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Abstract001

Unified Structured Knowledge Reasoning002
(USKR) aims to answer natural language ques-003
tions (NLQs) by using structured sources such004
as tables, databases, and knowledge graphs in005
a unified way. Existing USKR methods either006
rely on employing task-specific strategies or007
custom-defined representations, which strug-008
gle to leverage the knowledge transfer between009
different SKR tasks or align with the prior010
of LLMs, thereby limiting their performance.011
This paper proposes a novel USKR framework012
named PANDORA, which takes advantage of013
PYTHON’s PANDAS API to construct a uni-014
fied knowledge representation for alignment015
with LLM pre-training. It employs an LLM to016
generate textual reasoning steps and executable017
Python code for each question. Demonstrations018
are drawn from a memory of training exam-019
ples that cover various SKR tasks, facilitating020
knowledge transfer. Extensive experiments on021
four benchmarks involving three SKR tasks022
demonstrate that PANDORA outperforms ex-023
isting unified frameworks and competes effec-024
tively with task-specific methods.025

1 Introduction026

Structured knowledge, such as tables, databases027

(DBs), and knowledge graphs (KGs), forms the028

foundation for many of today’s intelligence appli-029

cations, including legal judgment (Cui et al., 2023),030

disease diagnosis (Li et al., 2020), and investment031

analysis (Zhang et al., 2024a). As the core tech-032

nology of these applications, Structured Knowl-033

edge Reasoning (SKR) has been a longstanding re-034

search focus in NLP, as demonstrated by tasks such035

as TableQA (Pasupat and Liang, 2015), Text-to-036

SQL (Yu et al., 2018), and KGQA (Yih et al., 2016).037

Using the powerful generation capabilities of Large038

Language Models (LLMs), recent works (Ye et al.,039

2023; Li et al., 2024; Nie et al., 2024) have made040

significant progress in reasoning tasks that involve041

structured single-type knowledge.042

List all books written by "J.K. Rowling" that were published after 2005.
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Figure 1: SQL, SPARQL, and PANDAS code derived
from an NLQ, with matching colors highlighting corre-
sponding query logic for clarity.

However, a complicated real-world application 043

often integrates various types of structured knowl- 044

edge. For instance, a medical decision support 045

system (Antoniadi et al., 2021) may need to reason 046

over both patient DBs and drug KGs. This requires 047

the ability to handle various SKR tasks in a uni- 048

fied manner. Unfortunately, most existing methods 049

struggle to bridge the gap between different SKR 050

tasks due to task-specific designs (Pourreza and 051

Rafiei, 2024; Nie et al., 2024). 052

Building on LLMs as the foundation, recent 053

studies have proposed several unified SKR frame- 054

works, such as StructGPT (Jiang et al., 2023), 055

Readi (Cheng et al., 2024), and TrustUQA (Zhang 056

et al., 2024b). Although these methods achieve 057

uniformity by relying on task-specific strategies 058

(StructGPT, Readi) or custom-defined representa- 059

tions (TrustUQA), their performance is limited. In 060

particular, Readi and TrustUQA suffer from insuf- 061
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ficient coverage of the reasoning over DB.062

We believe that an ideal unified SKR framework063

should have two key characteristics: a) Facilitat-064

ing knowledge transfer across diverse structured065

knowledge sources. For instance, as shown in Fig-066

ure 1, the given SQL and SPARQL queries may067

differ in external syntax but share equivalent mean-068

ings. Transforming these queries into a unified069

representation can help LLMs leverage knowledge070

from other SKR tasks, enhancing target task per-071

formance. b) Representing different structured072

knowledge in a unified format familiar to LLMs.073

Code, being structured and compositional, is an074

ideal choice as LLMs excel in understanding, gen-075

erating, and reasoning with code due to extensive076

pre-training on programming languages (Dubey077

et al., 2024). Converting diverse knowledge into078

code reduces the gap between input representations079

and the LLM’s inherent understanding.080

In this paper, we propose a new unified SKR081

framework, named PANDas cOde-dRiven Agent082

(PANDORA). It is composed of three key compo-083

nents: a well-aligned LLM, a reasoning memory,084

and a PYTHON interpreter. We start by transform-085

ing tables, DBs, and KGs into a unified represen-086

tation built on the PANDAS library, referred to as087

PANDORA’s BOX. For each NLQ, The PANDORA088

agent leverages the LLM to first generate textual089

reasoning steps, followed by executable PYTHON090

code. The generated code is then executed to derive091

the answer from the BOXes. The memory is con-092

structed from the training examples and provides093

annotated demonstrations for in-context learning094

(ICL), enabling the LLM to learn the mapping from095

NLQs to PANDAS APIs. To leverage knowledge096

transfer across different SKR tasks, the demonstra-097

tions can be collected from any SKR task. In addi-098

tion, the feedback from the code execution given099

by the interpreter further motivates the model to100

refine its reasoning steps and correct its code. We101

conducted extensive experiments on four widely-102

used datasets across three structured knowledge rea-103

soning tasks, namely Text-to-SQL, TableQA, and104

KGQA. Experimental results demonstrate that our105

method outperforms all existing unified structured106

knowledge reasoning frameworks and matches the107

performance of task-specific methods. In summary,108

the contributions of this paper include:109

• We propose a novel framework that utilizes110

LLMs to generate code-driven reasoning steps111

for diverse structural knowledge. To the best112

of our knowledge, this is the first time to lever- 113

age code as a unifying mechanism for SKR. 114

• We propose facilitating knowledge transfer 115

across different structured knowledge sources 116

by sharing demonstrations, thereby enhancing 117

the performance of a unified framework. 118

• We conduct comprehensive experiments on 119

multiple mainstream benchmarks, and our 120

method achieves state-of-the-art performance 121

in unified structured knowledge reasoning. 122

2 Preliminary 123

2.1 Structured Knowledge 124

Following Jiang et al. (2023), we focus on the fol- 125

lowing three types of structured knowledge: 126

Data Table A table can be regarded as T = 127

({ci}Ci=1, {rj}Rj=1, {vi,j}C,R
i=1,j=1), where ci denotes 128

the i-th column name and rj denotes a data record 129

indexed by columns. vi,j denotes the content of the 130

cell located at the intersection of ci and rj . 131

Database A database D consists of multiple tables, 132

represented as D = {T1, T2, . . . , TT }. Besides the 133

column names, the foreign keys across all tables 134

are also available to link the data from two tables, 135

denoted as {(cpi , c
q
j)}, where cpi and cqj denote the 136

i-th and j-th columns in the Tp andTq, respectively. 137

Knowledge Graph A knowledge graph (KG) is 138

typically a collection of subject-predicate-object 139

triples, denoted by K = {⟨s, p, o⟩ |s ∈ E , p ∈ 140

R, o ∈ E ∪ Γ}, where E , R, and Γ denote the 141

entity set, relation set, and type set respectively. 142

2.2 Problem Formulation 143

Given an NLQ Q and accessible structured knowl- 144

edge S (e.g., a table T , a database D, or a KG K), 145

the objective is to generate an executable query that 146

retrieves the desired answer A from S. 147

2.3 BOX & Pandas Code Representation 148

To facilitate the transfer of knowledge across dif- 149

ferent SKR tasks, we propose a unified structure of 150

knowledge representation, BOX. 151

Definition 1 (BOX) A BOX is a data structure, de- 152

noted by B = (b,Φ,Ψ), where b represents its tex- 153

tual name, Φ = {ϕi}Ni=1, and Ψ = {[ψϕi
j ]Mj=1}Ni=1. 154

ϕi denotes a field that can be a column name in 155

a table, or a KG relation. ψj
i represents the j-th 156

value associated with the field ϕi. A value ψj
i can 157

be a table cell content or a KG entity. 158
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Figure 2: Examples of converting a table (a), a database (b), and a KG subgraph (c) into their corresponding BOX
codes. For brevity, only a subset of the fields and values is shown. The blue arrows indicate the foreign key.

A BOX can be considered a dynamic table that is159

both understandable and operable by PYTHON. In160

our experiments, BOX is implemented using PAN-161

DAS1, a PYTHON library designed for manipulating162

relational data. Specifically, a BOX B = (b,Φ,Ψ)163

is represented in PANDAS code as:164
165

1 import pandas as pd166
2 b = pd.DataFrame ({phi_1: [psi_1_1 , ...],167
3 phi_2: [psi_2_1 , ...], ...})168169

where phi_1 and psi_2_1 are code rewritings170

of ϕ1 and ψϕ2
1 , respectively. PANDAS provides171

versatile methods for manipulating BOX. For in-172

stance, in Figure 1, pd.merge is first used to join173

BOX author and BOX book to form a new BOX174

merged_df. Then, a filtering operation is applied175

to merged_df using a boolean index as follows:176
177

1 merged_df [( merged_df['name'] == 'J.K.Rowling ') &178
2 (merged_df['publication_date '] > 2005)]179180

PANDAS offers additional powerful tools like181

grouping, ordering, and aggregation, enabling it182

to handle a wide variety of query logic found in183

NLQs. More examples are listed in Appendix A.184

3 Structured Knowledge to BOX185

Figure 2 illustrates examples of converting struc-186

tured knowledge S to their corresponding BOXes.187

3.1 Table-to-BOX188

As shown in Figure 2(a), a data table, denoted189

by T = ({ci}Ci=1, {rj}Rj=1, {vi,j}
C,R
i=1,j=1), can190

be seamlessly transformed into one box B =191

(b, {ϕi}Ci=1, {[ψ
ϕi
j ]Rj=1}Ci=1) by treating each col-192

umn name ci as a field name ϕi and the content193

of each table cell vi,j as a field value ψϕi
j .194

3.2 DB-to-BOX195

As illustrated in Figure 2(b), for a database D =196

{Ti}Ti=1, each table Ti ∈ D is converted to a box Bi197

1https://pandas.pydata.org/

following the procedure described in Section 3.1. 198

Meanwhile, foreign key information {(ϕpi , ϕ
q
j)} is 199

retained, where ϕpi and ϕqj represent the i-th field 200

in Bp and the j-th field in Bq, respectively. 201

3.3 KG-to-BOX 202

Figure 2(c) shows an example of KG-to-BOX. 203

Since the KG K = {⟨s, p, o⟩ | s ∈ E , p ∈ R, o ∈ 204

E ∪ Γ} is too large, it is necessary to extract a sub- 205

graph for each NLQ Q. Concretely, a depth-first 206

search is initially performed to extract the H-hop 207

subgraph K∗ ⊂ K for each topic entity mentioned 208

in Q. Here, E∗ ⊂ E and Γ∗ ⊂ Γ denote the en- 209

tity set and type set of K∗, respectively. To fur- 210

ther narrow down the search space, the processed 211

data from Xie et al. (2022) is utilized by retain- 212

ing only the relations R∗ ⊆ R that demonstrate 213

high embedding similarity to Q. Subsequently, for 214

each entity type γ ∈ Γ∗ and its corresponding en- 215

tity set Eγ = {e | ∃⟨e, IsA, γ⟩ ∈ K∗}, a BOX 216

Bγ = (γ,Φ1:N
γ ,Ψ1:N

γ ) is constructed. Specifically, 217

the field names Φ1:N
γ = Φ1

γ ∪ Φ2:N
γ , where Φ1

γ = 218

{γ}, and Φ2:N
γ = {ϕi | ϕi ∈ R∗,∃⟨s, p, o⟩ ∈ 219

K∗, s ∈ Eγ}Ni=2 consists of 1-hop relations originat- 220

ing from the entities in Eγ . Similarly, the field val- 221

ues Ψγ = Ψ1
γ ∪Ψ2:N

γ , where Ψ1
γ = {[ψ1,j | ψ1,j ∈ 222

Eγ ]Mj=1}1i=1 corresponds to Φ1
γ and contains the en- 223

tities of type γ. Ψ2:N
γ = {[ψi,j | ∃⟨s, p, ψi,j⟩ ∈ 224

K∗, s ∈ Eγ , p ∈ R∗]Mj=1}Ni=2 corresponds to Φ2:N
γ 225

and consists of the 1-hop neighbors of the entities 226

in Eγ through the relations in R∗. From the per- 227

spective of the KG, for a box Bγ , ψ1,j serves as 228

the subject, ϕi represents the predicate, and ψi,j 229

acts as the object. In this way, multi-hop reasoning 230

over the KG can be implemented by joining BOXes 231

using pandas.merge, as shown in Figure 1. After 232

all BOXes are built, the foreign key information 233

is defined as {(ϕpi , ϕ
q
j)}, where ϕpi and ϕqj share at 234

least one common entity. The detailed KG-to-BOX 235

algorithm is provided in Appendix B.3. 236
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Figure 3: The inference process of our proposed agent PANDORA. PANDORA initially leverages the LLM fθ to
perform in-context reasoning, assisted byM, to generate preliminary reasoning steps R and executable code C.
Subsequently, PANDORA provides the executed results back to fθ for self-correction.

4 Pandora237

4.1 Overview238

PANDORA is an agent comprising three main com-239

ponents: a well-aligned LLM, fθ, responsible for240

generating code-based reasoning steps; a memory,241

M, which stores pairs of NLQs and valid reasoning242

steps for in-context learning; and a PYTHON inter-243

preter, I, used to execute the generated code. In244

general, PANDORA operates through two primary245

actions: code-driven reasoning, and code execu-246

tion, which interact with an environment consisting247

of BOXes defined in PYTHON using I.248

4.2 Pandora Reasoning249

Figure 3 illustrates the reasoning process of PAN-250

DORA. Initially, the structured knowledge S is251

transformed into a collection of BOXes B∗. Next,252

B∗ and Q are integrated into a prompt, X , which253

is fed into fθ. fθ then generates the code-based254

reasoning steps Y = R, C, whereR represents the255

natural language rationale and C corresponds to the256

executable PYTHON code. Finally, the answer A is257

derived by executing code C on B∗ using I.258

In-context Reasoning To help fθ understand the259

mapping from NLQ to various PANDAS APIs, we260

leverage in-context learning (ICL) (Brown et al.,261

2020). Specifically, the prompt X is structured as:262

X = P,Q1,B∗1,Y1, . . .QK ,B∗K ,YK ,Q,B∗263

Here, P denotes the natural language instruction264

that guides fθ to first generateR and subsequently265

C. This adopts the concept of chain of thought266

(COT) (Wei et al., 2022). Notably, to manage the in-267

put length, all the values Ψ within B∗ are excluded268

from all the prompts. (Qk,B∗k,Yk) (1 ≤ k ≤ K)269

constitute a demonstration retrieved from the mem- 270

oryM. The complete prompt is provided in Ap- 271

pendix C.2. Then, fθ generate Y by estimating 272

P (Y|X , θ) =
|Y|∏
j=1

P (yj |X , y<j , θ), (1) 273

where yj denotes the j-th token of Y . 274

Shared Demonstration Retrieval Within the uni- 275

fied BOX representation, we assume that reasoning 276

over structured knowledge Sa can potentially sup- 277

port fθ in reasoning over another type of structured 278

knowledge Sb, as both share PANDAS APIs. Con- 279

sequently, when retrieving (Qk,B∗k,Yk) fromM, 280

we do not require Qk and Q to originate from the 281

same SKG task. The K demonstrations of Q are 282

selected based on the highest semantic similarity, 283

s(Qk,Q) = cos(gθ(Qk), gθ(Q)) (2) 284

where g(Q) ∈ Rd represents the embedding of Q 285

obtained by an encoding-only LLM gθ. 286

Execution Guidance To alleviate the hallucination 287

problem (Huang et al., 2023) of generated code C, 288

we leverage the results of code execution as feed- 289

back to prompt fθ to correct C. In particular, when 290

C is executed by the interpreter I, if the result A 291

satisfies the following two conditions, it is consid- 292

ered invalid and is fed back to fθ: a) The execution 293

of C raises an error. b) A is empty. The error in- 294

formation from I is recorded as F . The prompt 295

template for the execution guide is as follows: 296

XF = PEG|Q,B∗,R, C|F 297

Here, PEG represents the natural language instruc- 298

tion. Subsequently, XF is fed to fθ, which provides 299

the corrected YF . This process continues until YF 300

is valid or exceeds the upper limit L we set. 301
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4.3 Pandora Learning302

The learning process of PANDORA mainly involves303

annotating the NLQs from the training data with304

PYTHON code and storing them in the memoryM.305

This can be divided into two stages.306

4.3.1 Reasoning Memory Initialization307

In the first stage, the training NLQs of the DB308

SKR task are annotated. Typically, the DB SKR309

task, like Spider (Yu et al., 2018), provides reliable310

human-written SQL labels, which can help reduce311

the difficulty of code annotation even in the absence312

of available demonstrations. In particular, given a313

training example (Q̃, S̃, Z̃, Ã), where Z̃ represents314

the SQL label and Ã is the gold answer set, fθ is315

employed to generate the code-based label Ỹ =316

R̃, C̃. The prompt format is structured as:317

X = Ptrain|Q̃, S̃, Z̃, B̃∗318

Where Ptrain is the instruction, and B̃∗ is the con-319

verted BOX set derived from S̃. To ensure the320

quality of Ỹ , the execution guidance (EG) strat-321

egy is employed. Moreover, the retrieved answers322

A, obtained by executing C̃, are compared with Ã.323

The result of this comparison is fed back into fθ to324

enable further self-correction. Ultimately, Finally,325

all samples with correct C̃ are retained to formM0.326

4.3.2 Multi-Task Adaptation327

In the second stage, examples fromM0 (DB SKR)328

are utilized as demonstrations to annotate the train-329

ing NLQs for the KG and Table SKR tasks, instead330

of employing their specific labels. There are two331

main reasons: a) The examples in the Table SKR332

task consist only of NLQ-answer pairs and lack log-333

ical queries to describe the reasoning steps. b) Our334

experiments show that fθ has a better understand-335

ing of SQL compared to SPARQL (see Table 4336

for details). The EG strategy is also applied here.337

It should be emphasized that, for the three SKR338

tasks, only a small amount of data is selected for339

annotation, ultimately resulting in the memoryM.340

5 Experiments341

5.1 Datasets & Evaluation Metrics342

We evaluated the methods on three SKR tasks:343

DB SKR We use Spider (Yu et al., 2018), a human-344

annotated dataset designed for complex and cross-345

domain Text-to-SQL generation. The dataset con-346

tains diverse databases and intricate NLQs that re-347

quire multi-step reasoning and a deep understand-348

ing of database schemas to construct accurate SQL.349

Spider WikiTQ GrailQA WebQSP

103

104

#
of

E
xa

m
pl

es Memory Train Test

Figure 4: Statistics (Logarithmic y-axis) ofM.

Table SKR We use WikiTableQuestions (Wik- 350

iTQ) (Pasupat and Liang, 2015), a dataset designed 351

for question answering over real-world tables. This 352

dataset requires performing operations such as ag- 353

gregation, comparison, and filtering. 354

KG SKR We utilize GrailQA (Gu et al., 2021) and 355

WebQSP (Yih et al., 2016), which feature NLQs 356

that require up to multi-hop reasoning over the 357

Freebase knowledge graph. These tasks involve 358

entities, relations, and complex logical structures. 359

Following Jiang et al. (2023), we use Execution 360

Accuracy (EX) and Denotation Accuracy (DA) to 361

evaluate Spider and WikiTQ. For GrailQA and We- 362

bQSP, we use Hit@1 as the evaluation metric. In 363

addition, we calculate the F1-score between the 364

predicted answer set and the gold answer set. 365

5.2 Implementation Details 366

We utilized gpt-4o-mini-2024-07-18 and 367

bge-large-en-v1.5 as fθ and gθ, respectively. 368

The number of demonstrations for all in-context 369

reasoning, K, was set to 10. The hop count H for 370

the KG subgraph was set to 3 for GrailQA and 2 371

for WebQSP. For each NLQ, EG is executed up 372

to L = 3 times. The statistics of the used datasets 373

and our memoryM are shown in Figure 4. 374

5.3 Compared Methods 375

1) competitive baselines for single-type SKR 376

task. KG SKR: RnG-KBQA (Ye et al., 2022), 377

TIARA (Shu et al., 2022), DecAF (Yu et al., 2023), 378

KB-Binder (Li et al., 2023), and KB-Coder (Nie 379

et al., 2024); DB SKR: DIN-SQL (Pourreza and 380

Rafiei, 2023), DAIL (Gao et al., 2024), CodeS (Li 381

et al., 2024), and DTS-SQL (Pourreza and Rafiei, 382

2024). Table SKR: TAPEX (Liu et al., 2022), 383

Binder (Cheng et al., 2023), DATER (Ye et al., 384

2023), and STR (Kojima, 2024). 2) Pure LLMs 385

or unified SKG methods. CodeLlama (Rozière 386

et al., 2023), DeepSeek-Coder (Guo et al., 2024), 387

UnifiedSKG (Xie et al., 2022), StructLM (Zhuang 388

et al., 2024), StructGPT (Jiang et al., 2023), 389

Readi (Cheng et al., 2024), TrustUQA (Zhang et al., 390
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Table 1: Results of the DB SKR task.

Method
Spider

EX (%)

Task Specific Method

DIN-SQL (Pourreza and Rafiei, 2023) 74.2
DAIL (Gao et al., 2024) 78.1
CodeS♠ (Li et al., 2024) 73.4
DTS-SQL♠ (Pourreza and Rafiei, 2024) 85.5

Unified Method

CodeLlama-7B♠ (Rozière et al., 2023) 72.9
DeepSeek-Coder-7B♠ (Guo et al., 2024) 77.5
StructLM-7B♠ (Zhuang et al., 2024) 79.6
StructGPT (Jiang et al., 2023) 77.8

PANDORA 81.3

Table 2: Results of the Table SKR task.

Method
WikiTQ

DA (%)

Task Specific Method

TAPEX♠ (Liu et al., 2022) 57.5
Binder (Cheng et al., 2023) 65.0
DATER♠ (Ye et al., 2023) 65.9
STR♠ (Kojima, 2024) 65.7

Unified Method

UnifiedSKG♠ (Xie et al., 2022) 49.3
StructLM-7B♠ (Zhuang et al., 2024) 50.1
StructGPT (Jiang et al., 2023) 52.2
Readi (Cheng et al., 2024) 66.7
TrustUQA (Zhang et al., 2024b) 66.2

PANDORA 68.9

2024b). We use ♠ to denote the fine-tuning using391

the target dataset.392

5.4 Results for DB SKR393

The results in Table 1 highlight the superiority of394

PANDORA, which outperforms all unified methods,395

including fine-tuned models such as StructLM-7B.396

Specifically, PANDORA achieves a 1.7% improve-397

ment over StructLM-7B, demonstrating its ability398

to align with LLM pre-training and transfer knowl-399

edge effectively across tasks. While task-specific400

fine-tuned methods like DTS-SQL continue to lead401

in performance, PANDORA narrows the gap, show-402

casing its advanced capabilities in DB SKR tasks403

without requiring task-specific fine-tuning.404

5.5 Results for Table SKR405

In Table 2, PANDORA establishes itself as the top-406

performing unified model, surpassing the best uni-407

fied fine-tuned method, Readi, by 2.2%. Moreover,408

PANDORA slightly outperforms DATER, demon-409

Table 3: Results of the KG SKR task.

Method
GrailQA WebQSP

F1 (%) Hit@1 (%)

Task Specific Method

RnG-KBQA♠ (Ye et al., 2022) 76.9 -
DecAF♠ (Yu et al., 2023) 81.4 78.7
TIARA♠ (Shu et al., 2022) 81.9 76.7
KB-Binder (Li et al., 2023) 51.7 68.9
KB-Coder (Nie et al., 2024) 61.3 72.2

Unified Method

UnifiedSKG♠ (Xie et al., 2022) - 80.7
StructGPT (Jiang et al., 2023) - 69.6
Readi (Cheng et al., 2024) - 74.3
TrustUQA (Zhang et al., 2024b) - 83.5

PANDORA 77.3 82.8

strating that it can achieve competitive results with- 410

out relying on task-specific fine-tuning. 411

5.6 Results for KG SKR 412

In Table 3, PANDORA demonstrates its capability 413

to tackle the more challenging GrailQA benchmark, 414

surpassing existing unified approaches and out- 415

performing the best non-fine-tuning method, KB- 416

Coder, by 16%. On WebQSP, PANDORA delivers 417

competitive results, trailing the existing top unified 418

SKR method, TrustUQA in Hit@1 by just 0.7%. 419

5.7 Impact of different backbone LLMs 420

Figure 5 depicts the performance of PANDORA 421

when employing gpt-4o and gpt-4o-mini as fθ. 422

To minimize the cost of using gpt-4o, we ran- 423

domly sampled the same set of 200 NLQs from 424

each dataset for evaluation in both settings. gpt-4o 425

consistently outperforms gpt-4o-mini, especially 426

on WikiTQ which lacks labels of logical form. 427

5.8 Ablation Study 428

We evaluated the performance of the proposed PAN- 429

DORA by sequentially removing the following com- 430

ponents: a) − Execution-Guidance (− EG): Gen- 431

erate reasoning steps R and codes C without re- 432

ceiving any feedback from the interpreter I. b) 433

− Shared Demonstration (− SD): Use only ex- 434

amples from the same dataset as the test NLQ as 435

demonstrations. c)− Similarity Retrieval (− SR): 436

Select demonstrations randomly, disregarding the 437

process described in Equation (2). d)− In-context 438

Reasoning (− ICR): Perform zero-shot inference 439

to generateR and C without using any demonstra- 440

tions. e) − Code Style (− CS): Directly gener- 441

ate labels for the original task label (e.g., SQL or 442

SPARQL) instead of producing PANDAS code. 443
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Ablation Setting
DB SKR Table SKR KG SKR

AverageSpider WikiTQ GrailQA WebQSP

EX F1 DA F1 F1 Hit@1 F1 Hit@1

PANDORA 81.3 84.2 68.9 70.0 77.3 82.0 73.6 82.8 77.5

− EG 78.1 80.5 64.2 65.2 71.1 75.3 66.6 75.2 72.0
− EG − CS 76.6 79.6 51.8 51.7 44.4 46.9 64.2 67.5 60.3
− EG − SD 65.7 69.5 52.2 53.5 70.1 74.3 69.9 77.5 66.6
− EG − SD − SR 64.4 68.3 50.1 51.7 71.4 75.4 55.8 61.8 62.4
− EG − SD − SR − ICR 62.2 66.0 45.2 47.3 64.5 70.0 36.4 46.0 54.7

Table 4: Experimental results (%) of the ablation studies (using gpt-4o-mini). Here − denotes removing.

Spider WikiTQ GrailQA WebQSP

75

80

85

F1
(%

)

gpt-4o-mini gpt-4o

Figure 5: Results of PANDORA with different fθ.

The ablation study in Table 4 highlights the con-444

tributions of each component in the proposed PAN-445

DORA framework. Removing EG results in an aver-446

age performance drop of 5.5%, showing the value447

of interpreter feedback for refining reasoning and448

execution. Excluding CS further reduces perfor-449

mance by 17.2%, demonstrating the effectiveness450

of PANDORA code as a unified representation for451

structured reasoning tasks. Eliminating SD leads452

to a 5.4% drop, emphasizing the importance of453

knowledge transfer across datasets.454

5.9 Impact of Demonstration Number455

We investigated the impact of varying the num-456

ber of demonstrations on the performance of the457

PANDORA. The experimental results are presented458

in Figure 6. Increasing the number of examples459

consistently improves Pandora’s performance in460

different settings. On both the Spider and WikiTQ461

datasets, the removal of SD and SR results in a462

significant decline in performance. SD performs463

poorly on WebQSP, which could be attributed to464

the relatively simple SPARQL structures of the465

dataset. The diversity present in other datasets may466

introduce noise, reducing its effectiveness.467

5.10 Error Analysis468

To specifically evaluate the limitations of the pro-469

posed method, we randomly selected 50 samples470

from each of the three SKR tasks for error analysis.471

We have summarized the following types of errors:472

a) Execution Failure: The code fails to execute. 473

b) BOX Error: The BOX in the code is wrong or 474

missing. c) Field Error: Field error or missing in 475

the code. d) Reasoning Logic Error: The relevant 476

boxes and fields are correct, but the logic of the 477

code is wrong. e) Query Intent Error: The intent 478

of the query is misunderstood or incorrectly imple- 479

mented. f) Output Format Error: The theoretical 480

answer is correct, but the format returned does not 481

match the annotated answer. Examples of cases d), 482

e), and f) are provided below. 483
484

1 ### SQL 485
2 SELECT T1.Id, T1.Maker 486
3 FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON ... 487
4 HAVING count (*) >= 2 488
5 ### Python 489
6 model_counts = model_list.groupby('maker ').size()... 490
7 ... 491
8 car_maker_ids = car_names.merge(model_counts , ... 492493

494
1 ### NLQ 495
2 what rail network does henley beach railway line 496

belong to? 497
3 ### Python 498
4 result = [['Henley␣Beach␣railway␣line', 499
5 rail_network.loc[..., 'rail_network ']. values [0]]] 500501

502
1 ### Pandora Predicted Answer 503
2 ["['Twenty -foot␣equivalent␣unit ']"] 504
3 ### Gold Answer 505
4 ['Twenty -foot␣equivalent␣unit'] 506507

The distribution of various error types is shown 508

in Figure 7. In the PANDAS reasoning environment, 509

identifying fields (i.e., columns or KG relations) 510

continues to be a major challenge. Furthermore, the 511

wide range of PYTHON output methods contributes 512

to errors in the output format. 513

6 Related Work 514

DB SKR. This task, often tackled via text-to- 515

SQL, focus on converting NLQs into SQL queries. 516

Conventional methods emphasize model architec- 517

tures (Yu et al., 2021) and intermediate represen- 518

tations (Guo et al., 2019). Recent methods lever- 519

age LLMs with techniques like task decomposi- 520
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Figure 6: Impact of varying demonstration quantities on code-driven in-context reasoning.
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Figure 7: Distribution of various types of errors.

tion, chain of thought (Wei et al., 2022), and self-521

consistency (Wang et al., 2023), achieving im-522

proved results (Pourreza and Rafiei, 2023; Gao523

et al., 2024; Talaei et al., 2024; Pourreza et al.,524

2024). Other studies focus on fine-tuning open-525

source LLMs to match or surpass proprietary mod-526

els (Li et al., 2024; Pourreza and Rafiei, 2024).527

KG SKR. This task, addressed via KGQA, aim528

to resolve NLQs using KG. Traditional methods529

typically involve semantic parsing to generate exe-530

cutable logical forms (Berant et al., 2013; Yih et al.,531

2015) or embedding-based techniques for query532

matching (Das et al., 2018). Recent advancements533

with LLMs, such as DecAF (Yu et al., 2023), com-534

bine logical forms with direct answer generation,535

while KB-BINDER (Li et al., 2023) incorporates536

BM25 for improved performance. Similarly, KB-537

Coder (Nie et al., 2024) leverages ICL in a code-538

style paradigm, achieving better performance.539

Table SKR. This task requires reasoning over540

NLQs and structured tabular data. Traditional meth-541

ods rely on semantic parsing (Pasupat and Liang,542

2015) or embedding-based methods for table-query543

matching (Yin et al., 2020; Deng et al., 2019). Mod-544

ern LLM-powered models, such as TAPEX (Liu545

et al., 2022), Binder (Cheng et al., 2023), and 546

DATER (Ye et al., 2023), excel by decomposing 547

complex tables and NLQs into smaller components. 548

Unified Structured Knowledge Reasoning. Early 549

unified frameworks, such as UnifiedSKG (Xie et al., 550

2022) and StructLM (Zhuang et al., 2024), inte- 551

grate multiple structured knowledge datasets by 552

fine-tuning models like T5 (Raffel et al., 2020) 553

and CodeLlama (Rozière et al., 2023) to enhance 554

structured knowledge understanding. More recent 555

unified QA frameworks address diverse structured 556

data types. For instance, StructGPT (Jiang et al., 557

2023) uses an iterative reading-then-reasoning strat- 558

egy to retrieve evidence and generate answers, 559

while Readi (Cheng et al., 2024) iteratively re- 560

fines reasoning paths to extract evidence and pro- 561

duce answers. Despite these advancements, they 562

rely on data-specific strategies, limiting uniformity. 563

TrustUQA (Zhang et al., 2024b), the most related 564

work, proposes a unified graph representation and 565

generates explainable queries but redefines repre- 566

sentations, creating gaps with LLMs’ pre-trained 567

knowledge. In contrast, our method, Pandora, 568

adopts a code-based unified representation, inher- 569

ently more aligned with LLMs’ understanding. 570

7 Conclusion 571

In this paper, we proposed PANDORA, a unified 572

SKR agent that uses PANDAS APIs as a standard- 573

ized representation format for structured knowl- 574

edge. By combining the rationale of natural lan- 575

guage with executable PYTHON code, PANDORA 576

enables iterative refinement of reasoning steps, 577

memory storage for reuse, and effective cross- 578

task knowledge transfer. Comprehensive experi- 579

ments show that PANDORA outperforms existing 580

unified methods and remains competitive with task- 581

specific methods. In the future, we plan to ex- 582

tend the framework to support additional structured 583

knowledge and explore more advanced reasoning 584

capabilities to address a wider variety of SKR tasks. 585
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8 Limitations586

While the use of PANDAS APIs provides a stan-587

dardized and efficient way to represent structured588

knowledge, it also introduces several limitations.589

First, PANDAS APIs are primarily designed for590

tabular data manipulation, which may limit their591

adaptability for tasks requiring reasoning over non-592

tabular or hierarchical data structures, such as593

graphs or nested datasets. Second, the reliance594

on these APIs can make it challenging to handle595

domain-specific reasoning that involves specialized596

libraries or techniques outside the scope of PAN-597

DAS, reducing the framework’s versatility in highly598

specialized applications.599
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A More Examples of Pandas Code926

A.1 Examples of Text-to-SQL927

Below are examples of converting SQL queries928

into equivalent Pandas code, covering cases like929

filtering, ordering, grouping, and nested queries.930
931

### NLQ932
Show the name and number of employees for the933

departments managed by heads whose temporary934
acting value is 'Yes'?935

936
### SQL937
SELECT T1.name , T1.num_employees938
FROM department AS T1 JOIN management AS T2939
ON T1.department_id = T2.department_id940
WHERE T2.temporary_acting = 'Yes'941

942
### Python943
merged_df = pd.merge(944

department , management ,945
on='department_id '946

)947
result = merged_df[948

merged_df['temporary_acting '] == 'Yes'949
][['name', 'num_employees ']]950951

952
### NLQ953
What are the ids of the students who registered for954

course 301 most recently?955
956

### SQL957
SELECT student_id FROM student_course_attendance958
WHERE course_id = 301959
ORDER BY date_of_attendance DESC LIMIT 1960

961
### Python962
filtered_df = student_course_attendance[963

student_course_attendance['course_id '] == 301964
]965
sorted_df = filtered_df.sort_values(966

by='date_of_attendance ',967
ascending=False968

)969
result = sorted_df.iloc [0]['student_id ']970971

972
### NLQ973
For each zip code , what is the average mean974

temperature for all dates that start with '8'?975
976

### SQL977
SELECT zip_code , avg(mean_temperature_f)978
FROM weather979
WHERE date LIKE "8/%"980
GROUP BY zip_code981

982
### Python983
filtered_df = weather[984

weather['date'].str.startswith('8/')985
]986
result = filtered_df.groupby('zip_code ')987

['mean_temperature_f '].mean().reset_index ()988
result.columns = [989
'zip_code ',990
'avg_mean_temperature_f '991
]992993

994
### NLQ 995
Which department has more than 1 head at a time? 996

List the id, name and the number of heads. 997
998

### SQL 999
SELECT T1.department_id , T1.name , count (*) 1000
FROM management AS T2 JOIN department AS T1 1001
ON T1.department_id = T2.department_id 1002
GROUP BY T1.department_id 1003
HAVING count (*) > 1 1004

1005
### Python 1006
merged_df = pd.merge(department , management , 1007

on='department_id ', how='inner ') 1008
grouped = merged_df.groupby( 1009

['department_id ', 'name'] 1010
).size().reset_index(name='count ') 1011
result = grouped[grouped['count '] > 1] 10121013

1014
### NLQ 1015
What is the average bike availability in stations 1016

that are not located in Palo Alto? 1017
1018

### SQL 1019
SELECT avg(bikes_available) 1020
FROM status 1021
WHERE station_id NOT IN ( 1022

SELECT id 1023
FROM station 1024
WHERE city = "Palo␣Alto" 1025

) 1026
1027

### Python 1028
palo_alto_stations = station[ 1029

station['city'] == "Palo␣Alto" 1030
]['id'] 1031
filtered_status = status[ 1032

~status['station_id '].isin(palo_alto_stations) 1033
] 1034
result = filtered_status['bikes_available '].mean() 10351036
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A.2 Examples of KGQA1037

Here are examples of converting SPARQL queries1038

into their equivalent Pandas code. These examples1039

cover cases such as multi-hop queries, counting,1040

filtering by type, and finding argmax/argmin.1041
1042

### NLQ1043
which hotel grading authority awards servigroup papa1044

luna hotel?1045
1046

### SPARQL1047
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax1048

-ns#>1049
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>1050
PREFIX : <http ://rdf.freebase.com/ns/>1051
SELECT (?x0 AS ?value) WHERE {1052

SELECT DISTINCT ?x0 WHERE {1053
?x0 :type.object.type :travel.1054

hotel_grading_authority .1055
?x1 :type.object.type :travel.hotel_grade .1056
VALUES ?x2 { :m.011 nyts3 }1057
?x1 :travel.hotel_grade.awarded_by ?x0 .1058
?x2 :travel.hotel.grade ?x1 .1059
FILTER ( ?x0 != ?x11060

&& ?x0 != ?x21061
&& ?x1 != ?x2 )1062

}1063
}1064

1065
### Python1066
result = hotel_grade[1067

hotel_grade['hotel '] == 'Servigroup␣Papa␣Luna␣1068
Hotel '1069

]['awarded_by ']. tolist ()10701071

1072
### NLQ1073
who is prime minister of japan 20111074

1075
### SPARQL1076
PREFIX ns: <http ://rdf.freebase.com/ns/>1077
SELECT DISTINCT ?x1078
WHERE {1079
FILTER (?x != ns:m.03_3d)1080
FILTER (! isLiteral (?x) OR lang(?x) = '' OR1081

langMatches(lang(?x), 'en'))1082
ns:m.03_3d ns:government.governmental_jurisdiction.1083

governing_officials ?y .1084
?y ns:government.government_position_held.1085

office_holder ?x .1086
?y ns:government.government_position_held.1087

basic_title ns:m.060bp .1088
FILTER(NOT EXISTS {?y ns:government.1089

government_position_held.from ?sk0} ||1090
EXISTS {?y ns:government.government_position_held.1091

from ?sk1 .1092
FILTER(xsd:datetime (?sk1) <= "2011 -12 -31"^^xsd:1093

dateTime) })1094
FILTER(NOT EXISTS {?y ns:government.1095

government_position_held.to ?sk2} ||1096
EXISTS {?y ns:government.government_position_held.to1097

?sk3 .1098
FILTER(xsd:datetime (?sk3) >= "2011 -01 -01"^^xsd:1099

dateTime) })1100
}1101

1102
1103

### Python1104
merged_data = governmental_jurisdiction.merge(1105

government_position_held , left_on='1106
governing_officials ', right_on='1107
government_position_held ')1108

result = merged_data.loc[1109
(merged_data['governmental_jurisdiction '] == '1110

Japan ') &1111
(merged_data['basic_title '] == 'Prime␣minister ')1112

&1113
(merged_data['from'] <= '2011 -12 -31') &1114
(merged_data['to'] >= '2011 -01 -01'),1115
'office_holder '1116

]. unique ().tolist ()11171118

1119
### NLQ 1120
which countries does russia border 1121

1122
### SPARQL 1123
PREFIX ns: <http ://rdf.freebase.com/ns/> 1124
SELECT DISTINCT ?x 1125
WHERE { 1126
FILTER (?x != ns:m.06bnz) 1127
FILTER (! isLiteral (?x) OR lang(?x) = '' OR 1128

langMatches(lang(?x), 'en')) 1129
ns:m.06bnz ns:location.location.adjoin_s ?y . 1130
?y ns:location.adjoining_relationship.adjoins ?x . 1131
?x ns:common.topic.notable_types ns:m.01mp . 1132
} 1133

1134
### Python 1135
merged_data = location.merge(adjoining_relationship , 1136

left_on='adjoin_s ', right_on=' 1137
adjoining_relationship ') 1138

result = merged_data.loc[ 1139
(merged_data['location '] == 'Russia '), 1140
'adjoins ' 1141

]. unique ().tolist () 1142
result = [x for x in result if x != 'Russia '] 11431144

1145
### NLQ 1146
which countries does russia border 1147

1148
### SPARQL 1149
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax 1150

-ns#> 1151
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#> 1152
PREFIX : <http ://rdf.freebase.com/ns/> 1153
SELECT (COUNT(?x0) AS ?value) WHERE { 1154
SELECT DISTINCT ?x0 WHERE { 1155
?x0 :type.object.type :religion.religious_leader . 1156
VALUES ?x1 { :m.04 l_pt } 1157
?x0 :people.person.ethnicity ?x1 . 1158
FILTER ( ?x0 != ?x1 ) 1159
} 1160
} 1161

1162
### Python 1163
result = [[len(religious_leader[religious_leader[' 1164

religious_leader '].isin(person['person '][ person 1165
['ethnicity '] == 'jew'])])]] 11661167
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A.3 Examples of TableQA1168

1169
### NLQ1170
in which county did brown receive the most votes?1171

1172
### Python1173
brown_votes = df['Votes '].str.replace(',', '').1174

astype(int)1175
max_votes_index = brown_votes.idxmax ()1176
result = [[df.loc[max_votes_index , 'County ']]]11771178

1179
### NLQ1180
who was the top position american driver?1181

1182
### Python1183
df['Pos'] = pd.to_numeric(df['Pos'], errors='coerce '1184

)1185
result = df.nsmallest(1, 'Pos')['Driver ']. tolist ()11861187

1188
### NLQ1189
what is the total number of points india has scored1190

throughout the rivalry?1191
1192

### Python1193
valid_results = df['Results ']. dropna ().str.replace('1194

Draw', '0␣-␣0')1195
scores = valid_results.str.extract(r'(\d+)\s*-\s*(\d1196

+)')1197
scores = scores.fillna (0).astype(int)1198
india_scores = scores [1]1199
total_points_india = india_scores.sum()1200
result = [[ total_points_india ]]12011202

1203
### NLQ1204
how long did they play before they won a game?1205

1206
### Python1207
first_game_date = pd.to_datetime(df['Date'].iloc [0])1208
wins = df[df['Result '].str.startswith('W')]1209
if not wins.empty:1210

first_win_date = pd.to_datetime(wins['Date'].1211
iloc [0])1212

days_before_first_win = (first_win_date -1213
first_game_date).days1214

else:1215
days_before_first_win = 01216

result = [[ days_before_first_win ]]12171218

1219
### NLQ1220
how far removed were the times from the fifth place1221

and the tenth place contestant?1222
1223

### Python1224
print(df['Rank']. unique ())1225

1226
rank_5 = df['Rank']. astype(int).eq(5) # Creating a1227

boolean series for rank 101228
1229

fifth_place_time = df.loc[rank_5 , 'Time']. values [0]1230
if df.loc[rank_5 , 'Time'].size > 0 else None1231

1232
tenth_place_time = df.loc[rank_10 , 'Time']. values [0]1233

if df.loc[rank_10 , 'Time'].size > 0 else None1234
1235

if fifth_place_time is None or tenth_place_time is1236
None:1237
result = [['Times␣not␣found␣for␣specified␣ranks.1238

']]1239
else:1240

def convert_to_seconds(time_str):1241
minutes , seconds = time_str.split(':')1242
return int(minutes) * 60 + float(seconds)1243

1244
fifth_place_seconds = convert_to_seconds(1245

fifth_place_time)1246
tenth_place_seconds = convert_to_seconds(1247

tenth_place_time)1248
1249

difference = abs(fifth_place_seconds -1250
tenth_place_seconds)1251

result = [[ difference ]]12521253

1254
### NLQ 1255
how many times did the cowboys win the nfc 1256

championship in the 1970s? 1257
1258

### Python 1259
nfc_cowboys_70s = df[(df['Team'] == 'Dallas␣Cowboys ' 1260

) & (df['Season '] >= 1970) & (df['Season '] < 1261
1980)] 1262

result = [[ nfc_cowboys_70s.shape [0]]] 12631264

1265
### NLQ 1266
who was the only administrator to have just a b.s.? 1267

1268
### Python 1269
filtered_df = df[df['Educational␣Background '].str. 1270

contains('B.S.') & ~df['Educational␣Background ' 1271
].str.contains('Ph.D|M.S|M.A|Master ')] 1272

result = [[ filtered_df['Name'].iloc [0]]] if not 1273
filtered_df.empty else [[]] 12741275

B Details of BOX Construction 1276

B.1 Table-to-BOX 1277

Algorithm 1 outlines the procedure for converting 1278

a table into a BOX. If the table’s name is not pro- 1279

vided, Table is used as the variable name for the 1280

BOX in the Pandas code. 1281

B.2 DB-to-BOX 1282

Algorithm 2 outlines the procedure for converting 1283

a database into a set of BOXes. Here, the function 1284

TABLETOBOX refers to the process described in 1285

Algorithm 1, which converts a table into a single 1286

BOX. In addition, the foreign key information of 1287

the database is retained. 1288

B.3 KG-to-BOX 1289

Algorithm 3 details the procedure for converting a 1290

KG into a set of BOXes. 1291

The function DEPTHFIRSTSEARCH aims to re- 1292

trieve the field records (i.e., the related triples) in 1293

the H-hop subgraph of the topic entities. 1294

C Prompt Template 1295

C.1 Prompt of In-context Reasoning 1296

Figure 8 shows a prompt template for in-context 1297

reasoning. 1298

C.2 Prompt of Execution Guidance 1299

Figure 9 shows a prompt template for the execution 1300

guidance strategy. 1301
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## Examples
[EXAMPLE]

## You are an excellent data scientist and Python programmer. You can capture the link between the question and
corresponding database schema and perfectly generate valid Python Pandas program or S-Expression query to answer
the question.

## Follow the instructions below:
Step 1. Comprehend the Question: Begin by thoroughly reading and understanding the main objectives and specific
details outlined in the question. Determine whether the question requires an entity, a list of entities, or a numerical
value. Then, break it down into logical steps and walk through the question systematically.
Step 2. Examine the Database Schema: Review the structure of the database schema to understand how data is
organized. Identify relevant tables, columns, and values that are pertinent to the question. Use these elements to
understand the question better and to create a link between the question and the database schema.
Step 3. Analyze the S-Expression Query: Carefully study the S-Expression query to identify key operations, keywords, and
how they interact with the database schema. The query is designed to direct attention toward certain elements relevant
to answering the question. Extract any keywords, phrases, or named entities that could provide further clarity or
direction in formulating an answer.
Step 4. Convert Question to Pandas: Translate the question into an equivalent Python script using the Pandas library.
Learn from the examples provided in ## Examples, try to understand the query logic they apply to solve their questions,
and determine which parts can effectively help you solve the current question in ### Question. Make sure the
parentheses and brackets in the script are placed correct especially if the generated code includes mathematical
expression. In addition, always write down your answers in the json format structured as follows:
```json{"reasoning": "# describe the correct step-by-step reasoning process of how you convert the ### Question to
codes.", "code": "# present only the Python codes to answer the ### Question without any schemas stored in
pd.DataFrame."}```

### Notice:
In the Python code you generate, the question should be solved step by step, rather than writing all the steps in only one
line of code. Most importantly, all the final results should be consolidated into a list and stored in the variable `result:
List[List[str]]`. The answer type can be a single entity, multiple entities, or numeric values. For a question, each answer
should be placed in a list and the final complete answer consists of these lists. In this format, the 3 types of answers
should look like this:
```python
# 1. **Single Entity**: the youngest monarch is whom?
>>> result
[['Galba']]
# 2. **Multiple Entities**: republic of indonesia is the home of what lakes?
>>> result
[['Lake Poso'], ['Lake Ranau'], ['Lake Matano'], ['Lake Toba']]
# 3. **Numerical Value**: how many papers are published in the journal? How many of them are in the engineering
category?
>>> result
[[88], [10]]
```

## Now let's think step by step and generate the Pandas Code:

### Database Schema:
[SCHEMA]

### Foreign Keys:
[FOREIGN_KEYS]

### Question:
[QUESTION]

### Pandas Code:

Figure 8: Prompt template for in-context reasoning of in-context reasoning.
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Algorithm 1 Conversion from Table to BOX

Require: A data table T = ({ci}Ci=1, {rj}Rj=1, {vi,j}
C,R
i=1,j=1), where ci denotes the i-th column name

and each row rj denotes a data record. vi,j denotes the content.
1: Initialize the BOX field set as Φ← ∅ and the BOX value set as Ψ← ∅.
2: function TABLETOBOX(T )
3: for i = 1 to C do
4: Φ← Φ ∪ {ci} ▷ Treat each column as a field.
5: end for
6: for i = 1 to C do
7: for j = 1 to R do
8: Ψ← Ψ ∪ {vi,j} ▷ Treat each cell content as a field value.
9: end for

10: end for
11: if T has a table name t then ▷ Name the each BOX in PANDAS code.
12: B ← (t,Φ,Ψ)
13: else
14: B ← (Table,Φ,Ψ)
15: end if
16: return B
17: end function
18: B = TABLETOBOX(T )
19: return B ▷ A table can be converted into a single BOX.

Algorithm 2 Conversion from Database to BOX

Require: A database D = {T1, T2, . . . , TT }, where Ti denotes a table.
1: Initialize the BOX set as B∗ ← ∅.
2: for i = 1 to T do
3: Bi = TABLETOBOX(Ti) ▷ Follow Algorithm 1 to generate the BOX corresponding to each

table.
4: B∗ ← B∗ ∪ {Bi}
5: end for
6: return B∗
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Algorithm 3 Conversion from KG to BOX

Require: A knowledge graph K = {⟨s, p, o⟩ | s ∈ E , p ∈ R, o ∈ E ∪ Γ}, where E ,R, and Γ denote the
entity set, relation set, and type set. A topic entity set E∗ ⊂ E . A relevant relation setR∗ ⊂ R.

1: Initialize the BOX set as B∗ ← ∅, the field record list Ω← [ ], a visited entity set V .
2: function DEPTHFIRSTSEARCH(e, ω,H)
3: if |ω| = 2×H then
4: Append ω to Ω
5: return
6: end if
7: for r ∈ R∗ do
8: E+ ← GetNeighborEntities(e, r,+), E− ← GetNeighborEntities(e, r,−)
9: for e+ ∈ E+ do ▷ Traverse the one-hop neighbor entities that start from e through r.

10: if e+ /∈ V then ▷ Prune. Prevent passing through the same entity.
11: Append [Γ(e),Γ(e), e] to ω, Append [Γ(e), r, e+] to ω, V ← V ∪ {e+}
12: DEPTHFIRSTSEARCH(e+, ω,H)
13: Pop(ω), Pop(ω), V ← V \ {e+}
14: end if
15: end for
16: for e− ∈ E− do ▷ Traverse the one-hop neighbor entities that end at e through r.
17: if thene− /∈ V ▷ Prune. Prevent passing through the same entity.
18: Append [Γ(e−),Γ(e−), e−] to ω, Append [Γ(e−), r, e] to ω, V ← V ∪ {e−}
19: DEPTHFIRSTSEARCH(e−, ω,H)
20: Pop(ω), Pop(ω), V ← V \ {e−}
21: end if
22: end for
23: end for
24: end function
25: for e ∈ E∗ do
26: DepthFirstSearch(e, [ ], H)
27: end for
28: for ω ∈ Ω do ▷ First, construct an empty BOX with only field names.
29: for (b, ϕ, ψ) ∈ ω do
30: if ̸ ∃ Φb then
31: Φb ← ∅, Ψb ← ∅
32: end if
33: Φb ← Φb ∪ {ϕ} ▷ Add field for each BOX.
34: end for
35: end for
36: for ω ∈ Ω do ▷ Second, fill values into each field.
37: for (b, ϕ, ψ) ∈ ω do
38: if ̸ ∃ Ψϕ

b then
39: Ψϕ

b ← [ ]
40: end if
41: Append ψ to Ψϕ

b ▷ Add value for each field.
42: for ϕ̃ ∈ Φ \ {ϕ} do
43: Append “NA” to Ψϕ̃

b ▷ Keep the number of rows the same for all columns.
44: end for
45: end for
46: end for
47: return B∗
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## Task
A previous attempt to run a query did not yield the correct results, either due to errors in execution or because the result
returned was empty or unexpected. Your role is to analyze the error based on the provided database schema and the
details of the failed execution, and then provide a corrected version of the code.

### Follow the instructions below:
Step 1. Review Database Schema: Examine the table schema and the provided foreign keys to understand the database
structure. Identify relevant tables, columns, and values that are pertinent to the question. Use these elements to
understand the question better and to create a link between the question and the database schema.
Step 2. Analyze Query Requirements: Consider what information the query is supposed to retrieve. Review the codes that
was previously executed and led to an error or incorrect result. Analyze the outcome of the executed query to identify
why it failed (e.g., syntax errors, incorrect column references, misuse of Python functions and logical mistakes).
Step 3. Correct the Code: Modify the code to address the identified issues, ensuring it correctly fetches the requested
data according to the database schema and query requirements. Make sure the generated code should return all of the
information asked in the question without any missing or extra information.
Step 4. Output Format: Present your respond in the json format structured as follows:
```json{"error": "# describe your analysis of the error and how to fix it", "reasoning": "# describe the correct step-by-step
reasoning process of how you convert the ### Question to codes.", "code": "# present only the Python codes to answer
the ### Question without any schemas stored in pd.DataFrame."}```

### Execution Result
[EXECUTION]

### Take a deep breath and try to think step by step about where your code is going wrong. Once you understand, find
the correct Python code and rewrite your answer:

Figure 9: Prompt template for in-context reasoning of execution guidance.
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