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Abstract

Kernel Stein discrepancies (KSDs) are maximum mean discrepancies (MMDs) that
leverage the score information of distributions, and have grown central to a wide
range of applications. In most settings, these MMDs are required to (¢) separate a
target P from other probability measures or even (ii) control weak convergence to
P. In this article we derive new sufficient and necessary conditions that substantially
broaden the known conditions for KSD separation and convergence control, and
develop the first KSDs known to metrize weak convergence to P. Along the way,
we highlight the implications of our results for hypothesis testing, measuring and
improving sample quality, and sampling with Stein variational gradient descent.

1 Introduction

The Langevin kernel Stein discrepancy (KSD) is a maximum mean discrepancy (MMD) tailored to
the target distribution P that relies on its score s, = 0log p to measure the integration error between
P and alternative distributions. Kernel-based discrepancy measures are widely used for hypothesis
testing [[L6, 21} 9], sampler selection and tuning [14]], parameter estimation [4} [2, [11]], generalized
Bayesian inference [}, 124} 23} 10|, discrete approximation and numerical integration [7} 6} 3], control
variate design [26} 25]], compression [27], and bias correction [20} [17} 27].

Each MMD uses a kernel function to measure the integration error between a pair of probability mea-
sures Q and P, and, in each setting above, their successful application relies on either P-separation,
that is MMD(Q, P) > 0 whenever Q # P, or P-convergence control, namely MMD(Q),,,P) — 0
implies Q,, — P weakly. Unfortunately, these properties have so far only been established under
overly restrictive assumptions, e.g., for Q@ with continuously differentiable log densities [9} 211 2], for
P with strongly log concave tails and Lipschitz log density gradients [14], or for bounded kernels
which rarely occur in the context of score-based MMD kernels [32, 311 30} 29].

In this work, by fixing P as the target measure and allowing Q) to vary, we establish new broadly
applicable conditions for P-separation in Section |2} and P-convergence control in Section |3] We
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begin by extending the usual notions of maximum mean discrepancy and kernel Stein discrepancy to
accommodate both arbitrary probability measures Q and unbounded kernels. Throughout we use the
standard notation summarized in Appendix [A.T]

Kernel Stein discrepancies Consider a (reproducing) kernel k£ on X with reproducing kernel
Hilbert space Hy, [1, 28]. We will employ the following generalized definition of MMD, for any
target measure in the set of embeddable probability measures P € Py, ={Q € P : H, C LY (Q)}:

MMD,(Q, P) = sup |Qh — PhJ. (1
h€By: max(h,0)€ L1(Q)

Indeed, traditionally MMD is defined as the worst-case integration error across test functions in the
whole RKHS unit norm ball By, [16]]. However, the expression Qh — Ph is not well defined when
either (i) both Qh and Ph are infinite or (ii) & is not integrable under Q. Unfortunately, both of these
cases can occur when k is unbounded. Similarly we extend the integral probability metric definition
of KSD associated to the score-based Langevin Stein operator Sy,, which corresponds to the MMD of
a Stein kernel k;, under no additional assumption by Theorem see Appendix[A.2]for details.

Definition 1.1 (Kernel Stein discrepancy (KSD)). For X = R% a target P € P with density
p > 0, and matrix-valued base kernel K for which S,,(H ) exists. When Sp(Hy) C L' (P) and
P(S,(Hx)) = {0}, we define the kernel Stein discrepancy KSDx p : P — [0, oc] by

KSDgp(Q) = sup 1QSp (v)] - @)
vEBK: max(Sp(v),0)EL(Q)

2 Conditions for separating measures

Our first goal is to identify when an MMD distinguishes P from other measures. Given a set of
probability measures M C P, we will say that k separates P from M when MMD(Q,P) = 0
implies that Q = P for any Q € M. When k separates P from all probability measures P we say
simply that k is P-separating. We will first discuss restricted P-separation from distinguished subsets
of measures M # P in Sections [2.T)and [2.2] and then turn to general P-separation in Section[2.3]

2.1 Bochner P-separation with MMDs

We first characterize the kernels that separate P from the set Bz of Bochner embeddable measures.

Theorem 2.1 (Bochner P-separation with MMDs). Let k be a continuous kernel over a Radon space
X. Then k separates P € P from P iff, for any sequence (Qn)n C P,

(a) MMDg(Q,,P) =0
Quh = Ph YheC, <+ (b)  (Qu)n is tight 3)
(¢)  (Qn)n uniformly integrates \/k.

Theorem [2.1] exposes an important relationship between our two goals of separation and conver-
gence control. In particular, when k is bounded, it implies that separating P from all probability
measures is equivalent to controlling tight P-convergence, i.e., having Q,, — P weakly whenever
MMDy(Qy,P) — 0 and (Q,,)., is tight.

2.2 Score P-separation with KSDs

The standard practice in the KSD literature is to identify easily-verified properties of the base
kernel K, target P, and alternative measure () that ensure separation. One class of KSD separation
conditions applies to measures that finitely integrate the score s, but additionally requires Q to have
a continuously differentiable log-density [9, [2]. Our next result, removes the extraneous continuity
conditions and extends P-separation to all measures Q € Ps, under a standard separating assumption
on the base kernel, _@i i (Rd)-characteristicness [301], that covers all of the translation-invariant base
kernels commonly used with KSDs including Gaussian, inverse multiquadric IMQ), log inverse,
sech, Matérn, B-spline, and Wendland’s compactly supported kernels.

Theorem 2.2 (Score P-separation with KSDs). Suppose a matrix-valued kernel K with Hg C
¢} (RY) is 2}, (RY)-characteristic. If P € ’PK,O, then ky, separates P from Ps_ .

"Here Pk = {Q € P with q > 0: Sq(Hk) exists, Sq(Hr) C L' (Q),and Q(Sq(Hxk)) = {0}}.




Goodness-of-fit testing In goodness-of-fit (GOF) testing, one uses a sequence of datapoints
X1,...,X, generated from a Markov chain to test whether the chain’s stationary distribution
Q coincides with a target distribution P. KSDs with Qil—characteristic translation-invariant base
kernels are commonly used as GOF test statistics, and such tests are known to consistently reject
Q # P whenever KSD(Q, P) > 0 [OL 21} [14]. However, prior to this work, the separating condition
KSD(Q,P) > 0 had only been established for a restricted class of alternatives (continuous Q € P S
with differentiable log densities satisfying Q(||sp, — s4l|) < o0, [2| Prop. 1]) or a restricted class of
targets (P with Lipschitz s;, and strongly log concave tails, [14, Thm. 7]). The former restriction
excludes discrete and discontinuous Q, as well as QQ with tails heavier than P or non-differentiable
densities. Meanwhile, the latter restriction excludes P with tails heavier than or lighter than a Gaus-
sian. Theoremin the present work ensures that KSD(Q, P) > 0 forany P € Py, and Q € Ps,.
In particular, this accommodates discontinuous or non-smooth Q and all targets P for which the KSD
Eq. is defined. Moreover, Theoremholds for all 9;1 -characteristic kernels, a strict superset of
the %, -universal kernels [S Def. 4.1] assumed in prior work.

2.3 General P-separation

The results in the preceding sections only yield general P-separation when applied to bounded
kernels, and indeed this has been the standard in much of the MMD literature [32, 31} 30, [29]. To
accommodate the unbounded Stein kernels that often arise in KSDs, our next definition and result
provide a new, convenient means to check that unbounded kernels separate P from P.

Definition 2.3 (Bounded P-separating property). We say a set of functions F is bounded P-separating
if L>° N F is P-separating, i.e., if Q € P and Qh = Ph for all h € L>° N F then Q = P.

Theorem 2.4 (Controlling tight convergence with bounded separation). If Hy is bounded P-
separating, then k is P-separating and controls tight P-convergence.

Our next result applies this strategy and shows that all of the translation-invariant base kernels
commonly used with KSDs, including Gaussian, IMQ, log inverse, sech, Matérn, B-spline, and
Wendland’s compactly supported kernels, contain a sub-RKHS of bounded (in fact rapidly decaying)
functions that is P-separating.

Theorem 2.5 (Controlling tight convergence with KSDs). For any translation invariant k with a
spectral density bounded away from zero on compact sets, and s.t., Hj, C €*. Define the tilted kernel
ko(z,y) = a(x)k(x,y)a(y) for each strictly positive a € €.

1. IfP € P, and ||sp|| has at most root exponential growth,E] then the Stein kernel induced by
k is bounded P-separating and controls tight P-convergence.

2. Moreover, if P € P, , and a, Oa, and al|s,|| have at most root exponential growth, then the
Stein kernel induced by k, is bounded P-separating and controls tight P-convergence.

Goodness-of-fit testing, continued Theorem [2.5|extends the reach of KSD GOF testing by guar-
anteeing KSD(Q, P) > 0 for all alternatives QQ whenever ||s,,|| has at most root exponential growth.
Since the Stein kernels of Theorem [2.5]are also bounded P-separating, the same consistency guaran-
tees immediately extend to the computationally efficient stochastic KSDs of [[15]].

3 Conditions for convergence control

Having derived sufficient conditions on the RKHS to separate measures and control tight convergence,
we now present sufficient conditions to ensure that an MMD controls weak convergence to P.
Hereafter, we will say that k controls weak convergence to P or controls P-convergence whenever
MMDy(Qn,P) — 0 implies Q,, — P weakly. Moreover, we will say that k enforces tightness
whenever MMDy(Q,,, P) — 0 implies that (Q, ), is tight. Enforcing tightness is central to our
developments as, if k£ controls tight weak convergence to P and enforces tightness, then it also
controls weak convergence to P. We begin by introducing a new sufficient condition to ensure that
MMDs enforce tightness.

?A function a has at most root exponential growth if a(x) = O(exp(czzi:1 v/ |z?)) for some ¢ > 0.



Theorem 3.1 (P-dominating indicators enforces tightness). Consider a set of functions F C L!(P).
We say that F P-dominates indicators if, for each € > 0, there exists a compact set S C X and a
function h € F that satisfy

h—Ph>T[S°] —e. 4)

IfP € P, and H;, P-dominates indicators then (Qy, ), is tight whenever MMD(Q,,, P) — 0.
Corollary 3.2 (Controlling P-convergence with KSDs). Under the conditions of Theorem[2.2]or[2.3]

if Hi, P-dominates indicators, then ky, controls P-convergence.

Note prior work relied on a stronger coercive function condition to establish that KSDs enforce
tightness [14} 16, [17]]. As a first application of Corollary [3.2] we show that KSDs with IMQ base
kernels enforce tightness and control convergence whenever the dissipativity rate of the target
dominates the decay rate of the kernel.

Theorem 3.3 (IMQ KSDs control P-convergence). Consider a target measure P € P with score
sp € € (RY) N LY(P). If, for some dissipativity rate u > 1/2 and s, s1,s2 > 0, P satisfies the
generalized dissipativity condition

—(sp(x),z) — s|sp()]|; > s1 |z|** — sy forall xeR% ®)

Ifk(z,y) = (A + |z —y||*)™ forc > 0and v € (0,2u — 1), then Hr, P-dominates indicators
and enforces tightness. If, in addition, ||sp|| has at most root exponential growth, then ki, controls
P-convergence.

Measuring and improving sample quality Because the KSD provides a computable quality
measure that requires no explicit integration under P, KSDs are now commonly used to select and
tune MCMC sampling algorithms [[14], generate accurate discrete approximations to P [22,16, (7} [12],
compress Markov chain output [27]], and correct for biased or off-target sampling [20 [17, 27]]. Each
of these applications relies on KSD convergence control, but past work only established convergence
control for P with Lipschitz s, and strongly log concave tails ([14, Lem. 16]; [6, Thm. 3]; [18}
Thm. 3.2]). Notably, these conditions imply generalized dissipativity Eq. (5) with u = 1 but exclude
all P with tails lighter than a Gaussian. Corollary and Theorem significantly relax these
requirements by providing convergence control for all dissipative P with lighter-than-Laplace tails.

Much of the difficulty in analyzing KSDs stems from the fact that all known convergence-controlling
KSDs are based on unbounded Stein kernels kj,. As a second illustration of the power of Corollary
Theoremdevelops the first KSDs known to metrize P-convergence (i.e., KSD(Q,,,P) = 0 <—
Qn — P weakly), by constructing bounded convergence-controlling Stein kernels.

Theorem 3.4 (Metrizing P-convergence with bounded Stein kernels). Consider a target measure
P € P with score s, that, for some dissipativity rate w > 1/2 and s, s1,s2 > 0, satisfies the
generalized dissipativity condition Eq. . Define the Stein kernel with base kernel K (x,y) =
diag (a(||z])(='y" + k(z,y))a(|lyll)), for k characteristic to D}, with "), C €, and a(||z||) =

(2 + ||=||*)~7 a tilting function with ¢ > 0 and ~ < w. The following statements hold true:
1. If P € Py o, then Hy, P-dominates indicators and enforces tightness.

2. IfP € Py v > 0, and ||sp(2)]] < (¢ + ||z|*)7, then ky is bounded P-separating and
controls P-convergence.

30f Isp(@)]| - lz]| < (& + ||2)|*) and s, € €, then Hi, C 6, and k, metrizes P-
convergence.

Sampling with Stein Variational Gradient Descent Stein variational gradient descent (SVGD)
is a popular technique for approximating a target distribution P with a collection of n representative
particles. The algorithm proceeds by iteratively updating the locations of the particles according to a
simple rule determined by a user-selected KSD. [19] showed that the SVGD approximation converges
weakly to P as the number of particles and iterations tend to infinity, provided that the chosen KSD
controls P-convergence and that the Stein kernel is bounded. However, prior to this work, no bounded
convergence-controlling Stein kernels were known. Theorem [3.4] therefore provides the first instance
of a Stein kernel satisfying the SVGD convergence assumptions of [19].



4 Conclusion

This article derived new sufficient and necessary conditions for kernel discrepancies to enforce
P-separation and control P-convergence, with important consequences in many applications, as we
have highlighted in the contexts of GOF, improving sample quality and Stein variational gradient
descent. We characterized all MMDs that separate P from Bochner embeddable measures, proposed
novel sufficient conditions for separating all measures and enforcing tightness, strengthened all prior
guarantees for KSD separation and convergence control on R%, and derived the first KSD known to
exactly metrize (as opposed to strictly dominating) weak P-convergence on R<.
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A Appendix

A.1 Notation

Let P denote the set of (Borel) probability measures on a separable metric space X. ||| and
(-,-) denote the Euclidean norm and inner product on R¢. For any function f : X — R’, we let
Pr={QeP:|fll € L*(Q)} denote the set of probability measures that finitely integrate || f||,
where L (Q) denotes the seminormed space of functions with finite Q-integral. L>° will denote the
normed space of bounded functions.

Let *(R?) denote the space of /-times continuously differentiable R%-valued functions on X (i.e.,
[ € €*(R?) if the partial derivatives of order £ of f* exist and are continuous for i € [d] =
{1,...,d}). When d = 1 or £ = 0 we will use the abbreviations ¢* = €*(R") or ¢ (R%) = €°(R?).
We let Of denote the vector of partial derivatives of a function f, and, for each multi-index p, let
OP f denote the p-th partial derivatives of f. Decay requirements will appear as subscripts: &, (R%),
and €, (R?) will respectively denote the spaces of R%-valued continuous functions that are bounded,
and vanishing at infinity. Analogously, for each function & : X — [0,0), %, (R%) and €, ,(R?)
respectively denote the spaces of R%-valued continuous functions f with f/(1 + h) bounded or
vanishing at infinity. For any function of two arguments K (y, x), we write K, = K (-, ).



For a reproducing kernel k we denote vk : X — R the function  +— +/k(z, x). Matrix-valued

reproducing kernels are denoted K : R? x R — R%*?, and the RKHS unit ball is denoted By . The
Langevin Stein operator on R%-valued functions is denoted S,,(v) = %V - (pv).

A.2 Extended definition of KSD

Consider a (reproducing) kernel £ on X’ with reproducing kernel Hilbert space Hj, [1,128]. Tradition-
ally, the associated kernel MMD is defined as the worst-case integration error across test functions in
the RKHS unit norm ball B;, [16]]:

MMDg(Q,P) = sup |Qh — Ph|. (6)
heBy
However, the expression Qh — Ph is not well defined when either (i) both Qh and Ph are infinite or

(ii) A is not integrable under Q. Unfortunately, both of these cases can occur when £ is unbounded as
;. then necessarily contains an unbounded test function.

Since we are interested in a fixed target measure P, we address the first issue by focusing on
kernels with finitely P-integrable test functions, i.e., with B C Ll(P). To address the second
issue, we extend the MMD definition Eq. (6) to all probability measures Q by taking the supremum
only over the Q-integrable elements of By, that is, h with either o, = max (h,0) € L'(Q) or
h_ = max(—h,0) € LY(Q). In fact, since By is a symmetric set, considering only h with
hy € LY(Q) suffices to ensure |Qh — Ph| is well defined and belongs to [0, oc].

Definition A.1 (Maximum mean discrepancy (MMD)). For a given kernel k, define the set of
embeddable probability measures P, = {Q € P : Hj, C LY(Q)}. For any target measure P € P,
we define the maximum mean discrepancy MMDy (-, P) : P — [0, co] by

MMDg(Q,P) = sup |Qh — Ph|. (7)
h€By: max(h,0)€ L1(Q)

Building on the Stein discrepancy formalism of [13] and the zero-mean reproducing kernel theory of
[26]], [9} 21} [14] concurrently developed a special class of score-based MMDs that can be computed
without any explicit integration under the target P. The Langevin KSD is defined in terms of the
Langevin Stein operator 13|,

1
Sp(v) = oV (pv),
as an integral probability metric over a subset of S,,(# k) that ensures the supremum is well-defined.
KSDg p(Q) = sup |QSp(v)| = sup |QSp(v) — PS,(v)]. (8)
vEBK vEBK

However, S, (v) is often unbounded so that as before the expression Eq. (8) need not be well defined
for all Q € P. To enable meaningful KSD evaluation for all probability measures, we follow the
recipe of Definition to extend the definition of KSD to all Q € P, see Definition[L.1]

Under additional assumptions, like Bochner embeddability of P and Q and continuous differentiability
of K and p, prior work showed that the KSD Eq. is equivalent to an MMD with a scalar Stein
kernel ky, and that S,(H ) defines a Stein RKHS Hy,, of scalar-valued functions [26} 9, 21114, 2].
Our next result shows that no additional assumptions are necessary: KSDg p(Q) = MMDy, (Q,P)
and S, (H ) = Hr, whenever the left-hand side quantities are well defined.

Theorem A.2 (KSD as MMD). Consider a target P € P with density p > 0 and matrix-valued

base kernel K for which S,(Hx) exists. Then Sy(Hp) is the Stein RKHS Hy induced by the

Stein kernel kp (z,y) = mvy -V - (p(2)K (z,y)p(y)). Moreover, for target measures with

zero-mean Stein RKHSes, i.e., for P in

Pro = {Q € P withq > 0: Sq(Hx) exists, Sq(Hr) C LY(Q),and Q(Sq(Hr)) = {0}}, (9)
the KSD matches the Stein kernel MMD: KSDg p(Q) = MMDy (Q,P) forall Q€ P.
The zero-mean condition P € Px , ensures that all functions in the Stein RKHS integrate to zero

under the target measure so that the KSD can be evaluated without any explicit integration under P.
Moreover, when Q embeds into the Stein RKHS, the KSD takes on its more familiar double integral

form, ie., if P € Py, and Q € Py, , then KSD% p(Q) = [ kp(,y)dQ(2)dQ(y)
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