
Cornac-AB: An Open-Source Recommendation Framework with
Native A/B Testing Integration

Darryl Ong
Singapore Management University

darrylong@smu.edu.sg

Quoc-Tuan Truong
Amazon, USA

truquoc@amazon.com

Hady W. Lauw
Singapore Management University

hadywlauw@smu.edu.sg

ABSTRACT
Recommender systems significantly impact user experience across
diverse domains, yet existing frameworks often prioritize offline
evaluation metrics, neglecting the crucial integration of A/B testing
for forward-looking assessments. In response, this paper introduces
a new framework seamlessly incorporating A/B testing into the
Cornac recommendation library. Leveraging a diverse collection of
model implementations in Cornac, our framework enables effort-
less A/B testing experiment setup from offline trained models. We
introduce a carefully designed dashboard and a robust backend for
efficient logging and analysis of user feedback. This not only stream-
lines the A/B testing process but also enhances the evaluation of
recommendation models in an online environment. Demonstrating
the simplicity of on-demand online model evaluations, our work
contributes to advancing recommender system evaluation method-
ologies, underscoring the significance of A/B testing and providing
a practical framework for implementation. The framework is open-
sourced at https://github.com/PreferredAI/ cornac-ab.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering.

KEYWORDS
recommendation library, A/B testing, open-source framework
ACM Reference Format:
Darryl Ong, Quoc-Tuan Truong, and Hady W. Lauw. 2024. Cornac-AB:
An Open-Source Recommendation Framework with Native A/B Testing
Integration. In Companion Proceedings of the ACM Web Conference 2024
(WWW ’24 Companion), May 13–17, 2024, Singapore, Singapore. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3589335.3651241

1 INTRODUCTION
Recommender systems serve as crucial components that contribute
to elevating user satisfaction across a diverse array of domains,
ranging from e-commerce platforms to content streaming services.
Over the years, numerous frameworks [1, 3, 4] have been devel-
oped to help build these systems, with a predominant emphasis
on employing offline evaluation metrics to gauge recommendation
accuracy through backward testing. Despite the extensive attention

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0172-6/24/05
https://doi.org/10.1145/3589335.3651241

given to offline evaluation, there exists a noteworthy gap in the in-
corporation of A/B testing–a forward testing methodology–which
is vital for assessing the online performance of recommender sys-
tems. Additionally, the seamless integration of these frameworks
with existing systems and applications is an often-neglected yet crit-
ical aspect that warrants careful consideration for ensuring optimal
functionality and user experience.

In this work, we address this gap by introducing a framework
designed for the integration of A/B testing with the Cornac rec-
ommendation library [6]. Cornac stands out as a well-established
library with a diverse collection of model implementations, making
it a popular choice among both academic researchers and indus-
try practitioners. Our objective is to develop a framework that
seamlessly incorporates native A/B testing capability into Cornac,
providing an efficient and user-friendly solution for deploying and
evaluating recommender systems’ performance.

Utilizing the offline trained models from Cornac, our framework
simplifies the setup of A/B tests. We surpass mere integration by
introducing a thoughtfully crafted dashboard and a robust back-
end designed for logging and scrutinizing user feedback through
OpenSearch 1. This not only streamlines the A/B testing process
but also elevates the overall assessment of recommendation models
in an online setting. Furthermore, we illustrate the ease of con-
ducting on-demand evaluations of online models using the logged
feedback data, presenting a comprehensive solution for assessing
recommender systems in real-world scenarios.

2 OVERVIEW
2.1 Cornac Library
Within the evolving domain of recommender system development,
Cornac stands as a noteworthy open-source Python library, offering
a multifaceted approach to the advancement of recommendation
algorithms. At its core, Cornac offers robust utilities that span
the spectrum of recommender systems development. The distinc-
tive focus of Cornac is on recommendation models harnessing
multimodal auxiliary information, encompassing elements such
as social networks, item textual descriptions, and product images.
This targeted emphasis addresses the inherent sparsity prevalent
in user-item interactions. The framework is complemented by an
extensive support ecosystem, encompassing detailed documenta-
tion, tutorials, examples, and a diverse set of built-in benchmarking
datasets. Cornac’s compatibility with prevalent machine learning
libraries like TensorFlow and PyTorch enhances its adaptability,
providing users with a seamless integration path into their existing
experimental workflows.

1https://opensearch.org

https://github.com/PreferredAI/cornac-ab
https://doi.org/10.1145/3589335.3651241
https://doi.org/10.1145/3589335.3651241
https://opensearch.org


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Darryl Ong, Quoc-Tuan Truong, and Hady W. Lauw

Figure 1: Architecture Overview

Cornac’s recognition extends across industry practitioners and
academia, evidenced by its adoption on GitHub 2 and multiple pub-
lications [6, 8, 9], including contribution to the Journal of Machine
Learning Research. Notably, it has received an endorsement from
ACM RecSys Conference for its role in systematic evaluation and
reproducibility of recommendation algorithms.

2.2 Framework Design
The overall architecture, illustrated in Figure 1, is composed of three
extensible and adaptable environments: Cornac-AB, OpenSearch,
and the user-based application.Within the Cornac-AB environment,
the core experiment logic resides, accompanied by a backend API
serving as the orchestrator for the A/B testing solution.

The API plays a pivotal role in integrating each trained model
with a Cornac instance and implementing the recommendation
logic for user segmentation in A/B testing. Furthermore, the back-
end has the capability to leverage Cornac’s evaluation functionali-
ties on demand, facilitating the comparison and analysis of results
across multiple model instances. In addition to its core function-
alities, the Cornac-AB environment features an admin frontend.
This frontend empowers administrators to visually set up experi-
ments using Cornac-trained models. OpenSearch Dashboards are
employed within the admin frontend to visualize and analyze rec-
ommendations and feedback data indexed by OpenSearch.

The user-based environment exemplifies how existing solutions
can interact with Cornac-AB backend REST APIs to obtain recom-
mendations and provide feedback. This separation of environments
allows Cornac-AB to work alongside most existing solutions.

3 DEMONSTRATION
In this section, we demonstrate the usage of our framework through
a focused exploration of a book recommendations application. Sup-
posedly, we are interested in testing the performance of three preva-
lent recommendation models: BPR [5], BiVAECF [7], and Light-
GCN [2]. All of them have their implementations readily accessible
within the Cornac library. To walk through the framework capabil-
ities, we leverage the publicly available Goodbooks 3 dataset. The

2https://github.com/PreferredAI/cornac
3https://github.com/zygmuntz/goodbooks-10k

Table 1: Offline Evaluation Results

AUC NDCG@50 Recall@50

BPR 0.9033 0.1527 0.1975
BiVAECF 0.9555 0.2522 0.3295
LightGCN 0.9579 0.2468 0.3308

Figure 2: A/B Testing Experiment Setup

Figure 3: Experiment Monitoring Dashboard

experimentation process is structured and demonstrated through
following key steps.

Offline Model Training.We consider user-item interactions
from rating data (ratings.csv) as the primary source of offline train-
ing data for our comparative models. To ensure comprehensive
coverage, we employ a user stratification strategy for data split-
ting, guaranteeing the inclusion of all users in the training dataset.
The data is partitioned for each user, allocating 80% for training,
10% for validation, and 10% for offline testing. The validation set
is used for determining the optimal model performance through
hyper-parameter tuning. All of the comparative models are defined
to use the same size of 50 dimensions for user/item latent embed-
ding. In this evaluation, we employ three widely-adopted metrics to
measure recommendation accuracy, namely AUC, NDCG@50, and
Recall@50. The results obtained from this model offline evaluation
step, on the test set, are reported in Table 1.

https://github.com/PreferredAI/cornac
https://github.com/zygmuntz/goodbooks-10k


Cornac-AB: An Open-Source Recommendation Framework with Native A/B Testing Integration WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

(a) Browsing Recommendations (b) User Click Feedback

Figure 4: Front-end Interface for User Feedback Loop

Figure 5: Recommendation Dashboard

Initializing A/B Test. Upon the completion of offline training
and testing for all models, the initiation of an A/B testing experi-
ment is straightforward. With the Cornac-AB backend operational,
one navigates to the setup UI, as depicted in Figure 2. The interface
facilitates uploading of pre-trained model files, initializing the ex-
periment promptly. A random assignment of each user to one of
the models constitutes their participation in the A/B test.

The experiment monitoring dashboard which includes all set-
tings, also allows one to track important statistics, as illustrated in
Figure 3. This not only provides transparency but also ensures a
comprehensive view of the experiment’s dynamics. Furthermore,
one can easily identify the user-model assignments within the ex-
periment, streamlining subsequent observations and analyses.

LoggingUser Feedback. So the demonstration is self-contained,
we develop a dedicated front-end to showcase user recommenda-
tions and facilitate the collection of user feedback, as depicted in
Figure 4. When a user accesses this interface, they are presented
with personalized recommendations generated by the model as-
signed to them during the earlier random assignment phase.

During the user’s interaction with the recommendations, click
feedback is systematically logged into the backend data repository

Figure 6: User Feedback Dashboard

Figure 7: Online Evaluation Setting

for subsequent analysis and online evaluation. This logging is piv-
otal in closing the feedback loop for our application users, ensuring
that their interactions contribute to the iterative improvement of
the recommendation system. In fact, the logged feedback is the
main source used for model online evaluation during the A/B test.

Analyzing Logged Feedback. The recommendation dashboard
as shown in Figure 5 provide valuable insights into the displayed
recommendations by each model. This is instrumental for gaining a
comprehensive understanding of the inner workings of the models.

Importantly, our focus extends beyondmere observation, with an
interest in the logged user feedback obtained during the dynamic
interactions between users and our recommendation front-end
interface. Figure 6 showcases the feedback dashboard, allowing
researchers to specify a designated time period for log analysis and
choose models for visualization. This functionality serves the dual
purpose of facilitating preliminary model comparison and identify-
ing specific subsets of the log data that goes into subsequent model
evaluations. To exemplify the next step in our model evaluation
process, we leverage bookmark data (to_read.csv) provided in the



WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Darryl Ong, Quoc-Tuan Truong, and Hady W. Lauw

Figure 8: Online Evaluation Results

Goodreads dataset, simulating logged feedback from users engaged
while browsing the model recommendations.

Online Model Evaluation. Having determined the subset of
feedback and selected models for online evaluation, one can seam-
lessly transition to the definition of desired metrics, as depicted
in Figure 7. In this case, we adopt the same metrics employed in
our offline experiment for continuity and comparability across the
evaluation process. Upon completion of the online evaluation, the
results will be presented in a structured table format, as illustrated
in Figure 8. This presentation of data allows for a comprehensive
comparison across the selected models, providing insights into their
respective performances. The table facilitates a nuanced contrast
with the offline results, as shown in Table 1, thereby offering a holis-
tic perspective on the models’ efficacy in both offline and online
settings. Moreover, T-tests are also performed and supplemented
for all the metrics. This concludes an A/B testing cycle.

4 INTEGRATION
For developers aiming to implement a recommender system in their
applications, the framework stands out for its seamless integration.

Modular Design. By separating the Cornac-AB environment
from the the application environment, every component can be
developed and interfaced independently. This modular architecture
not only ensures scalability to handle growing datasets and user
bases but also facilitates the incorporation of new features and
improvements without disrupting existing systems.

Data-Intensive Focus. With OpenSearch as the indexing solu-
tion, the framework is efficient for data-intensive operations. Its
flexibility and scalability are well-suited for handling the diverse
data sources associated with recommendation systems. Developers
can benefit from OpenSearch’s open-source nature, ensuring adapt-
ability and transparency in managing and indexing large datasets.

Large Model Collection. At the heart of our framework lies
the Cornac library, which offers a diverse set of models. This di-
versity empowers developers with a wide range of choices to build
recommender systems tailored to the specific needs of their applica-
tions. Whether the focus is on collaborative filtering, content-based
filtering, or other types of models, Cornac provides the flexibility
needed to align recommendations with unique user preferences.

Our framework unleashes the power of recommendation A/B
testing, allowing developers to systematically compare different
algorithms, configurations, or strategies. Whether building a recom-
mender system for an e-commerce platform, a content streaming
service, or any user-based application, the framework provides the
tools and flexibility needed for implementation and integration.

5 CONCLUSION
We address a significant gap in existing recommender system frame-
works by introducing a new platform that integrates A/B testing
seamlessly with the Cornac library. Unlike traditional evaluation
approaches that primarily focus on offline metrics, our framework
unlocks the capability of A/B testing–a forward testing methodol-
ogy that is often overlooked. Leveraging Cornac’s extensive collec-
tion of model implementations, our framework enables the easy
setup of A/B tests using offline trained models. We also introduce a
meticulously designed dashboard and a robust backend for efficient
logging and analysis of user feedback.

By showcasing the simplicity of conducting on-demand online
model evaluations using logged feedback data, our framework of-
fers a comprehensive solution for real-world recommender sys-
tem assessment. In doing so, we contribute significantly to the
advancement of recommender system evaluation methodologies,
emphasizing the crucial role of A/B testing integration. This work
is poised to empower both academic researchers and industry prac-
titioners in enhancing the performance evaluation of recommender
systems, thereby contributing to the continual improvement of user
experiences across diverse application domains.

ACKNOWLEDGMENTS
This research/project is supported by the National Research Foun-
dation, Singapore under its AI Singapore Programme (AISG Award
No: AISG2-RP-2021-020).

REFERENCES
[1] Scott Graham, Jun-Ki Min, and Tao Wu. 2019. Microsoft recommenders: tools to

accelerate developing recommender systems. In ACM RecSys. 542–543.
[2] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[3] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal
of Open Source Software 5, 52 (2020), 2174. https://doi.org/10.21105/joss.02174

[4] Maciej Kula, James Chen, Xinyang Yi, Tiansheng Yao, Maheswaran Sathiamoorthy,
Lichan Hong, and Ed Chi. 2020. TensorFlow Recommenders. https://github.com/
tensorflow/recommenders

[5] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–461.

[6] Aghiles Salah, Quoc-Tuan Truong, andHadyWLauw. 2020. Cornac: A comparative
framework for multimodal recommender systems. The Journal of Machine Learning
Research 21, 1 (2020), 3803–3807.

[7] Quoc-Tuan Truong, Aghiles Salah, and Hady W Lauw. 2021. Bilateral variational
autoencoder for collaborative filtering. In WSDM. 292–300.

[8] Quoc-Tuan Truong, Aghiles Salah, and Hady W Lauw. 2021. Multi-modal recom-
mender systems: Hands-on exploration. In ACM RecSys. 834–837.

[9] Quoc-Tuan Truong, Aghiles Salah, Thanh-Binh Tran, Jingyao Guo, and Hady W
Lauw. 2021. Exploring cross-modality utilization in recommender systems. IEEE
Internet Computing 25, 4 (2021), 50–57.

https://doi.org/10.21105/joss.02174
https://github.com/tensorflow/recommenders
https://github.com/tensorflow/recommenders

	Abstract
	1 Introduction
	2 Overview
	2.1 Cornac Library
	2.2 Framework Design

	3 Demonstration
	4 Integration
	5 Conclusion
	Acknowledgments
	References

