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ABSTRACT

Matrix-stepsized gradient descent algorithms have been shown to have superior
performance in non-convex optimization problems compared to their scalar coun-
terparts. The det-CGD algorithm, as introduced by |Li et al.| (2024b), leverages
matrix stepsizes to perform compressed gradient descent for non-convex objec-
tives and matrix-smooth problems in a federated manner. The authors establish
the algorithm’s convergence to a neighborhood of a weighted stationarity point un-
der a convex condition for the symmetric and positive-definite matrix stepsize. In
this paper, we propose two variance-reduced versions of the det-CGD algorithm,
incorporating MARINA and DASHA methods. Notably, we establish theoreti-
cally and empirically, that det-MARINA and det-DASHA outperform MARINA,
DASHA and the distributed det-CGD algorithms in terms of iteration and com-
munication complexities.

1 INTRODUCTION

We focus on optimizing the finite sum non-convex objective
in { f(z) = i filz) ()
min T) = — i) .
wER i3

In this context, each function f; : R? — R is differentiable and bounded from below. This type
of objective function finds extensive application in various practical machine learning algorithms,
which increase not only in terms of the data size but also in the model size and overall complexity
as well. As a result, most neural network architectures result in highly non-convex empirical losses,
which need to be minimized. In addition, it becomes computationally infeasible to train these mod-
els on one device, often excessively large, and one needs to redistribute them amongst different
devices/clients. This redistribution results in a high communication overhead, which often becomes
the bottleneck in this framework.

In other words, we have the following setting. The data is partitioned into n clients, where the -
th client has access to the component function f; and its derivatives. The clients are connected to
each other through a central device, called the server. In this work, we are going to study iterative
gradient descent-based algorithms that operate as follows. The clients compute the local gradients in
parallel. Then they compress these gradients to reduce the communication cost and send them to the
server in parallel. The server then aggregates these vectors and broadcasts the iterate update back to
the clients. This meta-algorithm is called federated learning. We refer the readers to Konecny et al.
(2016); McMahan et al.| (2017); |Kairouz et al.[(2021) for a more thorough introduction to federated
learning.

1.1 CONTRIBUTIONS

In this paper, we introduce two novel federated learning algorithms named det-MARINA and
det-DASHA. These algorithms extend a recent method called det-CGD (Li et al., 2024b), which
aims to solve problem (I) using matrix stepsized gradient descent. Under the matrix smoothness
assumption proposed by Safaryan et al.| (2021), the authors demonstrate that the matrix stepsized
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version of the Distributed Compressed Gradient Descent (Khirirat et al.,|2018) algorithm enhances
communication complexity compared to its scalar counterpart. However, in their analysis, |L1 et al.
(2024b)) show stationarity only within a certain neighborhood due to stochastic compressors. Our al-
gorithm addresses this issue by incorporating previously known variance reduction schemes, namely,
MARINA (Gorbunov et al.| [2021)) and DASHA (Tyurin & Richtarik, 2024). We establish theoret-
ically and empirically, that both algorithms outperform their scalar alternatives, as well as the dis-
tributed det-CGD algorithms. In addition, we describe specific matrix stepsize choices, for which
our algorithms beat MARINA, DASHA and distributed det-CGD both in theory and in practice.

2 BACKGROUND AND MOTIVATION

For a given ¢ > 0, finding an approximately global optimum, that is x. such that f(z.) —
min, f(x) < ¢, is known to be NP-hard (Jain et al.,[2017; Danilova et al.,|[2022). However, gradient
descent based methods are still useful in this case. When these methods are applied to non-convex
objectives, they treat the function f as locally convex and aim to converge to a local minimum.
Despite this simplification, such methods have gained popularity in practice due to their superior
performance compared to other approaches for non-convex optimization, such as convex relaxation-
based methods (Tibshirani, (1996} |Cai et al., [2010).

2.1 STOCHASTIC GRADIENT DESCENT

Arguably, one of the most prominent meta-methods for tackling non-convex optimization problems
is stochastic gradient descent (SGD). The formulation of SGD is presented as the following iterative
algorithm: 2**! = 2* — y¢*. Here, g* € R? serves as a stochastic estimator of the gradient
V f(x¥). SGD essentially mimics the classical gradient descent algorithm, and recovers it when
g* = Vf(z*). In this scenario, the method approximates the objective function f using a linear
function and takes a step of size -y in the direction that maximally reduces this approximation. When
the stepsize is sufficiently small, and the function f is suitably smooth, it can be demonstrated that
the function value decreases, as discussed in (Bubeck et al., 2015}, |Gower et al., 2019).

However, computing the full gradient can often be computationally expensive. In such cases,
stochastic approximations of the gradient come into play. Stochastic estimators of the gradient can
be employed for various purposes, leading to the development of different methods. These include
stochastic batch gradient descent (Nemirovski et al., 2009; Johnson & Zhang, 2013; |Defazio et al.,
2014])), randomized coordinate descent (Nesterov, |2012; |[Wright, 2015), and compressed gradient
descent (Alistarh et al.|[2017; |Khirirat et al.| 2018; Mishchenko et al.|2019)). The latter, compressed
gradient descent, holds particular relevance to this paper, and we will delve into a more detailed
discussion of it in subsequent sections.

2.2  SECOND ORDER METHODS

The stochastic gradient descent is considered as a first-order method as it uses only the first order
derivative information. Although being immensely popular, the first order methods are not always
optimal. Not surprisingly, using higher order derivatives in deciding update direction can yield to
faster algorithms. A simple instance of such algorithms is the Newton Star algorithm (Islamov et al.,
2021):

aFHl =gk — (VQf(:v*))_1 Vf(zh), (NS)

where 2* is the minimum point of the objective function. The authors establish that under specific
conditions, the algorithm’s convergence to the unique solution x* in the convex scenario occurs at a
local quadratic rate. Nonetheless, its practicality is limited since we do not have prior knowledge of
the Hessian matrix at the optimal point. Despite being proposed recently, the Newton-Star algorithm
gives a deeper insight on the generic Newton method (Gragg & Tapia,|1974; Miel,|1980; |Yamamoto),
1987):

gt =k — (V%}t(ﬂck))i1 vf(xk)- (NM)

Here, the unknown Hessian of the Newton-Star algorithm, is estimated progressively along the it-
erations. The latter causes elevated computational costs, as the inverting a large square matrix is
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expensive. As an alternative, quasi-Newton methods replace the inverse of the Hessian at the it-
erate with a computationally cheaper estimate (Broyden, [1965; |[Dennis & Mor¢, [1977; |Al-Baali &
Khalfan, 2007; |Al-Baali et al.| 2014).

2.3 FIXED MATRIX STEPSIZES

The det-CGD algorithm falls into this framework of the second order methods as well. Proposed
by |Li et al. (2024bﬂ the algorithm suggests using a uniform “upper bound” on the inverse Hessian
matrix. Assuming matrix smoothness of the objective (Safaryan et al., 2021)), they replace the scalar
stepsize with a positive definite matrix ID. The algorithm is given as follows:

2F = gk — DSEV f(2F). (det-CGD)

Matrix D. Here, D plays the role of the stepsize. Essentially, it uniformly lower bounds the
inverse Hessian. The standard SGD is a particular case of this method, as the scalar stepsize v can
be seen as a matrix Iy, where I is the d-dimensional identity matrix. An advantage of using a
matrix stepsize is more evident if we take the perspective of the second order methods. Indeed, the
scalar stepsize I uniformly estimates the largest eigenvalue of the Hessian matrix, while D can
capture the Hessian more accurately. The authors show both theoretical and empirical improvement
that comes with matrix stepsizes.

Matrix S*. We assume that S* is a positive semi-definite, stochastic sketch matrix. Furthermore,
it is unbiased: E[S*] = I;. We notice that can be seen as a matrix stepsize instance of
SGD, with g* = S¥V f(2*). The sketch matrix can be seen as a linear compressing operator, hence
the name of the algorithm: Compressed Gradient Descent (CGD) (Alistarh et al.l 2017} [Khirirat
et al., [2018). A commonly used example of such a compressor is the Rand-7 compressor. This
compressor randomly selects 7 entries from its input and scales them using a scalar multiplier to
ensure an unbiased estimation. By adopting this approach, instead of using all d coordinates of the
gradient, only a subset of size 7 is communicated. Formally, Rand-7 is defined as follows:

d < .
S = - z; eie; . )
]:

Here, e;, denotes the i;-th standard basis vector in R?. For a more comprehensive understanding of
compression techniques, we refer to|Safaryan et al.| (2022b)).

2.4 THE NEIGHBORHOOD OF THE DISTRIBUTED DET-CGD1

The distributed version of det-CGD follows the standard federated learning paradigm (McMahan
et al, 2017). The pseudocode of the method, as well as the convergence result of [Li et al|(2024b),
can be found in Appendix [ Informally, their convergence result can be written as

i Besen5] <0 (HE5) vt

where o > 0 is a constant that can be controlled. The crucial insight from this result is that the
error bound does not diminish as the number of iterations increases. In fact, by controlling v and
considering a large K, it is impossible to make the second term smaller than €. This implies that the
algorithm converges to a certain neighborhood surrounding the (local) optimum. This phenomenon
is a common occurrence in SGD and is primarily attributable to the variance associated with the
stochastic gradient estimator. In the case of det-CGD the stochasticity comes from the sketch S*.

2.5 VARIANCE REDUCTION

To eliminate this neighborhood, various techniques for reducing variance are employed. One of
the simplest techniques applicable to CGD is gradient shifting. By replacing S*V f(z*) with

'In the original paper, the algorithm is referred to as det-CGD, as there is a variant of the same algorithm
named det-CGD?2. Since we are going to use only the first one and our framework is applicable to both, we will
remove the number in the end for the sake of brevity.
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SE(V f(z*) =V f(2*)) + V f(2*), the neighborhood effect is removed from the general CGD. This
algorithm is an instance of a more commonly known method called SGD,. (Gower et al., |2020).
However, since the exact optimum x* is typically unknown, this technique encounters similar chal-
lenges as the Newton-Star algorithm mentioned earlier. Fortunately, akin to quasi-Newton methods,
one can employ methods that iteratively learn the optimal shift (Shulgin & Richtarik, [2022)). A line
of research focuses on variance reduction for CGD based algorithms on this insight.

To eliminate the neighborhood in the distributed version of CGD, denoted as det-CGD1, we apply
a technique called MARINA (Gorbunov et al.l |2021). MARINA cleverly combines the general
shifting (Shulgin & Richtarik] 2022)) technique with loopless variance reduction techniques (Qian
et al.| |2021). This approach introduces an alternative gradient estimator specifically designed for
the federated learning setting. Thanks to its structure, it allows to establish an upper bound on the
stationarity error that diminishes significantly with a large number of iterations. In this paper, we
construct the analog of the this algorithm called det-MARINA, using matrix stepsizes and sketch
gradient compressors. For this new method, we prove a convergence guarantee similar to the results
of |Li et al.| (2024b)) without a neighborhood term.

Furthermore, we also propose det-DASHA, which is the extension of DASHA in the matrix step-
size setting. The latter was proposed by [Tyurin & Richtarik| (2024) and it combines MARINA
with momentum variance reduction techniques (Cutkosky & Orabona, [2019). DASHA offers better
practicality compared to MARINA, as it always sends compressed gradients and does not need to
synchronize among all the nodes.

2.6 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section [3]discusses the general mathematical frame-
work. Sectiond]and Section [5] present the det-MARINA and det-DASHA algorithms, respectively.
We show the superior theoretical performance of our algorithms compared to the relevant existing
algorithms, that is MARINA, DASHA and det-CGD in Section@ The experimental results validat-
ing our theoretical findings are presented in Section[7} with additional details and setups available in
the Appendix. We conclude the paper by outlining several directions of future work in Section|[3]

3 MATHEMATICAL FRAMEWORK

In this section we present the assumptions that we further require in the analysis.
Assumption 1. (Lower Bound) There exists f* € R such that, f(z) > f* forall x € R%.

This is a standard assumption in optimization, as otherwise the problem of minimizing the objective
would not be correct mathematically. We then need a matrix version of Lipschitz continuity for the
gradient.

Definition 1. (L-Lipschitz Gradient) Assume that f : R? — R is a continuously differentiable
Sfunction and matrix L € S‘i - We say the gradient of f is L-Lipschitz if for all x,y € R?

Vi) =Vile-+ <llz =yl 3)

In the following, we will assume that (3) is satisfied for component functions f;.

Assumption 2. Each function f; is L;-gradient Lipschitz, while f is L-gradient Lipschitz.

In fact, the second half of the assumption is a consequence of the first one. Below, we formalize this
claim.

Proposition 1. If f; is L;-gradient Lipschitz for every i = 1, ... n, then function f has L-Lipschitz
gradient with L € S‘_f_ . satisfying

b ) b B 7)1
i=1

Remark 1. In the scalar case, where L = LI, L; = L;I,, the relation becomes L* = % Z?:l L?.
This corresponds to the statement in Assumption 1.2 in (Gorbunov et al.| 2021).
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Nevertheless, the matrix L found according to Proposition [I]is only an estimate. In principle, there
might exist a better Ly < L such that f has L ¢-Lipschitz gradient.

More generally, this condition can be interpreted as follows. The gradient of f naturally belongs
to the dual space of R4, as it is defined as a linear functional on R?. In the scalar case, ¢5-norm is
self-dual, thus reduces to the standard Lipschitz continuity of the gradient. However, with the
matrix smoothness assumption, we are using the L-norm for the iterates, which naturally induces
the L~!-matrix norm for the gradients in the dual space. This insight, which is originally presented
by |Nemirovski & Yudin| (1983)), plays a key role in our analysis.

See Appendix [C] for a more thorough discussion on the properties of Assumption[2] as well as its
connection to matrix smoothness (Safaryan et al., 2021)).

4 MARINA-BASED VARIANCE REDUCTION

In this section, we present our algorithm det-MARINA with its convergence result. We construct
a sequence of vectors g which are stochastic estimators of V f(x*). At each iteration, the server
samples a Bernoulli random variable (coin flip) ¢, and broadcasts it in parallel to the clients, along
with the current gradient estimate ¢g*. Each client, then, does a det-CGD-type update with the
stepsize D and a gradient estimate g*. The next gradient estimate g**! is then computed. With a
low probability, that is when ¢, = 1, we take the ng to be the full gradient V f (:c’”l). Otherwise,
we update it using the compressed gradient differences at each client. See Algorithm |I| for the
pseudocode of det-MARINA.

Algorithm 1 det-MARINA
1: Input: starting point 2°, stepsize matrix D, probability p € (0, 1], number of iterations K
2: Initialize ¢° = V f ()
3: fork=0,1,..., K —1do

4:  Sample ¢;, ~ Be(p)

5:  Broadcast ¢* to all workers
6: fori=1,2 ...in parallel do
7: ol =k — D . gk

8: if Ckk::1 1 then

9: gitt = Vfi(ak )
10: elselc .
11: g9; "t =g" + SF (Vfi(a"*!) = V fi(a"))
12: end if
13:  end for
14: bttt =157 gt
15: end for

16: Return: % chosen uniformly at random from {xk}kK:_O1

4.1 CONVERGENCE GUARANTEES

In the following theorem, we formulate one of the main results of this paper, which guarantees the
convergence of Algorithm [I|under the above-mentioned assumptions.

Theorem 1. Assume that Assumptions[l|and[2| hold, and the following condition on stepsize matrix

D e Sle_ holds,
np
where R(D,S) i= % 501 Amax (L) Amax (L7 HILTH) XA (E [SEDSF] — D). Then,
after K iterations of det-MARINA, we have
: _ 20 - )
~ det(D)Yd. K~

E [||Vf<:%K>H (5)

D
det(D)1/d

Here, &% is chosen uniformly randomly from the first K iterates of the algorithm.
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The criterion ||H2D /det(p)1/4 18 the same as that used in |Li et al.| (2024b), known as determinant
normalization. The weight matrix of the matrix norm has determinant 1 after normalization, which
makes it comparable to the standard Euclidean norm.

Remark 2. We notice that the right-hand side of the algorithm vanishes with the number of itera-
tions, thus solving the neighborhood issue of the distributed det-CGD. Therefore, det-MARINA is
indeed the variance reduced version of det-CGD in the distributed setting and has better conver-
gence guarantees.

Remark 3. Theorem|l|implies the following iteration complexity for the algorithm. In order to get
an €2 stationarity erroif| the algorithm requires K iterations, with

L 2/ — 1)
~ det(D)Y/d . g2’
Remark 4. In the case where no compression is applied, that is we have Sf = 1, condition (@)

reduces to D < L. The latter is due to E [S* DSF| = D, which results in R(D,S) = 0. This
is expected, since in the deterministic case det-MARINA reduces to GD with matrix stepsize.

The convergence condition and rate of matrix stepsize GD can be found in (Li et al.,2024b). Below
we do a sanity check to verify that the convergence condition for scalar MARINA can be obtained.

Remark 5. Let us consider the scalar case. Thatis L; = L;1;,L = LI;,D = vI; and w =
Amax (IE [(S,’“)T Sf]) — 1. Then, the condition (@) reduces to

—1

L <1+ (lp)“))]
pn

The latter coincides with the stepsize condition of the convergence result of scalar MARINA.

7 <

4.2  OPTIMIZING THE MATRIX STEPSIZE

Now let us look at the right-hand side of (3)). We notice that it decreases in terms of the determinant
of the stepsize matrix. Therefore, one needs to solve the following optimization problem to find the
optimal stepsize:

minimize log det(D ™)
subject to D satistying (@).

The solution of this constrained minimization problem on Si . is not explicit. In theory, one may
show that the constraint (@) is convex and attempt to solve the problem numerically. However, as
stressed by |L1 et al.|(2024b), the similar stepsize condition for det-CGD is not easily computed using
solvers like CVXPY (Diamond & Boyd, [2016). Instead, we may relax the problem to certain linear
subspaces of S‘i 1. In particular, we fix a matrix W € Si ., and define D := yW. Then, the
condition on the matrix D becomes a condition for the scalar -, which is given in the following
corollary.

Corollary 1. Let W € Si 1 defining D :=~-W, where y € R.. then the condition in {@) reduces
to the following condition on y

- 22w
T 1+ /1+4aB Aw shw’

vy (6)

where Aw s = Amax (E [SFWSF] - W), Aw = )\Eléx(W%LW%), a — 1n—pp and 8 =
% Z?:l )‘max (L’L) ° )\max (L_lLi).

>We say a (possibly random) vector z € R? is an e-stationary point of a possibly non-convex function
fiRY = RFE[|Vf(z) HQ] < €2. The expectation is over the randomness of the algorithm
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This means that for every fixed W, we can find the optimal scaling coefficient . In section Sec-
tion [6] we will use this corollary to prove that a suboptimal matrix step size, determined in this
efficient way, is already better than the optimal scalar step size.

Extension to det-CGD2. A variant of det-CGD, called det-CGD2, was also proposed by |Li
et al.| (2024b). This algorithm, has the same structure as det-CGD with the sketch and stepsize
interchanged. It was shown, that this algorithm has explicit stepsize condition in the single node
setting. In Appendix [G] we propose the variance reduced extension of the distributed det-CGD2
following the MARINA scheme.

5 DASHA-BASED VARIANCE REDUCTION

In this section, we present our second algorithm based on DASHA. The latter utilizes a different type
of variance reduction based on momentum (MVR). Compared to MARINA, dasha makes simpler
optimization steps and does not require periodic synchronization with all the nodes. Notice that one
may further simplify the notations here used in the algorithm. However, we keep it this way as it is
consistent with (Tyurin & Richtarik, [2024)).

Algorithm 2 det-DASHA

1: Input: starting point 29 € RY, stepsize matrix D &€ Si 4, momentum a € (0, 1], number of
iterations K

2: Initialize g, h? € R? on the nodes and ¢° = L 3™ | 9 on the server

3: fork=0,1,..., K —1do

4: xk"’l:mk—D-gk

5 Broadcast " *1 to all nodes

6: fori=1,2,...nin parallel do

7

8

hk+1 Vf( k+1)
mk-i—l Sk (hk-i-l hi_g —a (gf _ hf))

9: gf'H =g; +mk+1

10 Send m* ™! to the server.

11:  end for

12: ghtl = gh 4 %Z?:l mf“

13: end for )

14: Return: 7% chosen uniformly at random from {z*} ;'

5.1 THEORETICAL GUARANTEES

Theorem 2. Suppose that Assumptions I 1| and 2] I hold. Let us initialize g0 = hY = V fi(z°) for all
i € [n] in Algorithm[2} and define

Ap.s = Amax (E[SFDS!] — D), wp = Amax (D7) - Ap.s.

Ifa= m and the following condition on stepsize D &€ Si . is satisfied

D [ — P (D) “’D (wp +1) ZAmax

7 ’Lv

then the following inequality holds for the iterates of Algorithm 2]

2(f(2°) = f*)
E {va HD/(det(D))l/d] S W

K

Here " is chosen uniformly randomly from the first K iterates of the algorithm.

Remark 6. The term Ap s can be viewed as the matrix version of y - w, where w is associated with
the sketch, and ~y is the scalar stepsize. On the other hand, the wp is the extension of w in matrix
norm. Similar to Remark 3 plugging in scalar arguments in the algorithm, we recover the result
from|Tyurin & Richtdrik|(2024).
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Following the same scheme as in Section we choose D = vy - W, where W € S‘i o Thus,
for a fixed W, we relax the problem of finding the optimal stepsize to the problem of finding the
optimal scaling factor vy > 0.

Corollary 2. For a fixed W € Si 1, the optimal scaling factor yw € R is given by

B 22w
14 /14 16Cw Amin (L) - A

w

)

where Cyy = Amax (W) - ww (dww + 1)/n, and Ay == A}

max

(L%WL%).

We observe that the structure of the optimal scaling factor for obtained above is similar to the one
obtained in Corollary [T}

The availability of L: For both det-MARINA and det-DASHA, in order to determine the matrix
stepsize, the knowledge of L is needed, if L is known, better complexities are guaranteed. When
L is unknown, a closed-form solution can be obtained for generalized linear models. In more gen-
eral cases, L; can be treated as hyperparameters and estimated using first-order information via a
gradient-based method (Wang et al., [2022). One can think of this as some type of preprocessing
step, after which the matrices are learnt.

6 COMPLEXITIES OF THE ALGORITHMS

6.1 DET-MARINA

The following corollary formulates the iteration complexity for det-MARINA for W = L~1.
Corollary 3. Ifwe take W = L1, then the condition (6) on v is given by

fy§2(1+\/1+4aﬁ~AL71,5)_1. (7)

In order to satisfy e-stationarity, that is E [HVf(fK) H2 D ] < €2, we require

det(D)1/d

K>0 <W~ (1+ \/1+4aﬂ.AL_1,S)> ,

where Ao = f(2°) — f(x*). Moreover, this iteration complexity is always better than the one of
MARINA.

The proof can be found in the Appendix. In fact, we can show that in cases where we fix W = I;
and W = diag_1 (L), the same conclusion also holds, relevant details can be found in Ap-
pendix This essentially means that det-MARINA always has a “larger” stepsize compared
to MARINA, even if the stepsize is suboptimal for the sake of efficiency, which leads to a better iter-
ation complexity. In addition, because we are using the same compressor for those two algorithms,
the communication complexity of det-MARINA is also provably better than that of MARINA.

In order to compute the communication complexity, we borrow the concept of expected density from
Gorbunov et al.|(2021).

Definition 2. For a given sketch matrix S € S‘i, the expected density is defined as

(s = sup E[[|Sz|],
zERY

where |||, denotes the number of non-zero components of x € R<.

In particular, we have (rang-r = 7. Below, we state the communication complexity of det-MARINA
with W = L~! and the Rand-7 compressor.
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Corollary 4. Assume that we are using sketch S ~ S with expected density (s. Suppose also we
are running det-MARINA with probability p and we use the optimal stepsize matrix with respect to
W = L~'. Then the overall communication complexity of the algorithm is given by O((Kp +

d+ (1 - p)KQg). Specifically, if we pick p = (s/d, then the communication complexity is given

by
0 <d ¢ BodeB)? (cs o\ 2 ststa- @))) -

Notice that in case where no compression is applied, the communication complexity reduces to

O(dﬁo'det(L)% /<?). The latter coincides with the rate of matrix stepsize GD (see (Li et al., 2024b)).
Therefore, the dependence on ¢ is not possible to improve further since GD is optimal among first
order methods (Carmon et al., [2020).

ala, n = 150, p = 0.5, rand-60 sketch w2a, n =200, p = 0.5, rand-60 sketch a3a, n =300, p = 0.5, rand-60 sketch

@ DCGD with 7. ® DCGD with v,

1 det-CGD with D3
—a— MARINA with 7, 10t
< det-MARINA with D;_,

> DASHA with 7.

1o —s= det-DASHA with D[’
.
)

> DASHA with 7,

00 05 10 00 05 10

15 20 25 ] 1 2 3 a 15 25
Number of bytes 100 Number of bytes o Number of bytes o

Figure 1: Comparison of DCGD with optimal scalar stepsize, det-CGD with matrix stepsize D3,
MARINA with optimal scalar stepsize, DASHA with optimal scalar stepsize, det-MARINA with
optimal stepsize D7 _; and det-DASHA with optimal stepsize D7* ;. Throughout the experiment,
we are using Rand-7 sketch with 7 = 60, and each algorithm is run for a fixed number of iterations
K = 10000. The Gk p in the y-axis is defined in (63), which is the average squared matrix norm
of the gradients.

6.2 DET-DASHA

The difference of compression mechanisms, does not allow to have a direct comparison of the com-
plexities of these algorithms. In particular, det-MARINA compresses the gradient difference with
some probability p, while det-DASHA compresses the gradient difference with momentum in each
iteration.

Corollary 5. Ifwe pick D =~y -1 - L™%, then in order to reach an € stationary point, det-DASHA
needs K iterations with

f&®) - f* :
K> m (1 + \/1 +16CL-1 Amin (L)) .

The following corollary compares the complexities of DASHA and det-DASHA. For the sake of
brevity, we defer the complexities and other details to the proof of this corollary.

Corollary 6. Suppose that the conditions in Theorem[2)hold, then compared to DASHA, det-DASHA
with W = L~ always has a better iteration complexity, therefore, communication complexity as
well.

The following corollary suggests that the communication complexity of det-DASHA is better than
that of det-MARINA,

Corollary 7. The iteration complexity of det-MARINA with p = 1/(w, —1+1) and det-DASHA with
momentum 1/ (2w, _, +1) is the same, therefore the communication complexity of det-DASHA is better
than the communication complexity of det-MARINA.

This is expected since the same relation occurs between MARINA and DASHA as it is described by
Tyurin & Richtarik| (2024] Table 1). We refer the readers to Appendix [E.2.1]
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7 EXPERIMENTS

This section contains several plots which confirm our theoretical improvements on the existing meth-
ods. Figure [T| shows that the performance in terms of communication complexity of det-DASHA
and det-MARINA is better than their scalar counterpart DASHA and MARINA respectively. This
validates the efficiency of using a matrix stepsize over a scalar stepsize. Further, we notice that
det-DASHA and det-MARINA have better communication complexity in this case, compared to
det-CGD. This demonstrates the effectiveness of applying variance reduction. Finally, as expected,
det-DASHA has better communication complexity than det-MARINA. We refer the readers to the
appendix for more technical details of the experiments.

8 FUTURE WORK

1) In this paper, we have only considered (linear) sketches as the compression operator. However,
there exists a variety of compressors which are useful in practice that do not fall into this category.
Extending det-CGD and det-MARINA for general unbiased compressors is a promising future work
direction. ii) Additionally, given recent successes with adaptive stepsizes (e.g., (Loizou et al.} 2021}
Orvieto et al.l 2022} [Schaipp et al.| [2023)), designing an adaptive matrix stepsize tailored to our
case could be viable. iii) Finally, recent advances suggest that server step sizes play a key role in
accelerating federated learning algorithms (Jhunjhunwala et al., 2023; [Li et al.,2024a). Designing a
matrix version of the server step size could also be interesting.
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A ADDITIONAL DETAILS

A.1 NOTATIONS

The standard Euclidean norm on R? is defined as ||-||. We use SZ . (resp. S?) to denote the positive

definite (resp. semi-definite) cone of dimension d. S? is used to denote all symmetric matrices of
dimension d. We use the notation I; to denote the identity matrix of size d x d, and Oy to denote
the zero matrix of size d x d. Given Q € S% , and z € R,

|zllg == VaTQz = /(z, Qux),
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where (-, -) is the standard Euclidean inner product on R?. For a matrix A € S%, we use Apax (A)
(resp. Amin (A)) to denote the largest (resp. smallest) eigenvalue of the matrix A. For a function
f : R? — R, its gradient and its Hessian at a point 2 € R? are respectively denoted as V f(x) and
V2 f(x). For the sketch matrices S¥ used in the algorithm, we use the superscript & to denote the
iteration and subscript i to denote the client, the matrix S¥ is thus sampled for client i in the k-th
iteration from the same distribution S. For any matrix A € S%, we use the notation diag (A) € S¢
to denote the diagonal of matrix A.

A.2 ADDITIONAL PRIOR WORK

Numerous effective convex optimization techniques have been adapted for application in non-convex
scenarios. Here’s a selection of these techniques, although it’s not an exhaustive list: adaptivity
(Dvinskikh et al., [2019; [Zhang et al., 2020b), variance reduction (J Reddi et al., 2016} |Li et al.,
2021)), and acceleration (Guminov et al.| 2019)). Of particular relevance to our work is the paper by
Khaled & Richtarik| (2023), which introduces a unified approach for analyzing stochastic gradient
descent for non-convex objectives. A comprehensive overview of non-convex optimization can be
found in (Jain et al., 2017; Danilova et al.,2022)).

An illustrative example of a matrix stepsized method is Newton’s method, which has been a long-
standing favorite in the optimization community (Gragg & Tapia, [1974; Miell [1980; |Yamamoto,
1987). However, the computational complexity involved in computing the stepsize as the inverse of
the Hessian of the current iteration is substantial. Instead, quasi-Newton methods employ a readily
computable estimator to replace the inverse Hessian (Broyden, [1965; Dennis & More¢, (1977} |Al-
Baali & Khalfan, [2007; |Al-Baali et al.,[2014). An important direction of research that is relevant to
our work, studies distributed second order methods. Here is a non-exhaustive list of papers in this
area: (Wang et al., [2018} |Crane & Roosta, [2019}|Zhang et al., 2020a; [slamov et al., 2021} |Alimisis
et al.| 2021} Safaryan et al.| 2022a).

The Distributed Compressed Gradient Descent (DCGD) algorithm, initially proposed by [Khirirat
et al|(2018)), has seen improvements in various aspects, as documented in works such as (Li et al.,
2020; Horvath et al.| 2022). Its variance reduced version with gradients shifts was studied by Shulgin
& Richtarik! (2022)) in the (strongly) convex setting. Additionally, there exists a substantial body of
literature on other federated learning algorithms employing unbiased compressors (Alistarh et al.,
2017; Mishchenko et al.| [2019; |Gorbunov et al., 2021 Mishchenko et al.| [2022; Maranjyan et al.,
2022} [Horvath et al., [2023)).

Variance reduction techniques have gained significant attention in the context of stochastic batch
gradient descent that is prevalent in machine learning. Numerous algorithms have been developed
in this regard, including well-known ones like SVRG (Johnson & Zhang| 2013), SAG (Schmidt;
et al.,2017), SDCA(Richtarik & Takac, [2014), SAGA (Defazio et al.,2014), MISO (Mairal, 2015),
and Katyusha (Allen-Zhul 2017). An overview of more advanced methods can be found in (Gower
et al., [2020). Notably, SVRG and Katyusha have been extended with loopless variants, namely
L-SVRG and L-Katyusha (Kovalev et al. 2020} |Qian et al.l 2021)). These loopless versions stream-
line the algorithms by eliminating the outer loop and introducing a biased coin-flip mechanism at
each step. This simplification eases both the algorithms’ structure and their analyses, while preserv-
ing their worst-case complexity bounds. L-SVRG, in particular, offers the advantage of setting the
exit probability from the outer loop independently of the condition number, thus, enhancing both
robustness and practical efficiency.

This technique of coin flipping allows to obtain variance reduction for the CGD algorithm. A rele-
vant example is the DIANA algorithm proposed by Mishchenko et al.[(2019). Its convergence was
proved both in the convex and non-convex cases. Later, MARINA (Gorbunov et al., 2021) obtained
the optimal convergence rate, improving in communication complexity compared to all previous
first order methods. Finally, there is a line of work developing variance reduction in the federated
setting using other methods and techniques (Chraibi et al., 2019; Hanzely & Richtarik, [2020; [Dinh
et al.| 2020; [Peng et al.| 2022).

Another method to obtain variance reduction is based on momentum. It was initially studied by
Cutkosky & Orabonal (2019), where they propose the STORM algorithm, which is a stochastic gra-
dient descent algorithm with a momentum term for non-convex objectives. They obtain stationarity
guarantees using adaptive stepsizes with optimal convergence rates. However, they require the vari-
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ance of the stochastic gradient to be bounded by a constant, which is impractical. Using momentum
for variance reduction has since been widely studied (Liu et al., 2020; [Khanduri et al., 2020; [Tran-
Dinh et al.,[2022; L1 et al., [2022).

B BASIC FACTS

In this section, we present some basic facts along with their proofs that will be used later in the
analysis.
Fact 1. For two matrices A, B € S%, denote the i-th largest eigenvalues of A, B as \;(A), \i(B),
if A = B, then the following holds

Ai(A) > \i(B). ®)

Proof. According to the Courant-Fischer theorem, we write

-
B

Ai(B) = max = min .
S:dim S=i zeS\{0} zTx

Let S¢ .. be a subspace of dimension i where the maximum is attained, we then have
' Bx
LS mx\{0} x
TAac rT Az
< min T < max  min = Ai(A).
z€SE .. \{0} X S:dim S=ixzeS\{0} &

The following is a generalization of the bias-variance decomposition for the matrix norm.

Fact 2. (Variance Decomposition) Given a matrix M € S, any vector ¢ € R%, and a random
vector € R such that B [||z||] < +oc, the following bound holds

E|lle —Elall3] = E [l — clli;] — IE[a] = el - ©)
Proof. We have

E [l - cllis| = IE L] - cllzs

=E [z" Mz] —QE[ " Mc+c¢"Mc—E[z]" ME[z]+2E[z]" Mc—c' Mc
—E[z"Mz] —Ez]" ME[2]
—E[z"Mz] -2 -E[z]" ME[z] +E[z]" ME[z]
=E [z~ E[2]ll3] .
This completes the proof. O

Fact 3. The map (A, B, X) — A — X B~'X is jointly concave on S‘i X Si+ x S It is also
monotone increasing in variables A and B.

We refer the reader to Corollary 1.5.3 of |Bhatial (2009)) for the details and the proof. The following
is a result of Fact[Tland Fact[3

Fact 4. Suppose L; € SﬂiH, forv = 1,...,n. Then, for every matrix X € SﬁiH, we define the
following mapping
f(X,Lq,...,L,) =

Then the above mapping is monotone decreasing in X.
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Proof. First we notice that from Factthe mapping X + X ~! is monotone decreasing. The latter
means that if we have any X, X» € Si . such that X; = X5, we have

X< x;h
Then it immediately follows, due to Fact[I] that
0 < Amax(X7 1) < Amax(X571).
We also notice that the relation Amax (LiX ™) = Amax (L?X‘lLi%) = Amax (X 7'L;), and
that the mapping X LZ.% X *1L§ is also monotone decreasing for every i € [n], so we have
0 < Amax (LiX7 ") < Amax (Li X5 .
Since we have the coefficient Ayax (L;) > 0, it follows that,
f(X1,Ly,...,L,) < f(Xa,Ly,...,Ly,).
This means that f(X) is monotone decreasing in X . O

Fact 5. For any two matrices A, B € S‘i 1, the following relation regarding their largest eigenvalue
holds
)\max (AB) S )\max (A) . )\max (B) . (10)

Proof. Using the Courant-Fischer theorem, we can write

.
. ' ABx
Amax (AB) = min - max ————
S:dim S=d z€S\ {0} Tr' x
x' ABzx
= max = ————
zeRIN{0}) 2T
x ! Az 2T Bx
< max max

2€RIN[0} T1T  weRiV{o} T
== )\max (A) : /\max (B) .

Fact 6. Given matrix Q € S% , and its matrix norm [l its associated dual norm is ||-[| -

Proof. Let us first recall the definition of the dual norm ||-||,. For any vector z € R, it is defined as
T
2], :=sup{z  : [Jz[|g < 1}.

Solving this optimization problem is equivalent to solving sup{z 'z : ||x||é = 1}. The Lagrange
function is given as

flz, ) =2"z -\ <||x||2Q - 1) =z'z-Az'Qz—1).
Computing the derivatives we deduce that

Of (z,\) 0f(x,\)

2
This leads to
W lles @
2 Izl g

As a result, we have

sup{z 'z : ||:E||2Q =1}

TH—1
z z
LT, 2 Q72

sup{=" : flall < 1}

- ||z||Q71 = HZHQ71

19



Under review as a conference paper at ICLR 2025

C PROPERTIES OF MATRIX SMOOTHNESS

C.1 THE MATRIX LIPSCHITZ-CONTINUOUS GRADIENT

In this section we describe some properties of matrix smoothness, matrix gradient Lipschitzness and
their relations. The following proposition describes a sufficient condition for the matrix Lipschitz-
continuity of the gradient.

Proposition 2. Given twice continuously differentiable function f : R® — R with bounded Hessian,
V3f(z) = L, (11)

where L € Si 1 and the generalized inequality holds for any x € R Then f satisfies (3) with the

matrix L.

The below proposition is a variant of Proposition[I]and it characterizes the smoothness matrix of the

objective function f, given the smoothness matrices of the component functions f;.

Proposition 3. Assume that f; has L;-Lipschitz continuous gradient for every i € [n], then function
f has L-Lipschitz gradient with L € Si . satisfying

L uin (B) = > A (£) - L. (12)
=1

C.1.1 QUADRATICS

Given a matrix A € S% and a vector b € R?, consider the function f(z) = 1z" Az +b 2z +c.

Then its gradient is computed as V f(z) = Az + b and V2 f(z) = A. Inserting gradients formula
into (3)) we deduce

\/(m —y)TAL T A(z —y) < \/(x —y)" L(z —y),
for any x,y € R?. This reduces to
AL 'A< L. (13)
Since A € S¢ ,, we can also rewrite as
ASL7'AT X ATELATE,
which is equivalent to
A<L. (14)

Therefore, the “best” L € S, that satisfies (8) is L = A = V2 f(x), for every x € R%. Now, let
us look at a more general setting. Consider f given as follows,

flz) = Z ¢i(M;x),

where M; € R%*? Here f : R? — R is the sum of functions ¢; : R% ~ R. We assume that each
function ¢; has matrix L; Lipschitz gradient. We have the following lemma regarding the matrix
gradient Lipschitzness of f.

Proposition 4. Assume that functions f and {¢;};_, are described above. Then function f has
L-Lipschitz gradient, if the following condition is satisfied:

5 1 1
3 Amax (Lf MiL‘lMiTLf) =1 (15)

i=1

Note that Proposition [ is a generalization of the previous case of quadratics, if we pick s = 1,
M,; = Az and o1(x) = x ! I;x, the condition becomes I = A, which is exactly the solution
given by (T4). Thus we recover the result for quadratics. The linear term bz + ¢ is ignored in this
case. In Proposition @, we only intend to give a way of finding a matrix L € Si 4 so that f has
L-Lipschitz gradient. This does not mean, however, the L here is optimal. The proof is deferred to

Appendix
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C.2 COMPARISON OF THE DIFFERENT SMOOTHNESS CONDITIONS

Let us recall the definition of matrix smoothness.

Definition 3. (L-smoothness) Assume that f : R* — R is a continuously differentiable function
and matrix L € SfiH. We say that f is L-smooth if for all x,y € R¢

F() < £@) + (VI @)z ) + 5 e~ ol (16)

We provide a proposition here which describes an equivalent form of stating L-matrix smoothness
of a function f. This proposition is used to illustrate the relation between matrix smoothness and
matrix Lipschitz gradient.

Proposition 5. Let function f : R® — R be continuously differentiable. Then the following state-
ments are equivalent.

(i) fis L-matrix smooth.

(i) (V/(z) = Vf(y),x—y) < |lz - y|f forall 2,y € R
The two propositions, Proposition [6] and Proposition [7] formulated below illustrate the relation be-

tween matrix smoothness of f and matrix gradient Lipschitzness of f.

Proposition 6. Assume f : R? — R is a continuously differentiable function, and its gradient is
L-Lipschitz continuous with L € Sf,l_ . Then function f is L-matrix smooth.

Proposition 7. Assume f : R® — R is a continuously differentiable function. Assume also that f is
convex and L-matrix smooth. Then V f is L-Lipschitz continuous.

The next proposition shows that standard Lipschitzness of the gradient of a function is an immediate
consequence of matrix Lipschitzness.

Proposition 8. Assume that the gradient of f is L-Lipschitz continuous. Then V f is also L-
Lipschitz with L = Apax (L).

C.3 PROOFS OF THE PROPOSITIONS REGARDING SMOOTHNESS

C.3.1 PROOF OF PROPOSITION(]

We start with the definition of L-Lipschitz gradient of function f, and pick two arbitrary points
d

z,y € RY,

V)~ V@I = HiZwm—wi(y»

i=1

L1

Applying the convexity of ||- ||2L,1 , we have
1 n
VI @) = VIl < =3 IVFiE) = Vi@l
i=1

For each term within the summation, we use the definition of matrix norms and replace the matrix
L~ with L;1/2L3/2L*1L3/2Li—1/2, foreveryi=1,...,n:

N

Vi@ - Vil = =3 (LA - VA)) B (5 V) - V)

< 23 e (B L)) [ (V) - V)|
i=1
- - Z Ao (LELTVLE) IV i) = Vi) 1
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Using the assumption that the gradient of each function f; is L;-Lipschitz, we obtain,

1 <& 1 .1
IV/@) = VIG5 <~ D A (LLT'EE ) o=yl

i=1

Replacing L; ! with L=Y/2LY2L - LY/2L~1/?

IV f () = V()3

|
\
>
g
%
—
&~
t~
h\
SN—
=
0
I
=,
0
vl
&~
&~
5
0
I
s

IN
S|
>
=
%
—
h
b'
b‘\
~
>/
8
%
—
=
vl
~
~—
~
8
I
&
(]

Using Fact[5] we are deduce the followmg bound,

1 n
(TL Z /\rnax (Lil) : )\max (L’L) : )\max (LZL1)> : ||Jj - y||2L
i=1

2
= |-yl

IV f() = V()3

IN

C.3.2 PROOF OF PROPOSITION[2]

We start with picking any two vector x,y € R%. We have

IV f(z) = V)l

/ V2f(0x + (1 — 0)y)(x —y)do
0 L-1

T (/01V2f(9x+ (1- 9)y)d9>TL_1 (/Olvzf(9w+ (1- 9)y)d9) (z—y).

Denote F' := fol V2f(0x + (1 — 0)y) db, notice that F is a symmetric matrix. Then, the previous
identity becomes

IVf(z) = Vf@)lz- =(@—y) FTL'F(z —y).

From the definition of F' and the bounded Hessian assumption, we have F' < L. Let us prove that
FL 'F < L:

FL'F<L <= L :FLFL *<1I,
e
e~ L :*FL *<1I,
<

This means that

V(@) = Vil < (@—y) Lz—y)=le—ylL.
which completes the proof.

C.3.3 PROOF OF PROPOSITION[3]

Suppose L is a symmetric positive definite matrix satisfying (T2). Let us now show that the function
V f is L-Lipschitz continuous. We start with picking any two points ,y € R?, and notice that

2

IVf(2) = Vi)lg- =

Z Vfi(x) = Vfi(y)

L1
Applying Jensen’s inequality, we obtain

IV5) = V@3 < 3 D IV 6ie) = VAW
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We then re-weight the norm appears in the summation individually,
2 _1¢ Trdpdripint
HVf(I)—Vf(y)IIL—lS;Z(Vﬂ(w)—vﬂ(y)) L "L L™ L7 L; * (Vfi(z) = Vfi(y))

lz A (L3) - Amax (L) - [V filw) = Vfilw)][% -+

3

Utilizing the assumption that each f; has L; Lipschitz gradient, we obtain
2 1« _ 2
I95() = VW50 € 53 M (B e (E71) -l =,

™ 2
= HJU_?/H,\Mx L1157 Npax(Li)-Ly — ||37_y||L

C.3.4 PROOF OF PROPOSITION 4]

For any x and y from R, we have

IVf(x) = VW)L
ZMTV@ (M;z) ZMTW iY)
i=1 i=1 Lt
% Z MZ-—r (V¢Z(Mz$) quz ( Zy))
i=1 L-t

Applying the convexity of the norm ||| ; -1,

IVH@) = Vil < 505 M (Vor(Mia) = V6(Mg) .

i=1
Expanding the norm and applying the replacement trick for above L and M, we obtain

195 (2)— V£l
= 3" (V6u(Mia) — Vou(Miy)T ML M (V60(Mia) — Vor(Miy)
i=1

BN e

i=1

sz\/A (LML ML) - [Voi(Mix) = Vor(Miy)
i=1

where B; := L, (VQSZ(M x) — V¢;(M;y)). Due to the assumption that the gradient of ¢; is
L;-Lipschitz, we "have

IV£(2) = V@)l
gzwm (Ei LML} MG - ),

_Z\/ Amax L M;L-*M, L

< 3 IAfTT S —lagT —1
72 Mma (LML ML ) A (L5 M LML %) - 2 =yl
i=1

Sl

) \/[Lé (z — y):| L AMTLM L [L%(x _ y>:|

<D M (EF ML ML) o =yl

=1
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where the last inequality is due to the fact that,
Amm(<L§ALL*1ALTL§)::AHMX(L*%AlfLﬁwﬁL*%>.

Recalling the condition of the proposition:
u 1 T, 1
E:Amm((LfALL*1A@ Lf)::L
i=1

we deduce
IVf(@) =Vl < llz—yllg -

C.3.5 PROOF OF PROPOSITION[3]
(i) — (ii). If f is L-matrix smooth, then for all 2,y € R?, we have
1
@) < fy) + (Vo —y) + 5z = yllz,,
and

f) < flx) +(Vi(@),y—z)+ 5z —ylL

Summing up these two inequalities we get
(V@)= Viy)z—y) <z =yl -

(ii) — (i). Choose any z,y € R, and define z = x + t(y — z), then we have,

fw) = fo)+ / (Vf(x + tly — 2)),y — ) dt

f(z) + / (VF(2)y — x)dt

1
F@) + (V) — ) + / (VF(z) — Vf@)y — o) dt

= f<x>+<Vf(m>,y—x>+/o (VI(:) = V()2 —a) -

Using the assumption that for any z, z € R%, we have
(Vf(z) = Vf@),z—a) < |z =z

Plug this back into the previous identity, we obtain

f) < f(a:)+<Vf(x),y—x>+/() Izl s

f<z>+<Vf<x>,y—x>+/0 ly —all? - tdt

Fa) +(VF @)y —a)+ 5y~

C.3.6 PROOF OF PROPOSITION[G]

We start with picking any two points z,y € R?, using the generalized Cauchy-Schwarz inequality
for dual norm, we have

(Vf(x) =V Iy),z—y) IVF(@) =Vl -z =yl

lz =yl - llz =yl

2
e =yl

According to Proposition 5] this indicates that function f is L-matrix smooth.

<
@
<
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C.3.7 PROOF OF PROPOSITION[]]

Using Proposition [5| we know that for any z,y € R?, we have

(Vi(2) = Viy)e—y) < |z -yl (17)
Now we pick any three points z,y, 2 € R%. Using the L-smoothness of f, we have
1
fla+2) > fz) + (V) 2) + 5 |z (18)
Using the convexity of f we have
(Vi) z+2z—-y) < fle+2) - fy) (19)

Combining and (T9), we obtain
(VI) e+ 2~ ) < f() — F) + (V). ) + 5 =1

Rearranging terms we get

1
(VF(y) = V(). 2) = 5 ol < f(2) = ) = (V). — )
The inequality holds for any z for fixed x and ¥, and the left hand side is maximized (w.r.t. ) when
z= LY (Vf(y) — Vf(x)). Plugging it in, we get
1
5 IVI@) = V@)l < f(@) — fy) = (VF(y).x — ). (20)

By symmetry we can also obtain

1
5 IVI@W) = V@) < F(y) = f(2) = (V(x).y — 2).
Adding and its counterpart together, we get
V1) = VW3- < (Vfx) = V). -v). 21
Combing (2T)) and (T7)), it follows
V1) = Vi@l < lle =yl
Note that L and L~ are both positive definite matrices, so it is equivalent to

Vi) =V Wl <llz =yl
This completes the proof.

C.3.8 PROOF OF PROPOSITIONI[§]

Let us start with picking any two points x,y € R%. With the matrix L-Lipschitzness of the gradient
of function f, we have

IVF(@) = VW)l < [z~ vl
This implies
(@—y) Lz —y)— (Vi) = VI) L (Vf(x) - Viy)>0.
Define function f(X) := a' Xa —b" X~'bfor X € S, where a,b € R? are fixed vectors.
Then f is monotone increasing in X . This can be shown in the following way, picking two matrices
X1, X5 € Sle_, where X; = Xs. It is easy to see that —Xfl > —X{l, since from Factthe
map X — —X ! is monotone increasing for X € S‘_f_+. Thus,

J(X0) = (X)) = (z—y)T (X1 — X2) (x — )

+ (V@) = Vi) (=X = (=X51) (V@) = V(y) > 0.
As aresult, f(Amax (L) - Iz) > f(L) > 0, due to the fact that Apax (L) - Iy = L. It remains to
notice that

F(Amax (L) - Iq) = Amax (L) [l — y||2 -

which yields

ot

@ V@ - VIl 20,

IVF(@) = VF)I? < Nax (L) [l =y
Since we are working with L € Si . the above inequality implies
IVf(@) = VIl < Amax (L) [l =yl -
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D ANALYSIS OF DET-MARINA

D.1 TECHNICAL LEMMAS

‘We first state some technical lemmas.

Lemma 1 (Descent lemma). Assume that function f is L smooth, and x**1 = 2% — D - g*, where

D e Sle_. Then we will have
1 1
F@Y) < fab) = 5 [ VFE) [+ 5 llg" = VI | - ||xk+1 — ¥y

The following lemma is obtained for any sketch matrix S € Si and any two positive definite
matrices D and L.

Lemma 2 (Property of sketch matrix). For any sketch matrix S € S, a vectort € RY, and matrices
D,L e Sff_Jr, we have

B (115t tl}] < Amax (L (E[SDS] = D) L#) - |1t} . (22)

Lemma 3. Assume that Deﬁmnon Iholds and hY = V fi(x°), then for hi—”l from Algorithm we
have for any D € S

Hhk+1 _Vi(z k+1)H ||hk+1 vfi(ka)H?D —0,

and
2
L7 .

e e

The following lemmas describe the recurrence applied to terms in the Lyapunov function.

Lemma 4. Suppose h*+1 and g*+1 are from Algorithm 2| then the following recurrence relation
holds,

E [Hgk—i-l _ hk-HHi)}

. 71 .
< oo S (B ) Do OS5 e (G 1242 <

- 2

n
2 2A )\md.x - n
+ =2 S (g = nEp] + (1 =% [J" - 1*[5,] . @3
i=1
where Ap s :)\max( [SkDSk] — )forDES +andS ~ S.

Lemma 5. Suppose h’“‘1 and g]H'1

holds,

fori € [n] are from Algorzthmlzl then the following recurrence

s
< (20*Amax (D7) - Aps + (1 - 0)%) - E [[lgF = n¥[|3,]

+ 22 max (D7) Awax (D) - Ap,s  Amax (i) - B [|[BEH = hE|[; ]

D.2 PROOF OF THEOREMIII

According to Lemma [I] we have
E () < B ()] - & | (V1605 + B |5 I - V6]

1
_E [2 ka-ﬁ-l _ ‘rkule—L:| . (24)
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We then use the definition of g**! to derive an upper bound for E {H gF Tt — Vf(zkth) H ] Notice

that,
k+1 _ vf (z kH) with probability p,
g"+ LY SE(Vfi(a*T) — Vfi(2¥))  with probability 1 — p.

As a result, from the tower property,
E [Hngrl _ vf(ka)Hi) | xk+1’xk:|
=E [E[lg" - Vi |25 25, o]

—p- ||V = VY|

n 2
+(1-p)-E [ J" + %Z SE(Vfi(a™h) = Vfi(a?) = ViEH| | xk“,xk]
=1 D
1 & ?
=(1-p-E [ 9"+ o ;Szk(vfi(xk_‘—l) — Vfi(z")) = Vf(a*Th) _ | xk“,xk} .

Using Fact[2] we have

E Mgkﬂ - Vf(ka)HQD | xk+1’xk}
r 2

=(1-p)-E % Z SE(Vf; (2" = V fi(a®)) — (Vf(a"T) — V£ ("))

‘ $k+1’ (Ek]

D

+(1=p)- |lg" = VI
2

=(1-p)E nZ (SEVAE) = Viah)) = (V") = V("))

D

‘ $k+1’ Zk]

+(1=p)-[lg" - VI
Notice that the sketch matrix is unbiased, thus we have
E[S} (Vfi(a"™) = Vfi(a")) | "7, 2% = V fi(a*h) = Vfi(2"),

and any two random vectors in the set {S¥(V f;(z*+1) — V fi(2*))}"_, are independent from each
other, if 21 and 2* are fixed. Therefore, we have

E U|gk+1 _ Vf(xk—i-l)HQD | xk+17xk}

_1n_2pZE[Hsf(vfi(xkﬂ)—Vfi(ﬂCk))—(Vfi(ack“) VA 2+, at]

i=1
+(1=p)-[|lg" = VEh)p- (25)
Lemma|2|ylelds

E |5V L) = V@) = (VAE) = V@) [} |52t
< Amax (EZ (E[SEDSE] = D) L7 ) [VA,5) - VAG [ @6
Assumption 2] implies
B [|SHVAEH) = VHiah) — (VA = D)5 |25 2]
< e (7 (E[SEDSF] = D) L7 ) [l — 2|3, @7)
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Plugging (27) into (23), we deduce

E “|gk+1 _ vf(ka)HQD | xk+1’zk}

1—p i 1 1 2 2
< — ;AW (£f (B[SEDSE] = D) L)) [|lo"+1 = o*[} + (1= p) - [lg" = V")

Replacing L; ! with L=Y/2LY/2L 71 LY/2L~=1/2, we denote that
A= Anas (L7 (E[SEDSE] - D) L),
and rewrite the L;-norm in the first term of RHS by the L-norm:
: [Hg“l VR a5t
T 1 1 1
p Z)‘ ( Rt xk)) L L,L % (L§($k+1 _ xk))
+1-p) ¢ = V)
1

;;pEZArAmw(L*%Lﬂr%)ww+lfzﬂﬁ ) lg* = V)
=1

<

We further use Fact [5| to upper bound Apax (Lf (E[SFDSF] - D) Li% ) by the product of

Amax (L) and Apax (IE [Slk DSﬂ — D). This allows us to simplify the expression since
Amax (E [SfDSﬂ — D) is independent of the index ¢. Notice that we have already defined

I . .
= =3 Awax (E[SEDSE] = D) A (L) - A (L LLTH)
7 2 Amax (E[SEDSI] = D) - A (L2)
Taking expectation, using tower property and using the definition above, we deduce
E [Hgkﬂ _ vf(xk+1)H2D}

< (oD B S)g [Jornr b2 )+ (1w [l - VIHIE]. @9

- n

We construct the following Lyapunov function ®y,

. = fa") = f* + Hg -V p- (29)
Using (24) and (28)), we are able to get
—p)- S
Bl < o | S22 okt - ot ] - [ - Vi

FE[f4) - 1] - SE[I95]5] + 58 [le* - Vi3]
- SE [l = 2

— B[] %E [9r")15]
(B2 o ot ] - g ot -t )

—E[®] %E V7))
N % <<1 —7) ;lf(D’S)E [l =t ] [l - xk\ﬁal—LD '
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We can rewrite the last term as

E [(ka Y [(1 =7 ;Lf(D’S)L +L- D‘l} (zh+! — a:k)} . (30)

We require the matrix in between to be negative semi-definite, which is

D! - ((1_79)7'15@’8) +1> L.

This leads to the result that the expression (30) is always non-positive. After dropping the last term,
the relation between E [® 1] and E [®] becomes

E[@i] <E[@] — 1E VS]]

Unrolling this recurrence, we get

K-1

LS E[|vra)) < 2R ElRx) G31)
k=0

The left hand side can viewed as E [HV f(@H) ||2D} , where % is drawn uniformly at random from
{1}, From @5 > 0, we obtain

2 (E[®o] - E[®g])
e <

20,

K

2(£%) = 1"+ & [le° = VFEO)
K

2 (f(=°) — £)
I .
Plugging in the simplified result into (31)), and performing determinant normalization, we get
2 0\ _ f£x
| 2 ] < (f(z%) = f)

E [HW(@K) | D) (32)

det(D)1/d

Remark 7. We can achieve a slightly more refined stepsize condition than (@) for det-MARINA,

which is given as follows
1-p)-R(D
D > <( p)n ( ’S)—i-l) L, (33)

where

1

R(D,S) := znjkmax (L% (E [S*DS*] - D) Lg) Amax (L—%LiL—%> .
i=1

S|

1 1
This is obtained if we do not use Factﬁto upper bound A ax (Li2 (E [SfDSﬂ — D) Lf) by the

product of Amax (L;) and Amax (IE [Si DSﬂ — D). However, (33) results in a condition that is
much harder to solve even if we assume D = - W. So instead of using the more refined condition
(33), we turn to @). Notice that both of the two conditions (B3) and @) reduce to the stepsize
condition for MARINA in the scalar setting.

D.3 COMPARISON OF DIFFERENT STEPSIZES

In Corollary we focus on the special stepsize where we fix W = L~!, and show that in this case
det-MARINA always beats MARINA in terms of both iteration and communication complexities.
However, other choices for W are also possible. Specifically, we consider the cases where W =

diag™ (L) and W = I,;.
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D.3.1 THE DIAGONAL CASE

We consider W = diag™* (L). The following corollary describes the optimal stepsize and the
iteration complexity.

Corollary 8. If we take W = diag71 (L) in Corollary then the optimal stepsize satisfies

D = :
diag (L) — 7 4 VIt+4aB Agiag-1(0).s

-diag™" (L). (34)

This stepsize results in a better iteration complexity of det-MARINA compared to scalar MARINA.

From this corollary we know that det-MARINA has a better iteration complexity when W =
diag™" (L). And since the same sketch is used for MARINA and det-MARINA, the communi-
cation complexity is improved as well. However, in general there is no clear relation between the
iteration complexity of W = L~! case and W = diag ™" (L) case. This is also confirmed by one
of our experiments, see Figure [0]to see the comparison of det-MARINA using optimal stepsizes in
different cases.

D.3.2 THE IDENTITY CASE

In this setting, W is the d-dimensional identity matrix I;. Then the stepsize of our algorithm reduces
to a scalar 7, where +y is determined through Corollary [T} Notice that in this case we do not reduce
to the standard MARINA case because we are still using the matrix Lipschitz gradient assumption
with L € $% .

Corollary 9. Ifwe take W = 1, the optimal stepsize is given by

2 I,
D;, = : .
Tl \/1 +dafstgy w Amax (L)

(35)

This stepsize results in a better iteration complexity of det-MARINA compared to scalar MARINA.

The result in this corollary tells us that using scalar stepsize with matrix Lipschitz gradient assump-
tion alone can result in acceleration of MARINA. However, the use of matrix stepsize allows us
to also take into consideration the “structure” of the stepsize, thus allows more flexibility. When
the structure of the stepsize is chosen properly, combining matrix gradient Lipschitzness and matrix
stepsize can result in a faster rate, as it can also be observed from the experiments in Figure [§] The
choices of W we consider here are in some sense inspired by the matrix stepsize GD, where the
optimal stepsize is L~!. In general, how to identify the best structure for the matrix stepsize remains
a open problem.

D.4 PROOFS OF THE COROLLARIES

D.4.1 PROOF OF COROLLARY[I]

We start with rewriting (@) as

1—
( p~R(D,S)+1> D*LD* < I,.
np
Plugging in the definition of R(D,S) and D = YW, we get

l-p 1 -1 [ PR

- )\max Lz )\maxL Lz ')\maxESiWSi -W). 1| W2LW jI
(A S b e (7 ) e W] W) 1w < 1

This generalized inequality is equivalent to the following inequality,

5 (171;7” : % 3 Nma (L) Amax (L7 L3) - Aunax (E [SEW SE] = W) -y + 1) Nmax (WHLWE) <1,
=1
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which is a quadratic inequality on . Notice that we have already defined

_l-p 1 - N 17y,
a=-" B= n;)\mw (Li) - Amax (L71Ly) 5
AW.,S = )\max (E I:SfWSf?] - W) 5 )\W - )\gléx (W%LW%> .

As aresult, the above inequality can be written equivalently as
afAw.s -7+ - Aw <0,
which yields the upper bound on
- V1+4aB-Aw siw —1
- 208 - Aw s '
Since \/1 +4af - Aw s Aw + 1 > 0, we can simplify the result as

< 2w
T 1+ \/1 +4O¢ﬁ~AW73)\W.

v

D.4.2 PROOF OF COROLLARY [3]

It is obvious that directly follows from plugging W = L~! into (6). The optimal stepsize is
obtained as the product of -y and L~!. The iteration complexity of MARINA, according to|Gorbunov

et al.[(2021)), is

K2K1:O<A€02L<1+ up?”)).

det(L)

On the other hand,

-

< Amax (L) = L.
In addition, using the inequality

VI 44t <1+ 2V,

which holds for any ¢ > 0, we have the following bound

1 1+4aB- A
(1+/ +2aﬁ L ,3)§1+ /Oéﬁ'AL717$.

/1_
1+1/Oéﬁ'AL—1’5§1+ (7]))'(,0,
pn

which is equivalent to proving

Next we prove that

LS M (B0) M (L) - A (B [SEL18E] L) <
=1

The left hand side can be upper bounded by,

Amax (E [SEL-18Y] — L)
/\Inax (L_l)

1 n
- Z )\max (Lz) )\max (L_le) : >\max (L_l) :
n

i=1

A (E [SEL1SF] — L)
< )
B Amax (L71)
where the inequality is a consequence of Proposition[I] We further bound the last term with

FL-1Gk] _ L1 -1 -1
/\max (]E [S’L L SZ} L ) = Amax |E Szk : L : Slk - L
Amax (L™1) Amax(L71) Amax (L71)

Amax (E [SFSF] — 1) =t w.

IN
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Here, the last inequality is due to the monotonicity of the mapping X — Amax (E [SFX SF] — X))
with X € S, which can be shown as follows, let us pick any X1, X» € S? and X; < Xo,
(6 155,84 — X) — (B[S5X,84] — X,) = E[8F (X, X0)85] — (X X,) = Ou
The above inequality is due to the convexity of the mapping S¥ +— S¥ X S¥. As a result, we have
Amax (B [SFX28]] = Xa) > Amax (E [SFX1SF] - X1),
whenever X5 = X. Due to the fact that
-1
Amaf(Lfl) =t

we have
A E|lSF. —— H.sﬁ - L~ < Am (]E[S?VId.S?“]—Id):w
ax Y Amax(LTY) T Amax (L71) . ! ! '

Combining and (39), we know that the iteration complexity of det-MARINA is always better
than that of MARINA.

D.4.3 PROOF OF COROLLARY [4]

The number of bits sent in expectation is
O(d+ K(pd+ (1 —p)¢s)) = O((Kp+1)d + (1 — p)K(s).

The special case where we choose p = (s/d indicates that

1-p 1(d )
a= - (& 1),
np n \(s

In order to reach an error of 2, we need

K:O(M;(L)d-<1+\/l+4ﬁ<d—1>-AL15>>,
€ n \(s '

which is the iteration complexity. Applying once again and using the fact that p = (s/d, the
communication complexity in this case is given by

O <d+A0'd;2t(L)d. <1+\/1+4nﬂ <ggl> 'AL1,$> '(der(lp)Cs))

<o<d+m°'j§t“>d. <1+\/f (ci‘l) ~AL-1,S> '(pd+(1—P)Cs)>
§O<d+w~ <C5+\/MTI;1’S'CS(dCs))>~

Ignoring the coefficient we get

@) <d+ Bo - det(L)7 <Cs+ \/B'A:RS ‘Cs(d—Cs))> )

2

D.4.4 PROOF OF COROLLARY[§]
Applying Corollary [T} notice that in this case
)‘diagfl(L) = )\I:]fltx (dlagi% (L) Ldlagié (L)> =1,

we obtain D* The iteration complexity is given by

diag—1 (L)

o <det (diag(L))* - Ag (1 + /T F40BA g1 (1) 5 ))

g2 2
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We now compare it to the iteration complexity of MARINA, which is given in (36). We know that
each diagonal element L ; satisfies Lj; < Amax (L) = Lfor j =1,...,d. As aresult,

=

det (diag(L))? < L. (40)

From (38)), we deduce

1+ 1+4aﬁ'Adia71L’S
v 5 e B <y \/ @B - Adiag—1(L),5

Now, let us prove the below inequality

17
1+ /a8 Aiag-1(1).5 < 1+ ( pnp) . 1)

ﬂ Adlag (L),S < w.

Plugging in the definition of 3, w and Ay;,e-1(1),s and using the relation given in Proposmonl we
obtain,

The latter is equivalent to

diag™' (L) , diag™' (L) ek
k k k k
Amax (E [si p— Lfl)si "N @) < Amax (E [SFILSF] - 1) .

Thus, it is enough to prove that
diag™" (L)
— <1
Amax (L~1) = ¢

We can further simplify the above inequality as
)\min (L) S )\min (dlag(L)) )
which is always true for any L € S¢ . Combining #0) and @T) we conclude the proof.

D.4.5 PROOF OF COROLLARY[9]
Using the explicit formula for the optimal stepsize D7, we deduce the following iteration complex-
ity for

Amax (L) Ag [ 1T/ 1 H 40855

@)
g2 2

(42)

Recall that Ay (L) = L, we obtain using (38) that

1+ /1 +4aB—2 _
< _
5 SIHoBs T

The comparison of two iteration complexities, given in (42) and reduces to

1+, /ap L

1
P @ =t

Utilizing Proposition[I] the above inequality can be rewritten as

1
<1
>\max (Lil) ‘ /\max (L) -

This is equivalent to

which is exactly
)\min (L) S /\max (L) .
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E ANALYSIS OF DET-DASHA

E.1 PROOF OF THEOREM 2|

Using Lemma([T]and taking expectations, we are able to obtain

E [f(z"*)]

gmmm—w[ﬂwukﬂf} E [l — ot ] + 52 e - Vi)
E [£(a)] - 5B [IVFE] - 5B [l* — a5 ]
+IEB|g —hE+ P =V |}D}

E[£()] - 3B [I97@H5)] - 5B [l — o)

+E |[1g* —h’“HD+ [ = Va5 “3)

1
2
1

8

where the last step is due to the convexity of the norm. Using Lemma[d] we obtain

n

E [Hgk+1 _ hk+1H2D} < %‘;‘&X(D) Z/\max (L) E [th—i-l _ thifl]

2a°wp
o[ A R e AP
Using Lemmal[3] we get

E[[lgf* — hp) < (20%wp + (1~ a)) -E [lgf — 1]

420D Amax (D) - Amax (L;) - E [th“ - hf||2L__1} . @5)

Now let us fix x € [0, +00), n € [0, +00) which we will determine later, and construct the following
Lyapunov function ®;,

=B [f(@*) — /] + 5 E[llg* - n5[p] +

1 n
B nzugf—hfu;]. o
=1

Combining (@3), (@4) and (@3)), we get

DQpt1
<[76H - 1 - Vs

1 2 ) ,
tE {2 [ R e s ||h’“ - Vf(w’“)HD]

+ (1= a7 [ - 1] + 2R (D Dmax OE [t = nill, -]

B S ot =) o om0 =) 33 [l 1)

i=1

+20-wp - Amax (D) - Z Amax (i) < B [R5 = B[} -]
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Rearranging terms, and notice that Hhk Vi(z 0,

Mo =

Prt1

E [f(e*) 1] — 5E [V 7))
[nxk“ k||D |+ (R0 =) E[[l* - ]3]

1
2
+(2awD K ZawD—i— l—a ) ZEM k th }

2K+ WpAmax (D) 2
+ ( Dn +277 wp - /\max > Z/\mwx i |:|hk+1 thL:l} '

In order to proceed, we consider the choice of « and 7, for «,
14+ k(1 —a)* < k. (47
It is then clear that the choice of Kk = % satisfies the condition. On the other hand, we look at the

. . 2 :
terms involving E M gF — nk|| D} , We can rewrite as

202w -/{ 2
s (B oy rtp (- 0)) 1 S [l -]

Picking = 1 and a = 51—, the T} can be simplified as
2wp 4wh + 2wp k12
Ty = + E [ — Bt } .
1 <n~(2wp 1) n: (2wp + 1 ) Z HD

We pick 7 so that it satisfies

2w 4w + 2w
=D 4 n- Dig’ <. (48)
n-(2wp +1) (2wp + 1)

Taking = 222, which is the minimum value satisfying (@8], we conclude that
T1<n~liIE[Hg’-“—h’-“H2}. (49)
—_ n — 1 K3 D

Combining (@7) and {@9), we are able to conclude that

Dpy1
SE[f4) ~ 7] 4 5B [lg* = 8] 4 S R [k - A
=1
—SE[IVrEh5) - 5 [l - a4

2K + WP Amax (D) 2
—+ ( Dn +27]WD ')\max > ZAIH&X i |: |hk+1 hf||L;1i| '

Using the definition of ®;, and Lemma 3] we obtain
1 1
i1 < B — 5B |[|VFEH)[p] - 5B [l =¥ L}

(2o )y (0) 23 A 0B [

n

_ g, %]E {va(xk)HQD] +E [Hwk+1 _ mkHN} ;
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where N € S% is defined as

N o— <2/€ - WP Amax (D)
n

+ 277 Wp - )‘max ) Z )\max 7, L — *D + L
We require N = Oy, which leads to the condition on D:

D_l -L- 4)\max (D) 2 (4wD + Z )\max L >‘ Od

n

Given the above condition is satisfied, we have the recurrence

%E [va(l“k)HQ,j} < P — Prga

Summing up for £k = 0... K — 1, we obtain
K-1

> E[[VAaH)]] <220 - ). (50)
k=0
Notice that we also have

2 1o 2
®o = f(2°) — f* + (2wp + 1) ||¢° - hOHD + frac2wpn - - Z lg? — B
i=1
= f(‘ro) - f*v
We divide both sides of @]) by K, and perform determinant normalization,

2(f(=%) = f*)
V < 2E ) J )
K Z [| fl= |d<D)1/d} = det(D)V4 - K
This is to say
E |||V %) 2(f(=°) = )
W ~ det(D)Vd. K’
where 7% is chosen uniformly randomly from the first K iterates of the algorithm.

E.2 PROOFS OF THE COROLLARIES
E.2.1 PROOF OF COROLLARY 2]

Plug D = yw - W into the stepsize condition in Theorem[2] we obtain

1 4 " Amax : 4
1w g W A (W) ww (w4 1) Zx\mdx )-L; = Oy.
w n
We then simplify the above condition as
1 L iwW-lL 3
w
4vw * Amax 4 1) 1
n

Using Proposition 3] we have
L ' L_%W_lL_% _ 4yw + Amax (W) CWwW (40JW + 1)
w n

Taking the minimum eigenvalue of both sides, we obtain that,

“Amin (L) - Ig = 1.

1 4yw - Amax (W) - 4 1
o (prwpd) - O e R B L) (1) 2,
w n
If we denote Cyy := ’\‘““X(W)'WX(MWH) > 0, and Ay := Ak (L%WL%) we can write

4-Cw - Amin (L) -9y + 9w — Aw < 0.
The solution is given by
2\w

1+ /14 16Cw Amin (L) - Aw

Tw <
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E.2.2 PROOF OF COROLLARY [3]

The best scaling factor in this case is given as, according to Corollary [2]
B 2
1+ +/1+16CL 1 - Amin (L)

In order to reach a £ stationary point, we need

o Aot (1) = )

£2

VL1

(1 +/1416CL-1 - Amin (L)) .

E.2.3 PROOF OF COROLLARY [@

The iteration complexity of det-DASHA is given by, according to, Corollary [3]

@ (ﬂmog;f : (1 4+ /1416051 - Anin (L)) -det(L)é> .

Using the inequality /1 + ¢ < 1 + /% for t > 0, and leaving out the coefficients, we obtain

o (f(xo);f : (1 +V/Crt A (L)) -det(L)é) :

€

Notice that

Cr-1 * Amin (L) = Amax (Lil) L (40:;_1 ) *Amin (L) = = (4:L_1+1).

As a result, the iteration complexity can be further simplified as
f(a0) — f* wr—1 1
O|————— |1 ~det(L)4 | .
( & s ) k)

The iteration complexity of DASHA is, according to Tyurin & Richtarik| (2024, Corollary 6.2)

1 W o~

O -(f@)—-f)(L+—=L
(3012 1+ 57))
where I, = \/ % >oi, L2. Since det(Lﬁ < Amax (L) =L,and L < L,itis easy to see that com-
pared to DASHA, det-DASHA has a better iteration complexity when the momentum is the same.

Notice that those two algorithms use the same sketch, thus, it also indicates that the communication
complexity of the two algorithms are the same.

E.2.4 PROOF OF COROLLARY 7]

The iteration complexity of det-MARINA is given by

o (f(xoz;f* ~det(L)* - (1 n ./aﬂALl,S)) ,

after removing logarithmic factors. Plugging in the definitions we obtain in the case of wz-1+1 = %,

we have 0 N
1) (f(x)—f ~det(L)7 - (1 + w21)> .

€2

From the proof of Corollary [6} we know that the iteration complexity of det-DASHA is

0) (612 (%) = 1) <L+ \;%E)) .

It is easy to see that in this case the two algorithms have the same iteration complexity asymptoti-
cally. Notice that the communication complexity is the product of bytes sent per iteration and the
number of iterations. det-DASHA clearly sends less bytes per iteration because it always sent the
compressed gradient differences, which means that it has a better communication complexity than
det-MARINA.
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F DISTRIBUTED DET-CGD

This section is a brief summary of the distributed det-CGD algorithm and its theoretical analysis.
The details can be found in (Li et al.,2024b). The algorithm follows the standard FL paradigm. See
the pseudocode in Algorithm 3]

Algorithm 3 Distributed det-CGD

1: Input: Starting point z°, stepsize matrix D, number of iterations K
2: fork=0,1,2,...,K —1do
3:  The devices in parallel:

4:  sample S¥ ~ S;

5. compute SV f;(z*);
6:  broadcast SFV f;(z*).
7:  The server:

8:

combines g = L Y1 | SFV f;(zF);
9:  computes zFt! = 2F — Dg";

10:  broadcasts z**1.

11: end for

12: Return: z%

Below is the main convergence result for the algorithm.

Theorem 3. Suppose that f is L-smooth. Under the Assumptions if the stepsize satisfies
DLD <X D, (51

then the following convergence bound is true for the iteration of Algorithm 3}

2(1+ 22)K (f(a0) — f*) 2\pA*

52
det(D)Y/e K det(D)Y/dn’ (>2)

min E[HVf(xk)HQ o ]s

0<k<K—1 D)7

where A* = f* — L3 1 and
Ap 1= max {Anas (E [L} (SF — 1) DLD (SF — 1) L} ) }.

Remark 8. On the right hand side of (52) we observe that increasing K will only reduce the first
term, that corresponds to the convergence error. Whereas, the second term, which does not depend
on K, will remain constant, if the other parameters of the algorithm are fixed. This testifies to the
neighborhood phenomenon which we discussed in Section 2}

Remark 9. If the stepsize satisfies the below conditions,

2

DLD < D, )\D<min{n ne

K IA (33)

12(f(2%) — %)
det(D)l/d}, K> det(D) /<2

then we obtain e-stationary point.

One can see that in the convergence guarantee of det-CGD in the distributed case, the result (32) is
not variance-reduced. Because of this limitation, in order to reach a € stationary point, the stepsize
condition in (33) is restrictive.

G EXTENSION OF DET-CGD2 IN MARINA FORM
In this section we want to extend det-CGD?2 into its variance reduced counterpart in MARINA form.

G.1 EXTENSION OF DET-CGD2 TO ITS VARIANCE REDUCED COUNTERPART

We call det-MARINA as the extension of det-CGD1, and Algorithm E| as the extension of det-CGD2
due to the difference in the order of applying sketches and stepsize matrices. The key difference
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Algorithm 4 det-CGD2-VR

1: Input: starting point 2°, stepsize matrix D, probability p € (0, 1], number of iterations K
2: Initialize ¢° = D - V f(2V)

3: fork=0,1,..., K —1do

Sample ¢; ~ Be(p)

Broadcast g* to all workers

fori =1,2,...in parallel do
k

AN AN

R
kp1  [D -V fi(ahth) ifep, =1
© ¢+ TED (ViR = V(b)) ifer =0

o]

Setg

9:  end for -
n
10: gFtt =130 g
11: end for
12: Return: 3% chosen uniformly at random from {z*}; !

between det-CGD1 and det-CGD?2 is that in det-CGD1 the gradient is sketched first and then multi-
plied by the stepsize, while for det-CGD2, the gradient is multiplied by the stepsize first after which
the product is sketched. The convergence for Algorithm [4] can be proved in a similar manner as
Theorem 11

Theorem 4. Ler Assumptions[I|and 2| hold, with the gradient of f being L-Lipschitz. If the stepsize
matrix D € Sff_ . satisfies

ps (LB RDS) Y,

where

1 & 1 i
R(D,S) =~ > Aax (DE [T DT} DL = L D) - Ao (L) - A (LHLL 7).
n
i=1
Then after K iterations ofAlgorithm we have
2 0) _ £x
H2 ] < (f(l' )—f )

EMVﬂ#ﬂ < D)V K

D
det(D)1/d

This is to say that in order to reach a e-stationary point, we require

2(f(2°) — f*)
= det(D)/d . g2’

If we look at the scalar case where D =~ - I;, L; = L; - I;and L = L - I, then the condition in
Theorem ] reduces to

. 2
Uopwl?  p 1, (54)
np v

Notice that here w = Apax (E (Tf‘)QD — 1, and we have L? = 13" L2, which is due to
the relation given in Proposition [5} This condition coincides with the condition for convergence of
MARINA. One may also check that, the update rule in Algorithm[4] is the same as MARINA in the
scalar case. However, the condition given in Theorem [4]is not simpler than Theorem [T} contrary to
the single-node case. We emphasize that Algorithm[d]is not suitable for the federated learning setting
where the clients have limited resources. In order to perform the update, each client is required to
store the stepsize matrix D which is of size d x d. In the over-parameterized regime, the dataset size
is m x d where m is the number of data samples, and we have d > m. This means that the stepsize
matrix each client needs to store is even larger than the dataset itself, which is unacceptable given
the limited resources each client has.
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G.2 ANALYSIS OF ALGORITHM [4]

We first present two lemmas which are necessary for the proofs of Theorem 4]

Lemma 6. Assume that function f is L-smooth, and x*+! = z¥ — g*, and matrix D € S‘_f_ 4 Then

we will have

1 1 1
FE) < £ =5 [ VI +5 1D VIR = [ =5 25 = ooy - 659)

This lemma is formulated in a different way from Lemma [I]on purpose.

Lemma 7. For any sketch matrix T € Si, vector t € R, matrix D € S‘i o and matrix L € S‘i .
we have

E [||TDt - Dt||§3,1] < Amax (L%DE [TD~'T] DL - L%DL%) 2., . (56)

G.3 PROOF OF THEOREM[4]
We start with Lemmal6]
1
E ()] < B [16H] - B [} 1964
1 1
+E |5 ID- 964 = | B [510 —ot 1] 67

Now we do the same as Theoremand look at the term E {HD SV f(zhth) — gkt ||i),1} . Recall
that g* here is given by
kbl {D -V f (2t with probability p
g+ LY TED (Vi(a*Y) — Vf;(2*))  with probability 1 — p .
As a result, we have
E “|gk+1 _ va(ka)HQD—l | Ik+1’$k}

AR

—p- | DV = DVFEHY|L
2

+(1-p)-E||¢"+ % > T/D (Vfi(a*) = Vi(a*)) — DVf(a*) | 2kt gk
i=1 D-1
n 2
=(1-p)-E||g"+ % > T/D (Vfi(z**) = Vfi(«*)) - DV f(a**1) Eias
i=1 D-1

For the sake of presentation, we use Ey, [-] to denote the conditional expectation E [-| zj, zx41] on
Tk, Ty 1. Using Factwith x =150 TFED (Vfi(a"Th) = V fi(a¥)), c = DV f(z*T) — g,
we are able to obtain that,

2

(1—p)Ey |||¢" + % zn:TfD (Vfi(a") = Vfi(2¥)) — DVf(2Ft)
i=1 D!
= (1—p)Es % ZTfD (V") = Vf(2%) — D (V") - Vf(2F))
L =1 D-1
+(1—-p)|l¢* = Vi)
L =1 D-1

+(1=p)|g" = V)5, .

40



Under review as a conference paper at ICLR 2025

It is not hard to notice that for the sketch matrices we pick, the following identity holds due to the
unbiasedness,

Ex [TFD(Vfi(a") = Vfi(z"))] = D(Vfi(a"*) = Vfi(a")),

and any two random vectors in the set {TFD(V fi(z"+1) — V f;(2*))}_ are independent if

xF*1, zF are fixed. As a result

Ex [[l"+! = DV ]

1—p
=T 3

S E[||TH (DY A - DV fiah) — (DVfi(a" ) = DY fiah) [

1=1
+(L=p)-||¢* - DVf(z

For each term within the summation, we can further upper bound it using Lemmaﬂ

s - (58)

Ei [| T4 (DV fi(a"+!) = DV fi(a") = (DV fi(a"+!) = DV fi(a"))]|5,- }

< Amax (LfD]E[TﬁD 'TH DL} — L DL} ) |V £,(a"+) = Vfia

1
2

i L; 1
1

2

< Awax (L DE [TFD7'TF] DL} — LI DL} ) o1 — 2|, .
Where the last inequality is due to Assumption 2] Plugging back into (58), we get
E, U|gk+1 — DV f(ab ) H2D*1}

2
L;

1—p

1
2

kaax (L DE [TFD'T}] DL; _pr %) 2541 — o]

+(1-p)||¢" - DVf(z

Applying the replacement trick form the proof of Theorem |1} we obtain

E. [Hngrl 7va(xk+1 Hi)—l}

M-

Z wex (L DE [TFD'T}] DL} — L DL} )

<L;[ ) (BARE) B (- a) ()t - YA

i Amas (L (DE[TFDTF D = D) L} ) Avas (L LL7H) || — 2

+(1-p)- Hg - DVf(z ||D 1

Applying Fact[5] we obtain
2
Ei [l = DV

= ! ;p Z)\max (DE [,‘rikDil’I'ik] D - D) )\max (Lz) >\max (L 2L L~ ) ||$kJrl — .TkHi
=1

+ (=) g* = DViEh)p -
Recalling the definition of R'(D,S), we further simplify it to
Bx[[l"+! = DV,
(1-p)-R(D,S) 2
< [l =¥l +

- n

Hg —DVf(x HD 1
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Taking expectation again and using the tower property, we get

E|[lg = DVS )| (59)
<4z 'f/(D’S)E " =25 ] + 0 =p) - E[|lg" - DVFEH)[H ] ©0)

Construct the Lyapunov function ®;, as follows,
b= )~ 4o ||g ~ DV ()5, -
Utilizing (57) and (39), we are able to get
E @] <E[f(e) - /'] - 3E [[V£E)][3)]
+3E [llg* - DVAEOos] — 5E [l — a5

b LD g s o] 4 L P gt~ D9ty

= B0 — SB[ V6]
3 (LREO g prrs obfs] gl -],

Now, notice that the last term in the above inequality is non-positive as guaranteed by the condition

D'~ <(1 _p):;(D’S) + 1) L.

This leads to the recurrence after ignoring the last term,
1 2
E[@r1] S B[] - 5E [ V£S5 -

Unrolling this recurrence, we get

1 = 2 2(E[®] — E[Pk])
—§ E ||V f(z*) < :
K P [H ||D}

K

The left hand side can viewed as average over 7% which is drawn uniformly at random from
{xk}kK:_Ol, while the right hand side can be simplified as

2, _ 2(Fa0)— £+ 55 e - VIOn)

2(E[®o] —E[®k]) < 2%
K - K K
Recalling that g° = V f(2") and performing determinant normalization as Li et al.| (2024b), we get

] <2 (f=%) = )

[”vf @ _z det(D)VIK

det(D)1/d
H PROOFS OF THE TECHNICAL LEMMAS

H.1 PROOF oF LEMMA[]]

Let zF+! := zF — D - Vf(2F). Since f has a matrix L-Lipschitz gradient, f is also L-smooth.
From the L-smoothness of f, we have

f(xk—i-l) < f(:ck) + <Vf(:)3k),$k+l _ $k> + % <$L'k+1 _ xk,L(.fL'k+1 _ xk)>

f(Ik) + <Vf(.%‘k) _gk“%,k—&-l _ xk> 4 <gk”xk+1 _ xk> + % <xk+1 _ xk,L(.’L‘k—H

A
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We can merge the last two terms and obtain,

f(’IkJrl) < f(l'k)+

We add and subtract (V f(z*)

fa™h) < f@h)+

= f@'

Decomposing the term <x

R I R e P e 1 )
_ 2 _ 2 2
-5 (Hx’““ =G+ [t = — [l =)
Plugging in the definition of 2**1 zF+1 we get
fath) < ﬂf’“)+||Vf —gHllp = " =y
1 2
~5(Ip Moo + 1D V5 @) s = 254 = 2H|[551)
= fﬂ’“)+||Vf 9||D—Hwk“—x’“!|pfl_%L
*§(||Vf(x’“ — Ml + V5@ [ = " = ) -
Rearranging terms we get,
1 1 1
F) < 169 = FINHEN + 5 ot = VI — 4 =ty + 3 -
1 1
= f@") =5 IVfEHp+ *Hg LGOI PR FaE e PRSI
H.2 PROOF OF LEMMA[Z]
The definition of the weighted norm yields
E[Ist—tl}] = E[t(S—1)D(S L)t
= (LE[(S—14)D(S - I4)]t)

(V")
+% (" — o

k,L(SUkJrl

7gk77D'gk> . <xk+1
,xk)>

- gkaD : gk>,

(Vf(b)

. <xk+1 ok

)+ [V f(z*)

- <xk+1 _ ok

k+1 _

ijrl’ D*l (:Ek

—g", D (Vf(z")

2
—dMp— (=" =

Amas (L% (E[SDS] —
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_gk)> _

: (D1 - ;L> (zF 1 — zk)>

i,k+1’ D71 (xk

: (D—l — ;L) (aFH — a:k)> :

— fk+1)>, we get

l(l,kr+1

ka»

(Vf(b)

_ jk+1)>

1
D)L} -t} -
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H.3 PROOF OF LEMMA [4]

Throughout the following proof, we denote Eg[-] as taking expectation with respect to the
randomness contained within the sketch sampled from distribution S. We estimate the term

Es [Hgk“ — hF+1 H2D} in order to construct the Lyapunov function. For Eg [Hg’“rl — pFtl H?D} ,

we have
2
D]
1 n
g" + - > SF (b — hE — a(gh — hF)) — hFF!

2
i
L D

I~ &
gk + - Zmlﬂrl _ pkt1
i=1

Es [[lg"t" —n**[] = Es

i=1

Using Fact[3] we obtain
Bs [l — o412

n 2
=Es %Z SE (R — hF — a(gF — hF)) — (W1 = B* — a(g" — hY)) ]
17 =1 D

(1 —aP |t =gl
r 2
1~ o k+1 3k« k 1k _ln k+1 3k k 1k

; Si (hi hi —a(g;i — h; )) n Z (h‘i hi —algi — h; ))

n :
1=1 D

1= a) 0~ gt
= 5 D B [[I8F (hE — BE —a(gh — nb) — (R~ AE — a(gh — b))}
i=1

2|k k(2
+(1-a?[n" = g"p-
Here, the last identity is obtained from the unbiasedness of the sketches:
Es [S7 (hi™" = hf —algl = h))] = by = —alg — h).

We can further use Lemma[2} and obtain
Es |[lg = 145

< 5> Aue (D (B[SEDSE] — D) D) [ — by — alf 1),

i=1
+ (1 —a) [lg" ~
< % D i (D7) A (E[SFDSF] — D) |1+ — b —a(gf - o[

+(1-a) o" — -

We can rewrite the above bound, after applying Jensen’s inequality as

2A ./\me,1 n
B [l — w1 |2] < 220 e (PT) s e
=1

= n2
n 2a2AD75 - Amax (D_l) n

2
- > llat — ki

i=1

+(1—a)?[|g" — ][5,
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Notice that we have
[ = B[ < A (D) - M (L) - B = B[
Thus, it is not hard to see that

2AD.5 - Amax (D) - Amax (D) zn:,\ (Ly) ||pl+? — thz )
max 7 7 t WL

B [l - i) <

Tl2 =1
2a2AD75 - Amax D! n 2
+ Amax (D7) 5 g ni

=1
+(1—a)?[|g" — ][},

We obtain the inequality in the lemma after taking expectation again and applying tower property.

H.4 PROOF OF LEMMA [3]

Similarly, we then try to bound the terms Eg {H grtt — hf“ ||2D} . We start with

Es o - ]
= B [lgk + 8% (= 1 — algk = 1)) = HEF )
= Es [[[S5 (W — S~ algf — hE)) — (W~ BE —a(gh — BE)) + (L a)(bE — g3
Using Fact[3]
Es [lat " - n )
=Es [||Sf (hE* — it —a(gf — hf)) = (b — hf —a(g} = D)) ]
+ (1= a)? ||t~ gl
Using Lemma|2|
Bs [l - 1
2 e (D} (B[SEDSH] - D) D73) [+ — 1t — atal — b))
+ (1= a)? [lgf — h¥[,
< Amax (DY) - Aps |BETY = hE —a(gh — )3, + (1= 0)? [|g¥ — h¥|,
< D (D7) - Aps [ = B[, + 202 e (D) - A5 [ o — 1]
(1 - ap gk - ¥,
< Do (D) A (D) - Aps A (1) - | = BE[
+20*Amax (D7') - Ap,s ||gF — hf“; +(1-a)?| g - hf”i)
= (20 Amax (D7) - Ap.s + (1—a)?) |l — n¥[,
+ 20 (D7) A (D) - A, + A (L) - [ = B[} -1
Taking expectation again, and using tower property, we are able to obtain, ,,
E [[lgftt - nit )

< (2a2)\max (D_l) : AD,S + (1 - a)Q) E |:||g7{€ - hiﬂ“i)]

+ 2)\max (Dil) : )\max (D) : AD,S : )\max (L’L) ‘E |:||hf+1 - hicH2L*1] .
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H.5 PROOF OF LEMMA [6]

From Proposition [5] we know that the objective is L-smooth. Let ™' = z* — D - V f(z*), then
L-smoothness yields

FEMY) < fat) + (T (k) 2R — b + % (zP+1 — g% L - 2b))
= f@®)+(Vf(@a")—D " gF 2" —aF) + (D gF 2R — 2k
_|_% (1 — g%, L*1 — z%))
= F@M) + (V@) = D7 gk —gF) — (2FHL — ok DL - oK)
1

+2 < R+ gk (gt - xk)>_
Simplifying the above inner-products we have,
f(:[’kJrl) < f(xk) + <Vf((L'k) _ Dfl .gk,_gk> _ <£Ek+l _ xk, <Dl o ;L) (xk+1 . xk)> )
We then add and subtract (V f(z*) — D~ - ¢g* D -V f k > which
FE) < f@N (V) DT gt DV (b)) - g*) — (V") - D7 g*, D - V(b))

_ <Ik+1 o I’k, <D1 o ;L) ($k+1 7 $k)>

a*) + ||V f(a*) - D! ,ng; (DL Y gk gk

— <xk+1 —z*, (D1 — ;L) (k! — xk)> .

Decomposing the inner product term we deduce,

f(xk+1) < f(mk) + HD—l (D . vf(xk) _ gk)HQD _ <xk+1 _ xk7 (D‘l _ ;L) ($k+1 _ mk)>
1
3 (Hw’““ | (FL e [ w’“HZfl)
= f@")+||D Vi@ —ngi_l o Caant S
1 2
~5 (1D V1@ = gl + 1D VA @) |[por = oh =¥ [5m) -
Therefore,

1 1 1
Fa*thy < fah) + 3 |DV f(a*) — g’“||i)_1 -3 HVf(»’”k)Hi) —-3 [+ — kaj)—l—L'

H.6 PROOF OF LEMMA[]]

We start with
E[|ITDt-Dt|}, 1| = E[IT - 1)Dt} |

(t,E [D(T — 1,) D™ (T — 1,)D] - t)

(t,D(E [TD-lT] —-DY)D-t)

~ (L% LD (E[TD'T] - D7) DL} - L™}t)
A

:

o (L DE[TD'T) DL? —L%DL%) : HL—%t

= s (L2DE [rD7'T] DL} - LEDLY) el

This completes the proof.
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I EXPERIMENTS

In this section, we conduct numerical experiments to back up the theoretical results for det-MARINA
and det-DASHA. The code for the experiments can be found in https://anonymous.4open.
science/r/detCGD-VR-Code-865Bl All the codes for the experiments are written in Python
3.11 with NumPy and SciPy package. The code was run on a machine with AMD Ryzen 9 5900HX
Radeon Graphics @ 3.3 GHz and 8 cores 16 threads. The datasets in LibSVM are typically non-1ID
real world datasets, and it is randomly distributed across all the clients.

1.1 THE SETTING

We first state the experiment setting. We are interested in the following logistic regression problem
with a non-convex regularizer. The objective is given as

1 n 1 m; I d 2
flx) = E;ﬁ@)% filz) = E;bg <1+€ biog-{aig, >) +/\-;$tx%,

where © € R? is the model, (a; j,b; ;) € R? x {—1,1} is one data point in the dataset of client i
whose size is m;. The constant A > 0 is the coefficient of the regularizer. Larger A means the model
is more regular. For each function f;, its Hessian can be upper bounded by

1 & aia;
Li=— T oN- Iy
Z 1 + d

Due to Proposition 2| it immediately follows that f; and f satisfy Definition |l|with L; € S and
L e Si 1 respectively.

In the following subsections, we perform several numerical experiments comparing the performance
of DCGD, det-CGD, MARINA, DASHA, det-MARINA and det-DASHA. The datasets we used are
from the LibSVM repository (Chang & Linl 2011).

1.2 COMPARISON OF ALL THE METHODS

In this section, we present several plots which compare all relevant methods to the det-MARINA and
det-DASHA. The methods are the following: (i) DCGD with scalar stepsize 7o, (ii) det-CGD with
matrix stepsize D3, (iii) MARINA with scalar stepsize 7, (iv) DASHA with scalar stepsize 74, (v)
det-MARINA with D7} _,, (vi)det-DASHA with D7}" ;. Throughout the experiment, € = 0.01, and
A = 0.9, we are using the same Rand-7 sketch for all the algorithms, and we run all the algorithms
for a fixed number of iteration X = 10000.

It can be seen in Figure [2] the performance in terms of communication complexity of det-DASHA
and det-MARINA is better than their scalar counterpart DASHA and MARINA respectively. This
validates the efficiency of using a matrix stepsize over a scalar stepsize. Furthermore, we notice
that det-DASHA and det-MARINA have better communication complexity in this case, compared
to det-CGD. In addition, we observe variance reduction.

Notice that the optimal stepsizes of det-CGD and DCGD require information of function value
differences at x*. Furthermore, the stepsizes are also constrained by the number of iterations K and
the error £2. Meanwhile, for the variance reduced methods, we do not require such considerations,
which is much more practical in general.

1.3 IMPROVEMENTS OVER MARINA

The purpose of this experiment is to compare the iteration complexity of MARINA, with
det-MARINA using Rand-7 sketches, thus showing improvements of det-MARINA upon MARINA.
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Figure 2: Comparison of DCGD with optimal scalar stepsize, det-CGD with matrix stepsize D3,
MARINA with optimal scalar stepsize, DASHA with optimal scalar stepsize, det-MARINA with
optimal stepsize D7 _; and det-DASHA with optimal stepsize D7*,. Throughout the experiment,
we are using Rand-7 sketch with 7 = 60, and each algorithm is run for a fixed number of iterations
K = 10000. The momentum of DASHA is set as /241 and det-DASHA is /2sp+1. The notation
n in the title stands for the number of clients in each case, and p stands for the probability used by
MARINA and det-MARINA.

Using Theorem C.1 from (Gorbunov et al} [2021)), we deduce the optimal stepsize for MARINA, is

1
"= =N
1-plw
L <1 (e )
where w is the quantization coefficient. In particular, for the Rand-7 compressor w = £ — 1. For
the full definition see Section 1.3 of (Gorbunov et all, [2021). The stepsize for det MARINA is
determined through Corollary El We use the notation Dy, to denote the optimal stepsize for each

choice of W, here we list some of the optimal stepsizes for different W, which are used in the
experiment section. We have

(61)

D _ 2 Id

I - : )

d 1+ \/1 + 4aﬁm ‘W )\max(L)

2
D; ., = L7
1+ \/1+ 408 - Ao (E [SFL1SF] — L)
. 2 -

Ddlagfl(L) = - diag ! (I(ﬁZ)

14 y/1+ 408 - A (E [} ding™ (L) 5¥] — diag™" (L))
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In this experiment, we aim to compare det-MARINA with stepsize D7 _; to the standard MARINA
with the optimal scalar stepsize. Rand-7 compressor is used in the comparison. Throughout the
experiments, A is fixed at 0.3. We set the x-axis to be the number of iterations, while y-axis to be
the expectation of the corresponding matrix norm of the gradient of the function, which is defined
as

Grp=E |:va(i‘K)H2D/det(D)1/d} . (63)

Notice that this criterion is comparable to the standard Euclidean norm |Li et al.| (2024b)), and for a
fixed D, we have

D 2 2
i ( ez ) IVF@IE < IV5@1_p <

(let(D)l/d

D 2
) V@I

As it is illustrated in Figure 3] det-MARINA always has a faster convergence rate compared to
MARINA if they use the same sketch, this justifies the result we have in Corollary [3] Notice that
in some cases, det-MARINA with Rand-1 sketch even outperforms standard MARINA with Rand-
80 sketch. This further demonstrates the superiority of matrix stepsizes and smoothness over the
standard scalar setting.

1.4 IMPROVEMENTS ON NON VARIANCE REDUCED METHODS

In this section, we compare two non-variance reduced methods, distributed compressed gradient
descent (DCGD) and distributed det-CGD, with two variance reduced methods, MARINA, and
det-MARINA. Rand-1 sketch is used throughout this experiment for all the algorithms, for non
variance reduced method £? is fixed at 0.01 in order to determine the optimal stepsize. The purpose
of this experiment is to show the advantages of variance reduced methods over non variance reduced
methods. DCGD was initially proposed in (Khirirat et al., |2018)). Later on DIANA was proposed in
(Mishchenko et al., 2019) and then combined with variance reduction technique. Recently |Shulgin
& Richtarik| (2022) proposed shifted DCGD, which is a shifted version of DCGD and proved its
convergence in the (strongly) convex setting. A general analysis on SGD type methods in the non-
convex world is provided by Khaled & Richtarik|(2023)), including DCGD and shifted DCGD. In our
case, in order to determine the optimal scalar stepsize for DCGD, one can simply use Proposition 4 in

(Khaled & Richtdrik} 2023)). One can check that in order to satisfy minp<g<x—1 E {HVf(m’“) HQ} <

2 the stepsize condition for DCGD in the non-convex case reduces to

< m 1 n ne?
min § —
2= L'\ WLLyan K 4L Lypew - A% [

where L is the smoothness constant for f, L; is the smoothness constant for f;, Ly.x = max; L;,
K is the total number of iterations, A* = f(z*) — £ 3" fi(«*). The constant w is as-

sociated with the compressor used in the algorithm, for Rand-7 sketch, it is % — 1. For
distributed det-CGD according to [Li et al.| (2024b)), the stepsize condition in order to satisfy

minosks—1E [IVF @), auipya] < is

w{n net 1/d
DLD < D, Ap < mln{K7 A det(D) } , (64)
where \p is defined as
Ap = max {Anex (E [ (SF — 1) DLD (SF - 1) 7] ) }. (65)

In general cases, there is no easy way to find a optimal stepsize matrix D satisfying (64)), alter-
natively, we choose the optimal diagonal stepsize D3 similarly to (Li et al., [2024b). The stepsize
condition for MARINA has already been described by (61). Note that we only consider MARINA,
but not DIANA or shifted DCGD, because DIANA and shifted DCGD offer suboptimal rates com-
pared to MARINA in the non-convex setting. For det-MARINA, we fix W = L1, and use Dz_l
as the stepsize matrix. In theory, det-MARINA in this case should always out perform MARINA in
terms of iteration complexity.
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Figure 3: In this experiment, we aim to compare det-MARINA with stepsize D7 _; to the standard
MARINA with the optimal scalar stepsize. Rand-7 compressor is used in the comparison. Through-
out the experiments, A is fixed at 0.3. Optimal stepsize is calculated in each case with respect to the
sketch used. The z-axis denotes the number of iterations while the notation G, p for the y-axis is
defined in (63)), which is the averaged matrix norm of the gradient. The notation p in the title denotes

Number of iterations

Number of iterations

Number of iterations

the probability used in the two algorithms, n denotes the number of clients in each setting.

In Figure ] in each plot, we observe that det-MARINA outperforms MARINA and the rest of the
non-variance reduced methods. This is expected, since our theory confirms that det-MARINA in-
deed has a better rate compared to MARINA, and the stepsizes of the non-variance reduced methods
are negatively affected by the neighborhood. When p is reasonably large, the variance reduced meth-
ods considered here outperform the non-variance reduced methods. In this experiment we consider

only the comparison involving det-CGD.

50



Under review as a conference paper at ICLR 2025

ala, p = 0.05, n = 100, rand-1 sketch ala, p=0.2, n =100, rand-1 sketch ala, p = 0.5, n = 100, rand-1 sketch

v DCGD with
detCGD wi

—= MARINA with 7,
> det-MARINA with D;_,

1 e DCGD with 72
{ GerCGD with D;
i —— MARINA wi
i
k!
3

—= MARINA wi

n h
> det-MARINA with D;_, > det-MARINA with D]

SRURE IR a | a Y
& . & \ S \
A M \.
~ . .
- v N 10 e
~o 10 S IS
10 e R Y el
10->
10
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Number of iterations Number of iterations Number of iterations
a8a, p = 0.05, n = 500, rand-1 sketch a8a, p = 0.2, n =500, rand-1 sketch a8a, p = 0.5, n = 500, rand-1 sketch
1 -+ DCGD with 7, 1 - DCGD with v, 1 v DCGD with 7,
ol T detCGD with D; ol 0 detCGD with D; ol | detCGD with D3
i e~ MARINA with 7, i —— MARINA with 7, i —— MARINA with 5,
| >+ det MARINA with D, i >+ det MARINA with D i » det MARINA with D,
H i i
] | 1
| w01 3 109 1 -
ol 1 a A a !
S E) < : < \
© A © \ © N
\ R \
N 102 N
N 102 S .
N s, S <
10 S S R
N R T . R o S ———]
10
10
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of iterations Number of iterations Number of iterations

Figure 4: Comparison of DCGD with optimal scalar stepsize 2, det-CGD with optimal diagonal
stepsize D3, MARINA with optimal scalar stepsize vy;, and det-MARINA with optimal stepsize
D7 _, with respect to W = L. In each case, probability p is chosen the set {0.05,0.2,0.5} for
MARINA and det-MARINA. A = 0.3 is fixed throughout the experiment. The notation n in the title
indicates the number of clients in each case.

1.5 IMPROVEMENTS OVER DET-CGD

In this section, we compare det-CGD in the distributed case with det-MARINA, which are both
algorithms using matrix stepsizes and matrix smoothness. The purpose of this experiment is to
show that det-M ARINA improves on the current state of the art matrix stepsize compressed gradient
method when the objective function is non-convex. Throughout the experiment, A = 0.3 is fixed,
and for det-CGD, £2 = 0.01 is fixed in order to determine its stepsize. For a thorough comparison,
we select the stepsize for det-CGD in the following way. Let us denote the stepsize as D = vy - W,
where yw € Ry, W € S‘i 4. We first fix a matrix W, in this case, we pick W from the

set {L ' diag~*(L), I}, and then we determine the optimal scaling yy for each case using the
condition given in (Li et all [2024b) (see (64) and (63)). Then, we denote the matrix stepsizes for
det-CGD

D, =1, - 1a, D5 = Yging-1(z) - diag ™" (L), D3 =~yp- - L7 (66)

For det-MARINA, we use the stepsize D7j _,, which is described in (]6_7[) In this experiment, we
compare det-CGD using three stepsizes D1, Dy, D3 with det-MARINA using stepsize D7} _;.

From Figure [3 it is clear that det-MARINA outperforms det-CGD with all matrix optimal step-
sizes with respect to a fixed W considered here. This is expected, since the convergence rate of
non-variance reduced methods are affected by its neighborhood. This experiment demonstrates the
advantages of det-MARINA over det-CGD, and is also supported by our theory. Notice that though
different W are considered for det-CGD, their convergence rates are similar, which is also men-
tioned by [Li et al.| (2024b).

1.6 COMPARING DIFFERENT STEPSIZE CHOICES

This experiment is designed to see the how det-MARINA works under different stepsize choices. As
it is mentioned in Appendix , for each choice of W € Si ., an optimal stepsize Dy, can be de-
termined. Here we compare det-MARINA using three different stepsize choices D} _,, D;iag_l (L)
and D7 . There stepsizes are explicitly defined in (62). Throughout the experiment, we fix A = 0.3,
Rand-1 sketch is used in all cases.
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Figure 5: Comparison of det-CGD with matrix stepsize D1, D- and D3 and det-MARINA with
optimal matrix stepsize with respect to W = L~'. The stepsizes {D;}?_, are described in (66).

Throughout the experiment 2 is fixed at 0.01, the notation p in the title refers to the probability for
det-MARINA, n denotes the number of clients considered, Rand-1 sketch is used in all cases for all
the algorithms.

We can observe from Figure

*

that, in almost all cases det-MARINA with stepsize D
and Dj _, outperforms det-MARINA with D}

diag—1(L)

As det-MARINA with D7, can be viewed as

MARINA using scalar stepsize but under matrix Lipschitz gradient assumption, this demonstrates
the effectiveness of using a matrix stepsize over the scalar stepsize. However, in Figure[f] there are
cases where det-MARINA with Dgiag,l( L) outperforms D7 _;. This tells us the two stepsizes are

perhaps incomparable in general cases. This is similar to det-CGD, where optimal stepsizes with
respect to a subspace associated with a fixed W ! are incomparable.
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Figure 6: Comparison of det-MARINA with matrix stepsize D;"-d, D(’;iag_l( L) and Dz_l. The

stepsizes are defined in (62). Throughout the experiment, A = 0.3 is fixed, Rand-1 sketch is used
in all cases. The notation p in the title indicates the probability of sending the true gradient for
det-MARINA, n denotes the number of clients considered.

1.7 COMPARING COMMUNICATION COMPLEXITY

In this section, we perform an experiment on how different probabilities p will affect the overall
communication complexity of det-MARINA. We use D7 _, as the stepsize, which is determined
with respect to the sketch used. Rand-7 sketches are used in these experiments, and we vary the
minibatch size 7 to provide a more comprehensive comparison. For Rand-7 sketch S and any
Ac Sff_ > one can show that

d(d—T T—1
E[SAS]=—- | ——diag(A)+ ——A|.
[SAS] . <d—1 diag( )+d—1 ) (67)
Combining and (62), we can find out the corresponding matrix stepsize easily. In the ex-
periment, a fixed number of iterations (KX = 5000) is performed for each det-MARINA with the
corresponding stepsize.

As it can be observed from Figure [/| in each dataset, the communication complexity tends to in-
crease with the increase of probability p. However, when the number of iteration is fixed, a larger
p often means a faster rate of convergence. This difference in communication complexity is more
obvious when we are using the Rand-1 sketch. In real federated learning settings, there is often
constraints on network bandwidth from clients to the server. Thus, trading off between communi-
cation complexity and iteration complexity, i.e. selecting the compression mechanism carefully to
guarantee a acceptable speed that satisfies the bandwidth constraints, becomes important.
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Figure 7: Comparison of det-MARINA with stepsize D7 _, using different probability p. The
probability p here is chosen from the set {0.05, 0.1, 0.2, 0.4, 0.8}. The notation n in the title denote
the number of clients considered. The z-axis is now the number of bytes sent from a single node to
the server. In each case, det-MARINA is run for a fixed number of iterations X = 5000.

1.8 COMPARISON OF DASHA AND DET-DASHA

In this experiment we plan to compare the performance of original DASHA with det-DASHA.
Throughout the experiments, A is fixed at 0.3. The same Rand-7 sketch is used in the two algo-
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Figure 8: Comparison of det-DASHA with matrix stepsize D7, and DASHA with optimal scalar
stepsize 7y using different Rand-7 sketches. A = 0.3 is fixed throughout the experiments. Optimal
stepsize is calculated in each case with respect to the sketch used. The z-axis denotes the number of

iterations while the notation G'i p for the y-axis denotes the averaged matrix norm of the gradient.
The notation n denotes the number of clients in each setting.

rithms. The stepsize condition on DASHA when the momentum is set as @ = 5—

2w+l 1S given as

16w (2 1)~
v < | L+ ML

’
n

according to Theorem 6.1 of [Tyurin & Richtarik| (2024). Here the L is the smoothness constant of
the function f, while L satisfies L? = 1 3" | L? where L; is the smoothness constant of local
objective f;. In theory we can pick L=L. Similarly, according to Corollary the optimal stepsize
matrix D7%, is given as

2
D;:‘:l

= L7t
14+ +/T+16CL 1 - Amin (L) ’
when the momentum is given as a =

(63)
3071 We compare the performance of DASHA with w and
det-DASHA with D7"; using the same sketch where the total number of clients are different.

As it can be observed in Figure |§|, det-DASHA with matrix stepsize D7’

*

, outperforms DASHA
with optimal scalar stepsize using the same sketch in every setting we considered. Note that since
the same sketch is used in the two algorithm, the number of bits transferred in each iteration is
also the same for the two algorithms. This essentially indicates that det-DASHA has better iteration
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Figure 9: Comparison of DCGD with optimal scalar stepsize 2, det-CGD with optimal diagonal
stepsize D3, DASHA with optimal scalar stepsize vy;, and det-DASHA with optimal stepsize D}",
with respect to W = L~'. X = 0.9 is fixed throughout the experiment. The notation n in the
title indicates the number of clients in each case. Rand-7 sketch with 7 = 50 are used in all four
algorithms.

complexity as well as communication complexity than DASHA given that the same sketch is used
for the two algorithm.

1.9 COMPARISON OF DCGD, DET-CGD, DASHA AND DET-DASHA

In this experiment, we consider the comparison between the two non variance reduced methods
DCGD, det-CGD and the two variance reduced method DASHA, det-DASHA. The stepsize choices
for DCGD and det-CGD have already been discussed in the previous sections, (for DCGD we use
~v2 and for det-CGD we use D3) ,for DASHA and det-DASHA, we use the stepsize choices of
Appendix Note that £2 is set as 0.01, and \ is fixed at 0.9 here. Throughout this experiment, we
consider the case where Rand-7 sketch is used in the four algorithms.

It is easy to observe that in each case of Figure[9] det-DASHA outperforms the rest of the algorithms.
It is expected that det-DASHA outperforms DASHA, as it is also illustrated by Figure [8] which is
a consequence of using matrix stepsize instead of a scalar stepsize. We also see that det-DASHA
and DASHA outperform det-CGD and DCGD respectively, which demonstrate the advantages of
the variance reduction technique. Note that in this case, all four algorithms are using the same
sketch, which means that the number of bits transferred in each iteration is the same for the four
algorithms, as a result, compared to the other algorithms, det-DASHA is better in terms of both
iteration complexity and communication complexity.

1.10 COMPARISON OF DET-DASHA AND DET-CGD WITH DIFFERENT STEPSIZES

In this experiment, we try to compare det-DASHA and det-CGD with different matrix stepsizes.
Throughout this experiment, we will fix €2 = 0.01 and A = 0.9. The same Rand-7 sketch is used for

the two algorithms. For det-CGD, we use the stepsize D1 = 1, - L4, D2 = Ygjag-1(1) -diag™! (L)
and D3 = yg,-1 - L™, for det-DASHA we use the stepsize D3* ;.

It can be observed that in all cases of Figure [0 det-DASHA outperforms det-CGD with different
stepsizes. This further corroborates our theory that det-DASHA is variance reduced and thus is
better in terms of both iteration complexity, and communication complexity (because in this case
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Figure 10: Comparison of det-DASHA with stepsize D7 ; and det-CGD with three different step-
sizes Dy, Dy and D3. Throughout the experiment, ) is fixed at 0.9, 2 is fixed at 0.01, Rand-7

sketch is used for all the algorithms with 7 selected from {20, 50,80}. The notation n denotes the
number of clients in each setting.

the same number of bits are transmitted in each iteration due to the fact that the sketch used is the
same).

I.11 COMPARISON OF DIFFERENT STEPSIZES OF DET-DASHA

In this experiment, we try to compare det-DASHA with different matrix stepsizes. Specifically,

we fix matrix W to be three different matrices, I, diaugf1 (L) and L~1. We denote the optimal

stepsizes as D77, Djii*ag,l( L and D3 ., respectively. For D%, it is already given in (68), for
1, and D(’;;*ag,l (r)> We use CorollaryE|to compute them. As a result,

2 1,
Dy, = . ’ 69
o w i Amax L
114 16 2l guny oo ()
and
ok 2 .1
Ddiag*l([l) = . dlag (L) . (70)

1+ \/1 +16Cgiag—1 (L) - Amin (L)
Throughout the experiment, ) is fixed at 0.9, Rand-7 sketch is used for all the algorithms.

We can observe from Figure E det-DASHA with D7, and D:‘i;kag_l L) both outperform

det-DASHA with D7, which demonstrate the effectiveness of using a matrix stepsize instead of

a scalar stepsize. However, depending on the parameters of the problem, it is hard to reach a general

M *k 3 *k
conclusion whether D7* ; is better than D ding—1(L) OF not.

1.12 COMPARISON OF DET-MARINA AND DET-DASHA
In this section, we aim to provide a comparison of det-DASHA and det-MARINA. They are similar
as they are both variance reduced version of det-CGD. However, the variance reduction techniques

that are utilized are different. For det-MARINA, it is based on MARINA, and it requires synchro-
nization from time to time depending on a probability parameter p, while for det-DASHA it utilizes
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Figure 11: Comparison of det-DASHA three different stepsizes D™, D(’;;‘ag,l (L) and D;‘-;‘. The

definition for those matrix stepsize notation are given in (68)), (70) and (69) respectively. Throughout
the experiment, A is fixed at 0.9, Rand-7 sketch is used for all the algorithms. The notation n denotes
the number of clients in each setting.

the momentum variance reduction technique which was also presented in DASHA, it does not need
any synchronization at all. Notice that for a fair comparison, we implement the two algorithms so
that they use the same sketch. We mainly focus on the communication complexity, i.e. the con-
vergence with respect to the number of bits transferred. Throughout the experiment, A = 0.9 is
fixed. For det-DASHA we pick 3 different kinds of stepsizes D;‘-;, Dz*,l and D;;g,l( L) For

det-MARINA, we also pick three different kinds of stepsizes correspondingly D7 , D7, and
D1 L, We use the same sketch for all of the algorithms we are trying to compare.
ag='(L)

It is obvious from Figure [I2] that det-DASHA always has a better communication complexity com-
paring to the det-MARINA counterpart. Notice that here since each algorithm is run for a fixed
number of iterations, so x-axis actually records the total number of bytes transferred for each algo-
rithm. For det-DASHA, DZ*—l perform similarly to D;;;“ag_l (L) and both are better than D}; This
is expected since the same sketch is used, and the number of bytes transferred in each iteration is the
same for each variant of det-DASHA. The same relation also holds for det-MARINA.

1.13 COMPARISON IN TERMS OF FUNCTION VALUES

In this section, we compare det-MARINA and det-DASHA in terms of function values. The starting
points of the two algorithms are set to be the same, and we run the two algorithms for multiple times
and we average the function values we obtained in each iteration. For the two algorithms, we use the
same sketch, and since we are interested in the performance in terms of communication complexity,
we use the number of bytes transferred in the training process as the z-axis. We run each of the
algorithm for 20 times, and fix A = 0.9. The starting point is fixed throughout the experiment. We
pick D7™, as the stepsize of det-DASHA, while D7 _, as the stepsize of det-MARINA.

Observing Figure [T3] we can see that the function values continuously decrease as the algorithms
progress through more iterations. However, the stability observed here differs from the case of the
average (matrix) norm of gradients. Our theoretical framework, as presented in this paper, primar-
ily addresses the average norm of gradients in the non-convex case. Despite this, the experiment
reinforces the effectiveness of our algorithms, showcasing consistent decreases in function values.
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Figure 12: Comparison of det-DASHA with three different stepsizes D}:, 711 and D;i*ag,l (L)

and det-MARINA with D}d s Dz_l and D;iag_l (L) in terms of communication complexity.
Throughout the experiment, A is fixed at 0.9, the same Rand-7 sketch is used for all the algorithms.
The notation n denotes the number of clients in each setting. Each algorithm is run for a fixed num-

ber of iteration X = 5000.
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Figure 13: Comparing the performance of det-DASHA with D**L~! and det-MARINA with
D*L~! in terms of the decreasing function values. The function values for each algorithm rep-
resent an average of 20 runs using different random seeds. Here, A = 0.9 is fixed throughout the
experiment, and the starting point for the two algorithms in different runs is the same. The notation
n stands for the number of clients, and p represents the probability used in det-MARINA. The same
Rand-7 sketch is employed for both algorithms.
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