Pandora: A Code-Driven Large Language Model Agent for
Unified Reasoning Across Diverse Structured Knowledge

Anonymous ACL submission

Abstract

Unified Structured Knowledge Reasoning
(USKR) aims to answer natural language ques-
tions (NLQs) by using structured sources such
as tables, databases, and knowledge graphs in
a unified way. Existing USKR methods either
rely on employing task-specific strategies or
custom-defined representations, which strug-
gle to leverage the knowledge transfer between
different SKR tasks or align with the prior
of LLMs, thereby limiting their performance.
This paper proposes a novel USKR framework
named PANDORA, which takes advantage of
PYTHON’s PANDAS API to construct a uni-
fied knowledge representation for alignment
with LLM pre-training. It employs an LLM to
generate textual reasoning steps and executable
Python code for each question. Demonstrations
are drawn from a memory of training exam-
ples that cover various SKR tasks, facilitating
knowledge transfer. Extensive experiments on
four benchmarks involving three SKR tasks
demonstrate that PANDORA outperforms ex-
isting unified frameworks and competes effec-
tively with task-specific methods.

1 Introduction

Structured knowledge, such as tables, databases
(DBs), and knowledge graphs (KGs), forms the
foundation for many of today’s intelligence appli-
cations, including legal judgment (Cui et al., 2023),
disease diagnosis (Li et al., 2020), and investment
analysis (Zhang et al., 2024a). As the core tech-
nology of these applications, Structured Knowl-
edge Reasoning (SKR) has been a longstanding re-
search focus in NLP, as demonstrated by tasks such
as TableQA (Pasupat and Liang, 2015), Text-to-
SQL (Yuet al., 2018), and KGQA (Yih et al., 2016).
Using the powerful generation capabilities of Large
Language Models (LLMs), recent works (Ye et al.,
2023; Li et al., 2024; Nie et al., 2024) have made
significant progress in reasoning tasks that involve
structured single-type knowledge.

List all books written by "J.K. Rowling" that were published after 2005.
QL

SELECT b.title, b.publication_date

FROM books AS b

INNER JOIN authors AS a

ON b.author_id = a.author_id

WHERE[a.name = 'J.K. Rowling' query patabase
'2005-12-31") 4

Knowledge

v

o

Knowledge
Graph

AND[b.publication_date

SELECT ?title ?pubDate
WHERE {

?book dbo:author dbr:J_K_Rowling ;
dbo:publicationDate ?pubDate ;
rdfs:label ?title .

FILTER [(?pubDate > "2005-12-31"**xsd:date)|

FILTER|(LANG(?title) = "en")

o

import pandas as pd

query

BOX

S A

merged_df = pd.merge(books, authors, on='author_id', how='inner')
filtered_df = merged_df[
(merged_df['name'] == 'J.K. Rowling') &
(Cmerged_df['publication_date'] > '2005-12-31")]
]
result_df = filtered_df[['title', 'publication_date']]
print(result_df)

Figure 1: SQL, SPARQL, and PANDAS code derived
from an NLQ, with matching colors highlighting corre-
sponding query logic for clarity.

However, a complicated real-world application
often integrates various types of structured knowl-
edge. For instance, a medical decision support
system (Antoniadi et al., 2021) may need to reason
over both patient DBs and drug KGs. This requires
the ability to handle various SKR tasks in a uni-
fied manner. Unfortunately, most existing methods
struggle to bridge the gap between different SKR
tasks due to task-specific designs (Pourreza and
Rafiei, 2024; Nie et al., 2024).

Building on LLMs as the foundation, recent
studies have proposed several unified SKR frame-
works, such as StructGPT (Jiang et al., 2023),
Readi (Cheng et al., 2024), and TrustUQA (Zhang
et al., 2024b). Although these methods achieve
uniformity by relying on task-specific strategies
(StructGPT, Readi) or custom-defined representa-
tions (TrustUQA), their performance is limited. In
particular, Readi and TrustUQA suffer from insuf-

ficient coverage of the reasoning over DB.

We believe that an ideal unified SKR framework
should have two key characteristics: a) Facilitat-
ing knowledge transfer across diverse structured
knowledge sources. For instance, as shown in Fig-
ure 1, the given SQL and SPARQL queries may
differ in external syntax but share equivalent mean-
ings. Transforming these queries into a unified
representation can help LLMs leverage knowledge
from other SKR tasks, enhancing target task per-
formance. b) Representing different structured
knowledge in a unified format familiar to LLMs.
Code, being structured and compositional, is an
ideal choice as LLMs excel in understanding, gen-
erating, and reasoning with code due to extensive
pre-training on programming languages (Dubey
et al., 2024). Converting diverse knowledge into
code reduces the gap between input representations
and the LLM’s inherent understanding.

In this paper, we propose a new unified SKR
framework, named PANDas cOde-dRiven Agent
(PANDORA). It is composed of three key compo-
nents: a well-aligned LLM, a reasoning memory,
and a PYTHON interpreter. We start by transform-
ing tables, DBs, and KGs into a unified represen-
tation built on the PANDAS library, referred to as
PANDORA’s BOX. For each NLQ, The PANDORA
agent leverages the LLM to first generate textual
reasoning steps, followed by executable PYTHON
code. The generated code is then executed to derive
the answer from the BOXes. The memory is con-
structed from the training examples and provides
annotated demonstrations for in-context learning
(ICL), enabling the LLM to learn the mapping from
NLQs to PANDAS APIs. To leverage knowledge
transfer across different SKR tasks, the demonstra-
tions can be collected from any SKR task. In addi-
tion, the feedback from the code execution given
by the interpreter further motivates the model to
refine its reasoning steps and correct its code. We
conducted extensive experiments on four widely-
used datasets across three structured knowledge rea-
soning tasks, namely Text-to-SQL, TableQA, and
KGQA. Experimental results demonstrate that our
method outperforms all existing unified structured
knowledge reasoning frameworks and matches the
performance of task-specific methods. In summary,
the contributions of this paper include:

* We propose a novel framework that utilizes
LLMs to generate code-driven reasoning steps
for diverse structural knowledge. To the best

of our knowledge, this is the first time to lever-
age code as a unifying mechanism for SKR.

* We propose facilitating knowledge transfer
across different structured knowledge sources
by sharing demonstrations, thereby enhancing
the performance of a unified framework.

* We conduct comprehensive experiments on
multiple mainstream benchmarks, and our
method achieves state-of-the-art performance
in unified structured knowledge reasoning.

2 Preliminary

2.1 Structured Knowledge

Following Jiang et al. (2023), we focus on the fol-
lowing three types of structured knowledge:

Data Table A table can be regarded as 7 =
e}y, {r; f‘:l, {vi,j}f:’ijzl), where ¢; denotes
the i-th column name and r; denotes a data record
indexed by columns. v; ; denotes the content of the
cell located at the intersection of ¢; and r;.
Database A database D consists of multiple tables,
represented as D = {71, T2, ..., Tr}. Besides the
column names, the foreign keys across all tables
are also available to link the data from two tables,
denoted as {(c, c})}, where ¢} and ¢} denote the
i-th and j-th columns in the 7, and7, respectively.
Knowledge Graph A knowledge graph (KG) is
typically a collection of subject-predicate-object
triples, denoted by KX = {(s,p,0)|s € &E,p €
R,o € £UT}, where £, R, and I' denote the
entity set, relation set, and type set respectively.

2.2 Problem Formulation

Given an NLQ Q and accessible structured knowl-
edge S (e.g., a table 7, a database D, or a KG K),
the objective is to generate an executable query that
retrieves the desired answer A from S.

2.3 BOX & Pandas Code Representation

To facilitate the transfer of knowledge across dif-
ferent SKR tasks, we propose a unified structure of
knowledge representation, BOX.

Definition 1 (BOX) A BOX is a data structure, de-
noted by B = (b, ®, V), where b represents its tex-
tual name, ® = {¢;}N |, and ¥ = {[@Dfl];vil N
¢; denotes a field that can be a column name in
a table, or a KG relation. ¢f represents the j-th
value associated with the field ¢;. A value z/JZJ can

be a table cell content or a KG entity.

Data Tabi Database:

/
cars_data ',

Bradford Bulls | Provident | 27000 car_names md”

1001 Honda | Civic

Windows

’Qr United StatesQ

birthplace IsA

model_list

model_list = pd.DataFrame({
-1, ‘model_id': [1001, .. 1,
ent', .1, ‘maker': ['Honda', ..],
'model': ['Civic', .1,

cars_data =

5} car_names =

GitHub

Microsoft

Bill Gates

company = pd.DataFrame({
‘company': ['Microsoft', .],
‘owns': ['GitHub', .. 1,
‘released': ['Windows', ..J,

businessman = pd.DataFrame({
‘businessman': ['Bill Gates', .. 1,
‘founded': ['Microsoft', .. 1,
'birthplace': ['United States', .1,

5} b

Figure 2: Examples of converting a table (a), a database (b), and a KG subgraph (c) into their corresponding BOX
codes. For brevity, only a subset of the fields and values is shown. The blue arrows indicate the foreign key.

A BOX can be considered a dynamic table that is
both understandable and operable by PYTHON. In
our experiments, BOX is implemented using PAN-
DAS!, a PYTHON library designed for manipulating
relational data. Specifically, a BOX B = (b, ¢, ¥)
is represented in PANDAS code as:

import pandas as pd
b = pd.DataFrame({phi_1: [psi_1_1, ...]1,
phi_2: [psi_2_1, ...1, ...})

where phi_1 and psi_2_1 are code rewritings
of ¢; and w(fQ, respectively. PANDAS provides
versatile methods for manipulating BOX. For in-
stance, in Figure 1, pd.merge is first used to join
BOX author and BOX book to form a new BOX
merged_df. Then, a filtering operation is applied
to merged_df using a boolean index as follows:

merged_df [(merged_df['name'] == 'J.K.Rowling') &
(merged_df['publication_date'] > 2005)]

PANDAS offers additional powerful tools like
grouping, ordering, and aggregation, enabling it
to handle a wide variety of query logic found in
NLQs. More examples are listed in Appendix A.

3 Structured Knowledge to BOX

Figure 2 illustrates examples of converting struc-
tured knowledge S to their corresponding BOXes.

3.1 Table-to-BOX

As shown in Figure 2(a), a data table, denoted
C,R

by T = ({a iC:17 {Tj}f:p {Ui,j}izl,j=1)= can

be seamlessly transformed into one box B =

(b, {0}, {Wj-’i}f:l}ic:l) by treating each col-

umn name ¢; as a field name ¢; and the content

of each table cell v; ; as a field value zﬁfl

3.2 DB-to-BOX

As illustrated in Figure 2(b), for a database D =
{T:}L_,, each table 7; € D is converted to a box B;

"https://pandas. pydata.org/

following the procedure described in Section 3.1.
Meanwhile, foreign key information {(¢7, $9)} is
retained, where ¢ and ¢{ represent the i-th field
in B, and the j-th field in B, respectively.

3.3 KG-to-BOX

Figure 2(c) shows an example of KG-to-BOX.
Since the KG K = {(s,p,0) | s € E,p € R,0 €
E UT} is too large, it is necessary to extract a sub-
graph for each NLQ Q. Concretely, a depth-first
search is initially performed to extract the H-hop
subgraph K* C I for each topic entity mentioned
in Q. Here, £* C £ and I'* C T denote the en-
tity set and type set of IC*, respectively. To fur-
ther narrow down the search space, the processed
data from Xie et al. (2022) is utilized by retain-
ing only the relations R* C R that demonstrate
high embedding similarity to Q. Subsequently, for
each entity type v € I'* and its corresponding en-
tity set £, = {e | J(e,IsA,y) € K*}, a BOX
B, = (v, @}Y:N) \If,ly:N) is constructed. Specifically,
the field names @}Y:N = @# U @%N, where <I>§ =
{7}, and CIJ%N = {¢i | ¢i € R*,I(s,p,0) €
K*,s € &}, consists of 1-hop relations originat-
ing from the entities in £,. Similarly, the field val-
ues ¥, = \II,IYU\I%N, where W1 = {[¢1; | ¢ €
& jj\il}}zl corresponds to ®! and contains the en-
tities of type 7. WEN = {[1;; | I(s,p, i) €
K* s € &,p € R*}L}}Y, corresponds to &2V
and consists of the 1-hop neighbors of the entities
in &, through the relations in R*. From the per-
spective of the KG, for a box B, 11 ; serves as
the subject, ¢; represents the predicate, and 1); ;
acts as the object. In this way, multi-hop reasoning
over the KG can be implemented by joining BOXes
using pandas.merge, as shown in Figure 1. After
all BOXes are built, the foreign key information
is defined as {(¢}, ¢7)}, where ¢} and ¢ share at
least one common entity. The detailed KG-to-BOX
algorithm is provided in Appendix B.3.

https://pandas.pydata.org/

Q: How many heads
of the departments
are older than 56 ?

g
\\

\

Database \ \,@

Q: How many other
teams did they play?

il

Data Table

Q: List all books
written by "J K.
Rowling" that were

In-context Reasoning

Execution

@A
| [rror |
& O me €
|.|. fo -
e e
published after 2005. @

[a—

|c83 Interpreter 7 Rationale R
= First, load the data into a
Pandas DataFrame, ensuring
B Feedback | Correct it includes columns such as
O author, title, and publication
‘@‘ ﬁ year. Then, ...
| Correct (CDde c #
Y. i das as pd i
:@: ? import pan
merged_df = pd.merge(
LLM y books, authors,
f9 EOTEE on="'author_id"',
~SaY how="inner'
g |

Execution-Guidance

Figure 3: The inference process of our proposed agent PANDORA. PANDORA initially leverages the LLM fy to
perform in-context reasoning, assisted by M, to generate preliminary reasoning steps R and executable code C.
Subsequently, PANDORA provides the executed results back to fy for self-correction.

4 Pandora

4.1 Overview

PANDORA is an agent comprising three main com-
ponents: a well-aligned LLM, fy, responsible for
generating code-based reasoning steps; a memory,
M, which stores pairs of NLQs and valid reasoning
steps for in-context learning; and a PYTHON inter-
preter, Z, used to execute the generated code. In
general, PANDORA operates through two primary
actions: code-driven reasoning, and code execu-
tion, which interact with an environment consisting
of BOXes defined in PYTHON using 7.

4.2 Pandora Reasoning

Figure 3 illustrates the reasoning process of PAN-
DORA. Initially, the structured knowledge S is
transformed into a collection of BOXes B*. Next,
B* and Q are integrated into a prompt, X', which
is fed into fy. fy then generates the code-based
reasoning steps)V = R, C, where R represents the
natural language rationale and C corresponds to the
executable PYTHON code. Finally, the answer A is
derived by executing code C on B* using Z.

In-context Reasoning To help fy understand the
mapping from NLQ to various PANDAS APIs, we
leverage in-context learning (ICL) (Brown et al.,
2020). Specifically, the prompt X is structured as:

X =P, Q1B W,...Qk, Bk, Yk, Q, B

Here, P denotes the natural language instruction
that guides fj to first generate R and subsequently
C. This adopts the concept of chain of thought
(COT) (Wei et al., 2022). Notably, to manage the in-
put length, all the values ¥ within B* are excluded
from all the prompts. (Qy, By, Vi) (1 < k < K)

constitute a demonstration retrieved from the mem-
ory M. The complete prompt is provided in Ap-
pendix C.2. Then, fy generate) by estimating

1V

P, 0) = [] P(y;l X, y<;,0),
j=1

ey

where y; denotes the j-th token of).

Shared Demonstration Retrieval Within the uni-
fied BOX representation, we assume that reasoning
over structured knowledge S, can potentially sup-
port fp in reasoning over another type of structured
knowledge Sy, as both share PANDAS APIs. Con-
sequently, when retrieving (Qy, B, Vi) from M,
we do not require Qy, and Q to originate from the
same SKG task. The K demonstrations of Q are
selected based on the highest semantic similarity,

5(Qk, Q) = cos(go(Qx), 90(Q)) (2)

where g(Q) € RY represents the embedding of Q
obtained by an encoding-only LLM gjg.

Execution Guidance To alleviate the hallucination
problem (Huang et al., 2023) of generated code C,
we leverage the results of code execution as feed-
back to prompt fy to correct C. In particular, when
C is executed by the interpreter Z, if the result A
satisfies the following two conditions, it is consid-
ered invalid and is fed back to fy: a) The execution
of C raises an error. b) A is empty. The error in-
formation from Z is recorded as F. The prompt
template for the execution guide is as follows:

X]: = PEG|Q78*3R76|~F

Here, Pgg represents the natural language instruc-
tion. Subsequently, X'z is fed to fy, which provides
the corrected)V r. This process continues until YV
is valid or exceeds the upper limit L we set.

4.3 Pandora Learning

The learning process of PANDORA mainly involves
annotating the NLQs from the training data with
PYTHON code and storing them in the memory M.
This can be divided into two stages.

4.3.1 Reasoning Memory Initialization

In the first stage, the training NLQs of the DB
SKR task are annotated. Typically, the DB SKR
task, like Spider (Yu et al., 2018), provides reliable
human-written SQL labels, which can help reduce
the difficulty of code annotation even in the absence
of available demonstrations. In particular, given a
training example (9, S, Z, A), where Z represents
the SQL label and A is the gold answer set, fy is
employed to generate the code-based label Yy =
R,C. The prompt format is structured as:

X = Ptrain|Qa‘§72~’B*

Where Pipain 1s the instruction, and B* is the con-
verted BOX set derived from S. To ensure the
quality of Y, the execution guidance (EG) strat-
egy is employed. Moreover, the retrieved answers
A, obtained by executing C, are compared with A.
The result of this comparison is fed back into fy to
enable further self-correction. Ultimately, Finally,
all samples with correct C are retained to form M.

4.3.2 Multi-Task Adaptation

In the second stage, examples from M (DB SKR)
are utilized as demonstrations to annotate the train-
ing NLQs for the KG and Table SKR tasks, instead
of employing their specific labels. There are two
main reasons: a) The examples in the Table SKR
task consist only of NLQ-answer pairs and lack log-
ical queries to describe the reasoning steps. b) Our
experiments show that fy has a better understand-
ing of SQL compared to SPARQL (see Table 4
for details). The EG strategy is also applied here.
It should be emphasized that, for the three SKR
tasks, only a small amount of data is selected for
annotation, ultimately resulting in the memory M.

5 Experiments

5.1 Datasets & Evaluation Metrics

We evaluated the methods on three SKR tasks:

DB SKR We use Spider (Yu et al., 2018), a human-
annotated dataset designed for complex and cross-
domain Text-to-SQL generation. The dataset con-
tains diverse databases and intricate NLQs that re-
quire multi-step reasoning and a deep understand-
ing of database schemas to construct accurate SQL.

| | |
‘ loMemory [0 Train [0 Test ‘

i

WebQSP

104

1mmﬂﬂ WHH “H

WikiTQ ~ GrailQA

of Examples

Spider

Figure 4: Statistics (Logarithmic y-axis) of M.

Table SKR We use WikiTableQuestions (Wik-
iTQ) (Pasupat and Liang, 2015), a dataset designed
for question answering over real-world tables. This
dataset requires performing operations such as ag-
gregation, comparison, and filtering.
KG SKR We utilize GrailQA (Gu et al., 2021) and
WebQSP (Yih et al., 2016), which feature NLQs
that require up to multi-hop reasoning over the
Freebase knowledge graph. These tasks involve
entities, relations, and complex logical structures.
Following Jiang et al. (2023), we use Execution
Accuracy (EX) and Denotation Accuracy (DA) to
evaluate Spider and WikiTQ. For GrailQA and We-
bQSP, we use Hit@1 as the evaluation metric. In
addition, we calculate the F1-score between the
predicted answer set and the gold answer set.

5.2 Implementation Details

We utilized gpt-40-mini-2024-07-18 and
bge-large-en-v1.5 as fy and gy, respectively.
The number of demonstrations for all in-context
reasoning, K, was set to 10. The hop count H for
the KG subgraph was set to 3 for GrailQA and 2
for WebQSP. For each NLQ, EG is executed up
to L = 3 times. The statistics of the used datasets
and our memory M are shown in Figure 4.

5.3 Compared Methods

1) competitive baselines for single-type SKR
task. KG SKR: RnG-KBQA (Ye et al., 2022),
TIARA (Shu et al., 2022), DecAF (Yu et al., 2023),
KB-Binder (Li et al., 2023), and KB-Coder (Nie
et al., 2024); DB SKR: DIN-SQL (Pourreza and
Rafiei, 2023), DAIL (Gao et al., 2024), CodeS (Li
et al., 2024), and DTS-SQL (Pourreza and Rafiei,
2024). Table SKR: TAPEX (Liu et al., 2022),
Binder (Cheng et al., 2023), DATER (Ye et al.,
2023), and STR (Kojima, 2024). 2) Pure LLMs
or unified SKG methods. Codel.lama (Roziere
et al., 2023), DeepSeek-Coder (Guo et al., 2024),
UnifiedSKG (Xie et al., 2022), StructLM (Zhuang
et al., 2024), StructGPT (Jiang et al., 2023),
Readi (Cheng et al., 2024), TrustUQA (Zhang et al.,

Table 1: Results of the DB SKR task.

Spider
Method

EX (%)
Task Specific Method
DIN-SQL (Pourreza and Rafiei, 2023) 74.2
DAIL (Gao et al., 2024) 78.1
CodeS* (Li et al., 2024) 734
DTS-SQL* (Pourreza and Rafiei, 2024) 85.5
Unified Method

CodeLlama-7B* (Roziere et al., 2023) 72.9
DeepSeek—Coder—7B‘ (Guo et al., 2024) 77.5

StructLM-7B* (Zhuang et al., 2024) 79.6
StructGPT (Jiang et al., 2023) 77.8
PANDORA 81.3

Table 2: Results of the Table SKR task.

WikiTQ
Method

DA (%)
Task Specific Method
TAPEX®* (Liu et al., 2022) 57.5
Binder (Cheng et al., 2023) 65.0
DATER® (Ye et al., 2023) 65.9
STR* (Kojima, 2024) 65.7
Unified Method
UnifiedSKG* (Xie et al., 2022) 49.3
StructLM-7B* (Zhuang et al., 2024) 50.1
StructGPT (Jiang et al., 2023) 52.2
Readi (Cheng et al., 2024) 66.7
TrustUQA (Zhang et al., 2024b) 66.2
PANDORA 68.9

2024b). We use # to denote the fine-tuning using
the target dataset.

5.4 Results for DB SKR

The results in Table 1 highlight the superiority of
PANDORA, which outperforms all unified methods,
including fine-tuned models such as StructLM-7B.
Specifically, PANDORA achieves a 1.7% improve-
ment over StructLM-7B, demonstrating its ability
to align with LLM pre-training and transfer knowl-
edge effectively across tasks. While task-specific
fine-tuned methods like DTS-SQL continue to lead
in performance, PANDORA narrows the gap, show-
casing its advanced capabilities in DB SKR tasks
without requiring task-specific fine-tuning.

5.5 Results for Table SKR

In Table 2, PANDORA establishes itself as the top-
performing unified model, surpassing the best uni-
fied fine-tuned method, Readi, by 2.2%. Moreover,
PANDORA slightly outperforms DATER, demon-

Table 3: Results of the KG SKR task.

GrailQA WebQSP

Method

Fl (%) Hit@1 (%)
Task Specific Method
RnG-KBQA® (Ye et al., 2022) 76.9 -
DecAF® (Yu et al., 2023) 81.4 78.7
TIARA® (Shu et al., 2022) 81.9 76.7
KB-Binder (Li et al., 2023) 51.7 68.9
KB-Coder (Nie et al., 2024) 61.3 72.2
Unified Method
UnifiedSKG* (Xie et al., 2022) - 80.7
StructGPT (Jiang et al., 2023) - 69.6
Readi (Cheng et al., 2024) - 74.3
TrustUQA (Zhang et al., 2024b) - 83.5
PANDORA 77.3 82.8

strating that it can achieve competitive results with-
out relying on task-specific fine-tuning.

5.6 Results for KG SKR

In Table 3, PANDORA demonstrates its capability
to tackle the more challenging GrailQA benchmark,
surpassing existing unified approaches and out-
performing the best non-fine-tuning method, KB-
Coder, by 16%. On WebQSP, PANDORA delivers
competitive results, trailing the existing top unified
SKR method, TrustUQA in Hit@1 by just 0.7%.

5.7 Impact of different backbone LLMs

Figure 5 depicts the performance of PANDORA
when employing gpt-40 and gpt-4o-mini as fj.
To minimize the cost of using gpt-4o0, we ran-
domly sampled the same set of 200 NLQs from
each dataset for evaluation in both settings. gpt-40
consistently outperforms gpt-4o-mini, especially
on WikiTQ which lacks labels of logical form.

5.8 Ablation Study

We evaluated the performance of the proposed PAN-
DORA by sequentially removing the following com-
ponents: a) — Execution-Guidance (— EG): Gen-
erate reasoning steps R and codes C without re-
ceiving any feedback from the interpreter Z. b)
— Shared Demonstration (— SD): Use only ex-
amples from the same dataset as the test NLQ as
demonstrations. ¢) — Similarity Retrieval (— SR):
Select demonstrations randomly, disregarding the
process described in Equation (2). d) — In-context
Reasoning (— ICR): Perform zero-shot inference
to generate R and C without using any demonstra-
tions. e) — Code Style (— CS): Directly gener-
ate labels for the original task label (e.g., SQL or
SPARQL) instead of producing PANDAS code.

DBSKR Table SKR KG SKR
Ablation Setting Spider WikiTQ GrailQA WebQsp ~ Average
EX FI DA Fl Fl Hit@l Fl Hit@l

PANDORA 81.3 842 689 700 77.3 820 73.6 828 775
~ EG 781 805 642 652 7L1 753 66.6 752 720
~ EG - CS 76.6 79.6 518 517 444 469 642 67.5 60.3
~ EG - SD 657 695 522 535 70.1 743 69.9 775 666
— EG - SD - SR 644 683 501 517 714 754 558 618 624
~EG-SD-SR—ICR 622 660 452 473 645 70.0 364 460 547

Table

| | |
85| ‘DDgpt—4o—miniDDgpt—4o L
L
S 80| |
=0 [|

Spider WikiTQ GrailQA WebQSP

Figure 5: Results of PANDORA with different fy.
The ablation study in Table 4 highlights the con-

tributions of each component in the proposed PAN-
DORA framework. Removing EG results in an aver-

age performance drop of 5.5%, showing the value ,
of interpreter feedback for refining reasoning and

execution. Excluding CS further reduces perfor-
mance by 17.2%, demonstrating the effectiveness

TN

of PANDORA code as a unified representation for *

structured reasoning tasks. Eliminating SD leads

to a 5.4% drop, emphasizing the importance of .

knowledge transfer across datasets.

5.9 Impact of Demonstration Number

We investigated the impact of varying the num-
ber of demonstrations on the performance of the
PANDORA. The experimental results are presented
in Figure 6. Increasing the number of examples
consistently improves Pandora’s performance in
different settings. On both the Spider and WikiTQ
datasets, the removal of SD and SR results in a
significant decline in performance. SD performs
poorly on WebQSP, which could be attributed to
the relatively simple SPARQL structures of the
dataset. The diversity present in other datasets may
introduce noise, reducing its effectiveness.

5.10 Error Analysis

To specifically evaluate the limitations of the pro-
posed method, we randomly selected 50 samples
from each of the three SKR tasks for error analysis.
We have summarized the following types of errors:

)

N

4: Experimental results (%) of the ablation studies (using gpt-40-mini). Here — denotes removing.

a) Execution Failure: The code fails to execute.
b) BOX Error: The BOX in the code is wrong or
missing. ¢) Field Error: Field error or missing in
the code. d) Reasoning Logic Error: The relevant
boxes and fields are correct, but the logic of the
code is wrong.) Query Intent Error: The intent
of the query is misunderstood or incorrectly imple-
mented. f) Output Format Error: The theoretical
answer is correct, but the format returned does not
match the annotated answer. Examples of cases d),
e), and f) are provided below.

SQL

SELECT T1.Id, T1.Maker

FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON ...
HAVING count(x) >= 2

Python
model_counts = model_list.groupby('maker').size()...

car_maker_ids = car_names.merge(model_counts, ...

NLQ

what rail network does henley beach railway line
belong to?

Python

result = [['Henley._Beach_railway._line',

rail_network.loc[..., 'rail_network'].values[0]]]

Pandora Predicted Answer
["['Twenty-foot_equivalent_unit']"]
Gold Answer
['Twenty-foot_equivalent_unit']

The distribution of various error types is shown
in Figure 7. In the PANDAS reasoning environment,
identifying fields (i.e., columns or KG relations)
continues to be a major challenge. Furthermore, the
wide range of PYTHON output methods contributes
to errors in the output format.

6 Related Work

DB SKR. This task, often tackled via text-to-
SQL, focus on converting NLQs into SQL queries.
Conventional methods emphasize model architec-
tures (Yu et al., 2021) and intermediate represen-
tations (Guo et al., 2019). Recent methods lever-
age LL.Ms with techniques like task decomposi-

Spider EX (%)

g 65 [7@ 0 F |
75 |z 6o 1z
70 |- o st e 60 -
65 |- 12 501 7g
= S 50 .
60 b | ! Lz : ! ! LIz : 1 ! 1
1 3 6 10 1 3 6 10 1 3 6 10

Demonstration Number

Demonstration Number

Demonstration Number

PANDORA — EG

PANDORA — EG — SD

PANDORA — EG — SD — SR

Figure 6: Impact of varying demonstration quantities on code-driven in-context reasoning.

Execution Failure
Reasoning Logic Error

20% Field Error
40% 4%

8%

Output Format Error

Query Intent Error

8% 20%

BOX Error
DB SKR
12%
22%
53% 12%
4% 42% 6%
26% 18%

Table SKR KG SKR

Figure 7: Distribution of various types of errors.

tion, chain of thought (Wei et al., 2022), and self-
consistency (Wang et al., 2023), achieving im-
proved results (Pourreza and Rafiei, 2023; Gao
et al., 2024; Talaei et al., 2024; Pourreza et al.,
2024). Other studies focus on fine-tuning open-
source LLLMs to match or surpass proprietary mod-
els (Li et al., 2024; Pourreza and Rafiei, 2024).

KG SKR. This task, addressed via KGQA, aim
to resolve NLQs using KG. Traditional methods
typically involve semantic parsing to generate exe-
cutable logical forms (Berant et al., 2013; Yih et al.,
2015) or embedding-based techniques for query
matching (Das et al., 2018). Recent advancements
with LLMSs, such as DecAF (Yu et al., 2023), com-
bine logical forms with direct answer generation,
while KB-BINDER (Li et al., 2023) incorporates
BM25 for improved performance. Similarly, KB-
Coder (Nie et al., 2024) leverages ICL in a code-
style paradigm, achieving better performance.

Table SKR. This task requires reasoning over
NLQs and structured tabular data. Traditional meth-
ods rely on semantic parsing (Pasupat and Liang,
2015) or embedding-based methods for table-query
matching (Yin et al., 2020; Deng et al., 2019). Mod-
ern LLM-powered models, such as TAPEX (Liu

et al., 2022), Binder (Cheng et al., 2023), and
DATER (Ye et al., 2023), excel by decomposing
complex tables and NLQs into smaller components.
Unified Structured Knowledge Reasoning. Early
unified frameworks, such as UnifiedSKG (Xie et al.,
2022) and StructLM (Zhuang et al., 2024), inte-
grate multiple structured knowledge datasets by
fine-tuning models like TS5 (Raffel et al., 2020)
and CodelLlama (Roziere et al., 2023) to enhance
structured knowledge understanding. More recent
unified QA frameworks address diverse structured
data types. For instance, StructGPT (Jiang et al.,
2023) uses an iterative reading-then-reasoning strat-
egy to retrieve evidence and generate answers,
while Readi (Cheng et al., 2024) iteratively re-
fines reasoning paths to extract evidence and pro-
duce answers. Despite these advancements, they
rely on data-specific strategies, limiting uniformity.
TrustUQA (Zhang et al., 2024b), the most related
work, proposes a unified graph representation and
generates explainable queries but redefines repre-
sentations, creating gaps with LLMs’ pre-trained
knowledge. In contrast, our method, Pandora,
adopts a code-based unified representation, inher-
ently more aligned with LLMs’ understanding.

7 Conclusion

In this paper, we proposed PANDORA, a unified
SKR agent that uses PANDAS APIs as a standard-
ized representation format for structured knowl-
edge. By combining the rationale of natural lan-
guage with executable PYTHON code, PANDORA
enables iterative refinement of reasoning steps,
memory storage for reuse, and effective cross-
task knowledge transfer. Comprehensive experi-
ments show that PANDORA outperforms existing
unified methods and remains competitive with task-
specific methods. In the future, we plan to ex-
tend the framework to support additional structured
knowledge and explore more advanced reasoning
capabilities to address a wider variety of SKR tasks.

8 Limitations

While the use of PANDAS APIs provides a stan-
dardized and efficient way to represent structured
knowledge, it also introduces several limitations.
First, PANDAS APIs are primarily designed for
tabular data manipulation, which may limit their
adaptability for tasks requiring reasoning over non-
tabular or hierarchical data structures, such as
graphs or nested datasets. Second, the reliance
on these APIs can make it challenging to handle
domain-specific reasoning that involves specialized
libraries or techniques outside the scope of PAN-
DAS, reducing the framework’s versatility in highly
specialized applications.

References

Anna Markella Antoniadi, Yuhan Du, Yasmine Guen-
douz, Lan Wei, Claudia Mazo, Brett A Becker, and
Catherine Mooney. 2021. Current challenges and fu-
ture opportunities for xai in machine learning-based
clinical decision support systems: a systematic re-
view. Applied Sciences, 11(11):5088.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1533-1544. ACL.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang,
Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling
Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmo-
han, and Qi Zhang. 2024. Call me when necessary:
Llms can efficiently and faithfully reason over struc-
tured environments. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 4275-4295. Association for Computational
Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Junyun Cui, Xiaoyu Shen, and Shaochun Wen. 2023.
A survey on legal judgment prediction: Datasets,
metrics, models and challenges. [EEE Access,
11:102050-102071.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy,
Alex Smola, and Andrew McCallum. 2018. Go for a
walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. In
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang, Nan
Du, Wei Fan, Kai Lei, and Ying Shen. 2019. Multi-
task learning with multi-view attention for answer
selection and knowledge base question answering. In
The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 6318-6325. AAAI Press.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132-1145.

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond
LLD.: three levels of generalization for question an-
swering on knowledge bases. In WWW ’21: The Web
Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 3477-3488. ACM / IW3C2.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database

https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.254
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://doi.org/10.1109/ACCESS.2023.3317083
https://doi.org/10.1109/ACCESS.2023.3317083
https://doi.org/10.1109/ACCESS.2023.3317083
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://doi.org/10.1609/AAAI.V33I01.33016318
https://doi.org/10.1609/AAAI.V33I01.33016318
https://doi.org/10.1609/AAAI.V33I01.33016318
https://doi.org/10.1609/AAAI.V33I01.33016318
https://doi.org/10.1609/AAAI.V33I01.33016318
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.18653/V1/P19-1444
https://doi.org/10.18653/V1/P19-1444
https://doi.org/10.18653/V1/P19-1444
https://doi.org/10.18653/V1/P19-1444

with intermediate representation. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4524-4535. Association for Computational Linguis-
tics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR, abs/2311.05232.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. Structgpt: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2023, Singapore, December 6-10,
2023, pages 9237-9251. Association for Computa-
tional Linguistics.

Atsushi Kojima. 2024. Sub-table rescorer for table ques-
tion answering. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation, LREC/-
COLING 2024, 20-25 May, 2024, Torino, Italy, pages
15422-15427. ELRA and ICCL.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3):127.

Linfeng Li, Peng Wang, Jun Yan, Yao Wang, Simin Li,
Jinpeng Jiang, Zhe Sun, Buzhou Tang, Tsung-Hui
Chang, Shenghui Wang, and Yuting Liu. 2020. Real-
world data medical knowledge graph: construction
and applications. Artif. Intell. Medicine, 103:101817.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
6966-6980. Association for Computational Linguis-
tics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: table pre-training via learning a neural SQL
executor. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning
for knowledge-based question answering. In Thirty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances

in Artificial Intelligence, EAAI 2014, February 20-
27, 2024, Vancouver, Canada, pages 18833—18841.
AAAI Press.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1470-
1480. The Association for Computer Linguistics.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. CHASE-SQL: multi-path rea-
soning and preference optimized candidate selection
in text-to-sql. CoRR, abs/2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: decomposed text-to-sql with small large
language models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami,
Florida, USA, November 12-16, 2024, pages 8212—
8220. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje F. Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 8108-8121. Association for Computational
Linguistics.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.

https://doi.org/10.18653/V1/P19-1444
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.574
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.574
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.574
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.574
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.574
https://aclanthology.org/2024.lrec-main.1339
https://aclanthology.org/2024.lrec-main.1339
https://aclanthology.org/2024.lrec-main.1339
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1016/J.ARTMED.2020.101817
https://doi.org/10.1016/J.ARTMED.2020.101817
https://doi.org/10.1016/J.ARTMED.2020.101817
https://doi.org/10.1016/J.ARTMED.2020.101817
https://doi.org/10.1016/J.ARTMED.2020.101817
https://doi.org/10.18653/V1/2023.ACL-LONG.385
https://doi.org/10.18653/V1/2023.ACL-LONG.385
https://doi.org/10.18653/V1/2023.ACL-LONG.385
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.1609/AAAI.V38I17.29848
https://doi.org/10.1609/AAAI.V38I17.29848
https://doi.org/10.1609/AAAI.V38I17.29848
https://doi.org/10.3115/V1/P15-1142
https://doi.org/10.3115/V1/P15-1142
https://doi.org/10.3115/V1/P15-1142
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.48550/ARXIV.2410.01943
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.555
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.555
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.555

CHESS: contextual harnessing for efficient SQL syn-
thesis. CoRR, abs/2405.16755.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.

Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten

Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,

Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 602—631. Association for Computational
Linguistics.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,

and Caiming Xiong. 2022. RNG-KBQA: generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 6032-6043. Associ-
ation for Computational Linguistics.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei

Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2023, Taipei, Taiwan, July
23-27, 2023, pages 174-184. ACM.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-

feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31,
2015, Beijing, China, Volume 1: Long Papers, pages
1321-1331. The Association for Computer Linguis-
tics.

11

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 2: Short Papers. The Association for Computer
Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 8413-8426. Association for
Computational Linguistics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radeyv,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3911-3921.
Association for Computational Linguistics.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yun-
jun Gao, Lu Chen, Dongfang Lou, and Jinshu Lin.
2024a. Finsql: Model-agnostic llms-based text-to-
sql framework for financial analysis. In Companion
of the 2024 International Conference on Manage-
ment of Data, SIGMOD/PODS 2024, Santiago AA,
Chile, June 9-15, 2024, pages 93—-105. ACM.

Wen Zhang, Long Jin, Yushan Zhu, Jiaoyan Chen, Zhi-
wei Huang, Junjie Wang, Yin Hua, Lei Liang, and
Huajun Chen. 2024b. Trustuqa: A trustful frame-
work for unified structured data question answering.
CoRR, abs/2406.18916.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,
Junjie Wang, Weiming Ren, Stephen W. Huang, Jie
Fu, Xiang Yue, and Wenhu Chen. 2024. Structlm:
Towards building generalist models for structured
knowledge grounding. CoRR, abs/2402.16671.

https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.48550/ARXIV.2405.16755
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/2020.ACL-MAIN.745
https://doi.org/10.18653/V1/2020.ACL-MAIN.745
https://doi.org/10.18653/V1/2020.ACL-MAIN.745
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.48550/ARXIV.2406.18916
https://doi.org/10.48550/ARXIV.2406.18916
https://doi.org/10.48550/ARXIV.2406.18916
https://doi.org/10.48550/ARXIV.2402.16671
https://doi.org/10.48550/ARXIV.2402.16671
https://doi.org/10.48550/ARXIV.2402.16671
https://doi.org/10.48550/ARXIV.2402.16671
https://doi.org/10.48550/ARXIV.2402.16671

A More Examples of Pandas Code

NLQ
Which department has more than 1 head at a time?
A.l Examples OfTeXt-tO-SQL List the id, name and the number of heads.

Below are examples of converting SQL queries | ### soL
. . . . SELECT T1.department_id , T1.name , count (*)
into equivalent Pandas code, covering cases like | From management AS T2 JOIN department AS T1

: . : . ON T1.department_id = T2.department_id
filtering, ordering, grouping, and nested queries. GROUP BY T1.denartment. id

>
##E NLOQ HAVING count(x) > 1

Show the name and number of employees for the

departments managed by heads whose temporar ### Python
pe X 5 ,y P y merged_df = pd.merge(department, management,
acting value is 'Yes'? N A 2. ,
on="department_id', how='inner')
grouped = merged_df.groupby(
SQL ['department_id', 'name']

SELECT T1.name , T1.num_employees
FROM department AS T1 JOIN management AS T2
ON T1.department_id = T2.department_id

).size().reset_index(name="'count')
result = grouped[grouped['count'] > 1]

WHERE T2.temporary_acting = 'Yes'

NLQ
What is the average bike availability in stations
that are not located in Palo Alto?

Python

merged_df = pd.merge(
department, management,
on="'department_id"'

) ### SQL
result = merged_df[SELECT avg(bikes_available)

merged_df['temporary_acting'] == 'Yes' FROM statU§ .
1C0'name', 'num_employees']] WHERE station_id NOT IN (

! - SELECT id
FROM station
44 NLO , WHERE city = "Palo_Alto
What are the ids of the students who registered for
?
course 301 most recently? ### Python
SELECT student_id FROM student_course_attendance Ve Y -
ST 1['id"']
WHERE course_id = 301 filtered_status = status[
ORDER BY date_of_attendance DESC LIMIT 1 ~status['station_id']J.isin(palo_alto_stations)
]

Python P - . ,
filtered_df = student_course_ attendancel result = filtered_status['bikes_available'].mean()

student_course_attendance['course_id'] == 301
]

sorted_df = filtered_df.sort_values(
by="date_of_attendance',
ascending=False

)

result = sorted_df.iloc[@]['student_id"']

##4# NLQ
For each zip code, what is the average mean
temperature for all dates that start with '8'?

SQL

SELECT zip_code, avg(mean_temperature_f)
FROM weather

WHERE date LIKE "8/%"

GROUP BY zip_code

Python
filtered_df = weather[
weather['date'].str.startswith('8/")
]
result = filtered_df.groupby('zip_code')
['mean_temperature_f'].mean().reset_index ()

result.columns = [
'zip_code',
'avg_mean_temperature_f'
]

12

A.2 Examples of KGQA

Here are examples of converting SPARQL queries
into their equivalent Pandas code. These examples
cover cases such as multi-hop queries, counting,
filtering by type, and finding argmax/argmin.

NLQ
which hotel grading authority awards servigroup papa
luna hotel?

SPARQL

PREFIX rdf:
-nsi#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX <http://rdf.freebase.com/ns/>

SELECT (?x@ AS ?value) WHERE {

<http://www.w3.0rg/1999/02/22-rdf -syntax

SELECT DISTINCT ?x@ WHERE {
?x0 :type.object.type :travel.
hotel_grading_authority
?x1 :type.object.type :travel.hotel_grade

VALUES ?x2 { :m.@11nyts3 }
?x1 :travel.hotel_grade.awarded_by ?x0
?x2 :travel.hotel.grade ?x1

FILTER (?x0 != ?x1
&& ?x0 != 7x2
&& ?x1 1= ?2x2)
}
3
Python
result = hotel_gradel

hotel_grade['hotel'] ==
Hotel'
1L "awarded_by '].tolist ()

'Servigroup_Papa._Luna_

NLQ
who is prime minister of japan 2011

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?x

WHERE {

FILTER (?x != ns:m.03_3d)

FILTER (!isLiteral(?x) OR lang(?x) = "'
langMatches(lang(?x), 'en'))
ns:m.03_3d ns:government.governmental_jurisdiction.
governing_officials ?y

?y ns:government.government_position_held.
office_holder ?x

?y ns:government.government_position_held.
basic_title ns:m.0@60bp

FILTER(NOT EXISTS {?y ns:government.
government_position_held.from ?sko} ||

EXISTS {?y ns:government.government_position_held.
from ?skil

FILTER(xsd:datetime (?sk1) <= "2011-12-31"**xsd:
dateTime) })

FILTER(NOT EXISTS {?y ns:government.
government_position_held.to ?sk2} ||

EXISTS {?y ns:government.government_position_held.to
?sk3

FILTER(xsd:datetime (?sk3) >=
dateTime) })

OR

"2011-01-01"*"xsd:

}

Python

merged_data = governmental_jurisdiction.merge(
government_position_held, left_on='
governing_officials', right_on='
government_position_held")

result = merged_data.loc[
(merged_datal['governmental_jurisdiction'] ==

Japan') &
(merged_datal 'basic_title'] ==
&

(merged_datal['from'] <= '2011-12-31"') &
(merged_datal['to'] >= '2011-01-01"),
'office_holder'

J.unique().tolist ()

'"Prime_minister')

13

NLQ
which countries does russia border

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT ?x

WHERE {

FILTER (?x != ns:m.0@6bnz)

FILTER (!isLiteral(?x) OR lang(?x) = "'
langMatches(lang(?x), 'en'))

ns:m.@6bnz ns:location.location.adjoin_s ?y

?y ns:location.adjoining_relationship.adjoins ?x

?X ns:common.topic.notable_types ns:m.@1mp

3

OR

Python
merged_data = location.merge(adjoining_relationship,
left_on='adjoin_s', right_on="'

adjoining_relationship')

result = merged_data.loc[
(merged_datal'location'] ==
'adjoins'

J.unique().tolist()

result = [x for x in result

'Russia'),

if x != 'Russia'l]

NLQ
which countries does russia border

SPARQL

PREFIX rdf:
-ns#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX <http://rdf.freebase.com/ns/>

SELECT (COUNT(?x@) AS ?value) WHERE {

SELECT DISTINCT ?x@ WHERE {

<http://www.w3.0rg/1999/02/22-rdf -syntax

?x0 :type.object.type :religion.religious_leader
VALUES ?x1 { :m.Q041_pt }

?x0 :people.person.ethnicity ?x1

FILTER (?x@ != ?x1)

}

}

Python

result = [[len(religious_leader[religious_leader['

religious_leader'].isin(person['person'][person
['ethnicity'] == "jew'1)1)1]

A.3 Examples of TableQA

NLQ
in which county did brown receive the most votes?

Python

brown_votes = df['Votes'].str.replace(',', "'').
astype(int)

max_votes_index = brown_votes.idxmax ()

result = [[df.loc[max_votes_index, 'County']]]

NLQ

who was the top position american driver?

Python

df['Pos'] = pd.to_numeric(df['Pos'], errors='coerce'
)

result = df.nsmallest(1, 'Pos')['Driver'].tolist()

##4 NLQ

what is the total number of points india has scored
throughout the rivalry?

Python

valid_results = df['Results'].dropna().str.replace(’
Draw', '0_.-.0")

scores = valid_results.str.extract(r'(\d+)\s*x-\sx*(\d
)

scores = scores.fillna(@).astype(int)

india_scores = scores[1]
total_points_india = india_scores.sum()
result = [[total_points_indiall]

NLQ
how long did they play before they won a game?

Python
first_game_date = pd.to_datetime(df['Date'].iloc[0@])
wins = df[df['Result'].str.startswith('W')]
if not wins.empty:
first_win_date =
iloc[0])
days_before_first_win = (first_win_date -
first_game_date).days

pd.to_datetime(wins['Date'].

else:
days_before_first_win = @
result = [[days_before_first_win]]

NLQ
how far removed were the times from the fifth place
and the tenth place contestant?

Python
print(df['Rank'].unique())

rank_5 = df['Rank'].astype(int).eq(5)
boolean series for rank 10

Creating a

fifth_place_time = df.loc[rank_5, 'Time'].values[0]
if df.loc[rank_5, 'Time'l.size > @ else None

tenth_place_time = df.loc[rank_10, 'Time'].values[0]
if df.loc[rank_10, 'Time'].size > @ else None

if fifth_place_time is None or tenth_place_time is
None:
result = [['Times_not_found_for_specified_ranks.
‘11
else:
def convert_to_seconds(time_str):
minutes, seconds = time_str.split(':"')
return int(minutes) * 60 + float(seconds)

fifth_place_seconds =
fifth_place_time)
tenth_place_seconds =
tenth_place_time)

convert_to_seconds (
convert_to_seconds (
difference = abs(fifth_place_seconds -

tenth_place_seconds)
result = [[difference]l

NLQ
how many times did the cowboys win the nfc
championship in the 1970s?

Python

nfc_cowboys_70s = df[(df['Team'] 'Dallas_Cowboys'
) & (df['Season'] >= 1970) & (df['Season'] <
1980)1]

result = [[nfc_cowboys_70s.shapel[0]]]

NLQ
who was the only administrator to have just a b.s.?

Python

filtered_df = df[df['Educational_Background'].str.
contains('B.S."') & ~df['Educational_Background'
J.str.contains('Ph.D|M.S|M.A|Master')]

result = [[filtered_df['Name'].iloc[@]]1] if not
filtered_df.empty else [[]]

14

B Details of BOX Construction
B.1 Table-to-BOX

Algorithm 1 outlines the procedure for converting
a table into a BOX. If the table’s name is not pro-
vided, Table is used as the variable name for the
BOX in the Pandas code.

B.2 DB-to-BOX

Algorithm 2 outlines the procedure for converting
a database into a set of BOXes. Here, the function
TABLETOBOX refers to the process described in
Algorithm 1, which converts a table into a single
BOX. In addition, the foreign key information of
the database is retained.

B.3 KG-to-BOX

Algorithm 3 details the procedure for converting a
KG into a set of BOXes.

The function DEPTHFIRSTSEARCH aims to re-
trieve the field records (i.e., the related triples) in
the H-hop subgraph of the topic entities.

C Prompt Template

C.1 Prompt of In-context Reasoning

Figure 8 shows a prompt template for in-context
reasoning.

C.2 Prompt of Execution Guidance

Figure 9 shows a prompt template for the execution
guidance strategy.

~

Examples
[EXAMPLE]

You are an excellent data scientist and Python programmer. You can capture the link between the question and
corresponding database schema and perfectly generate valid Python Pandas program or S-Expression query to answer
the question.

Follow the instructions below:

Step 1. Comprehend the Question: Begin by thoroughly reading and understanding the main objectives and specific
details outlined in the question. Determine whether the question requires an entity, a list of entities, or a numerical
value. Then, break it down into logical steps and walk through the question systematically.

Step 2. Examine the Database Schema: Review the structure of the database schema to understand how data is
organized. ldentify relevant tables, columns, and values that are pertinent to the question. Use these elements to
understand the question better and to create a link between the question and the database schema.

Step 3. Analyze the S-Expression Query: Carefully study the S-Expression query to identify key operations, keywords, and
how they interact with the database schema. The query is designed to direct attention toward certain elements relevant
to answering the question. Extract any keywords, phrases, or named entities that could provide further clarity or
direction in formulating an answer.

Step 4. Convert Question to Pandas: Translate the question into an equivalent Python script using the Pandas library.
Learn from the examples provided in ## Examples, try to understand the query logic they apply to solve their questions,
and determine which parts can effectively help you solve the current question in ### Question. Make sure the
parentheses and brackets in the script are placed correct especially if the generated code includes mathematical
expression. In addition, always write down your answers in the json format structured as follows:

“json{"reasoning": "# describe the correct step-by-step reasoning process of how you convert the ### Question to
codes.", "code": "# present only the Python codes to answer the ### Question without any schemas stored in
pd.DataFrame."} ™

Notice:

In the Python code you generate, the question should be solved step by step, rather than writing all the steps in only one
line of code. Most importantly, all the final results should be consolidated into a list and stored in the variable ‘result:
List[List[str]]". The answer type can be a single entity, multiple entities, or numeric values. For a question, each answer
should be placed in a list and the final complete answer consists of these lists. In this format, the 3 types of answers
should look like this:

““python

1. **Single Entity**: the youngest monarch is whom?

>>> result

[['Galba']]

2. **Multiple Entities**: republic of indonesia is the home of what lakes?

>>> result

[['Lake Poso'], ['Lake Ranau'], ['Lake Matano'], ['Lake Toba']]

3. **Numerical Value**: how many papers are published in the journal? How many of them are in the engineering
category?

>>> result

[(88], [10]1]

Now let's think step by step and generate the Pandas Code:

Database Schema:
[SCHEMA]

Foreign Keys:
[FOREIGN_KEYS]

Question:
[QUESTION]

_### Pandas Code: J

Figure 8: Prompt template for in-context reasoning of in-context reasoning.

15

Algorithm 1 Conversion from Table to BOX

Require: A data table 7 = ({¢;}%, {r;} 2 {vm}C’R), where ¢; denotes the i-th column name

j=1> i=1,j=1

and each row r; denotes a data record. v; ; denotes the content.

1: Initialize the BOX field set as ® < () and the BOX value set as U « ().
2: function TABLETOBOX(T)

16:

fori=1to C do
P+ dU {Cz}
end for
fori =1to C do
for j =1to Rdo
U<+ Uy {vi,j}
end for
end for
if 7 has a table name ¢ then
B+ (t,®,7)
else
B + (Table, ®, ¥)
end if
return 3

17: end function
18: B = TABLETOBOX(T)
19: return B

> Treat each column as a field.

> Treat each cell content as a field value.

> Name the each BOX in PANDAS code.

> A table can be converted into a single BOX.

Algorithm 2 Conversion from Database to BOX

Require: A database D = {71, 72, ..
Initialize the BOX set as B* « 0.
for: =1toT do

1:
2:
3:

B; = TABLETOBOX(T;)

table.

B« B*U{B:}

end for
. return B*

., Tr}, where 7; denotes a table.

> Follow Algorithm 1 to generate the BOX corresponding to each

16

Algorithm 3 Conversion from KG to BOX

Require: A knowledge graph £ = {(s,p,0) | s € £,p € R,0 € EUT}, where £, R, and I" denote the

1:
2:
3
4
S:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:
41:
42:

43:
44:
45:
46:
47:

entity set, relation set, and type set. A topic entity set £* C £. A relevant relation set R* C R.
Initialize the BOX set as B* « (), the field record list Q < [], a visited entity set V.

function DEPTHFIRSTSEARCH(e, w, H)
if |w| = 2 x H then
Append w to 2
return
end if
for r € R* do
&' <+ GetNeighborEntities(e, 7, +), £~ < GetNeighborEntities(e, 7, —)
foret € £T do > Traverse the one-hop neighbor entities that start from e through 7.
if e™ ¢)V then > Prune. Prevent passing through the same entity.
Append [['(e),T'(e), €] to w, Append [['(e),r,et] tow, V + VU {et}
DEPTHFIRSTSEARCH(e™t, w, H)
Pop(w), Pop(w), V < V\ {e*}
end if
end for
fore™ € £ do > Traverse the one-hop neighbor entities that end at e through 7.
if thene™ ¢ V > Prune. Prevent passing through the same entity.
Append [I'(e7),'(e7), e] tow, Append [['(e”),r,e] tow, V < VU {e"}
DEPTHFIRSTSEARCH(e ™, w, H)
Pop(w), Pop(w), V <V \ {e"}
end if
end for
end for
end function
fore € £ do
DepthFirstSearch(e, | |, H)

end for

for w € 2 do > First, construct an empty BOX with only field names.
for (b, »,v) € wdo
if A ®; then
<I>b < @, \Ifb — @
end if
Oy — D U {0} > Add field for each BOX.
end for
end for
for w € Q do > Second, fill values into each field.

for (b, ¢,v) € wdo
if A U7 then
Uy]
end if
Append) to \Ilf
for ¢ € ®\ {4} do
Append “NA” to \I/zS
end for
end for
end for
return 5*

> Add value for each field.

> Keep the number of rows the same for all columns.

17

Task

A previous attempt to run a query did not yield the correct results, either due to errors in execution or because the result
returned was empty or unexpected. Your role is to analyze the error based on the provided database schema and the
details of the failed execution, and then provide a corrected version of the code.

Follow the instructions below:

Step 1. Review Database Schema: Examine the table schema and the provided foreign keys to understand the database
structure. Identify relevant tables, columns, and values that are pertinent to the question. Use these elements to
understand the question better and to create a link between the question and the database schema.

Step 2. Analyze Query Requirements: Consider what information the query is supposed to retrieve. Review the codes that
was previously executed and led to an error or incorrect result. Analyze the outcome of the executed query to identify
why it failed (e.g., syntax errors, incorrect column references, misuse of Python functions and logical mistakes).

Step 3. Correct the Code: Modify the code to address the identified issues, ensuring it correctly fetches the requested
data according to the database schema and query requirements. Make sure the generated code should return all of the
information asked in the question without any missing or extra information.

Step 4. Output Format: Present your respond in the json format structured as follows:

non

“json{"error": "# describe your analysis of the error and how to fix it", "reasoning": "# describe the correct step-by-step

reasoning process of how you convert the ### Question to codes.", "code": "# present only the Python codes to answer
the ### Question without any schemas stored in pd.DataFrame."} ™

Execution Result
[EXECUTION]

Take a deep breath and try to think step by step about where your code is going wrong. Once you understand, find
the correct Python code and rewrite your answer:

J

Figure 9: Prompt template for in-context reasoning of execution guidance.

18

	Introduction
	Preliminary
	Structured Knowledge
	Problem Formulation
	BOX & Pandas Code Representation

	Structured Knowledge to BOX
	Table-to-BOX
	DB-to-BOX
	KG-to-BOX

	Pandora
	Overview
	Pandora Reasoning
	Pandora Learning
	Reasoning Memory Initialization
	Multi-Task Adaptation

	Experiments
	Datasets & Evaluation Metrics
	Implementation Details
	Compared Methods
	Results for DB SKR
	Results for Table SKR
	Results for KG SKR
	Impact of different backbone LLMs
	Ablation Study
	Impact of Demonstration Number
	Error Analysis

	Related Work
	Conclusion
	Limitations
	More Examples of Pandas Code
	Examples of Text-to-SQL
	Examples of KGQA
	Examples of TableQA

	Details of BOX Construction
	Table-to-BOX
	DB-to-BOX
	KG-to-BOX

	Prompt Template
	Prompt of In-context Reasoning
	Prompt of Execution Guidance

