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Abstract

Reinforcement Learning algorithms, in general, and off-policy agents navigating continuous
control spaces, in particular, often induce exploration through the addition of noise into
their action selection process. Popular implementations majorly utilize uncorrelated Gaus-
sian (white) noise, or temporally correlated Ornstein-Uhlenbeck (OU) noise, which is closely
related to red noise. Eberhard et al. (2023) propose using pink noise, which is halfway be-
tween white and OU noise, as the default action noise type. The authors also claim pink
noise to be a better default than noise schedulers, which are algorithms that vary the level
of temporal correlation as learning progresses. In this paper, we attempt to verify their
claims and present an analysis of colored noise exploration, comparing various strategies
of noise integration. We further attempt to identify the effect of using spatially and tem-
porally correlated noise to achieve exploration. The code and samples are present in the
supplementary material.

1 Introduction

In recent years, deep reinforcement learning (DRL) has emerged as a powerful paradigm at the intersection of
artificial intelligence and machine learning, revolutionizing the way autonomous agents learn to interact with
complex environments. One major challenge faced by most algorithms is exploration. Further complications
arise when dealing with continuous control environments, as agents must exhibit a sequence of precise actions
to reach a sufficiently distinct state.

Achieving a high-performing policy hinges on gathering data (i.e., state-action-reward sequences) of suffi-
ciently diverse behaviors. Most off-policy reinforcement learning algorithms utilize the addition of stochastic
action noise to the action chosen by the policy. This effectively models exploration and traditionally, this
noise takes the form of either uncorrelated white noise or temporally correlated Ornstein-Uhlenbeck (OU)
noise (Uhlenbeck & Ornstein, 1930).

Both white and OU noise have inherent limitations, which result in poor exploration in certain environments.
White noise, lacking temporal correlation, may fail to explore distant, high-reward states adequately. OU
noise has the opposite problem. It favors global exploration and can lead to extremely off-policy trajectories.
This makes it difficult for the model to learn the on-policy state visitation distribution.

Eberhard et al. (2023) propose an intermediate to both of these noise types, Pink Noise. In theory, pink
noise achieves a median between both local and global exploration, and the authors claim it to be a better
default than the commonly used noise types. We aim to reproduce the results claimed by the authors in this
report.

To deal with the problems of White and OU noise described above, another method is the usage of noise
schedulers. Typical schedulers decay the noise from more temporally correlated noise types to lesser corre-
lated ones. This allows for global exploration in the beginning, when the model has not learned anything,
and local exploration later when the model has sufficient learnings. In addition, we introduce a novel ex-
tension to pink noise, in the form of Spatio-Temporal Noise. This variation enhances traditional temporally
correlated noise by dynamically scaling its magnitude based on the exploration status of the current state.
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In summary, this paper presents the following findings:

• Pink Noise is indeed a better default than both traditionally used noise types, i.e. White Noise and
OU Noise, as is claimed by Eberhard et al. (2023). We report our findings here.

• Noise schedulers are found to be comparable to Pink Noise in a majority of the environments, and
out-perform Pink Noise in certain environments, contrary to the Eberhard et al. (2023)’s findings.
We also offer added baselines in the form of comparisons between different types of schedulers.

• Spatio-Temporal Noise enhances the results given by standard Pink Noise and we present it as
another possible alternative for a default noise. We also report comparisons between all of the
above.

2 Background and Related Work

2.1 Reinforcement Learning

We establish a discounted Markov Decision Process (MDP) formulation of RL, defined by the tuple
(S,A, P,R, γ), where S is the state space; A is the action space; R is the set of possible rewards; γ ∈
[0,1] is the discount factor; and P : S × R × S × A → [0,1] is the state transition probability function. For
a given state s ∈ S and action a ∈ A, the agent transitions to state s′ gaining a reward r ∈ R with the
probability P (s′, r|s, a).
The action-value function qπ of control policy π is defined as:

qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1|St = s, At = a

]
The goal of the agent is to learn an optimal control policy π that maximizes the expected reward over time.

2.2 Exploration

In order to learn the most optimal policy, the agent needs to explore the action space while maximizing the
rewards it gets. The exploration-exploitation tradeoff is a fundamental notion in Reinforcement Learning,
where the agent has to choose between the greediest policy that has already been explored and unexplored
policies that could potentially give higher rewards. In continuous action spaces, we aim to map the start
state with the best behavior or action by implementing a policy search.

On-policy methods, such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017) utilize the
results from previous iterations to improve the next iteration. They evaluate and improve the same policy
that is used for exploration. Off-policy methods, such as TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al.,
2018) and MPO (Abdolmaleki et al., 2018), learn from policies that may be different from the policy used
for action selection. This allows them to explore while learning the optimal policy simultaneously.

Q-learning off-policy algorithms like DDPG (Lillicrap et al., 2019), and TD3 learn a Q-function and a policy
concurrently, where these algorithms are specifically adapted for continuous action spaces. Algorithms like
SAC and MPO differ from the former two as they train stochastic policies, whereas DDPG and TD3 train
deterministic policies.

SAC is an actor-critic learning framework that aims to maximize rewards while maximizing entropy. Actor-
critic algorithms alternate between policy evaluation and policy improvement based on a value function.
MPO integrates Expectation Maximization (EM) techniques to optimize the policy without relying on the
gradient of the Q-function for updates. TD3 is an extension of DDPG, which improves upon it by learning
two Q-value functions and uses the minimum value function estimate during policy updates. We utilize
mainly these algorithms to benchmark our methods.
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2.3 Noise and Randomness

Adding randomness to a policy proves to be the easiest path to improving exploration. A common strategy
in Q-learning algorithms in discrete control is the epsilon greedy strategy, where a random action is chosen
with a certain probability ϵ that is usually decayed with time. In the continuous domain, exploration is
accomplished by various strategies, including rewarding exploration through novelty bonuses (Tang et al.,
2017), bandit method-inspired optimistic action selection based on Q-function uncertainty (Osband et al.,
2016), and directly integrating randomness into policy parameters ((Mania et al., 2018), (Plappert et al.,
2017)) or actions.

The addition of noise can introduce randomness. It can be independently sampled from a stochastic distribu-
tion or directly integrated into the policy. Noise can be temporally correlated or state-dependent (Rückstieß
et al., 2008), promoting behavior that leads to more exploration in lesser explored spaces. This noise is com-
monly injected into the action space, but it can also be added directly into the agent’s parameters (Plappert
et al., 2017).

2.4 Colored Noise

In deterministic off-policy algorithms like DDPG and TD3, action noise is added to the policy as:

at = µ(st) + σϵt

where µ is the policy, σ is the scale parameter, and ϵ1:T = (ϵ1, ..., ϵT ) represents the noise sampled randomly
from distributions specific to the type of noise. In the case of Gaussian noise or White noise (WN), ϵt is
sampled independently at every time step from a normal distribution with µ = 0, σ = 0.1, and Σ = I · σ.

Stochastic policy algorithms like SAC and MPO also utilize action noise. In continuous action spaces, these
algorithms commonly adopt a diagonal Gaussian policy distribution, which is represented as:

at ∼ N
(

µ (st) , diag (σ (st))2
)

at = µ (st) + σ (st)⊙ εt

where ϵt ∼ N(0, I). Again, ϵ1:T is Gaussian white noise, scaled by the function σ.

Another popular choice of noise is Ornstein-Uhlenbeck (OU) noise (Uhlenbeck & Ornstein, 1930),
wherein ϵt is sampled from the following temporal process:

εat
= εat−1 + θ

(
µ− εat−1

)
· dt + σ

√
dt · ϵt

εa0 = 0 ϵt ∼ N(0, I)

OU noise is usually generated with θ = 0.15 and is very close to integrated white noise known as Brownian
motion. Eberhard et al. (2023) define a family of temporally correlated noises called colored noise, charac-
terized by a parameter β, which determines the degree of temporal correlation. In this context, white noise
has β = 0, Brownian motion (red noise) has β = 2, and pink noise, which is halfway between the two, has
β = 1.

3 Experiments

We conduct three distinct sets of experiments, to verify and extend the results of the Eberhard et al. (2023).
All experiments were run on continuous control environments taken from DeepMind Control Suite Tassa
et al. (2018) and OpenAI Gym Brockman et al. (2016) (listed in Table 3), as in the original paper. We
evaluate algorithms and noise types on two metrics, Mean Performance and Final Performance, which are
the returns averaged over all training steps and the last five percent of the training steps respectively (For
details, refer A.1).

• First, we reproduce the original paper’s results by averaging over 5 seeds, utilizing the SAC and
MPO algorithms. This set of experiments attempts to reproduce the original paper’s returns.
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• Second, we evaluate three noise schedulers, atanh, cosine, and linear, against pink noise, on the SAC
algorithm. Here, our main goal is to understand where pink noise lies in comparison with schedulers.

• Third, we propose an alternative noise addition algorithm - spatio-temporal noise - and compare it
with pink noise for the SAC algorithm.

3.1 Pink Noise as a Default

We first attempt to reproduce the results shown by the original paper by investigating the effect that using
pink noise has on the SAC and MPO algorithms. We conclude that on average, pink noise gives better
results than just using white noise or OU noise, and is, therefore, the more suitable default noise type. Our
detailed results are tabulated along with the authors’ results in 1. The training plots are plotted in 6 and 7.

3.2 Pink Noise for Exploration

To gain insight into why pink noise is a good default noise distribution for exploring environments with
unknown dynamics, we experiment with an agent in bounded integrator and oscillator environments, where
its actions are driven solely by pink noise. We expect this experiment to reveal how the specific frequency
components of pink noise help the agent effectively explore these diverse environments. While pink noise may
not maximize exploration in every scenario, Fig 1 demonstrates that it consistently outperforms or performs
competitively with white and OU noise across diverse tasks. This suggests its suitability as a general-purpose
exploration strategy while acknowledging that alternative noise distributions might be preferable in specific
cases. See Sec A.3 for more detailed results.

Figure 1: Exploration done by White, Pink, and OU Noise types in the Bounded Integrator environment,
where exploration is purely controlled by noise and the environment is constrained by a square boundary. It
is clear that the most optimal exploration is achieved when pink noise is used.

3.3 Color Scheduler vs Pink Noise

The variation in returns across different noise distributions stems from their temporal correlation character-
istics. It is also dependent on the environment’s specifications and its preference for temporal correlation.
One method of bringing about this difference is to vary the value of β across timesteps. These techniques
are called Noise Schedulers, and they can be of multiple kinds depending on the function that β is decayed
with. We experiment with linear, atanh, and cosine schedulers, varying β from 2 to 01.

The authors used a linear scheduler that cycles between white noise and red noise. Instead, we use a scheduler
that shifts from red to white noise over the total time steps, since changing beta values rapidly could cause
problems concerning noise generation.

We find that the noise schedulers (A.2) match pink noise in almost all environments (see Table 2). However,
caution is to be exercised while using extremely fast-decaying schedulers such as atanh. In environments

1To counter the problem of atanh not resulting in non-zero returns in multiple environments due to decaying too fast, it is
instead decayed from 2.5 to 0.
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that require high levels of global exploration, fast-decaying schedulers can lead to insufficient exploration.
This could result in the model losing out on further off-reward states, that it would have otherwise explored
while using pink or OU noise.

(a) Pendulum (b) Cartpole (b.) (c) Ball-In-Cup

(d) Mountain Car (e) Hopper (f) Walker

(g) Reacher (h) Cheetah

Figure 2: Performance comparison of atanh, cosine, and linear schedulers (A.2), on 8 different environments,
utilizing the SAC algorithm. Although atanh performs better in the Walker environment(f), it under-
performs by a great margin in the Pendulum environment(a) due to its fast-decaying nature.
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Table 1: Our performance comparison of SAC and MPO on all environments using White Noise, OU Noise,
and Pink Noise, using two metrics, final and mean performance, averaged over all seeds. Along with a
comparison with the theoretical best noise type for an environment - Oracle - and theoretical worst - Anti,
and Gain is the difference achievable by changing noise type. We observe that pink noise on average performs
at least as good, if not better, than other noise types. See Fig 6 and Fig 7 for plots.

Environment Agent Final Performance Mean Performance
WN OU Pink WN OU Pink Oracle Anti Gain

Pendulum

MPO 21 532 387 38 405 297 670 239 430
SAC 561 695 469 168 589 422 361 158 202
MPO2 311 702 574 247 651 558 670 239 430
SAC2 224 350 446 158 283 294 361 158 202

Cartpole (b.)

MPO 989 987 939 917 858 886 967 928 39
SAC 1000 967 906 964 940 944 950 890 59
MPO2 999 1000 1000 928 940 967 967 928 39
SAC2 960 908 958 939 890 941 950 890 59

Cartpole (s.)

MPO 769 359 238 621 194 176 666 489 177
SAC 217 562 636 209 527 566 533 159 374
MPO2 703 784 788 535 499 666 666 489 177
SAC2 377 608 730 226 459 532 533 159 374

Ball-In-Cup

MPO 957 969 961 902 868 914 948 909 39
SAC 976 971 971 958 925 947 941 901 39
MPO2 974 973 978 926 909 948 948 909 39
SAC2 976 975 979 930 901 933 941 901 39

MountainCar

MPO 0 93 93 0 92 92 92 13 78
SAC 0 94 94 0 94 94 93 0 93
MPO2 13 56 92 13 52 91 92 13 78
SAC2 0 90 94 0 89 93 93 0 93

Hopper

MPO 1 26 30 1 13 23 69 14 54
SAC 33 146 128 27 88 88 80 43 36
MPO2 25 62 108 14 34 69 69 14 54
SAC2 89 94 119 43 53 77 80 43 36

Walker

MPO 925 450 654 782 340 502 390 284 106
SAC 441 434 549 312 320 454 472 363 108
MPO2 530 377 448 384 284 363 390 284 106
SAC2 593 506 602 437 363 471 472 363 108

Reacher

MPO 952 410 746 867 167 671 888 581 306
SAC 969 897 971 816 701 781 776 653 122
MPO2 956 856 966 864 600 871 888 581 306
SAC2 955 914 940 776 653 745 776 653 122

Cheetah

MPO 577 241 419 417 229 318 543 440 103
SAC 578 553 654 446 435 472 502 439 63
MPO2 666 612 678 481 440 543 543 440 103
SAC2 631 577 640 469 439 483 502 439 63

2These are the Eberhard et al. (2023)’ results.
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3.4 Spatio-Temporal Noise

Our paper also experiments with a combination of spatial and temporal conditioning to the noise. We do
this by adding a scaling factor, as shown in Algorithm 1, to the temporally dependent noise. The scaling
factor is initialized to a value h, which is then decayed to 1 based on the state’s visitation. We model the
decay using a reverse sigmoid function and then fix the decay timestep as a hyperparameter t. We use a
binning algorithm based on k-nearest neighbors that store a mean and an associated frequency. At every
stage, we then use the bins to estimate similar states visited, which we pass as the decay step to determine
the scaling factor. In our experiments, we find that this setup converges to returns better than pink noise
in 7 of 8 environments while being on par in the last one (see Table 2 and Fig 3).

Algorithm 1: Spatio-Sampling algorithm which returns the number of closest neighbors, which is passed
to the decay function to determine the scaling factor h for the temporal noise. Bmax and rmin are
hyperparameters that represent the maximum number of bins to maintain and the minimum radius to
determine the proximity of neighbors respectively.
Input: Bins & Weights ⟨B, W ⟩ = [(B1, W1), (B2, W2), . . . , (Bk, Wk)], Current State S
Initialize N ← 0, rmin ∈ R, dleast ←∞
// If number of bins is less than Bmax then make a new bin
if K < Bmax then
⟨B, W ⟩ ← ⟨B, W ⟩+ (S, 1)
return 1

// Iterate through bins to find the closest bin to given
// state S and number of bins within rmin distance
for (Bi, Wi) ∈ ⟨B, W ⟩ do

d← |Bi − S|
dleast ← min(dleast, d)
if d < rmin then

N ← N + Wi

// N now stores the number of nearest neighbors
// We also accordingly add the new state to its closest bin
i← index of closest bin
Bi ← Bi·Wi+S

Wi+1
Wi ←Wi + 1
return N
end

Table 2: Final performance of various noise addition techniques - pink noise, schedulers, and spatio-temporal
noise - using SAC algorithm. From these results, we conclude that spatio-temporal noise is an improvement
over standard pink noise.

Environment Final Performance
Pink Atanh Cosine Linear Spatio-Temporal

Ball-In-Cup 971 978 978 982 982
Cartpole (b.) 906 1000 1000 1000 1000
Pendulum 469 40 406 585 507
Reacher 971 970 969 963 963
Walker 549 688 555 551 525
Cheetah 654 705 727 642 742
Hopper 128 191 193 182 134
MountainCar 94 95 94 94 95
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(a) Pendulum (b) Cartpole (b.) (c) Ball-In-Cup

(d) Mountain Car (e) Hopper (f) Walker

(g) Reacher (h) Cheetah

Figure 3: Performance comparison of spatio-temporal noise, pink noise, and cosine noise-scheduler3on 8
different environments. We note that spatio-temporal noise is outperformed by the cosine noise scheduler in
environments like Hopper. Its final performance is just as good, if not better than pink in all 8 environments.

4 Discussion

Local exploration involves making short-term decisions to optimize rewards, focusing on immediate conse-
quences, while global exploration, or deep exploration, considers the future implications of decisions. Global
exploration addresses the challenge of maintaining motivation and optimizing decision-making strategies
over extended periods. This approach also acknowledges that overall rewards might diminish rapidly within
environments with sparse rewards, leaving the agent without sustained long-term incentives.

Employing uncorrelated noise, such as white noise, facilitates local exploration, whereas the application of
highly correlated noise, such as OU noise, enables adequate exploration necessary for overcoming potential
entrapment in local optima. However, the exclusive use of highly correlated OU noise introduces an alterna-
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tive challenge, characterized by the generation of trajectories that are strongly off-policy. Strongly correlated
action noise, such as red noise, can help with under-actuated environments where we need more global ex-
ploration. Environments that neither have a vast state space nor exhibit under-actuation do not profit from
highly correlated noise. Instead, the temporally correlated noise might lead to off-policy trajectory data,
inhibiting learning. Therefore, neither OU noise nor white noise acts as reasonable defaults.

The power spectral density of red noise is lower at higher frequencies. This means that low-frequency
components dominate the signal. Since the noise signal lacks high frequency components, it does not fluctuate
a lot leading to a much smoother signal. This is why red noise is strongly time-correlated. Pink noise also has
a similar power spectral density, just that the difference in magnitudes at high frequency and low frequencies
are not as high as in red noise, leading to a weaker time correlation. Thus, pink noise can be seen as the
middle ground between white and OU noise that works well for all environments, therefore acting as a good
default.

Intuitively, the model should initially explore globally, as it is not familiar with the environment. Later on,
when the model gains familiarity with the environment it should tone down its global exploration, and try
to explore locally. This is the idea behind color schedulers. Eberhard et al. (2023) experiment with a linear
noise scheduler, starting with just “red” noise and moving linearly towards white noise as we explore further.

Adjusting the amount of exploration done by the agent based on the number of similar states that we have
already visited could yield even more efficient exploration. This led us to experiment with a combination
of spatial and temporal conditioning to the noise. We do this by adding a scaling factor to the temporally
dependent noise, that is varied according to the number of similar states. We used 5 random seeds and
observed a large amount of variance in the MPO results. This leads us to believe that the agent is not able
to find a close-to-optimal policy every single time due to it not being able to explore thoroughly while using
pink noise with the MPO algorithm.

5 Conclusion

In conclusion, this paper explores the role of colored noise, specifically pink noise, as a default exploration
strategy for off-policy reinforcement learning agents navigating continuous control spaces. Through a series
of experiments on diverse environments, we find that pink noise generally outperforms traditional white and
Ornstein-Uhlenbeck (OU) noise, validating the claims made by Eberhard et al. (2023). The intermediate
nature of pink noise seems to strike a balance between local and global exploration, making it a promising
default choice.

Moreover, we investigate the effectiveness of noise schedulers, namely, linear, atanh, and cosine, and find that
they match pink noise’s returns in every environment that we experiment on while outperforming it in the
hopper environment. Contrary to the original authors’ conclusion we also put forward the noise scheduler
as a good default choice as an action noise distribution. The type of scheduler used usually does not make
a drastic difference in the performance but the returns that we see for atanh on the pendulum environment
lead us to choose linear and cosine as the better options.

Additionally, we propose a novel exploration technique, spatio-temporal noise, which combines both spatial
and temporal conditioning. This approach, incorporating a scaling factor based on the state’s visitation
frequency, outperforms traditional pink noise in almost all tested environments. The results highlight the
potential of spatio-temporal noise in achieving efficient exploration and suggest its consideration as a default
exploration strategy.

In summary, this paper contributes valuable insights into exploration strategies for reinforcement learning
agents, showcasing the potential benefits of incorporating spatial and temporal information into the explo-
ration process. We put forward three noise distributions namely pink noise, spatio-temporal noise, and noise
scheduler as candidates for default action noise distributions. These would be good choices when we do
not know the characteristics of the environment and do not want the noise distribution to have a negative
effect on the returns. We can at least conclude that for most environments the choice of action noise among
the three named above should not have a huge effect on the returns. Our findings open avenues for further
research in tailoring exploration strategies based on the specific characteristics of diverse environments.
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A Appendix

A.1 Experiment details

All experiments were conducted on SAC and MPO on all environments listed in 3. The training consists of
100 episodes of 10,000 steps each, where the reward for each episode is averaged over five evaluation rollouts.
The mean performance is calculated by averaging rewards over all the episodes, whereas the final performance
is calculated by averaging the rewards obtained in the last five percent of the runs. Our novel and scheduler
experiments were conducted on all environments other than Cartpole-Swingup due to computing constraints.
We use the following nine environments for reproducibility.

Table 3: Environments used

Environment Source ID
Pendulum DMC pendulum (swingup)
Cartpole (b.) DMC cartpole (balance_sparse)
Cartpole (s.) DMC cartpole (swingup_sparse)
Ball-In-Cup DMC ball_in_cup (catch)
MountainCar Gym MountainCarContinuous-v0
Hopper DMC hopper (hop)
Walker DMC walker (run)
Reacher DMC reacher (hard)
Cheetah DMC cheetah (run)

A.2 Noise Schedulers

Here we provide details of each of our schedulers

A.2.1 Linear Scheduler

The linear noise scheduler decays β from 2 to 0 linearly. This is modeled by the function

β = (1− x) ∗ 2

where x represents the proportion of training completed.

A.2.2 Cosine scheduler

The Cosine noise Scheduler decays β from 2 to 0 following a cosine curve. This is modeled by the function

β = 1 + cos(π · x)

where x represents the proportion of training completed.

A.2.3 atanh schedulers

The atanh noise scheduler decays β from 2.647(approx) to 0 following a arctanh curve. This is modeled by
the function

β = arctanh(min(1− x, 1− 10−6))

where x represents the proportion of training completed.

12
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A.3 Bounded Integrator and Oscillator Environments

The bounded integrator environment is a particle bounded in a square that it is unable to leave and is
controlled by giving it a velocity.

st+1 = clip(st + at,−c, +c)

where s, the state is position, a, the action is velocity, and c is the side of the square the particle is bounded
in. The policy is executed, whereby the velocities along distinct axes are independently controlled, and the
action is just noise with unit variance. This is why it is a good representation of the exploration done by
the different types of action noise. The code for the bounded integrator environment was taken from the
supplementary material provided by Eberhard et al. (2023).

The oscillator environment is a simple damped harmonic oscillator, consisting of a particle of mass m
connected to a spring of stiffness k, acted upon by a force F , where the friction coefficient is set to 0,
resulting in the differential equation

mx
′′

= F − kx

where x
′′ represents the acceleration and x represents the position. The system’s resonant frequency, f ,

which is set by adjusting the stiffness and mass, defines the oscillator environment.

The state space consists of the particle’s position and velocity, and the action is the force driving it. The
images display the sensitivity of the types of action noise to the parameterization of time-driven elements in
the environment.

We have used the gym environment for the oscillator environment given by Eberhard et al. (2023) at
https://github.com/onnoeberhard/oscillator-gym

13

https://github.com/onnoeberhard/oscillator-gym


Under review as submission to TMLR

(a) c = 25

(b) c = 250

(c) c = 1000

Figure 4: Results of white, pink, and OU noise on the Bounded Integrator environment, where c represents
the side of the bounding square. It is observable that pink noise generates the most balanced exploration
patterns.
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Figure 5: Results of white, pink, and OU noise on the Oscillator Environment for f ∈ {0.2, 0.02, 0.002}.
It is visible that pink noise is the least afflicted by the variation in resonant frequency f of the harmonic
oscillator.
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A.4 Performance of Pink Noise using MPO

Here are the detailed plots for the results of utilizing the MPO algorithm with white, pink, and OU noise in
9 different environments. The implementation was achieved by using the Tonic RL library (Pardo (2020)).

(a) Pendulum (b) Cartpole (b.) (c) Cartpole (s.)

(d) Ball-In-Cup (e) Mountain Car (f) Hopper

(g) Walker (h) Reacher (i) Cheetah

Figure 6: Performance comparison of white, pink, and OU noise, utilizing the MPO algorithm on 9 different
environments, averaged across 5 seeds. We conclude that pink noise is the best default among the three.
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A.5 Performance of Pink Noise using SAC

Here are the detailed plots for the results of utilizing the SAC algorithm with white, pink, and OU noise in
9 different environments. The implementation was achieved by using the stable_baselines3 library (Raffin
et al. (2021)).

(a) Pendulum (b) Cartpole (b.) (c) Cartpole (s.)

(d) Ball-In-Cup (e) Mountain Car (f) Hopper

(g) Walker (h) Reacher (i) Cheetah

Figure 7: Performance comparison of white, pink, and OU noise, utilizing the SAC algorithm on 9 different
environments, averaged across 5 seeds. We conclude that pink noise is the best default among the three.
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