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ABSTRACT

This work introduces MiDi, a diffusion model for jointly generating molecular
graphs and corresponding 3D conformers. In contrast to existing models which
derive molecular bonds from the conformation using predefined rules, MiDi stream-
lines the molecule generation process with an end-to-end differentiable model.
Preliminary results demonstrate the benefits of this approach: on the complex
GEOM-DRUGS dataset, our model generates significantly better molecular graphs
than 3D-based models, and even surpasses specialized algorithms that directly
optimize the bond orders for validity.

1 INTRODUCTION

The quest for novel, effective molecular compounds is a central challenge in modern drug discovery.
To this end, it is crucial to consider both the 2D connectivity structure of the molecule, which
determines its synthesis, and the 3D conformation, which governs its interaction with proteins. Yet,
existing generative models for molecules are restricted to one of these two data modalities. To
generate molecules in 3D, previous works typically train a network to generate conformers, and then
predict the 2D structure using interatomic distances (Hoogeboom et al., 2022) or chemical software
(Gebauer et al., 2019). These strategies show limited performance on complex tasks, and do not
provide a differentiable signal for downstream applications.

Our Mixed Graph+3D Denoising Diffusion (MiDi) model addresses these limitations by jointly
generating a graph and corresponding 3D coordinates. MiDi views molecules as attributed graphs
whose nodes have 3D coordinates in addition to the atom types and charges, and whose edges have
a bond type. The model is trained to generate all these components simultaneously, which allows
for controlling both the quality of the generated graphs and the 3D conformation during training. It
builds on the recent success of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) on
various data modalities including images (Dhariwal & Nichol, 2021), video (Ho et al., 2022) and
proteins (Ingraham et al., 2022). MiDi utilises a Gaussian noise model for the coordinates, while
formal charges, atom types and bond types are modeled using discrete diffusion, which was found to
be beneficial for graph generation (Vignac et al., 2022; Haefeli et al., 2022).

A Transformer architecture is trained to denoise all these components simultaneously. It features
rEGNN layers, a relaxation of the EGNN layers (Satorras et al., 2021b) that leverages more expressive
features that are not translation invariant. We show that the SE(3) equivariance of the resulting model
is still guaranteed, which is key to good performance.

Figure 1: Selected samples from the MiDi model on QM9 (left) and GEOM-DRUGS (right).
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Table 1: Gaussian and categorical distributions allow the efficient computation of the key quantities
involved in training and sampling from diffusion models. Formulas for all parameters can be found
in Appendix A. Q′

t denotes the transpose of Qt.

Noise model Gaussian diffusion Discrete diffusion
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We demonstrate the effectiveness of our model on unconditional molecule generation. MiDi outper-
forms previous models that use interatomic distances for bond prediction. While the Open Babel
bond prediction algorithm (O’Boyle et al., 2011) is very effective on the small QM9 dataset, our
model outperforms existing models followed by Open Babel on the more complex Geom-Drugs
dataset. Overall, MiDi constitutes an integrated model that can be used for various drug-discovery
applications beyond unconditional generation.

2 BACKGROUND

Diffusion models Diffusion models consist of two essential elements: a noise model, denoted by q,
and a denoising neural network ϕθ. The noise model takes in a data point x and generates a trajectory
(z1, ..., zt) of increasingly corrupted data points. The corruption process is chosen to be Markovian,
i.e., q(z1, . . . , zT |x) = q(z1|x)

∏T
t=2 q(zt|zt−1). The denoising network ϕθ learns to predict the

clean input x from zt, or, equivalently, the noise that has been added to it. These predictions can then
be used to invert the diffusion trajectories by marginalization:

pθ(zt−1|zt) =
∫
x

pθ(zt−1 | x, zt) dpθ(x|zt) (1)

This parametrization of diffusion models is more efficient than early diffusion models (Sohl-Dickstein
et al., 2015) that were directly trained to predict zt−1 (which depends on the sampled diffusion
trajectory, resulting in more noisy targets). Nevertheless, it requires to be able to compute efficiently
both q(zt|x) and Eq. (1), which is not always possible. Two main frameworks have been proposed to
make this computation efficient: Gaussian noise, which is well suited to continuous data, and discrete
state-space diffusion for categorical data. In discrete diffusion, the noise is represented by transition
matrices (Q1, ...,QT ) such that [Qt]ij represents the probability of jumping from state i to state j.
The noise model is therefore a categorical distribution which reads as q(zt|zt−1) ∼ categ(zt−1Qt),
where zt−1 is seen as a row vector. The main properties of these two noise models are summarized
in Table 1.

SE(3)-Equivariance with diffusion models Molecules can be translated, rotated, and their atoms
do not have a natural order. To avoid having to augment data with random transformations, generative
models should be equivariant to these symmetries. In diffusion models, equivariance to a group G is
achieved through several requirements: first, the noise model should be invariant to the action of G:
∀g ∈ G, q(g.zt|g.x) = q(zt|x). The prior distribution q∞ used at inference should be invariant as
well, i.e., q∞(g.zT ) = q∞(zT ), and this noise should be processed by an equivariant neural network
in order to ensure that pθ(g.zt−1|g.zt) = pθ(zt−1|zt). Finally, this network should be trained with a
loss function that satisfies l(pθ(g.x|g.zt), g.x) = l(pθ(x|zt), x). Together, these requirements create
an architecture that is agnostic to the group element used to represent the training data. We refer the
reader to (Xu et al., 2022; Hoogeboom et al., 2022; Vignac et al., 2022) for detailed analyses.

For the special Euclidean group SE(3), many equivariant architectures have been proposed that
could serve as the denoising network of a diffusion model (Thomas et al., 2018; Brandstetter et al.,
2021; Gasteiger et al., 2021; Liao & Smidt, 2022). However, most of these networks require the
costly manipulation of spherical harmonics. For this reason, many generative models for molecules
(Hoogeboom et al., 2021; Igashov et al., 2022; Schneuing et al., 2022; Huang et al., 2022b) use the
less expressive but cheap EGNN layers (Satorras et al., 2021b). At a high level, EGNN recursively
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updates the coordinates (pi) of a graph with node features (xi) and edge features (eij) using:

pi ← pi +
∑
j

cij m(||pi − pj ||,xi,xj , eij)(pj − pi)

The key property of this parametrization is that the message function m takes only rotation-invariant
arguments, which, combined with the linear term in pj − pi, ensures rotation equivariance. The
normalization term cij = ||pi − pj ||+ 1 is needed for numerical stability when stacking layers.

3 MODEL

In this section, we introduce the Mixed Graph+3D denoising diffusion model (MiDi). We model each
molecule as a graph G = (P ,x, c,E) where P is a n × 3 matrix containing the position of each
atom, x and c are vectors of length n containing the atom types and formal charge for each atom,
and E is a n× n matrix containing the bond types. We denote X,C,E the one-hot encoding of x,
c and E respectively. As other diffusion models for graphs, we consider the absence of bond as a
particular bond type. Superscripts denote time steps, so that, for example, P t

i denotes the coordinates
of atom i at time t.

3.1 NOISE MODEL

Our noise model corrupts the features of each node and edge independently, with a noise model
depending on the data type. For the positions, we use a Gaussian noise ϵ in the zero center-of-mass
(CoM) subspace, which is required to obtain a roto-translation equivariant architecture (Xu et al.,
2022). That is, the noise follows a Gaussian distribution on the linear subspace of dimension 3(n− 1)
that satisfies

∑n
i=1 ϵi = 0.

For the atom types, the formal charges and the bond types, we use discrete diffusion, meaning that
the noise model is a sequence of categorical distributions. We chose the marginal transition model
defined in (Vignac et al., 2022). For example, if m ∈ Ra is the marginal distribution of atom types in
the training set, we define QX

t = αtI + βt 1am
′. QC

t and QE
t are defined similarly.

The resulting model reads q(Gt|Gt−1) ∼ N CoM(αtP
t−1, σ2

t I) × categ(Xt−1QX
t ) ×

categ(Ct−1QC
t )× categ(Et−1QE

t ). When generating new samples, we similarly define the posterior
as a product:

pθ(G
t−1|Gt) =

∏
1≤i≤n

pθ(p
t−1
i |Gt)pθ(c

t−1
i |Gt)pθ(x

t−1
i |Gt)

∏
1≤i,j≤n

pθ(E
t−1
ij |G

t) (2)

where each term is computed by marginalizing over the network predictions, for example,

pθ(x
t−1
i |Gt) =

∫
xi

pθ(x
t−1
i | xi, G

t) dpθ(xi|Gt) =
∑
x∈X

q(xt−1
i | xi = x,Gt) p̂Xi (x).

For faster sampling, we directly predict Gt−k with k > 1 from Gt as proposed in Song et al. (2020).
Empiricially, setting k = 5 does not seem to harm sampling quality.

3.2 DENOISING NETWORK

The denoising network takes a noisy graph as input and tries to predict the corresponding clean graph.
It manipulates node features (atom types and formal charges, treated together in a matrix X), edge
features E, graph-level features y and node coordinates P . Coordinates are treated separately from
the other node features in order to guarantee SE(3) equivariance. The neural network architecture
is summarized in Figure 2. It follows a Transformer architecture (Vaswani et al., 2017), with a
succession of self-attention module followed by normalization layers and feedforward networks.

Relaxed Equivariant Graph Neural Networks (rEGNNs) As previous generative models for
molecules in 3D, we start from the cheap but effective EGNN layers (Satorras et al., 2021b) to process
the coordinates. To improve upon these layers, we observe that, when the data and the noise are
both in the zero Center-Of-Mass subspace, there is no need for the neural network to be translation
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(a) The denoising network of MiDi follows the standard Transformer architecture, except that the layers are
adapted to preserve SE(3) equivariance.

(b) Architecture of an update block. Each component is updated using the other features. Graph-level features y
are not used for the final prediction, but they are useful to store information efficiently in the transformer layers.
(∆p)ij = cat(pi,pj , ||pi − pj ||, cospi,pj).

Figure 2: The denoising neural network of MiDi simultaneously predicts the 2D graph and 3D
coordinates of the clean graph from a noisy input.

invariant. This can be interpreted as defining a canonical pose for the translation group, which is a
valid way to achieve equivariance (Jaderberg et al., 2015; Kaba et al., 2022). Instead of simply using
pairwise distances ||pi − pj ||2, we can therefore use other rotation invariant descriptors such as ||pi||
or cos(pi,pj).

We therefore propose the following rEGNN layer:

[∆p]ij = cat(||pi − pj ||2, ||pi||2, ||pj ||2, cos(pi,pj))

pi ← pi +
∑
j

ϕm(Xi,Xj , [∆p]ij ,Eij) (pj − pi)

Update block As our model simultaneously processes node features, edge features, graph level
features and coordinates, this new layer is integrated in an update block. The edge features are first
updated using ∆p, the node features, and the global features. The node features are updated using a
self-attention mechanism, where the attention coefficients also use the edge features and ∆p. After
the attention heads have been flattened, the obtained values are modulated by the pooled edge features,
the norm of the coordinates and the global features. The global features are updated by pooling all
other features at the graph level.

Finally, the coordinates are updated using a rEGNN update, where the message function takes as input
∆p and the updated edge features E′. Note that we do not use the normalization term of EGNN: our
layers are integrated in a Transformer architecture as discussed next, and we empirically found that
the normalisation term is unnecessary in this case. We also considered breaking the E(3) equivariance
of EGNN to preserve only SE(3) properties, but found no practical benefit to it.

Integration into a Transformer architecture Transformers have proved to be a very efficient way
to stabilize the self-attention mechanism over many layers. We decribe below the changes to the
feedforward neural network and normalization layers that are required to ensure SE(3)-equivariance.

Our feedforward neural networks process each component using MLPs applied in parallel on
each node and each edge. As the coordinates cannot be treated separately (it would break SE(3)-
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equivariance), we define

PosMLP(P ) = ΠCoM(MLP(||P ||) P

||P ||+ ϵ
) ∈ Rn×3,

where ||P || ∈ Rn contains the norm of each point, MLP(||P ||) ∈ Rn as well, ϵ is a small positive
constant, and ΠCoM is the projection of the positions on the linear subspace with center of mass at 0.

The choice of the normalization layer also depends on the problem symmetries: while batch normal-
ization (Ioffe & Szegedy, 2015) is used in the standard Transformer model, Transformers for sets and
graphs instead use Set Normalization (Zhang et al., 2022) or Layer Normalization (Ba et al., 2016),
which respect permutation equivariance. For SE(3) equivariance, the normalization of (Liao & Smidt,
2022) should be used. In the special case of coordinates, it writes:

E3Norm(P ) = γ
||P ||
n̄+ ϵ

P

||P ||
= γ

P

n̄+ ϵ
with n̄ =

√√√√ 1

n

n∑
i=1

||pi||2,

with a learnable parameter γ ∈ R initialized at 1.

3.3 TRAINING OBJECTIVE

The network is trained to predict the clean molecule from a noisy input Gt. Correctly estimating the
position P is a regression problem that can simply be solved with mean-squared error, while the
prediction of the atom types, formal charges and bond types corresponds to a classification problem
solved with a cross-entropy loss. Note that the network predictions for the positions is a pointwise
estimate P̂ , while for the other terms it is a distribution over the possible atom types, bond types or
formal charge values. The final loss is a weighted sum of these components:

l(x̂, x) = λ0||P̂ − P ||2 + λ1 CE(X, p̂X) + λ2 CE(C, p̂C) + λ3 CE(E, p̂E)

4 EXPERIMENTS

We evaluate MiDi on unconditional molecule generation task. Since it is, to the best of our knowledge,
the first method to perform both the generation of the graph structure and the conformer simultane-
ously, we compare it to 3D models on top of which a bond predictor is applied. We consider two such
predictors: either a simple lookup table, as used in (Hoogeboom et al., 2022), or the optimization
procedure1 of OpenBabel (O’Boyle et al., 2011) used in other works such as (Igashov et al., 2022;
Schneuing et al., 2022). This algorithm optimizes the bond orders of neighboring atoms in order to
create a valid molecule, removing all control on the generated graphs. Our goal is to check whether
MiDi can achieve similar results with a single end-to-end differentiable model.

As the molecules we consider have a single connected component, we define a molecule as valid if it
passes RdKit sanitization filters and it is connected. We also use custom metrics that measure the
ability to correctly capture several properties of the data distribution. These metrics are described in
Appendix B.

4.1 QM9

We first evaluate our model on the standard QM9 dataset (Wu et al., 2018) containing molecules with
up to 9 heavy atoms. We use 100k molecules for training, 20k for validation, and 13k for testing. We
evaluate our model with both explicit and implicit Hydrogens (cf Appendix C). Results are presented
in Tables 4 and 2. The data line represents the results of the training set compared with the test set,
while the other entries compare the generated molecules to the test molecules.

As QM9 features simple molecules, predicting the bonds only from the interatomic distances and
atom types is a relatively effective strategy. Yet, MiDi is still able to outperform EDM on 2D metrics,
while retaining good 3D metrics performance.

1http://openbabel.org/wiki/Bond_Orders

5

http://openbabel.org/wiki/Bond_Orders


Preprint, under review.

Table 2: Results on QM9 with explicit hydrogens. MiDi clearly outperforms EDM on graph-based
metrics. On this dataset of small graphs, Open Babel post-processing optimization is very effective.

2D metrics Mol stable At stable Valid Unique AtomTV BondTV ValW1
Data 98.7 99.8 98.9 99.9 0.003 ∼ 0 0.001

GSchNet + OBabel 92.0 98.7 95.4 94.4 0.042 0.011 0.049
EDM 90.7 99.2 91.2 98.5 0.021 0.002 0.011
EDM + OBabel 97.9 99.9 98.7 98.5 0.021 0.001 0.011
MiDi (2D+3D) 95.7 99.7 96.5 98.0 0.009 0.001 0.004

3D metrics Bond Lengths W1 Bond Angles W1
Data 0.023 0.12

GSchNet + OBabel 0.478 1.68
EDM 0.105 0.44
EDM + OBabel 0.131 0.44
MiDi (2D+3D) 0.604 0.42

Table 3: Results on GEOM-Drugs with explicit hydrogens. The lookup table of EDM fails to
predict the bond types, resulting in few stable molecules. On this complex dataset, the benefits of an
end-to-end model is clear, as MiDi surpasses Open Babel on most metrics.

2D metrics Mol stable At stable Valid Unique AtomTV BondTV ValW1
Data 99.9 99.9 99.8 85.2 0.001 0.025 0.001

EDM 5.5 92.9 34.8 100.0 0.212 0.049 0.112
EDM + OBabel 40.3 97.8 35.3 100.0 0.212 0.048 0.285
MiDi (2D+3D) 49.2 98.3 53.7 100.0 0.053 0.024 0.032

3D metrics Bond Lengths W1 Bond Angles W1
Data 0.026 0.05

EDM (3D) 0.229 6.23
EDM + O. Babel 0.249 6.42
MiDi (2D+3D) 0.741 6.02

4.2 GEOM-DRUGS

We then evaluate our model on the much larger GEOM dataset (Axelrod & Gomez-Bombarelli, 2020)
that features 430,000 drug-sized molecules with 44 atoms on average and up to 181 atoms. We keep
80% of these molecules for training, 10% for validation and 10% for testing. For each molecule, we
extract the 5 lowest energy conformations to build the dataset.

As this dataset contains molecules that are much more complex than those in QM9, the bonds in the
molecules cannot be only derived from pairwise distances. This explains why EDM, which scores
relatively well on 3D based metrics, produces very few valid and stable molecules. On this dataset,
the benefits of an end-to-end model that produces both a graph structure and its conformation is clear,
as MiDi clearly outperforms EDM.

5 RELATED WORK

Molecule generation in 3D The idea of representing molecules as an attributed point cloud in 3d
has been used within several framework, such as autoregressive models (Gebauer et al., 2019) or
normalizing flows (Satorras et al., 2021a). Recently, diffusion models have proved to be very effective
for this task: EDM (Hoogeboom et al., 2022) uses a fully-connected graph, while MDM (Huang et al.,
2022b) only passes messages between neighboring atoms. These models can be conditioned on some
molecule-level properties using guidance mechanisms (Bao et al., 2022) or on another point cloud.
This strategy has been employed to generate molecules that bind to a specific protein (Corso et al.,
2022; Schneuing et al., 2022) and to generate linkers between molecular fragments (Igashov et al.,
2022). The main drawback of these models is that they do not learn the connectivity structure of the
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molecule. It needs to be obtained in a second stage using a lookup table (Hoogeboom et al., 2022) or
specialized software such as Open Babel (O’Boyle et al., 2011). This result in limited performance
for complex molecules, but also prevents end-to-end differentiability for downstream applications.

On the contrary, conformer generation models (Xu et al., 2022; Corso et al., 2022) generate 3D
coordinates given for a known graph structure. As the graph is known, these model can exploit
internal symmetries of the molecule (such as the existence of rotatable bonds), which is more difficult
on unconditional generation tasks.

Graph generation Another line of work has focused on generating graphs without associated
3D coordinates. This can be done with Gaussian diffusion models operating on the adjacency
matrix entries (Jo et al., 2022; Huang et al., 2022a) or graph eigenvalues (Luo et al., 2022). Vignac
et al. (2022) and Haefeli et al. (2022) however found that discrete diffusion is more effective, as
it better respects the discrete nature of graphs. These diffusion models match the performance of
autoregressive methods (Liu et al., 2018; Liao et al., 2019; Mercado et al., 2021) which typically
perform validity checks at each sampling step.

Instead of operating at the node level, fragment-based methods (Hajduk & Greer, 2007; Jin et al.,
2020; Maziarz et al., 2022) learn to combine chemically-relevant substructures from a fixed or learned
dictionary (Wang et al., 2022). While these methods are normally used for 2D molecule generation,
they can be used to produce conformers as well (Qiang et al., 2023). Fragment-based methods are
often work very effective, and could constitute a promising extension of our model.

Protein generation While existing diffusion models for molecules operate on drug-size molecules
of moderate size (up to ∼ 200 atoms), recent diffusion models for proteins managed to scale to much
larger structures (Watson et al., 2022; Ingraham et al., 2022; Wu et al., 2022; Shi et al., 2022). These
methods leverage the chain structure of proteins, which implies that the adjacency matrix does not
need to be predicted. Furthermore, instead of predicting 3d coordinates for each atom, they only
predict the angles between successive Cα carbons, which significantly reduces the degrees of freedom
and encodes the SE(3) symmetry in the representation. Those improvements are unfortunately specific
to chain graphs, and cannot be used for arbitrary molecules.

6 CONCLUSION

We proposed MiDi, a denoising diffusion model that jointly generates a molecular graph and a
corresponding conformation for this molecule. On complex datasets, MiDi clearly outperforms
previous molecule generation methods in 3D, which would predict bonds from the conformation
using predefined rules. While our model is currently evaluated on unconditional generation tasks, we
believe that the end-to-end training of the graph structure and the conformation will be all the more
beneficial for downstream tasks such as pocket-conditioned generation.
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A EQUATIONS FOR THE NOISE MODEL

A.1 GAUSSIAN NOISE

Gaussian diffusion processes are defined by

q(zt|zt−1) ∼ N (αtzt, σ
2
t I) (3)

As Gaussian distributions are stable under composition, we have:

q(zt|x) ∼ N (ᾱtzt, σ̄
2
t I) (4)

with ᾱt =
∏t

s=1 αs or equivalently, αt = ᾱt/ᾱt−1. We also have σ̄2
t = σ2

t − α2
t .

While any choice of the (ᾱt)t≤T and (σ̄t)+t≤T is in theory possible, variance preserving processes
are most often used. They satisfy: ∀0 ≤ t ≤ T, ᾱ2

t + σ̄2
t = 1.

The posterior of the transitions conditioned on x is also normal:

q(zt−1|zt, x) ∼ N (α̃tx+ (1− α̃t)zt, σ̃
2
t I) (5)

with α̃t =
ᾱtσ

2
t−1

σ2
t

and σ̃t =
σ̄tσs

σt
. Note that these formula can be extended to the computation of

q(zs|zt, x) for any s < t (Song et al., 2020), which allows for faster sampling with none to little
reduction to the sample quality.

A.2 DISCRETE DIFFUSION

Discrete diffusion considers that data points x belong to one of d classes. We write x ∈ R1×d the
one-hot encoding of x. The noise is represented by transition matrices (Q1, ...,QT ) such that [Qt]ij
represents the probability of jumping from state i to state j: q(zt|zt−1) = zt−1Qt.

Since the process used is Markovian, we simply have q(zt = j|x) = [xQ̄t]j with Q̄t = Q1Q2...Qt.

The posterior distribution q(zt−1|zt, x) can also be computed in closed-form using Bayes rule and
the markovian property. It gives:

q(zt−1|zt, x) ∝ zt (Qt)′ ⊙ x Q̄t−1 (6)

where ⊙ denotes a pointwise product and Q′ is the transpose of Q.
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B METRICS

• Validity is measured by the success rate of RdKit sanitization over 10,000 molecules.
• Uniqueness corresponds to the proportion of valid molecules that have different canonical

SMILES.
• Atom stability measures the proportion of atoms that have the right valency. Contrary to

RdKit sanitization, implicit hydrogens cannot be added to satisfy the valency constraints, so
that atom stability is in general a stringer metric. Note that our list of allowed bonds does not
exactly match the one of Hoogeboom et al. (2022), in part because our model also handles
formal charges. This explains why the results for EDM do not match the original paper.

• Molecule stability: proportion of molecules for which all atoms are stable.
• The atom total variation (AtomTV) measure the distance between the distribution of gener-

ated atom types in the generate and test sets:

AtomTV(generated, target) =
∑

x∈atom types

|p̂(x)− p(x)|

• The bond total variation similarly measures the distance between bond types:

BondTV(generated, target) =
∑

e∈bond types

|p̂(e)− p(e)|

• ValencyW1 measures the Wasserstein distance between the histograms of valencies for each
atom types, and then computes a weighted sum of these values.

ValencyW1(generated, target) =
∑

x∈atom types

p(x)W1(D̂val(x), Dval(x))

where Dval(x) is the distribution of valencies for atoms with type x.
• BondLengthsW1 computes the Wasserstein distance between the distribution of bond length

for each bond type, and then computes a weighted sum of these values.

BondLenghtsW1(generated, target) =
∑

e∈bond types

p(e)W1(D̂dist(e), Ddist(x))

where Ddist(e) is the distribution of bond lengths for bonds with type x.
• BondAnglesW1 computes the distribution of bond angles (in degrees) for each atom types.

We compute a weighted sum of these values using the proportion of each atom type in
the dataset, restricted to the atoms that have two neighbors or more (so that angles can be
defined).

BondAnglesW1(generated, target) =
∑

x∈atom types

p̃(x)W1(D̂angles(x), Dangles(x))

where p̃(x) denotes the proportion of atoms of type x among the atoms with two neighbors
or more, and Dangles(x) is the distribution of geometric angles ∠(pk − pi, pj − pi), where i
is an atom of type x.

• #CC denotes the average number of connected components in the generated graphs. Is it
obtained using the GetMolFrags function of RdKit.

C ADDITIONAL RESULTS

QM9 with implicit hydrogens

D SAMPLES FROM THE MODEL
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Table 4: Unconditional generation on QM9 with implicit hydrogens. On this simple dataset, the basic
lookup table used by EDM for bond prediction achieves good results, but sometimes fail to produce
valid molecules.

Metric 2D metrics 3D
Method Valid Unique AtomTV BondTV ValencyW1 Bond LengthW1

Data 99.5 99.9 0.001 0.001 0.006 0.30

EDM (3D) 96.8 96.6 0.029 0.009 0.043 0.19
EDM + O. Babel 99.9 96.1 0.029 0.003 0.038 0.15
MiDi (2D+3D) 99.4 96.6 0.008 0.007 0.024 1.36

Figure 3: Non-curated samples on QM9 with implicit hydrogens.

Figure 4: Non-curated samples on QM9 with explicit hydrogens.
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