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Abstract

Traditional methods for identifying structurally similar spreadsheets fail to capture1

the spatial layouts and type patterns defining templates. To quantify spreadsheet2

similarity, we introduce a hybrid distance metric that combines semantic em-3

beddings, data type information, and spatial positioning. In order to calculate4

spreadsheet similarity, our method converts spreadsheets into cell-level embed-5

dings and then uses aggregation techniques like Chamfer and Hausdorff distances.6

Experiments across template families demonstrate superior unsupervised clustering7

performance compared to the graph-based Mondrian baseline, achieving perfect8

template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE9

dataset. Our approach facilitates large-scale automated template discovery, which10

in turn enables downstream applications such as retrieval-augmented generation11

over tabular collections, model training, and bulk data cleaning.12

1 Introduction13

Spreadsheets are ubiquitous in enterprises, yet collections are often messy and difficult to leverage at14

scale for LLM or ML applications. A key bottleneck is that similar spreadsheets—those following15

the same template or layout—are scattered across repositories, hindering automated processing and16

workflow integration.17

We define spreadsheets as similar if they share consistent header arrangements, data regions, and con-18

tent distributions. Organizing spreadsheets by similarity enables enterprises to treat template families19

as unified objects—critical for emerging applications like table-based RAG systems, automated data20

wrangling pipelines, and foundation model pretraining over structured data.21

Existing methods for spreadsheet similarity vary in their approaches: content-based embeddings [4]22

focus primarily on semantic information while potentially overlooking layout structure, while graph-23

based approaches like Mondrian [12] capture topological relationships through structural graphs. We24

propose a hybrid cell-level distance metric that jointly encodes spatial positioning, type patterns, and25

semantic content. By combining Euclidean layout similarity with type-aware semantic matching and26

aggregation strategies (Chamfer [5] and Hausdorff [6] distances), our method effectively identifies27

spreadsheet template families for downstream processing.28

The primary contribution of our paper is a hybrid cell-level distance metric for grouping spreadsheets29

into template families. We demonstrate superior unsupervised clustering performance compared to30

the graph-based Mondrian benchmark [12], achieving perfect template reconstruction.31

2 Related Work32

Our work intersects two primary research areas: spreadsheet representation methods and similarity33

measures. Prior spreadsheet understanding ranges from vision-based approaches [3, 2] to sequential34
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models [10, 8, 13] and modern LLM encodings [14, 9, 11]. Modern representation methods have35

explored various encoding formats (Markdown, HTML, JSON) for large language models [14, 9, 11],36

providing foundations for our encoding methodology, though they focus primarily on content rather37

than structural patterns.38

For similarity measurement, content-based methods [1] focus on semantics while potentially un-39

derweighting spatial structure. Graph-based approaches like Mondrian [12], our primary baseline,40

capture topology but exhibit a critical limitation: they consider content or structure independently.41

Our hybrid approach addresses this gap by jointly encoding spatial positioning, data types, and42

semantic content.43

3 Methodology44

We measure spreadsheet similarity through hybrid distance metrics combining spatial layout, type45

information, and semantic content.46

3.1 Definitions47

Definition 1 (Embedding). For a spreadsheet S with dimensions m× n, we define its embedding as:48

Φ(S) = {(i, j, t, s) : (i, j) ∈ [m]× [n], t ∈ T , s ∈ Rn} (1)
where T is a collection of data types {Integer, Float, Date, String, . . .}. Each element (i, j, t, s) ∈49

N2 × T × Rn represents a non-empty cell at position (i, j) with data type t, where s is a vector50

representation of the semantic meaning encoded using sentence-transformers/all-minilm-l6-v2 [15].51

In our implementation, we map data types to integer encoding, details found in A. This representation52

captures spatial positioning, type structure and semantic meaning.53

3.2 Cell-Level Distance (Hybrid Sub-Metric)54

For two cells u = (i1, j1, t1, s1) and v = (i2, j2, t2, s2), we define:55

dc = wspatial · dspatial + wtype · dtype + wsemantic · dsemantic (2)
where wspatial, wsemantic, wtype ∈ [0, 1] and wspatial + wsemantic + wtype = 1. dc is a weighted average56

combination of the 3 dimensions.57

Spatial component: Normalized Euclidean distance on cell positions58

dspatial(u, v) =

√
(i1 − i2)2 + (j1 − j2)2√

M2
max +N2

max

(3)

where Mmax and Nmax are the maximum row and column dimensions across both spreadsheets. This59

ensures dspatial ∈ [0, 1] and makes distances comparable across different spreadsheet sizes.60

Type component: Binary indicator for type mismatch61

dtype(u, v) = 1t1 ̸=t2 =

{
0 if t1 = t2
1 otherwise

(4)

Semantic component: Based on cosine similarity of cells62

dsemantic(u, v) =
1

2
· (1− s1 · s2

∥s1∥∥s2∥
) (5)

Since all components are normalized to [0, 1], their average dc is also a metric on N2 × T ×Rn with63

dc(u, v) ∈ [0, 1].64

3.3 Spreadsheet-Level Distance (Aggregation Strategies)65

Given spreadsheets S1, S2 with embeddings Φ(S1) = {x1, . . . , xm} and Φ(S2) = {y1, . . . , yn},66

we aggregate cell-level distances dc to compute spreadsheet-level distances.Since dc is a metric, all67

aggregation methods inherit metric properties (symmetry, non-negativity, triangle inequality) on68

non-empty spreadsheets. We evaluate two aggregation strategies— Chamfer distance and Hausdorff69

distance which differ in their matching approaches. Formal definitions are provided in Appendix B.70
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4 Experiments71

We evaluate our embedding framework and distance measure through three complementary sections:72

clustering analysis, relative importance of dimensions and computational scalability. Due to compute73

constraints, we restricted our analysis to 133 randomly selected spreadsheets across seven template74

families (catalog products, census, countries metadata, product manycols, and sport season, strategic75

focus, and triathlon) from the FUSTE real-world dataset [12], providing a reproducible benchmark for76

template discovery evaluation. All code can be found here https://anonymous.4open.science/77

r/spreadsheet-similarity-E286/README.md.78

4.1 Clustering Analysis79

We evaluate the effectiveness of our structural embeddings for unsupervised organization of spread-80

sheet collection by comparing our method with the Mondrian method proposed by Vitagliano et81

al.[12]. Using k-medoids clustering with k = 7 clusters (matching the number of template families in82

our dataset), we assess how well each method recovers the original template structure.83

Results: Table 1 presents clustering performance across all distance measures. Our Chamfer-based84

method achieved perfect cluster recovery (ARI = 1.00), substantially outperforming the Mondrian85

baseline (ARI = 0.90) in partition quality. While Chamfer’s silhouette coefficient (0.64) is lower86

than Mondrian’s (0.83), the perfect ARI demonstrates superior recovery of the true cluster structure.87

Our Hausdorff-based approach underperformed both methods with ARI = 0.61 and silhouette =88

0.49, suggesting the measure’s sensitivity to outliers and extreme points makes it less suitable for89

this template discovery task. These results demonstrate that Chamfer distance combined with our90

hybrid similarity metric provides superior template discrimination. The perfect ARI confirms that91

incorporating semantic and type dimensions alongside spatial features enables the model to capture92

the essential structural characteristics that define document templates.93

Table 1: Clustering quality metrics using k-medoids with k = 7 clusters. Initial values are wsemantic =
0.3, wtype = 0.5 and wspatial = 0.2. In 4.2, we vary them to study relative importance.

Distance Measure ARI (Adjusted Rand Index) ↑ Silhouette Coeff.
Chamfer 1.00 0.64
Mondrian (benchmark) 0.90 0.83
Hausdorff 0.61 0.49

Figure 1: t-SNE projections (perplexity=9) of spreadsheet collections colored by k-medoids cluster
assignments. Each subplot shows clustering results for a different distance measure, with point
shapes indicating ground truth template families. Clear visual separation indicates successful cluster
recovery.

4.2 Relative Importance of Dimensions94

To understand relative importance of spatial, type and semantic information in template discovery,95

we vary wtype, wsemantic across the feasible domain and compute ARI and silhouette coefficients.96
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(a) Adjusted Rand Index (b) Silhouette Coefficient

Figure 2: Clustering performance across weight combinations for type and semantic dimensions.
White cells indicate invalid combinations where wtype + wsemantic > 1.0.

The heatmaps in Figure 2 reveal key insights. First, both dimensions contribute independently:97

performance improves along both axes, with type weight enhancing ARI from 0.44 to 0.61 at98

wsemantic = 0.0, and semantic weight driving ARI from 0.44 to 1.00 at wtype = 0.0. However,99

semantic information is most important: the rate of improvement is much steeper along the100

semantic axis, with ARI jumping from 0.49 to 0.85 when wsemantic increases from 0.2 to 0.3 (at wtype =101

0.3). Second, the dimensions exhibit strong synergy at moderate weights: type information102

amplifies the effect of semantic information (and vice versa). For instance, at wtype = 0.2, wsemantic =103

0.2, ARI reaches 0.63, substantially higher than pure type (0.45) or pure semantic (0.49) at weight104

0.2. The silhouette coefficient similarly shows complementary gains, increasing from 0.54 to 0.68105

as type weight rises from 0.0 to 0.4 at wsemantic = 0.3. Third, high semantic weight drives ARI106

performance: once wsemantic ≥ 0.5, ARI reaches near-optimal levels (ARI ≥ 0.97) regardless of107

type weight, demonstrating that semantic information alone is sufficient for accurate cluster recovery.108

However, type weight enhances cluster cohesion: the silhouette coefficient continues to improve109

with increasing type weight even at high semantic levels. For example, at wsemantic = 0.7, silhouette110

improves from 0.64 (pure semantic-spatial) to 0.72 (at wtype = 0.3), showing that type information111

contributes to tighter, more well-separated clusters. This reveals complementary roles: semantic112

information identifies the correct cluster assignments (external validity), while type information113

refines cluster quality and internal structure (internal validity).114

5 Conclusion115

This work presents a rigorous framework for quantifying similarity among spreadsheets through116

hybrid distance metrics that integrate spatial positioning with semantic-type information. Our primary117

contribution, a novel hybrid distance metric, showing superior clustering performance with ARI118

reaching 1.00, surpassing benchmark methods.119

Limitations and Future Directions: Our current framework establishes a foundation for embedding120

structural and semantic information from spreadsheets. We plan to improve scalability by optimising121

implementation, and to explore extending the approach to additional structured documents such as122

presentation slides.123

Broader Impact: This work provides a principled methodology applicable to automated document124

organization and retrieval, template discovery, and data format standardization across extensive125

document collections.126

Our framework establishes that visual structural patterns intuitively recognized by humans can be127

systematically quantified and leveraged to enhance performance in clustering and classification tasks,128

creating new opportunities for applications where classifying spreadsheets plays a vital role.129
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============================================================================175

A Data Type Mapping176

For the structural embedding Φ(S) defined in Definition 1, we map each cell’s data type to an integer177

encoding to enable metric computation. Table A1 presents the complete mapping used throughout178

our experiments.179

Table A1: Data type to integer encoding mapping.
Data Type Encoding

Integer 0
Float 0
Percentage 0
Scientific Notation 0
Currency 0
Date 1
Time 1
Email 2
Other 3
String 4

The type detection follows standard spreadsheet conventions: numerical formats are grouped together180

(e.g., scientific notation, currency symbols), temporal data by date/time patterns, and emails by181

the presence of the @ symbol. The “Other” category captures non-empty cells that do not match182

any specific type pattern. This encoding ensures that the type component dtype(u, v) in 4 operates183

on discrete categorical values while maintaining the metric structure required for our distance184

computations.185

B Aggregation Strategies186

Given spreadsheets S1, S2 with embeddings Φ(S1) = {x1, . . . , xm} and Φ(S2) = {y1, . . . , yn}, we187

define 2 strategies for aggregating cell-level distances dc into spreadsheet-level distances:188

• Chamfer Distance: Bidirectional average nearest-neighbor distance

DChamfer(S1, S2) =
1

m

m∑
i=1

min
j

dc(xi, yj) +
1

n

n∑
j=1

min
j

dc(xi, yj)

• Hausdorff Distance: Worst-case nearest-neighbor distance

DHausdorff(S1, S2) = max

{
max

i
min
j

dc(xi, yj),max
j

min
i

dc(xi, yj)

}

C Theoretical Properties189

Proposition 1 (Bounded Distance). For any spreadsheets S1, S2 and aggregation method:190

D(S1, S2) ∈ [0, 1].191

Proof. Since dc ∈ [0, 1], Chamfer, and Hausdorff are convex combinations of dc values.192

6


	Introduction
	Related Work
	Methodology
	Definitions
	Cell-Level Distance (Hybrid Sub-Metric)
	Spreadsheet-Level Distance (Aggregation Strategies)

	Experiments
	Clustering Analysis
	Relative Importance of Dimensions

	Conclusion
	Data Type Mapping
	Aggregation Strategies
	Theoretical Properties

