions ϕi : Rqi 7→ R. We assume that each
function ϕi has matrix Li Lipschitz gradient. We have the following lemma regarding the matrix
gradient Lipschitzness of f .
Proposition 4. Assume that functions f and {ϕi}si=1 are described above. Then function f has
L-Lipschitz gradient, if the following condition is satisfied:

s∑
i=1

λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= 1. (15)

Note that Proposition 4 is a generalization of the previous case of quadratics, if we pick s = 1,
Mi = A

1
2 and ϕ1(x) = x⊤Idx, the condition becomes L = A, which is exactly the solution

given by (14). Thus we recover the result for quadratics. The linear term bx + c is ignored in this
case. In Proposition 4, we only intend to give a way of finding a matrix L ∈ Sd++, so that f has
L-Lipschitz gradient. This does not mean, however, the L here is optimal. The proof is deferred to
Appendix C.3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.2 COMPARISON OF THE DIFFERENT SMOOTHNESS CONDITIONS

Let us recall the definition of matrix smoothness.
Definition 3. (L-smoothness) Assume that f : Rd → R is a continuously differentiable function
and matrix L ∈ Sd++. We say that f is L-smooth if for all x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), x− y⟩+ 1

2
∥x− y∥2L . (16)

We provide a proposition here which describes an equivalent form of stating L-matrix smoothness
of a function f . This proposition is used to illustrate the relation between matrix smoothness and
matrix Lipschitz gradient.
Proposition 5. Let function f : Rd → R be continuously differentiable. Then the following state-
ments are equivalent.

(i) f is L-matrix smooth.

(ii) ⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L for all x, y ∈ Rd.

The two propositions, Proposition 6 and Proposition 7, formulated below illustrate the relation be-
tween matrix smoothness of f and matrix gradient Lipschitzness of f .
Proposition 6. Assume f : Rd 7→ R is a continuously differentiable function, and its gradient is
L-Lipschitz continuous with L ∈ Sd++. Then function f is L-matrix smooth.

Proposition 7. Assume f : Rd → R is a continuously differentiable function. Assume also that f is
convex and L-matrix smooth. Then ∇f is L-Lipschitz continuous.

The next proposition shows that standard Lipschitzness of the gradient of a function is an immediate
consequence of matrix Lipschitzness.
Proposition 8. Assume that the gradient of f is L-Lipschitz continuous. Then ∇f is also L-
Lipschitz with L = λmax (L).

C.3 PROOFS OF THE PROPOSITIONS REGARDING SMOOTHNESS

C.3.1 PROOF OF PROPOSITION 1

We start with the definition of L-Lipschitz gradient of function f , and pick two arbitrary points
x, y ∈ Rd,

∥∇f(x)−∇f(y)∥2L−1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

L−1

.

Applying the convexity of ∥·∥2L−1 , we have

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2L−1 .

For each term within the summation, we use the definition of matrix norms and replace the matrix
L−1 with L

−1/2
i L

1/2
i L−1L

1/2
i L

−1/2
i , for every i = 1, . . . , n:

∥∇f(x)−∇f(y)∥2L−1 =
1

n

n∑
i=1

(
L

− 1
2

i (∇fi(x)−∇fi(y))
)⊤

L
1
2
i L

−1L
1
2
i

(
L

− 1
2

i (∇fi(x)−∇fi(y))
)

≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)∥∥∥L− 1
2

i (∇fi(x)−∇fi(y))
∥∥∥2

=
1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
∥∇fi(x)−∇fi(y)∥2L−1

i
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Using the assumption that the gradient of each function fi is Li-Lipschitz, we obtain,

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
∥x− y∥2Li

.

Replacing L−1
i with L−1/2L1/2L−1

i L1/2L−1/2

∥∇f(x)−∇f(y)∥2L−1 =
1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
·
[
(L

1
2 (x− y))⊤L− 1

2LiL
− 1

2 (L
1
2 (x− y))

]
≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)∥∥∥L 1
2 (x− y)

∥∥∥2 .
Using Fact 5, we are deduce the following bound,

∥∇f(x)−∇f(y)∥2L−1 ≤

(
1

n

n∑
i=1

λmax

(
L−1

)
· λmax (Li) · λmax

(
LiL

−1
))

· ∥x− y∥2L

= ∥x− y∥2L .

C.3.2 PROOF OF PROPOSITION 2

We start with picking any two vector x, y ∈ Rd. We have

∥∇f(x)−∇f(y)∥2L−1

=

∥∥∥∥∫ 1

0

∇2f(θx+ (1− θ)y)(x− y) dθ

∥∥∥∥2
L−1

= (x− y)⊤
(∫ 1

0

∇2f(θx+ (1− θ)y) dθ

)⊤

L−1

(∫ 1

0

∇2f(θx+ (1− θ)y) dθ

)
(x− y).

Denote F :=
∫ 1

0
∇2f(θx + (1 − θ)y) dθ, notice that F is a symmetric matrix. Then, the previous

identity becomes

∥∇f(x)−∇f(y)∥2L−1 = (x− y)⊤F⊤L−1F (x− y).

From the definition of F and the bounded Hessian assumption, we have F ⪯ L. Let us prove that
FL−1F ⪯ L:

FL−1F ⪯ L ⇐⇒ L− 1
2FLFL− 1

2 ⪯ Id

⇐⇒ L− 1
2FL− 1

2 ·L− 1
2FL− 1

2 ⪯ Id

⇐⇒ L− 1
2FL− 1

2 ⪯ Id

⇐⇒ F ⪯ L.

This means that

∥∇f(x)−∇f(y)∥2L−1 ≤ (x− y)⊤L(x− y) = ∥x− y∥2L ,

which completes the proof.

C.3.3 PROOF OF PROPOSITION 3

Suppose L is a symmetric positive definite matrix satisfying (12). Let us now show that the function
∇f is L-Lipschitz continuous. We start with picking any two points x, y ∈ Rd, and notice that

∥∇f(x)−∇f(y)∥2L−1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

L−1

.

Applying Jensen’s inequality, we obtain

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2L−1 .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We then re-weight the norm appears in the summation individually,

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

(∇fi(x)−∇fi(y))
⊤
L

− 1
2

i L
1
2
i L

−1L
1
2
i L

− 1
2

i (∇fi(x)−∇fi(y))

≤ 1

n

n∑
i=1

λmax (Li) · λmax

(
L−1

)
· ∥∇fi(x)−∇fi(y)∥2L−1

i
.

Utilizing the assumption that each fi has Li Lipschitz gradient, we obtain

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

λmax (Li) · λmax

(
L−1

)
· ∥x− y∥2Li

= ∥x− y∥2λmax(L−1)· 1
n

∑n
i=1 λmax(Li)·Li

(12)
= ∥x− y∥2L .

C.3.4 PROOF OF PROPOSITION 4

For any x and y from Rd, we have

∥∇f(x)−∇f(y)∥L−1

=

∥∥∥∥∥
s∑

i=1

M⊤
i ∇ϕi(Mix)−

s∑
i=1

M⊤
i ∇ϕi(Miy)

∥∥∥∥∥
L−1

= s ·

∥∥∥∥∥1s
s∑

i=1

M⊤
i (∇ϕi(Mix)−∇ϕi (Miy))

∥∥∥∥∥
L−1

.

Applying the convexity of the norm ∥·∥L−1 ,

∥∇f(x)−∇f(y)∥L−1 ≤ s · 1
s

s∑
i=1

∥∥M⊤
i (∇ϕi(Mix)−∇ϕi(Miy))

∥∥
L−1 .

Expanding the norm and applying the replacement trick for above L and Mi, we obtain

∥∇f(x)−∇f(y)∥L−1

=

s∑
i=1

√
(∇ϕi(Mix)−∇ϕi(Miy))

⊤
MiL−1M⊤

i (∇ϕi(Mix)−∇ϕi(Miy))

=

s∑
i=1

√
B⊤

i L
1
2
i MiL−1M⊤

i L
1
2
i Bi

≤
s∑

i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· ∥∇ϕi(Mix)−∇ϕi(Miy)∥L−1

i
,

where Bi := L
− 1

2
i (∇ϕi(Mix)−∇ϕi(Miy)). Due to the assumption that the gradient of ϕi is

Li-Lipschitz, we have

∥∇f(x)−∇f(y)∥L−1

≤
s∑

i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· ∥Mi(x− y)∥Li

=

s∑
i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
·
√[

L
1
2 (x− y)

]⊤
L− 1

2M⊤
i LiMiL− 1

2

[
L

1
2 (x− y)

]
≤

s∑
i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· λmax

(
L− 1

2M⊤
i LiMiL− 1

2

)
· ∥x− y∥L

≤
s∑

i=1

λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
· ∥x− y∥L ,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where the last inequality is due to the fact that,

λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= λmax

(
L− 1

2M⊤
i LiMiL

− 1
2

)
.

Recalling the condition of the proposition:
s∑

i=1

λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= 1,

we deduce
∥∇f(x)−∇f(y)∥L−1 ≤ ∥x− y∥L .

C.3.5 PROOF OF PROPOSITION 5

(i) → (ii). If f is L-matrix smooth, then for all x, y ∈ Rd, we have

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2L ,

and
f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥x− y∥2L .

Summing up these two inequalities we get

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L .

(ii) → (i). Choose any x, y ∈ Rd, and define z = x+ t(y − x), then we have,

f(y) = f(x) +

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩dt

= f(x) +

∫ 1

0

⟨∇f(z), y − x⟩dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(z)−∇f(x), y − x⟩dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(z)−∇f(x), z − x⟩ · 1
t
dt.

Using the assumption that for any x, z ∈ Rd, we have

⟨∇f(z)−∇f(x), z − x⟩ ≤ ∥z − x∥2L .

Plug this back into the previous identity, we obtain

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

∥z − x∥2L · 1
t
dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

∥y − x∥2L · tdt

= f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2L .

C.3.6 PROOF OF PROPOSITION 6

We start with picking any two points x, y ∈ Rd, using the generalized Cauchy-Schwarz inequality
for dual norm, we have

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥∇f(x)−∇f(y)∥L−1 · ∥x− y∥L
(3)
≤ ∥x− y∥L · ∥x− y∥L
= ∥x− y∥2L

According to Proposition 5, this indicates that function f is L-matrix smooth.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.3.7 PROOF OF PROPOSITION 7

Using Proposition 5, we know that for any x, y ∈ Rd, we have

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L . (17)
Now we pick any three points x, y, z ∈ Rd. Using the L-smoothness of f , we have

f(x+ z) ≥ f(x) + ⟨∇f(x), z⟩+ 1

2
∥z∥2L . (18)

Using the convexity of f we have
⟨∇f(y), x+ z − y⟩ ≤ f(x+ z)− f(y). (19)

Combining (18) and (19), we obtain

⟨∇f(y), x+ z − y⟩ ≤ f(x)− f(y) + ⟨∇f(x), z⟩+ 1

2
∥z∥2L .

Rearranging terms we get

⟨∇f(y)−∇f(x), z⟩ − 1

2
∥z∥2L ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ .

The inequality holds for any z for fixed x and y, and the left hand side is maximized (w.r.t. z) when
z = L−1 (∇f(y)−∇f(x)). Plugging it in, we get

1

2
∥∇f(x)−∇f(y)∥2L−1 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ . (20)

By symmetry we can also obtain
1

2
∥∇f(y)−∇f(x)∥2L−1 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ .

Adding (20) and its counterpart together, we get

∥∇f(x)−∇f(y)∥2L−1 ≤ ⟨∇f(x)−∇f(y), x− y⟩ . (21)
Combing (21) and (17), it follows

∥∇f(x)−∇f(y)∥2L−1 ≤ ∥x− y∥2L .

Note that L and L−1 are both positive definite matrices, so it is equivalent to
∥∇f(x)−∇f(y)∥L−1 ≤ ∥x− y∥L .

This completes the proof.

C.3.8 PROOF OF PROPOSITION 8

Let us start with picking any two points x, y ∈ Rd. With the matrix L-Lipschitzness of the gradient
of function f , we have

∥∇f(x)−∇f(y)∥2L−1 ≤ ∥x− y∥2L .

This implies

(x− y)⊤L(x− y)− (∇f(x)−∇f(y))
⊤
L−1 (∇f(x)−∇f(y)) ≥ 0.

Define function f(X) := a⊤Xa − b⊤X−1b for X ∈ Sd++, where a, b ∈ Rd are fixed vectors.
Then f is monotone increasing in X . This can be shown in the following way, picking two matrices
X1,X2 ∈ Sd++, where X1 ⪰ X2. It is easy to see that −X−1

1 ⪰ −X−1
2 , since from Fact 3 the

map X 7→ −X−1 is monotone increasing for X ∈ Sd++. Thus,

f(X1)− f(X2) = (x− y)⊤ (X1 −X2) (x− y)

+ (∇f(x)−∇f(y))
⊤ (−X−1

1 − (−X−1
2)
)
(∇f(x)−∇f(y)) ≥ 0.

As a result, f(λmax (L) · Id) ≥ f(L) ≥ 0, due to the fact that λmax (L) · Id ⪰ L. It remains to
notice that

f(λmax (L) · Id) = λmax (L) ∥x− y∥2 − 1

λmax (L)
∥∇f(x)−∇f(y)∥2 ≥ 0,

which yields

∥∇f(x)−∇f(y)∥2 ≤ λ2
max (L) ∥x− y∥2 .

Since we are working with L ∈ Sd++, the above inequality implies
∥∇f(x)−∇f(y)∥ ≤ λmax (L) ∥x− y∥ .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D ANALYSIS OF DET-MARINA

D.1 TECHNICAL LEMMAS

We first state some technical lemmas.
Lemma 1 (Descent lemma). Assume that function f is L smooth, and xk+1 = xk −D · gk, where
D ∈ Sd++. Then we will have

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥
D−1−L

.

The following lemma is obtained for any sketch matrix S ∈ Sd+ and any two positive definite
matrices D and L.
Lemma 2 (Property of sketch matrix). For any sketch matrix S ∈ Sd+, a vector t ∈ Rd, and matrices
D,L ∈ Sd++, we have

E
[
∥St− t∥2D

]
≤ λmax

(
L

1
2 (E [SDS]−D)L

1
2

)
· ∥t∥2L−1 . (22)

Lemma 3. Assume that Definition 1 holds and h0
i = ∇fi(x

0), then for hk+1
i from Algorithm 2, we

have for any D ∈ Sd++∥∥hk+1 −∇f(xk+1)
∥∥2
D

=
∥∥hk+1

i −∇fi(x
k+1)

∥∥2
D

= 0,

and ∥∥hk+1
i − hk

i

∥∥2
L−1

i

≤
∥∥xk+1 − xk

∥∥2
Li

.

The following lemmas describe the recurrence applied to terms in the Lyapunov function.
Lemma 4. Suppose hk+1 and gk+1 are from Algorithm 2, then the following recurrence relation
holds,

E
[∥∥gk+1 − hk+1

∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
· λmax (D)

n2

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ (1− a)2E

[∥∥gk − hk
∥∥2
D

]
, (23)

where ΛD,S = λmax

(
E
[
Sk
i DSk

i

]
−D

)
for D ∈ Sd++ and Sk

i ∼ S.

Lemma 5. Suppose hk+1
i and gk+1

i for i ∈ [n] are from Algorithm 2, then the following recurrence
holds,

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

)
· E
[∥∥gki − hk

i

∥∥2
D

]
+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) · E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
.

D.2 PROOF OF THEOREM 1

According to Lemma 1, we have

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− E

[
1

2

∥∥∇f(xk)
∥∥2
D

]
+ E

[
1

2

∥∥gk −∇f(xk)
∥∥2
D

]
− E

[
1

2

∥∥xk+1 − xk
∥∥2
D−1−L

]
. (24)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We then use the definition of gk+1 to derive an upper bound for E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

]
. Notice

that,

gk+1 =

{
∇f(xk+1) with probability p,

gk + 1
n

∑n
i=1 S

k
i

(
∇fi(x

k+1)−∇fi(x
k)
)

with probability 1− p.

As a result, from the tower property,

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

= E
[
E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk, ck

]]
= p ·

∥∥∇f(xk+1)−∇f(xk+1)
∥∥2
D

+ (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

Sk
i (∇fi(x

k+1)−∇fi(x
k))−∇f(xk+1)

∥∥∥∥∥
2

D

| xk+1, xk


= (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

Sk
i (∇fi(x

k+1)−∇fi(x
k))−∇f(xk+1)

∥∥∥∥∥
2

D

| xk+1, xk

 .

Using Fact 2, we have

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

= (1− p) · E

∥∥∥∥∥ 1n
n∑

i=1

Sk
i (∇fi(x

k+1)−∇fi(x
k))−

(
∇f(xk+1)−∇f(xk)

)∥∥∥∥∥
2

D

| xk+1, xk


+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D

= (1− p) · E

∥∥∥∥∥ 1n
n∑

i=1

(
Sk
i (∇fi(x

k+1)−∇fi(x
k))− (∇fi(x

k+1)−∇fi(x
k))
)∥∥∥∥∥

2

D

| xk+1, xk


+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D
.

Notice that the sketch matrix is unbiased, thus we have

E
[
Sk
i

(
∇fi(x

k+1)−∇fi(x
k)
)
| xk+1, xk

]
= ∇fi(x

k+1)−∇fi(x
k),

and any two random vectors in the set {Sk
i (∇fi(x

k+1)−∇fi(x
k))}ni=1 are independent from each

other, if xk+1 and xk are fixed. Therefore, we have

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

=
1− p

n2

n∑
i=1

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

+ (1− p) ·
∥∥gk −∇f(xk)

∥∥2
D
. (25)

Lemma 2 yields

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

≤ λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥2
L−1

i

. (26)

Assumption 2 implies

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

≤ λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

. (27)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Plugging (27) into (25), we deduce

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

+ (1− p) ·
∥∥gk −∇f(xk)

∥∥2
D
.

Replacing L−1
i with L−1/2L1/2L−1

i L1/2L−1/2, we denote that

λi := λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
,

and rewrite the Li-norm in the first term of RHS by the L-norm:

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

=
1− p

n2

n∑
i=1

λi ·
(
L

1
2 (xk+1 − xk)

)⊤
L− 1

2LiL
− 1

2

(
L

1
2 (xk+1 − xk)

)
+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D

≤ 1− p

n2

n∑
i=1

λi · λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L
+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D
.

We further use Fact 5 to upper bound λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
by the product of

λmax (Li) and λmax

(
E
[
Sk
i DSk

i

]
−D

)
. This allows us to simplify the expression since

λmax

(
E
[
Sk
i DSk

i

]
−D

)
is independent of the index i. Notice that we have already defined

R(D,S) = 1

n

n∑
i=1

λmax

(
E
[
Sk
i DSk

i

]
−D

)
· λmax (Li) · λmax

(
L− 1

2LiL
− 1

2

)
.

Taking expectation, using tower property and using the definition above, we deduce

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

]
≤ (1− p) ·R(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+ (1− p)E

[∥∥gk −∇f(xk)
∥∥2
D

]
. (28)

We construct the following Lyapunov function Φk,

Φk = f(xk)− f⋆ +
1

2p

∥∥gk −∇f(xk)
∥∥2
D
. (29)

Using (24) and (28), we are able to get

E [Φk+1] ≤
1

2p

[
(1− p) ·R(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+ (1− p) · E

[∥∥gk −∇f(xk)
∥∥2
D

]]
+ E

[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2
E
[∥∥gk −∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
= E [Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

(
(1− p) ·R(D,S)

2np
E
[∥∥xk+1 − xk

∥∥2
L

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

])
= E [Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2

(
(1− p) ·R(D,S)

np
E
[∥∥xk+1 − xk

∥∥2
L

]
− E

[∥∥xk+1 − xk
∥∥2
D−1−L

])
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We can rewrite the last term as

E
[
(xk+1 − xk)⊤

[
(1− p) ·R(D,S)

np
L+L−D−1

]
(xk+1 − xk)

]
. (30)

We require the matrix in between to be negative semi-definite, which is

D−1 ⪰
(
(1− p) ·R(D,S)

np
+ 1

)
L.

This leads to the result that the expression (30) is always non-positive. After dropping the last term,
the relation between E [Φk+1] and E [Φk] becomes

E [Φk+1] ≤ E [Φk]−
1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Unrolling this recurrence, we get

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2 (E [Φ0]− E [ΦK])

K
. (31)

The left hand side can viewed as E
[∥∥∇f(x̃K)

∥∥2
D

]
, where x̃K is drawn uniformly at random from

{xk}K−1
k=0 . From ΦK > 0, we obtain

2 (E [Φ0]− E [ΦK])

K
≤ 2Φ0

K

=
2
(
f(x0)− f⋆ + 1

2p

∥∥g0 −∇f(x0)
∥∥2
D

)
K

=
2
(
f(x0)− f⋆

)
K

.

Plugging in the simplified result into (31), and performing determinant normalization, we get

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/dK

. (32)

Remark 7. We can achieve a slightly more refined stepsize condition than (4) for det-MARINA,
which is given as follows

D ⪰

(
(1− p) · R̃(D,S)

np
+ 1

)
L, (33)

where

R̃(D,S) := 1

n

n∑
i=1

λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)
.

This is obtained if we do not use Fact 5 to upper bound λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
by the

product of λmax (Li) and λmax

(
E
[
Sk
i DSk

i

]
−D

)
. However, (33) results in a condition that is

much harder to solve even if we assume D = γ ·W . So instead of using the more refined condition
(33), we turn to (4). Notice that both of the two conditions (33) and (4) reduce to the stepsize
condition for MARINA in the scalar setting.

D.3 COMPARISON OF DIFFERENT STEPSIZES

In Corollary 3, we focus on the special stepsize where we fix W = L−1, and show that in this case
det-MARINA always beats MARINA in terms of both iteration and communication complexities.
However, other choices for W are also possible. Specifically, we consider the cases where W =
diag−1 (L) and W = Id.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D.3.1 THE DIAGONAL CASE

We consider W = diag−1 (L). The following corollary describes the optimal stepsize and the
iteration complexity.

Corollary 8. If we take W = diag−1 (L) in Corollary 1, then the optimal stepsize satisfies

D∗
diag−1(L) =

2

1 +
√

1 + 4αβ · Λdiag−1(L),S
· diag−1 (L) . (34)

This stepsize results in a better iteration complexity of det-MARINA compared to scalar MARINA.

From this corollary we know that det-MARINA has a better iteration complexity when W =
diag−1 (L). And since the same sketch is used for MARINA and det-MARINA, the communi-
cation complexity is improved as well. However, in general there is no clear relation between the
iteration complexity of W = L−1 case and W = diag−1 (L) case. This is also confirmed by one
of our experiments, see Figure 6 to see the comparison of det-MARINA using optimal stepsizes in
different cases.

D.3.2 THE IDENTITY CASE

In this setting, W is the d-dimensional identity matrix Id. Then the stepsize of our algorithm reduces
to a scalar γ, where γ is determined through Corollary 1. Notice that in this case we do not reduce
to the standard MARINA case because we are still using the matrix Lipschitz gradient assumption
with L ∈ Sd++.

Corollary 9. If we take W = Id, the optimal stepsize is given by

D∗
Id

=
2

1 +
√
1 + 4αβ 1

λmax(L) · ω
· Id
λmax (L)

. (35)

This stepsize results in a better iteration complexity of det-MARINA compared to scalar MARINA.

The result in this corollary tells us that using scalar stepsize with matrix Lipschitz gradient assump-
tion alone can result in acceleration of MARINA. However, the use of matrix stepsize allows us
to also take into consideration the ”structure” of the stepsize, thus allows more flexibility. When
the structure of the stepsize is chosen properly, combining matrix gradient Lipschitzness and matrix
stepsize can result in a faster rate, as it can also be observed from the experiments in Figure 6. The
choices of W we consider here are in some sense inspired by the matrix stepsize GD, where the
optimal stepsize is L−1. In general, how to identify the best structure for the matrix stepsize remains
a open problem.

D.4 PROOFS OF THE COROLLARIES

D.4.1 PROOF OF COROLLARY 1

We start with rewriting (4) as(
1− p

np
·R (D,S) + 1

)
D

1
2LD

1
2 ⪯ Id.

Plugging in the definition of R(D,S) and D = γW , we get

γ

(
1− p

np
· 1
n

n∑
i=1

λmax (Li)λmax

(
L−1Li

)
· λmax

(
E
[
Sk
i WSk

i

]
−W

)
· γ + 1

)
W

1
2LW

1
2 ⪯ Id.

This generalized inequality is equivalent to the following inequality,

γ

(
1− p

np
· 1
n

n∑
i=1

λmax (Li)λmax

(
L−1Li

)
· λmax

(
E
[
Sk
i WSk

i

]
−W

)
· γ + 1

)
· λmax

(
W

1
2LW

1
2

)
≤ 1,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

which is a quadratic inequality on γ. Notice that we have already defined

α =
1− p

np
; β =

1

n

n∑
i=1

λmax (Li) · λmax

(
L−1Li

)
;

ΛW ,S = λmax

(
E
[
Sk
i WSk

i

]
−W

)
; λW = λ−1

max

(
W

1
2LW

1
2

)
.

As a result, the above inequality can be written equivalently as

αβΛW ,S · γ2 + γ − λW ≤ 0,

which yields the upper bound on γ

γ ≤
√

1 + 4αβ · ΛW ,SλW − 1

2αβ · ΛW ,S
.

Since
√
1 + 4αβ · ΛW ,SλW + 1 > 0, we can simplify the result as

γ ≤ 2λW

1 +
√
1 + 4αβ · ΛW ,SλW

.

D.4.2 PROOF OF COROLLARY 3

It is obvious that (7) directly follows from plugging W = L−1 into (6). The optimal stepsize is
obtained as the product of γ and L−1. The iteration complexity of MARINA, according to Gorbunov
et al. (2021), is

K ≥ K1 = O

(
∆0L

ε2

(
1 +

√
(1− p)ω

pn

))
. (36)

On the other hand,
det(L)

1
d ≤ λmax (L) = L. (37)

In addition, using the inequality √
1 + 4t ≤ 1 + 2

√
t, (38)

which holds for any t ≥ 0, we have the following bound(
1 +

√
1 + 4αβ · ΛL−1,S

)
2

≤ 1 +
√

αβ · ΛL−1,S .

Next we prove that

1 +
√
αβ · ΛL−1,S ≤ 1 +

√
(1− p)

pn
· ω, (39)

which is equivalent to proving

1

n

n∑
i=1

λmax (Li)λmax

(
LiL

−1
)
· λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
≤ ω.

The left hand side can be upper bounded by,

1

n

n∑
i=1

λmax (Li)λmax

(
L−1Li

)
· λmax

(
L−1

)
·
λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

≤
λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

,

where the inequality is a consequence of Proposition 1. We further bound the last term with

λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

= λmax

(
E
[
Sk
i · L−1

λmax(L−1)
· Sk

i

]
− L−1

λmax (L−1)

)
≤ λmax

(
E
[
Sk
i S

k
i

]
− Id

)
=: ω.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Here, the last inequality is due to the monotonicity of the mapping X 7→ λmax

(
E
[
Sk
i XSk

i

]
−X

)
with X ∈ Sd++, which can be shown as follows, let us pick any X1,X2 ∈ Sd++ and X1 ⪯ X2,(
E
[
Sk
i X2S

k
i

]
−X2

)
−
(
E
[
Sk
i X1S

k
i

]
−X1

)
= E

[
Sk
i (X2 −X1)S

k
i

]
− (X2 −X1) ⪰ Od.

The above inequality is due to the convexity of the mapping Sk
i 7→ Sk

i XSk
i . As a result, we have

λmax

(
E
[
Sk
i X2S

k
i

]
−X2

)
≥ λmax

(
E
[
Sk
i X1S

k
i

]
−X1

)
,

whenever X2 ⪰ X1. Due to the fact that

L−1

λmax (L−1)
⪯ Id,

we have

λmax

(
E
[
Sk
i · L−1

λmax(L−1)
· Sk

i

]
− L−1

λmax (L−1)

)
≤ λmax

(
E
[
Sk
i · Id · Sk

i

]
− Id

)
= ω.

Combining (37) and (39), we know that the iteration complexity of det-MARINA is always better
than that of MARINA.

D.4.3 PROOF OF COROLLARY 4

The number of bits sent in expectation is

O(d+K(pd+ (1− p)ζS)) = O((Kp+ 1)d+ (1− p)KζS).

The special case where we choose p = ζS/d indicates that

α =
1− p

np
=

1

n

(
d

ζS
− 1

)
.

In order to reach an error of ε2, we need

K = O

(
∆0 · det(L)

1
d

ε2
·

(
1 +

√
1 +

4β

n

(
d

ζS
− 1

)
· ΛL−1,S

))
,

which is the iteration complexity. Applying once again (38) and using the fact that p = ζS/d, the
communication complexity in this case is given by

O

(
d+

∆0 · det(L)
1
d

ε2
·

(
1 +

√
1 +

4β

n

(
d

ζS
− 1

)
· ΛL−1,S

)
· (pd+ (1− p)ζS)

)

≤ O

(
d+

2∆0 · det(L)
1
d

ε2
·

(
1 +

√
β

n

(
d

ζS
− 1

)
· ΛL−1,S

)
· (pd+ (1− p)ζS)

)

≤ O

(
d+

4∆0 · det(L)
1
d

ε2
·

(
ζS +

√
β · ΛL−1,S

n
· ζS(d− ζS)

))
.

Ignoring the coefficient we get

O

(
d+

∆0 · det(L)
1
d

ε2
·

(
ζS +

√
β · ΛL−1,S

n
· ζS(d− ζS)

))
.

D.4.4 PROOF OF COROLLARY 8

Applying Corollary 1, notice that in this case

λdiag−1(L) = λ−1
max

(
diag−

1
2 (L)Ldiag−

1
2 (L)

)
= 1,

we obtain D∗
diag−1(L)

. The iteration complexity is given by

O

(
det (diag(L))

1
d ·∆0

ε2
·

(
1 +

√
1 + 4αβΛdiag−1(L),S

2

))
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

We now compare it to the iteration complexity of MARINA, which is given in (36). We know that
each diagonal element Ljj satisfies Ljj ≤ λmax (L) = L for j = 1, . . . , d. As a result,

det (diag(L))
1
d ≤ L. (40)

From (38), we deduce

1 +
√

1 + 4αβ · Λdiag−1(L),S

2
≤ 1 +

√
αβ · Λdiag−1(L),S .

Now, let us prove the below inequality

1 +
√
αβ · Λdiag−1(L),S ≤ 1 +

√
(1− p)

pn
· ω. (41)

The latter is equivalent to
β · Λdiag−1(L),S ≤ ω.

Plugging in the definition of β, ω and Λdiag−1(L),S and using the relation given in Proposition 1, we
obtain,

λmax

(
E
[
Sk
i

diag−1 (L)

λmax (L−1)
Sk
i − diag−1 (L)

λmax (L−1)

])
≤ λmax

(
E
[
Sk
i IdS

k
i

]
− Id

)
.

Thus, it is enough to prove that
diag−1 (L)

λmax (L−1)
⪯ Id.

We can further simplify the above inequality as

λmin (L) ≤ λmin (diag(L)) ,

which is always true for any L ∈ Sd++. Combining (40) and (41) we conclude the proof.

D.4.5 PROOF OF COROLLARY 9

Using the explicit formula for the optimal stepsize D∗
Id

, we deduce the following iteration complex-
ity for

O

λmax (L)∆0

ε2
·

1 +
√
1 + 4αβ ω

λmax(L)

2

 . (42)

Recall that λmax (L) = L, we obtain using (38) that

1 +
√
1 + 4αβ ω

λmax(L)

2
≤ 1 +

√
αβ

ω

λmax (L)
.

The comparison of two iteration complexities, given in (42) and (36) reduces to

1 +

√
αβ

ω

λmax (L)
≤ 1 +

√
1− p

np
ω.

This is equivalent to

β · 1

λmax (L)
≤ 1.

Utilizing Proposition 1, the above inequality can be rewritten as

1

λmax (L−1) · λmax (L)
≤ 1,

which is exactly
λmin (L) ≤ λmax (L) .

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E ANALYSIS OF DET-DASHA

E.1 PROOF OF THEOREM 2

Using Lemma 1 and taking expectations, we are able to obtain

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+

1

2
E
[∥∥gk −∇f(xk)

∥∥2
D

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+ E

[
1

2

∥∥gk − hk + hk −∇f(xk)
∥∥2
D

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+ E

[∥∥gk − hk
∥∥2
D

+
∥∥hk −∇f(xk)

∥∥2
D

]
, (43)

where the last step is due to the convexity of the norm. Using Lemma 4, we obtain

E
[∥∥gk+1 − hk+1

∥∥2
D

]
≤ 2ωD · λmax (D)

n2

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ωD

n2

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ (1− a)2E

[∥∥gk − hk
∥∥2
D

]
. (44)

Using Lemma 5, we get

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2ωD + (1− a)2

)
· E
[∥∥gki − hk

i

∥∥2
D

]
+ 2ωD · λmax (D) · λmax (Li) · E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
. (45)

Now let us fix κ ∈ [0,+∞), η ∈ [0,+∞) which we will determine later, and construct the following
Lyapunov function Φk

Φk = E
[
f(xk)− f⋆

]
+ κ · E

[∥∥gk − hk
∥∥2
D

]
+ η · E

[
1

n

n∑
i=1

∥∥gki − hk
i

∥∥2
D

]
. (46)

Combining (43), (44) and (45), we get

Φk+1

≤ E
[
f(xk)− f⋆ − 1

2

∥∥∇f(xk)
∥∥2
D

]
+ E

[
−1

2

∥∥xk+1 − xk
∥∥2
D−1−L

+
∥∥gk − hk

∥∥2
D

+
∥∥hk −∇f(xk)

∥∥2
D

]
+ κ(1− a)2E

[∥∥gk − hk
∥∥2
D

]
+

2κ · ωDλmax (D)

n
· 1
n

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ωD · κ
n

· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ η

(
2a2ωD + (1− a)2

)
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ 2η · ωD · λmax (D) · 1

n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Rearranging terms, and notice that
∥∥hk −∇f(xk)

∥∥2
D

= 0,

Φk+1

≤ E
[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+
(
1 + κ(1− a)2

)
E
[∥∥gk − hk

∥∥2
D

]
+

(
2a2ωD · κ

n
+ η

(
2a2ωD + (1− a)2

))
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

In order to proceed, we consider the choice of κ and η, for κ,

1 + κ(1− a)2 ≤ κ. (47)

It is then clear that the choice of κ = 1
a satisfies the condition. On the other hand, we look at the

terms involving E
[∥∥gki − hk

i

∥∥2
D

]
, we can rewrite as

T1 :=

(
2a2ωD · κ

n
+ η

(
2a2ωD + (1− a)2

))
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
.

Picking κ = 1
a and a = 1

2ωD+1 , the T1 can be simplified as

T1 =

(
2ωD

n · (2ωD + 1)
+ η · 4ω

2
D + 2ωD

(2ωD + 1)
2

)
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
.

We pick η so that it satisfies(
2ωD

n · (2ωD + 1)
+ η · 4ω

2
D + 2ωD

(2ωD + 1)
2

)
≤ η. (48)

Taking η = 2ωD

n , which is the minimum value satisfying (48), we conclude that

T1 ≤ η · 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
. (49)

Combining (47) and (49), we are able to conclude that

Φk+1

≤ E
[
f(xk)− f⋆

]
+ κ · E

[∥∥gk − hk
∥∥2
D

]
+ η · 1

n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

Using the definition of Φk and Lemma 3, we obtain

Φk+1 ≤ Φk − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥xk+1 − xk

∥∥2
Li

]
= Φk − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+ E

[∥∥xk+1 − xk
∥∥2
N

]
,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where N ∈ Sd is defined as

N :=

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) ·Li −
1

2
D−1 +

1

2
L.

We require N ⪯ Od, which leads to the condition on D:

D−1 −L− 4λmax (D) · ωD · (4ωD + 1)

n
· 1
n

n∑
i=1

λmax (Li) ·Li ⪰ Od.

Given the above condition is satisfied, we have the recurrence
1

2
E
[∥∥∇f(xk)

∥∥2
D

]
≤ Φk − Φk+1

Summing up for k = 0 . . .K − 1, we obtain
K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2(Φ0 − Φk). (50)

Notice that we also have

Φ0 = f(x0)− f⋆ + (2ωD + 1)
∥∥g0 − h0

∥∥2
D

+ frac2ωDn · 1
n

n∑
i=1

∥∥g0i − h0
i

∥∥2
= f(x0)− f⋆,

We divide both sides of (50) by K, and perform determinant normalization,

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
.

This is to say

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
,

where x̃K is chosen uniformly randomly from the first K iterates of the algorithm.

E.2 PROOFS OF THE COROLLARIES

E.2.1 PROOF OF COROLLARY 2

Plug D = γW ·W into the stepsize condition in Theorem 2, we obtain

1

γW
·W−1 −L− 4γW · λmax (W) · ωW (4ωW + 1)

n
· 1
n

n∑
i=1

λmax (Li) ·Li ⪰ Od.

We then simplify the above condition as
1

γW
·L− 1

2W−1L− 1
2

⪰ Id +
4γW · λmax (W) · ωW (4ωW + 1)

n
·L− 1

2

(
1

n

n∑
i=1

λmax (Li) ·Li

)
L− 1

2 .

Using Proposition 3, we have
1

γW
·L− 1

2W−1L− 1
2 − 4γW · λmax (W) · ωW (4ωW + 1)

n
· λmin (L) · Id ⪰ Id.

Taking the minimum eigenvalue of both sides, we obtain that,
1

γW
· λmin

(
L− 1

2W−1L− 1
2

)
− 4γW · λmax (W) · ωW (4ωW + 1)

n
· λmin (L) ≥ 1,

If we denote CW := λmax(W)·ωW (4ωW +1)
n > 0, and λW := λ−1

max

(
L

1
2WL

1
2

)
, we can write

4 · CW · λmin (L) · γ2
W + γW − λW ≤ 0.

The solution is given by

γW ≤ 2λW

1 +
√
1 + 16CWλmin (L) · λW

.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.2.2 PROOF OF COROLLARY 5

The best scaling factor in this case is given as, according to Corollary 2,

γL−1 =
2

1 +
√

1 + 16CL−1 · λmin (L)
.

In order to reach a ε2 stationary point, we need

K ≥
det(L)

1
d

(
f(x0)− f⋆

)
ε2

·
(
1 +

√
1 + 16CL−1 · λmin (L)

)
.

E.2.3 PROOF OF COROLLARY 6

The iteration complexity of det-DASHA is given by, according to, Corollary 5,

O
(
f(x0)− f⋆

ϵ2
·
(
1 +

√
1 + 16CL−1 · λmin (L)

)
· det(L)

1
d

)
.

Using the inequality
√
1 + t ≤ 1 +

√
t for t > 0, and leaving out the coefficients, we obtain

O
(
f(x0)− f⋆

ϵ2
·
(
1 +

√
CL−1 · λmin (L)

)
· det(L)

1
d

)
.

Notice that

CL−1 · λmin (L) = λmax

(
L−1

)
· ωL−1 (4ωL−1 + 1)

n
· λmin (L) =

ωL−1 (4ωL−1+1)

n
.

As a result, the iteration complexity can be further simplified as

O
(
f(x0)− f∗

ϵ2
·
(
1 +

ωL−1√
n

)
· det(L)

1
d

)
.

The iteration complexity of DASHA is, according to Tyurin & Richtárik (2024, Corollary 6.2)

O
(

1

ϵ2
·
(
f(x0)− f⋆

)(
L+

ω√
n
L̂

))
,

where L̂ =
√

1
n

∑n
i=1 L

2
i . Since det(L)

1
d ≤ λmax (L) = L, and L ≤ L̂, it is easy to see that com-

pared to DASHA, det-DASHA has a better iteration complexity when the momentum is the same.
Notice that those two algorithms use the same sketch, thus, it also indicates that the communication
complexity of the two algorithms are the same.

E.2.4 PROOF OF COROLLARY 7

The iteration complexity of det-MARINA is given by

O
(
f(x0)− f⋆

ϵ2
· det(L)

1
d ·
(
1 +

√
αβΛL−1,S

))
,

after removing logarithmic factors. Plugging in the definitions we obtain in the case of ωL−1+1 = 1
p ,

we have

O
(
f(x0)− f⋆

ϵ2
· det(L)

1
d ·
(
1 +

ωL−1

n

))
.

From the proof of Corollary 6, we know that the iteration complexity of det-DASHA is

O
(

1

ϵ2
·
(
f(x0)− f⋆

)(
L+

ω√
n
L̂

))
.

It is easy to see that in this case the two algorithms have the same iteration complexity asymptoti-
cally. Notice that the communication complexity is the product of bytes sent per iteration and the
number of iterations. det-DASHA clearly sends less bytes per iteration because it always sent the
compressed gradient differences, which means that it has a better communication complexity than
det-MARINA.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

F DISTRIBUTED DET-CGD

This section is a brief summary of the distributed det-CGD algorithm and its theoretical analysis.
The details can be found in (Li et al., 2024b). The algorithm follows the standard FL paradigm. See
the pseudocode in Algorithm 3.

Algorithm 3 Distributed det-CGD
1: Input: Starting point x0, stepsize matrix D, number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample Sk

i ∼ S;
5: compute Sk

i ∇fi(x
k);

6: broadcast Sk
i ∇fi(x

k).
7: The server:
8: combines gk = 1

n

∑n
i=1 S

k
i ∇fi(x

k);
9: computes xk+1 = xk −Dgk;

10: broadcasts xk+1.
11: end for
12: Return: xK

Below is the main convergence result for the algorithm.
Theorem 3. Suppose that f is L-smooth. Under the Assumptions 1,2, if the stepsize satisfies

DLD ⪯ D, (51)

then the following convergence bound is true for the iteration of Algorithm 3:

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 + λD

n)K
(
f(x0)− f⋆

)
det(D)1/d K

+
2λD∆⋆

det(D)1/d n
, (52)

where ∆⋆ := f⋆ − 1
n

∑n
i=1 f

⋆
i and

λD := max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
.

Remark 8. On the right hand side of (52) we observe that increasing K will only reduce the first
term, that corresponds to the convergence error. Whereas, the second term, which does not depend
on K, will remain constant, if the other parameters of the algorithm are fixed. This testifies to the
neighborhood phenomenon which we discussed in Section 2.
Remark 9. If the stepsize satisfies the below conditions,

DLD ⪯ D, λD ≤ min

{
n

K
,
nε2

4∆⋆
det(D)1/d

}
, K ≥ 12(f(x0)− f⋆)

det(D)1/d ε2
, (53)

then we obtain ε-stationary point.

One can see that in the convergence guarantee of det-CGD in the distributed case, the result (52) is
not variance-reduced. Because of this limitation, in order to reach a ε stationary point, the stepsize
condition in (53) is restrictive.

G EXTENSION OF DET-CGD2 IN MARINA FORM

In this section we want to extend det-CGD2 into its variance reduced counterpart in MARINA form.

G.1 EXTENSION OF DET-CGD2 TO ITS VARIANCE REDUCED COUNTERPART

We call det-MARINA as the extension of det-CGD1, and Algorithm 4 as the extension of det-CGD2
due to the difference in the order of applying sketches and stepsize matrices. The key difference

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Algorithm 4 det-CGD2-VR
1: Input: starting point x0, stepsize matrix D, probability p ∈ (0, 1], number of iterations K
2: Initialize g0 = D · ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, 2, . . . in parallel do
7: xk+1 = xk − gk

8: Set gk+1
i =

{
D · ∇fi(x

k+1) if ck = 1

gk + T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)

if ck = 0
9: end for

10: gk+1 = 1
n

∑n
i=1 g

k+1
i

11: end for
12: Return: x̃K chosen uniformly at random from {xk}K−1

k=0

between det-CGD1 and det-CGD2 is that in det-CGD1 the gradient is sketched first and then multi-
plied by the stepsize, while for det-CGD2, the gradient is multiplied by the stepsize first after which
the product is sketched. The convergence for Algorithm 4 can be proved in a similar manner as
Theorem 1.

Theorem 4. Let Assumptions 1 and 2 hold, with the gradient of f being L-Lipschitz. If the stepsize
matrix D ∈ Sd++ satisfies

D−1 ⪰
(
(1− p) ·R′(D,S)

np
+ 1

)
L,

where

R′(D,S) = 1

n

n∑
i=1

λmax

(
DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i D

)
· λmax (Li) · λmax

(
L− 1

2LiL
− 1

2

)
.

Then after K iterations of Algorithm 4, we have

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/d ·K

.

This is to say that in order to reach a ε-stationary point, we require

K ≥ 2(f(x0)− f⋆)

det(D)1/d · ε2
.

If we look at the scalar case where D = γ · Id, Li = Li · Id and L = L · Id, then the condition in
Theorem 4 reduces to

(1− p)ωL2

np
+ L− 1

γ
≤ 0. (54)

Notice that here ω = λmax

(
E
[(
T k
i

)2]) − 1, and we have L2 = 1
n

∑n
i=1 L

2
i , which is due to

the relation given in Proposition 5. This condition coincides with the condition for convergence of
MARINA. One may also check that, the update rule in Algorithm 4, is the same as MARINA in the
scalar case. However, the condition given in Theorem 4 is not simpler than Theorem 1, contrary to
the single-node case. We emphasize that Algorithm 4 is not suitable for the federated learning setting
where the clients have limited resources. In order to perform the update, each client is required to
store the stepsize matrix D which is of size d×d. In the over-parameterized regime, the dataset size
is m× d where m is the number of data samples, and we have d > m. This means that the stepsize
matrix each client needs to store is even larger than the dataset itself, which is unacceptable given
the limited resources each client has.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

G.2 ANALYSIS OF ALGORITHM 4

We first present two lemmas which are necessary for the proofs of Theorem 4.
Lemma 6. Assume that function f is L-smooth, and xk+1 = xk − gk, and matrix D ∈ Sd++. Then
we will have

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D
+

1

2

∥∥D · ∇f(xk)− gk
∥∥2
D−1 −

1

2

∥∥xk+1 − xk
∥∥2
D−1−L

. (55)

This lemma is formulated in a different way from Lemma 1 on purpose.
Lemma 7. For any sketch matrix T ∈ Sd+, vector t ∈ Rd, matrix D ∈ Sd++ and matrix L ∈ Sd++,
we have

E
[
∥TDt−Dt∥2D−1

]
≤ λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
∥t∥2L−1 . (56)

G.3 PROOF OF THEOREM 4

We start with Lemma 6,

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− E

[
1

2

∥∥∇f(xk)
∥∥2
D

]
+ E

[
1

2

∥∥D · ∇f(xk)− gk
∥∥2
D−1

]
− E

[
1

2

∥∥xk+1 − xk
∥∥2
D−1−L

]
. (57)

Now we do the same as Theorem 1 and look at the term E
[∥∥D · ∇f(xk+1)− gk+1

∥∥2
D−1

]
. Recall

that gk here is given by

gk+1 =

{
D · ∇f(xk+1) with probability p

gk + 1
n

∑n
i=1 T

k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)

with probability 1− p .

As a result, we have

E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1 | xk+1, xk

]
= E

[
E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1 | xk+1, xk, ck

]]
= p ·

∥∥D∇f(xk+1)−D∇f(xk+1)
∥∥2
D−1

+ (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D∇f(xk+1)

∥∥∥∥∥
2

D−1

| xk+1, xk


= (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D∇f(xk+1)

∥∥∥∥∥
2

D−1

| xk+1, xk

 .

For the sake of presentation, we use Ek [·] to denote the conditional expectation E [·|xk, xk+1] on
xk, xk+1. Using Fact 2 with x = 1

n

∑n
i=1 T

k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
, c = D∇f(xk+1) − gk,

we are able to obtain that,

(1− p)Ek

∥∥∥∥∥gk +
1

n

n∑
i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D∇f(xk+1)

∥∥∥∥∥
2

D−1


= (1− p)Ek

∥∥∥∥∥ 1n
n∑

i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D

(
∇f(xk+1)−∇f(xk)

)∥∥∥∥∥
2

D−1


+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D−1

= (1− p)Ek

∥∥∥∥∥ 1n
n∑

i=1

[
T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D

(
∇fi(x

k+1)−∇fi(x
k)
)]∥∥∥∥∥

2

D−1


+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D−1 .

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

It is not hard to notice that for the sketch matrices we pick, the following identity holds due to the
unbiasedness,

Ek

[
T k
i D(∇fi(x

k+1)−∇fi(x
k))
]
= D(∇fi(x

k+1)−∇fi(x
k)),

and any two random vectors in the set
{
T k
i D(∇fi(x

k+1)−∇fi(x
k))
}n
i=1

are independent if
xk+1, xk are fixed. As a result

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
=

1− p

n2

n∑
i=1

Ek

[∥∥T k
i

(
D∇fi(x

k+1)−D∇fi(x
k)
)
−
(
D∇fi(x

k+1)−D∇fi(x
k)
)∥∥2

D−1

]
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1 . (58)

For each term within the summation, we can further upper bound it using Lemma 7

Ek

[∥∥T k
i

(
D∇fi(x

k+1)−D∇fi(x
k)
)
−
(
D∇fi(x

k+1)−D∇fi(x
k)
)∥∥2

D−1

]
≤ λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥2
L−1

i

≤ λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

.

Where the last inequality is due to Assumption 2. Plugging back into (58), we get

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .

Applying the replacement trick form the proof of Theorem 1, we obtain

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)
×
〈
L

1
2

(
xk+1 − xk

)
,
(
L− 1

2LiL
− 1

2

)
·L 1

2

(
xk+1 − xk

)〉
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1

≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i

(
DE

[
T k
i D

−1T k
i

]
D −D

)
L

1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .

Applying Fact 5, we obtain

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
DE

[
T k
i D

−1T k
i

]
D −D

)
λmax (Li)λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .

Recalling the definition of R′(D,S), we further simplify it to

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ (1− p) ·R′(D,S)

n

∥∥xk+1 − xk
∥∥2
L
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1 .

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Taking expectation again and using the tower property, we get

E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1

]
(59)

≤ (1− p) ·R′(D,S)
n

E
[∥∥xk+1 − xk

∥∥2
L

]
+ (1− p) · E

[∥∥gk −D∇f(xk)
∥∥2
D−1

]
. (60)

Construct the Lyapunov function Φk as follows,

Φk = f(xk)− f⋆ +
1

2p

∥∥gk −D∇f(xk)
∥∥2
D−1 .

Utilizing (57) and (59), we are able to get

E [Φk+1] ≤ E
[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2
E
[∥∥gk −D∇f(xk)

∥∥2
D−1

]
− 1

2
E
[∥∥xk+1 − xk

∥∥
D−1−L

]
+

1

2p
· (1− p)R′(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+

1− p

2p
E
[∥∥gk −D∇f(xk)

∥∥2
D−1

]
= E [Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2

(
(1− p)R′(D,S)

np
E
[∥∥xk+1 − xk

∥∥2
L

]
− E

[∥∥xk+1 − xk
∥∥2
D−1−L

])
.

Now, notice that the last term in the above inequality is non-positive as guaranteed by the condition

D−1 ⪰
(
(1− p)R′(D,S)

np
+ 1

)
L.

This leads to the recurrence after ignoring the last term,

E [Φk+1] ≤ E [Φk]−
1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Unrolling this recurrence, we get

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2 (E [Φ0]− E [ΦK])

K
.

The left hand side can viewed as average over x̃K , which is drawn uniformly at random from
{xk}K−1

k=0 , while the right hand side can be simplified as

2 (E [Φ0]− E [ΦK])

K
≤ 2Φ0

K
=

2
(
f(x0)− f⋆ + 1

2p

∥∥g0 −∇f(x0)
∥∥2
D

)
K

.

Recalling that g0 = ∇f(x0) and performing determinant normalization as Li et al. (2024b), we get

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/dK

.

H PROOFS OF THE TECHNICAL LEMMAS

H.1 PROOF OF LEMMA 1

Let x̄k+1 := xk − D · ∇f(xk). Since f has a matrix L-Lipschitz gradient, f is also L-smooth.
From the L-smoothness of f , we have

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)− gk, xk+1 − xk

〉
+
〈
gk, xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

We can merge the last two terms and obtain,

f(xk+1) ≤ f(xk) +
〈
∇f(xk)− gk,−D · gk

〉
−
〈
xk+1 − xk,D−1(xk+1 − xk)

〉
+
1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)− gk,−D · gk

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

We add and subtract
〈
∇f(xk)− gk,D · gk

〉
,

f(xk+1) ≤ f(xk) +
〈
∇f(xk)− gk,D

(
∇f(xk)− gk

)〉
−
〈
∇f(xk)− gk,D · ∇f(xk)

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
= f(xk) +

∥∥∇f(xk)− gk
∥∥2
D

−
〈
xk+1 − x̄k+1,D−1

(
xk − x̄k+1

)〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

Decomposing the term
〈
xk+1 − x̄k+1,D−1

(
xk − x̄k+1

)〉
, we get

f(xk+1) ≤ f(xk) +
∥∥∇f(xk)− gk

∥∥2
D

−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
−1

2

(∥∥xk+1 − x̄k+1
∥∥2
D−1 +

∥∥xk − x̄k+1
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
.

Plugging in the definition of xk+1, x̄k+1, we get

f(xk+1) ≤ f(xk) +
∥∥∇f(xk)− gk

∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L

−1

2

(∥∥D(∇f(xk)− gk)
∥∥2
D−1 +

∥∥D · ∇f(xk)
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
= f(xk) +

∥∥∇f(xk)− gk
∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L

−1

2

(∥∥∇f(xk)− gk
∥∥2
D

+
∥∥∇f(xk)

∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1

)
.

Rearranging terms we get,

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L
+

1

2

∥∥xk+1 − xk
∥∥2
D−1

= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥
D−1−L

.

H.2 PROOF OF LEMMA 2

The definition of the weighted norm yields

E
[
∥St− t∥2D

]
= E [⟨t, (S − Id)D (S − Id) t⟩]

= ⟨t,E [(S − Id)D(S − Id)] t⟩

=
〈
t,L− 1

2 · E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]
·L− 1

2 t
〉

=
〈
L− 1

2 t,E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]
·L− 1

2 t
〉

≤ λmax

(
E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]) ∥∥∥L− 1
2 t
∥∥∥2

= λmax

(
L

1
2 (E [SDS]−D)L

1
2

)
· ∥t∥2L−1 .

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

H.3 PROOF OF LEMMA 4

Throughout the following proof, we denote ES [·] as taking expectation with respect to the
randomness contained within the sketch sampled from distribution S. We estimate the term
ES

[∥∥gk+1 − hk+1
∥∥2
D

]
in order to construct the Lyapunov function. For ES

[∥∥gk+1 − hk+1
∥∥2
D

]
,

we have

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
= ES

∥∥∥∥∥gk +
1

n

n∑
i=1

mk+1
i − hk+1

∥∥∥∥∥
2

D


= ES

∥∥∥∥∥gk +
1

n

n∑
i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
− hk+1

∥∥∥∥∥
2

D


Using Fact 3, we obtain

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
= ES

∥∥∥∥∥ 1n
n∑

i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
−
(
hk+1 − hk − a(gk − hk)

)∥∥∥∥∥
2

D


+ (1− a)2

∥∥hk − gk
∥∥2
D

= ES

∥∥∥∥∥ 1n
n∑

i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
− 1

n

n∑
i=1

(
hk+1
i − hk

i − a(gki − hk
i)
)∥∥∥∥∥

2

D


+ (1− a)2

∥∥hk − gk
∥∥2
D

=
1

n2

n∑
i=1

ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
−
(
hk+1
i − hk

i − a(gki − hk
i)
)∥∥2

D

]
+ (1− a)2

∥∥hk − gk
∥∥2
D
.

Here, the last identity is obtained from the unbiasedness of the sketches:

ES
[
Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)]

= hk+1
i − hk

i − a(gki − hk
i).

We can further use Lemma 2, and obtain

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤ 1

n2

n∑
i=1

λmax

(
D− 1

2

(
E
[
Sk
i DSk

i

]
−D

)
D− 1

2

)∥∥hk+1
i − hi − a(gki − hk

i)
∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D

≤ 1

n2

n∑
i=1

λmax

(
D−1

)
· λmax

(
E
[
Sk
i DSk

i

]
−D

) ∥∥hk+1
i − hk

i − a(gki − hk
i)
∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

We can rewrite the above bound, after applying Jensen’s inequality as

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥hk+1
i − hk

i

∥∥2
D

+
2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Notice that we have∥∥hk+1
i − hk

i

∥∥2
D

≤ λmax (D) · λmax (Li) ·
∥∥hk+1

i − hk
i

∥∥2
L−1

i

.

Thus, it is not hard to see that

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
· λmax (D)

n2

n∑
i=1

λmax (Li)
∥∥hk+1

i − hk
i

∥∥2
L−1

i

+
2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

We obtain the inequality in the lemma after taking expectation again and applying tower property.

H.4 PROOF OF LEMMA 5

Similarly, we then try to bound the terms ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
. We start with

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
= ES

[∥∥gki + Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
− hk+1

i

∥∥2
D

]
= ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
−
(
hk+1
i − hk

i − a(gki − hk
i)
)
+ (1− a)(hk

i − gki)
∥∥2
D

]
.

Using Fact 3,

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
= ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i)
)
−
(
hk+1
i − hk

i − a(gki − hk
i)
)∥∥2

D

]
+ (1− a)2

∥∥hk
i − gki

∥∥2
D
.

Using Lemma 2

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
(22)
≤ λmax

(
D− 1

2

(
E
[
Sk
i DSk

i

]
−D

)
D− 1

2

)∥∥hk+1
i − hk

i − a(gki − hk
i)
∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ λmax

(
D−1

)
· ΛD,S

∥∥hk+1
i − hk

i − a(gki − hk
i)
∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ 2λmax

(
D−1

)
· ΛD,S

∥∥hk+1
i − hk

i

∥∥2
D

+ 2a2λmax

(
D−1

)
· ΛD,S

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) ·

∥∥hk+1
i − hk

i

∥∥2
L−1

i

+ 2a2λmax

(
D−1

)
· ΛD,S

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

=
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

) ∥∥gki − hk
i

∥∥2
D

+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) ·

∥∥hk+1
i − hk

i

∥∥2
L−1

i

.

Taking expectation again, and using tower property, we are able to obtain,

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

)
E
[∥∥gki − hk

i

∥∥2
D

]
+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) · E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

H.5 PROOF OF LEMMA 6

From Proposition 5, we know that the objective is L-smooth. Let x̄k+1 = xk −D · ∇f(xk), then
L-smoothness yields

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)−D−1 · gk, xk+1 − xk

〉
+
〈
D−1 · gk, xk+1 − xk

〉
+
1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)−D−1 · gk,−gk

〉
−
〈
xk+1 − xk,D−1(xk+1 − xk)

〉
+
1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
.

Simplifying the above inner-products we have,

f(xk+1) ≤ f(xk) +
〈
∇f(xk)−D−1 · gk,−gk

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

We then add and subtract
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)

〉
, which

f(xk+1) ≤ f(xk) +
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)− gk

〉
−
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
= f(xk) +

∥∥∇f(xk)−D−1 · gk
∥∥2
D

−
〈
D−1(xk+1 − x̄k+1), xk − x̄k+1

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

Decomposing the inner product term we deduce,

f(xk+1) ≤ f(xk) +
∥∥D−1

(
D · ∇f(xk)− gk

)∥∥2
D

−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
−1

2

(∥∥xk+1 − x̄k+1
∥∥2
D−1 +

∥∥xk − x̄k+1
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
= f(xk) +

∥∥D · ∇f(xk)− gk
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1− 1

2L

−1

2

(∥∥D · ∇f(xk)− gk
∥∥2
D−1 +

∥∥D · ∇f(xk)
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
.

Therefore,

f(xk+1) ≤ f(xk) +
1

2

∥∥D∇f(xk)− gk
∥∥2
D−1 −

1

2

∥∥∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥2
D−1−L

.

H.6 PROOF OF LEMMA 7

We start with

E
[
∥TDt−Dt∥2D−1

]
= E

[
∥(T − Id)Dt∥2D−1

]
=

〈
t,E

[
D(T − Id)D

−1(T − Id)D
]
· t
〉

=
〈
t,D

(
E
[
TD−1T

]
−D−1

)
D · t

〉
=

〈
L− 1

2 t,L
1
2D

(
E
[
TD−1T

]
−D−1

)
DL

1
2 ·L− 1

2 t
〉

≤ λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
·
∥∥∥L− 1

2 t
∥∥∥2

= λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
· ∥t∥2L−1

This completes the proof.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

I EXPERIMENTS

In this section, we conduct numerical experiments to back up the theoretical results for det-MARINA
and det-DASHA. The code for the experiments can be found in https://anonymous.4open.
science/r/detCGD-VR-Code-865B. All the codes for the experiments are written in Python
3.11 with NumPy and SciPy package. The code was run on a machine with AMD Ryzen 9 5900HX
Radeon Graphics @ 3.3 GHz and 8 cores 16 threads. The datasets in LibSVM are typically non-IID
real world datasets, and it is randomly distributed across all the clients.

I.1 THE SETTING

We first state the experiment setting. We are interested in the following logistic regression problem
with a non-convex regularizer. The objective is given as

f(x) =
1

n

n∑
i=1

fi(x); fi(x) =
1

mi

mi∑
j=1

log
(
1 + e−bi,j ·⟨ai,j ,x⟩

)
+ λ ·

d∑
t=1

x2
t

1 + x2
t

,

where x ∈ Rd is the model, (ai,j , bi,j) ∈ Rd × {−1, 1} is one data point in the dataset of client i
whose size is mi. The constant λ > 0 is the coefficient of the regularizer. Larger λ means the model
is more regular. For each function fi, its Hessian can be upper bounded by

Li =
1

mi

mi∑
i=1

aia
⊤
i

4
+ 2λ · Id;

and, therefore, the Hessian of f is bounded by

L =
1∑n

i=1 mi

n∑
i=1

mi∑
j=1

aia
⊤
i

4
+ 2λ · Id.

Due to Proposition 2, it immediately follows that fi and f satisfy Definition 1 with Li ∈ Sd++ and
L ∈ Sd++, respectively.

In the following subsections, we perform several numerical experiments comparing the performance
of DCGD, det-CGD, MARINA, DASHA, det-MARINA and det-DASHA. The datasets we used are
from the LibSVM repository (Chang & Lin, 2011).

I.2 COMPARISON OF ALL THE METHODS

In this section, we present several plots which compare all relevant methods to the det-MARINA and
det-DASHA. The methods are the following: (i) DCGD with scalar stepsize γ2, (ii) det-CGD with
matrix stepsize D∗

3 , (iii) MARINA with scalar stepsize γ1, (iv) DASHA with scalar stepsize γ4, (v)
det-MARINA with D∗

L−1 , (vi)det-DASHA with D∗∗
L−1 . Throughout the experiment, ε = 0.01, and

λ = 0.9, we are using the same Rand-τ sketch for all the algorithms, and we run all the algorithms
for a fixed number of iteration K = 10000.

It can be seen in Figure 2, the performance in terms of communication complexity of det-DASHA
and det-MARINA is better than their scalar counterpart DASHA and MARINA respectively. This
validates the efficiency of using a matrix stepsize over a scalar stepsize. Furthermore, we notice
that det-DASHA and det-MARINA have better communication complexity in this case, compared
to det-CGD. In addition, we observe variance reduction.

Notice that the optimal stepsizes of det-CGD and DCGD require information of function value
differences at x⋆. Furthermore, the stepsizes are also constrained by the number of iterations K and
the error ε2. Meanwhile, for the variance reduced methods, we do not require such considerations,
which is much more practical in general.

I.3 IMPROVEMENTS OVER MARINA

The purpose of this experiment is to compare the iteration complexity of MARINA, with
det-MARINA using Rand-τ sketches, thus showing improvements of det-MARINA upon MARINA.

47

https://anonymous.4open.science/r/detCGD-VR-Code-865B
https://anonymous.4open.science/r/detCGD-VR-Code-865B

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a1a, n = 150, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a3a, n = 150, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a1a, n = 300, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of bytes ×106

10−3

10−2

10−1

100

101

G
K
,D

a3a, n = 300, p = 0.5, rand-60 sketch

DCGD with γ2

det-CGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

DASHA with γ4

det-DASHA with D∗∗L−1

Figure 2: Comparison of DCGD with optimal scalar stepsize, det-CGD with matrix stepsize D∗
3 ,

MARINA with optimal scalar stepsize, DASHA with optimal scalar stepsize, det-MARINA with
optimal stepsize D∗

L−1 and det-DASHA with optimal stepsize D∗∗
L−1 . Throughout the experiment,

we are using Rand-τ sketch with τ = 60, and each algorithm is run for a fixed number of iterations
K = 10000. The momentum of DASHA is set as 1/2ω+1 and det-DASHA is 1/2ωD+1. The notation
n in the title stands for the number of clients in each case, and p stands for the probability used by
MARINA and det-MARINA.

Using Theorem C.1 from (Gorbunov et al., 2021), we deduce the optimal stepsize for MARINA, is

γ1 =
1

L

(
1 +

√
(1−p)ω

pn

) , (61)

where ω is the quantization coefficient. In particular, for the Rand-τ compressor ω = d
τ − 1. For

the full definition see Section 1.3 of (Gorbunov et al., 2021). The stepsize for det-MARINA is
determined through Corollary 1. We use the notation D∗

W to denote the optimal stepsize for each
choice of W , here we list some of the optimal stepsizes for different W , which are used in the
experiment section. We have

D∗
Id

=
2

1 +
√
1 + 4αβ 1

λmax(L) · ω
· Id
λmax(L)

,

D∗
L−1 =

2

1 +
√
1 + 4αβ · λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

) ·L−1,

D∗
diag−1(L) =

2

1 +
√
1 + 4αβ · λmax

(
E
[
Sk
i diag

−1 (L)Sk
i

]
− diag−1 (L)

) · diag−1 (L) .(62)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

In this experiment, we aim to compare det-MARINA with stepsize D∗
L−1 to the standard MARINA

with the optimal scalar stepsize. Rand-τ compressor is used in the comparison. Throughout the
experiments, λ is fixed at 0.3. We set the x-axis to be the number of iterations, while y-axis to be
the expectation of the corresponding matrix norm of the gradient of the function, which is defined
as

GK,D = E
[∥∥∇f(x̃K)

∥∥2
D/ det(D)1/d

]
. (63)

Notice that this criterion is comparable to the standard Euclidean norm Li et al. (2024b), and for a
fixed D, we have

λmin

(
D

det(D)1/d

)
· ∥∇f(x)∥2 ≤ ∥∇f(x)∥2 D

det(D)1/d
≤ λmax

(
D

det(D)1/d

)
· ∥∇f(x)∥2 .

As it is illustrated in Figure 3, det-MARINA always has a faster convergence rate compared to
MARINA if they use the same sketch, this justifies the result we have in Corollary 3. Notice that
in some cases, det-MARINA with Rand-1 sketch even outperforms standard MARINA with Rand-
80 sketch. This further demonstrates the superiority of matrix stepsizes and smoothness over the
standard scalar setting.

I.4 IMPROVEMENTS ON NON VARIANCE REDUCED METHODS

In this section, we compare two non-variance reduced methods, distributed compressed gradient
descent (DCGD) and distributed det-CGD, with two variance reduced methods, MARINA, and
det-MARINA. Rand-1 sketch is used throughout this experiment for all the algorithms, for non
variance reduced method ε2 is fixed at 0.01 in order to determine the optimal stepsize. The purpose
of this experiment is to show the advantages of variance reduced methods over non variance reduced
methods. DCGD was initially proposed in (Khirirat et al., 2018). Later on DIANA was proposed in
(Mishchenko et al., 2019) and then combined with variance reduction technique. Recently Shulgin
& Richtárik (2022) proposed shifted DCGD, which is a shifted version of DCGD and proved its
convergence in the (strongly) convex setting. A general analysis on SGD type methods in the non-
convex world is provided by Khaled & Richtárik (2023), including DCGD and shifted DCGD. In our
case, in order to determine the optimal scalar stepsize for DCGD, one can simply use Proposition 4 in
(Khaled & Richtárik, 2023). One can check that in order to satisfy min0≤k≤K−1 E

[∥∥∇f(xk)
∥∥2] ≤

ε2 the stepsize condition for DCGD in the non-convex case reduces to

γ2 ≤ min

{
1

L
,

√
n

ωLLmaxK
,

nε2

4LLmaxω ·∆⋆

}
,

where L is the smoothness constant for f , Li is the smoothness constant for fi, Lmax = maxi Li,
K is the total number of iterations, ∆⋆ = f(x⋆) − 1

n

∑n
i=1 fi(x

⋆). The constant ω is as-
sociated with the compressor used in the algorithm, for Rand-τ sketch, it is d

τ − 1. For
distributed det-CGD according to Li et al. (2024b), the stepsize condition in order to satisfy
min0≤k≤K−1 E

[
∥∇f(x)∥2D/ det(D)1/d

]
≤ ε2 is

DLD ⪯ D, λD ≤ min

{
n

K
,
nε2

4∆⋆
det(D)1/d

}
, (64)

where λD is defined as

λD = max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
. (65)

In general cases, there is no easy way to find a optimal stepsize matrix D satisfying (64), alter-
natively, we choose the optimal diagonal stepsize D∗

3 similarly to (Li et al., 2024b). The stepsize
condition for MARINA has already been described by (61). Note that we only consider MARINA,
but not DIANA or shifted DCGD, because DIANA and shifted DCGD offer suboptimal rates com-
pared to MARINA in the non-convex setting. For det-MARINA, we fix W = L−1, and use D∗

L−1

as the stepsize matrix. In theory, det-MARINA in this case should always out perform MARINA in
terms of iteration complexity.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.5, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.5, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.05, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.2, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.5, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.05, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.2, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.5, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

Figure 3: In this experiment, we aim to compare det-MARINA with stepsize D∗
L−1 to the standard

MARINA with the optimal scalar stepsize. Rand-τ compressor is used in the comparison. Through-
out the experiments, λ is fixed at 0.3. Optimal stepsize is calculated in each case with respect to the
sketch used. The x-axis denotes the number of iterations while the notation GK,D for the y-axis is
defined in (63), which is the averaged matrix norm of the gradient. The notation p in the title denotes
the probability used in the two algorithms, n denotes the number of clients in each setting.

In Figure 4, in each plot, we observe that det-MARINA outperforms MARINA and the rest of the
non-variance reduced methods. This is expected, since our theory confirms that det-MARINA in-
deed has a better rate compared to MARINA, and the stepsizes of the non-variance reduced methods
are negatively affected by the neighborhood. When p is reasonably large, the variance reduced meth-
ods considered here outperform the non-variance reduced methods. In this experiment we consider
only the comparison involving det-CGD.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 100, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 100, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.5, n = 100, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.05, n = 500, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.2, n = 500, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.5, n = 500, rand-1 sketch

DCGD with γ2

detCGD with D∗3
MARINA with γ1

det-MARINA with D∗L−1

Figure 4: Comparison of DCGD with optimal scalar stepsize γ2, det-CGD with optimal diagonal
stepsize D∗

3 , MARINA with optimal scalar stepsize γ1, and det-MARINA with optimal stepsize
D∗

L−1 with respect to W = L−1. In each case, probability p is chosen the set {0.05, 0.2, 0.5} for
MARINA and det-MARINA. λ = 0.3 is fixed throughout the experiment. The notation n in the title
indicates the number of clients in each case.

I.5 IMPROVEMENTS OVER DET-CGD

In this section, we compare det-CGD in the distributed case with det-MARINA, which are both
algorithms using matrix stepsizes and matrix smoothness. The purpose of this experiment is to
show that det-MARINA improves on the current state of the art matrix stepsize compressed gradient
method when the objective function is non-convex. Throughout the experiment, λ = 0.3 is fixed,
and for det-CGD, ε2 = 0.01 is fixed in order to determine its stepsize. For a thorough comparison,
we select the stepsize for det-CGD in the following way. Let us denote the stepsize as D = γW ·W ,
where γW ∈ R++,W ∈ Sd++. We first fix a matrix W , in this case, we pick W from the
set {L−1,diag−1(L), Id}, and then we determine the optimal scaling γW for each case using the
condition given in (Li et al., 2024b) (see (64) and (65)). Then, we denote the matrix stepsizes for
det-CGD

D1 = γId · Id, D2 = γdiag−1(L) · diag−1 (L) , D3 = γL−1 ·L−1. (66)

For det-MARINA, we use the stepsize D∗
L−1 , which is described in (62). In this experiment, we

compare det-CGD using three stepsizes D1,D2,D3 with det-MARINA using stepsize D∗
L−1 .

From Figure 5, it is clear that det-MARINA outperforms det-CGD with all matrix optimal step-
sizes with respect to a fixed W considered here. This is expected, since the convergence rate of
non-variance reduced methods are affected by its neighborhood. This experiment demonstrates the
advantages of det-MARINA over det-CGD, and is also supported by our theory. Notice that though
different W are considered for det-CGD, their convergence rates are similar, which is also men-
tioned by Li et al. (2024b).

I.6 COMPARING DIFFERENT STEPSIZE CHOICES

This experiment is designed to see the how det-MARINA works under different stepsize choices. As
it is mentioned in Appendix I.3, for each choice of W ∈ Sd++, an optimal stepsize D∗

W can be de-
termined. Here we compare det-MARINA using three different stepsize choices D∗

L−1 ,D∗
diag−1(L)

and D∗
Id

. There stepsizes are explicitly defined in (62). Throughout the experiment, we fix λ = 0.3,
Rand-1 sketch is used in all cases.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.4, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 100, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 100, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.4, n = 100, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a3a, p = 0.05, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a3a, p = 0.2, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, p = 0.4, n = 50, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a3a, p = 0.05, n = 150, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, p = 0.2, n = 150, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, p = 0.4, n = 150, rand-1 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-MARINA with D∗L−1

Figure 5: Comparison of det-CGD with matrix stepsize D1, D2 and D3 and det-MARINA with
optimal matrix stepsize with respect to W = L−1. The stepsizes {Di}3i=1 are described in (66).
Throughout the experiment ε2 is fixed at 0.01, the notation p in the title refers to the probability for
det-MARINA, n denotes the number of clients considered, Rand-1 sketch is used in all cases for all
the algorithms.

We can observe from Figure 6 that, in almost all cases det-MARINA with stepsize D∗
diag−1(L)

and D∗
L−1 outperforms det-MARINA with D∗

Id
. As det-MARINA with D∗

Id
can be viewed as

MARINA using scalar stepsize but under matrix Lipschitz gradient assumption, this demonstrates
the effectiveness of using a matrix stepsize over the scalar stepsize. However, in Figure 6, there are
cases where det-MARINA with D∗

diag−1(L)
outperforms D∗

L−1 . This tells us the two stepsizes are
perhaps incomparable in general cases. This is similar to det-CGD, where optimal stepsizes with
respect to a subspace associated with a fixed W−1 are incomparable.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 100, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 100, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.4, n = 100, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

G
K
,D

a3a, p = 0.05, n = 150, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, p = 0.2, n = 150, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, p = 0.4, n = 150, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

phishing, p = 0.05, n = 200, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

phishing, p = 0.2, n = 200, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

phishing, p = 0.4, n = 200, rand-1 sketch

det-MARINA with D∗Id

det-MARINA with D∗
diag−1(L)

det-MARINA with D∗L−1

Figure 6: Comparison of det-MARINA with matrix stepsize D∗
Id

, D∗
diag−1(L)

and D∗
L−1 . The

stepsizes are defined in (62). Throughout the experiment, λ = 0.3 is fixed, Rand-1 sketch is used
in all cases. The notation p in the title indicates the probability of sending the true gradient for
det-MARINA, n denotes the number of clients considered.

I.7 COMPARING COMMUNICATION COMPLEXITY

In this section, we perform an experiment on how different probabilities p will affect the overall
communication complexity of det-MARINA. We use D∗

L−1 as the stepsize, which is determined
with respect to the sketch used. Rand-τ sketches are used in these experiments, and we vary the
minibatch size τ to provide a more comprehensive comparison. For Rand-τ sketch S and any
A ∈ Sd++, one can show that

E [SAS] =
d

τ

(
d− τ

d−1
diag(A) +

τ − 1

d− 1
A

)
. (67)

Combining (67) and (62), we can find out the corresponding matrix stepsize easily. In the ex-
periment, a fixed number of iterations (K = 5000) is performed for each det-MARINA with the
corresponding stepsize.

As it can be observed from Figure 7, in each dataset, the communication complexity tends to in-
crease with the increase of probability p. However, when the number of iteration is fixed, a larger
p often means a faster rate of convergence. This difference in communication complexity is more
obvious when we are using the Rand-1 sketch. In real federated learning settings, there is often
constraints on network bandwidth from clients to the server. Thus, trading off between communi-
cation complexity and iteration complexity, i.e. selecting the compression mechanism carefully to
guarantee a acceptable speed that satisfies the bandwidth constraints, becomes important.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a1a, n = 100, rand-1 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

0.0 0.5 1.0 1.5 2.0

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a1a, n = 100, rand-60 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a3a, n = 150, rand-1 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

0.0 0.5 1.0 1.5 2.0

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a3a, n = 150, rand-60 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a8a, n = 500, rand-1 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

0.0 0.5 1.0 1.5 2.0

Number of bytes ×106

10−3

10−2

10−1

100

G
K
,D

a8a, n = 500, rand-60 sketch

p=0.05

p=0.1

p=0.2

p=0.4

p=0.8

Figure 7: Comparison of det-MARINA with stepsize D∗
L−1 using different probability p. The

probability p here is chosen from the set {0.05, 0.1, 0.2, 0.4, 0.8}. The notation n in the title denote
the number of clients considered. The x-axis is now the number of bytes sent from a single node to
the server. In each case, det-MARINA is run for a fixed number of iterations K = 5000.

I.8 COMPARISON OF DASHA AND DET-DASHA

In this experiment we plan to compare the performance of original DASHA with det-DASHA.
Throughout the experiments, λ is fixed at 0.3. The same Rand-τ sketch is used in the two algo-

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 20, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, n = 50, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 400, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

Figure 8: Comparison of det-DASHA with matrix stepsize D∗∗
L−1 and DASHA with optimal scalar

stepsize γ using different Rand-τ sketches. λ = 0.3 is fixed throughout the experiments. Optimal
stepsize is calculated in each case with respect to the sketch used. The x-axis denotes the number of
iterations while the notation GK,D for the y-axis denotes the averaged matrix norm of the gradient.
The notation n denotes the number of clients in each setting.

rithms. The stepsize condition on DASHA when the momentum is set as a = 1
2ω+1 is given as

γ4 ≤

(
L+

√
16ω(2ω + 1)

n
L̂

)−1

,

according to Theorem 6.1 of Tyurin & Richtárik (2024). Here the L is the smoothness constant of
the function f , while L̂ satisfies L̂2 = 1

n

∑n
i=1 L

2
i where Li is the smoothness constant of local

objective fi. In theory we can pick L̂ = L. Similarly, according to Corollary 2, the optimal stepsize
matrix D∗∗

L−1 is given as

D∗∗
L−1 =

2

1 +
√

1 + 16CL−1 · λmin (L)
·L−1, (68)

when the momentum is given as a = 1
2ωD+1 . We compare the performance of DASHA with ω and

det-DASHA with D∗∗
L−1 using the same sketch where the total number of clients are different.

As it can be observed in Figure 8, det-DASHA with matrix stepsize D∗∗
L−1 outperforms DASHA

with optimal scalar stepsize using the same sketch in every setting we considered. Note that since
the same sketch is used in the two algorithm, the number of bits transferred in each iteration is
also the same for the two algorithms. This essentially indicates that det-DASHA has better iteration

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 100, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 100, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a8a, n = 200, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 200, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 200, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a8a, n = 400, rand-50 sketch

DCGD with γ2

det-CGD with D∗3
DASHA with γ4

det-DASHA with D∗∗L−1

Figure 9: Comparison of DCGD with optimal scalar stepsize γ2, det-CGD with optimal diagonal
stepsize D∗

3 , DASHA with optimal scalar stepsize γ1, and det-DASHA with optimal stepsize D∗∗
L−1

with respect to W = L−1. λ = 0.9 is fixed throughout the experiment. The notation n in the
title indicates the number of clients in each case. Rand-τ sketch with τ = 50 are used in all four
algorithms.

complexity as well as communication complexity than DASHA given that the same sketch is used
for the two algorithm.

I.9 COMPARISON OF DCGD, DET-CGD, DASHA AND DET-DASHA

In this experiment, we consider the comparison between the two non variance reduced methods
DCGD, det-CGD and the two variance reduced method DASHA, det-DASHA. The stepsize choices
for DCGD and det-CGD have already been discussed in the previous sections, (for DCGD we use
γ2 and for det-CGD we use D∗

3) ,for DASHA and det-DASHA, we use the stepsize choices of
Appendix I.8. Note that ε2 is set as 0.01, and λ is fixed at 0.9 here. Throughout this experiment, we
consider the case where Rand-τ sketch is used in the four algorithms.

It is easy to observe that in each case of Figure 9, det-DASHA outperforms the rest of the algorithms.
It is expected that det-DASHA outperforms DASHA, as it is also illustrated by Figure 8, which is
a consequence of using matrix stepsize instead of a scalar stepsize. We also see that det-DASHA
and DASHA outperform det-CGD and DCGD respectively, which demonstrate the advantages of
the variance reduction technique. Note that in this case, all four algorithms are using the same
sketch, which means that the number of bits transferred in each iteration is the same for the four
algorithms, as a result, compared to the other algorithms, det-DASHA is better in terms of both
iteration complexity and communication complexity.

I.10 COMPARISON OF DET-DASHA AND DET-CGD WITH DIFFERENT STEPSIZES

In this experiment, we try to compare det-DASHA and det-CGD with different matrix stepsizes.
Throughout this experiment, we will fix ε2 = 0.01 and λ = 0.9. The same Rand-τ sketch is used for
the two algorithms. For det-CGD, we use the stepsize D1 = γId ·Id,D2 = γdiag−1(L) ·diag−1 (L)

and D3 = γL−1 ·L−1, for det-DASHA we use the stepsize D∗∗
L−1 .

It can be observed that in all cases of Figure 10, det-DASHA outperforms det-CGD with different
stepsizes. This further corroborates our theory that det-DASHA is variance reduced and thus is
better in terms of both iteration complexity, and communication complexity (because in this case

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 150, rand-20 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 150, rand-50 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 150, rand-80 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 300, rand-20 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 300, rand-50 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 300, rand-80 sketch

det-CGD with D1

det-CGD with D2

det-CGD with D3

det-DASHA with D∗∗L−1

Figure 10: Comparison of det-DASHA with stepsize D∗∗
L−1 and det-CGD with three different step-

sizes D1, D2 and D3. Throughout the experiment, λ is fixed at 0.9, ε2 is fixed at 0.01, Rand-τ
sketch is used for all the algorithms with τ selected from {20, 50, 80}. The notation n denotes the
number of clients in each setting.

the same number of bits are transmitted in each iteration due to the fact that the sketch used is the
same).

I.11 COMPARISON OF DIFFERENT STEPSIZES OF DET-DASHA

In this experiment, we try to compare det-DASHA with different matrix stepsizes. Specifically,
we fix matrix W to be three different matrices, Id, diag−1 (L) and L−1. We denote the optimal
stepsizes as D∗∗

Id
, D∗∗

diag−1(L)
and D∗∗

L−1 , respectively. For D∗∗
L−1 , it is already given in (68), for

D∗∗
Id

and D∗∗
diag−1(L)

, we use Corollary 2 to compute them. As a result,

D∗∗
Id

=
2

1 +

√
1 + 16 · ωId(4ωId

+1)
n · λmin(L)

λmax(L)

· Id
λmax (L)

, (69)

and

D∗∗
diag−1(L) =

2

1 +
√
1 + 16Cdiag−1(L) · λmin (L)

· diag−1 (L) . (70)

Throughout the experiment, λ is fixed at 0.9, Rand-τ sketch is used for all the algorithms.

We can observe from Figure 11, det-DASHA with D∗∗
L−1 and D∗∗

diag−1(L)
both outperform

det-DASHA with D∗∗
Id

, which demonstrate the effectiveness of using a matrix stepsize instead of
a scalar stepsize. However, depending on the parameters of the problem, it is hard to reach a general
conclusion whether D∗∗

L−1 is better than D∗∗
diag−1(L)

or not.

I.12 COMPARISON OF DET-MARINA AND DET-DASHA

In this section, we aim to provide a comparison of det-DASHA and det-MARINA. They are similar
as they are both variance reduced version of det-CGD. However, the variance reduction techniques
that are utilized are different. For det-MARINA, it is based on MARINA, and it requires synchro-
nization from time to time depending on a probability parameter p, while for det-DASHA it utilizes

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 150, rand-50 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 150, rand-50 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a8a, n = 250, rand-50 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a1a, n = 150, rand-80 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a3a, n = 150, rand-80 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

0 1000 2000 3000 4000 5000

Number of iterations

10−2

10−1

100

101

G
K
,D

a8a, n = 250, rand-80 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗diag−1(L)

det-DASHA with D∗∗L−1

Figure 11: Comparison of det-DASHA three different stepsizes D∗∗
L−1 , D∗∗

diag−1(L)
and D∗∗

Id
. The

definition for those matrix stepsize notation are given in (68), (70) and (69) respectively. Throughout
the experiment, λ is fixed at 0.9, Rand-τ sketch is used for all the algorithms. The notation n denotes
the number of clients in each setting.

the momentum variance reduction technique which was also presented in DASHA, it does not need
any synchronization at all. Notice that for a fair comparison, we implement the two algorithms so
that they use the same sketch. We mainly focus on the communication complexity, i.e. the con-
vergence with respect to the number of bits transferred. Throughout the experiment, λ = 0.9 is
fixed. For det-DASHA we pick 3 different kinds of stepsizes D∗∗

Id
, D∗∗

L−1 and D∗∗
diag−1(L)

. For
det-MARINA, we also pick three different kinds of stepsizes correspondingly D∗

Id
, D∗

L−1 and
D∗

diag−1(L)
. We use the same sketch for all of the algorithms we are trying to compare.

It is obvious from Figure 12 that det-DASHA always has a better communication complexity com-
paring to the det-MARINA counterpart. Notice that here since each algorithm is run for a fixed
number of iterations, so x-axis actually records the total number of bytes transferred for each algo-
rithm. For det-DASHA, D∗∗

L−1 perform similarly to D∗∗
diag−1(L)

, and both are better than D∗∗
Id

. This
is expected since the same sketch is used, and the number of bytes transferred in each iteration is the
same for each variant of det-DASHA. The same relation also holds for det-MARINA.

I.13 COMPARISON IN TERMS OF FUNCTION VALUES

In this section, we compare det-MARINA and det-DASHA in terms of function values. The starting
points of the two algorithms are set to be the same, and we run the two algorithms for multiple times
and we average the function values we obtained in each iteration. For the two algorithms, we use the
same sketch, and since we are interested in the performance in terms of communication complexity,
we use the number of bytes transferred in the training process as the x-axis. We run each of the
algorithm for 20 times, and fix λ = 0.9. The starting point is fixed throughout the experiment. We
pick D∗∗

L−1 as the stepsize of det-DASHA, while D∗
L−1 as the stepsize of det-MARINA.

Observing Figure 13, we can see that the function values continuously decrease as the algorithms
progress through more iterations. However, the stability observed here differs from the case of the
average (matrix) norm of gradients. Our theoretical framework, as presented in this paper, primar-
ily addresses the average norm of gradients in the non-convex case. Despite this, the experiment
reinforces the effectiveness of our algorithms, showcasing consistent decreases in function values.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a1a, n = 150, p = 0.5, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a3a, n = 150, p = 0.6, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

0.0 0.5 1.0 1.5 2.0

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a8a, n = 250, p = 0.8, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a1a, n = 300, p = 0.5, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a3a, n = 300, p = 0.6, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

0.0 0.5 1.0 1.5 2.0

Number of bytes ×106

10−2

10−1

100

101

G
K
,D

a8a, n = 500, p = 0.8, rand-60 sketch

det-DASHA with D∗∗Id

det-DASHA with D∗∗L−1

det-DASHA with D∗∗diag−1(L)

det-MARINA with D∗Id

det-MARINA with D∗L−1

det-MARINA with D∗diag−1(L)

Figure 12: Comparison of det-DASHA with three different stepsizes D∗∗
Id

, D∗∗
L−1 and D∗∗

diag−1(L)
,

and det-MARINA with D∗
Id

, D∗
L−1 and D∗

diag−1(L)
in terms of communication complexity.

Throughout the experiment, λ is fixed at 0.9, the same Rand-τ sketch is used for all the algorithms.
The notation n denotes the number of clients in each setting. Each algorithm is run for a fixed num-
ber of iteration K = 5000.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of bytes ×106

101

102

f
(x

)

a1a, n = 150, p = 0.5, rand-60 sketch

det-DASHA with D∗∗L−1

det-MARINA with D∗L−1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of bytes ×106

101

102

f
(x

)

a3a, n = 200, p = 0.6, rand-60 sketch

det-DASHA with D∗∗L−1

det-MARINA with D∗L−1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of bytes ×106

101

102

f
(x

)

a8a, n = 250, p = 0.6, rand-60 sketch

det-DASHA with D∗∗L−1

det-MARINA with D∗L−1

Figure 13: Comparing the performance of det-DASHA with D∗∗L−1 and det-MARINA with
D∗L−1 in terms of the decreasing function values. The function values for each algorithm rep-
resent an average of 20 runs using different random seeds. Here, λ = 0.9 is fixed throughout the
experiment, and the starting point for the two algorithms in different runs is the same. The notation
n stands for the number of clients, and p represents the probability used in det-MARINA. The same
Rand-τ sketch is employed for both algorithms.

59

	Introduction
	Contributions

	Background and motivation
	Stochastic gradient descent
	Second order methods
	Fixed matrix stepsizes
	The neighborhood of the distributed det-CGD1
	Variance reduction
	Organization of the paper

	Mathematical framework
	MARINA-based variance reduction
	Convergence guarantees
	Optimizing the matrix stepsize

	DASHA-based variance reduction
	Theoretical guarantees

	Complexities of the algorithms
	det-MARINA
	Det-DASHA

	Experiments
	Future work
	Additional details
	Notations
	Additional prior work

	Basic facts
	Properties of matrix smoothness
	The matrix Lipschitz-continuous gradient
	Quadratics

	Comparison of the different smoothness conditions
	Proofs of the propositions regarding smoothness
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8

	Analysis of Det-MARINA
	Technical lemmas
	Proof of Theorem 1
	Comparison of different stepsizes
	The diagonal case
	The identity case

	Proofs of the corollaries
	Proof of Corollary 1
	Proof of Corollary 3
	Proof of Corollary 4
	Proof of Corollary 8
	Proof of Corollary 9

	Analysis of det-DASHA
	Proof of Theorem 2
	Proofs of the corollaries
	Proof of Corollary 2
	Proof of Corollary 5
	Proof of Corollary 6
	Proof of Corollary 7

	Distributed det-CGD
	Extension of Det-CGD in MARINA form
	Extension of Det-CGD2 to its variance reduced counterpart
	Analysis of Algorithm 4
	Proof of Theorem 4

	Proofs of the technical lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Experiments
	The setting
	Comparison of all the methods
	Improvements over MARINA
	Improvements on non variance reduced methods
	Improvements over det-CGD
	Comparing different stepsize choices
	Comparing communication complexity
	Comparison of DASHA and det-DASHA
	Comparison of DCGD, det-CGD, DASHA and det-DASHA
	Comparison of det-DASHA and det-CGD with different stepsizes
	Comparison of different stepsizes of det-DASHA
	Comparison of det-MARINA and det-DASHA
	Comparison in terms of function values

