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Abstract:
The recent trend in scaling models for robot learning has resulted in impres-
sive policies that can perform various manipulation tasks and generalize to novel
scenarios. However, these policies continue to struggle with following instruc-
tions, likely due to the limited linguistic and action sequence diversity in exist-
ing robotics datasets. This paper introduces Task Robustness via RE-Labelling
Vision-Action Robot Data (TREAD), a scalable framework that leverages large
Vision-Language Models (VLMs) to augment existing robotics datasets without
additional data collection, harnessing the transferable knowledge embedded in
these models. Our approach leverages a pretrained VLM through three stages:
generating semantic sub-tasks from original instruction labels and initial scenes,
segmenting demonstration videos conditioned on these sub-tasks, and producing
diverse instructions that incorporate object properties, effectively decomposing
longer demonstrations into grounded language-action pairs. We further enhance
robustness by augmenting the data with linguistically diverse versions of the text
goals. Evaluations on LIBERO demonstrate that policies trained on our aug-
mented datasets exhibit improved performance on novel, unseen tasks and goals.
Our results show that TREAD enhances both planning generalization through tra-
jectory decomposition and language-conditioned policy generalization through in-
creased linguistic diversity. Project website: https://akuramshin.github.io/tread

Figure 1: TREAD uses a large-scale VLM to programmatically cut trajectories at sub-goals, label
those sub-goals and add variations to the goal-text.

https://akuramshin.github.io/tread


1 Introduction

Recent trends in robot learning research have demonstrated the importance of data scale and diversity
for learning more robust and capable robotic manipulation policies [1, 2, 3]. While the robotics
community has made progress in expanding dataset sizes through collaborative efforts, these datasets
continue to exhibit limited diversity along the text and trajectory modalities [4, 5, 6]. This limitation
manifests as a weakness of the current models to reliably follow text-based instructions [7, 8, 9].

The dataset modality imbalance persists due to the challenges of collecting diverse, real-world
demonstrations at scale, often requiring multiple robots and months of operation to obtain even
modest datasets [10, 5, 11]. However, these vision-based manipulation demonstrations have grown
in length and complexity, covering many potential sub-goals per trajectory. While it is possible to
manually review the thousands of demonstration videos and solicit human annotators, this will not
scale with the demands of modern robotic learning. This raises the question: How can we systemat-
ically augment robotics datasets with greater language-action diversity in a scalable way?

Recent advances in large-scale vision-language models (VLMs) [12, 13, 14] offer a promising new
approach to address the language-action diversity challenge in robotics datasets. Using VLMs for
robot data augmentation is appealing for two reasons. By leveraging internet-scale pretraining,
VLMs are capable of zero-shot generation of contextually appropriate language labels that are also
grounded in the physical scenes depicted in demonstration videos. Second, these models can effec-
tively reason about temporal sequences in videos [12, 13, 15, 14], enabling segmentation of demon-
strations into meaningful sub-tasks. This capability allows for decomposing existing demonstrations
into more granular language-action segments, effectively increasing the diversity of our training data
without requiring additional data collection.

Motivated by the strong capabilities of large-scale pretrained VLMs, we propose Task Robustness
via RE-Labelling Vision-Action Robot Data (TREAD), a framework to augment robotics datasets.
TREAD shown in fig. 1 operates in an iterative three-stage process, where the model’s outputs from
previous steps are fed back as inputs to the next: First, a pretrained VLM analyzes the original
instruction labels and the initial scenes to generate a sequence of semantic sub-task descriptions
that collectively accomplish the original goal. Then the demonstration videos are processed by the
the VLM to temporally segment the trajectories, identifying which portions of the demonstration
correspond to each sub-task description. Lastly, the VLM generates diverse instructions for these
sub-taks incorporating object properties and spatial relationships conditioned on the initial scenes
of the sub-tasks and the semantic sub-task descriptions. This temporal-semantic alignment creates
multiple language-conditioned sub-demonstrations from each original demonstration from the of-
fline dataset.

In this work, we make two key contributions: (1) a novel framework to utilize iterative querying
of a VLM to augment and diversify the original dataset, and (2) the augmented dataset obtained by
applying our framework, which will be released to facilitate future research. In our experiments
with the LIBERO dataset [16], we show that the resulting dataset improves zero-shot performance
and text goal following of the vision-language-action policy Octo [17] and π0-FAST [7].

2 Related Work

Robot learning datasets. Recently, the robotics community has invested substantial effort into col-
lecting larger manipulation datasets. While earlier datasets such as RT-1 [10], MT-Opt [18], and
BC-Z [19] boast significant numbers of trajectories, they lack diversity in tasks and scenes, which
is more important for generalization [5, 20, 21]. Responding to this need, several works have fo-
cused on increasing diversity by scaling data collection, including BridgeV2 [6], DROID [5], and
RDT-1B [9]. These newer datasets not only collect data across more scenes but also demonstrate
more complicated tasks consisting of multiple meaningful sub-goals. However, this creates a new
challenge: although the number of tasks has increased, the language diversity is diluted by the
larger amount of image-action frames per instruction due to longer trajectories. Our work presents
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a generic framework for expanding the language-image-action distribution of any robotic manipula-
tion dataset without requiring additional data collection, effectively reducing this dilution problem.

Vision-language-action models as scalable robot policies. Vision-Language Models (VLMs) have
shown increasing capabilities in complex visual tasks such as state identification, reasoning, and vi-
sual question answering [22, 23, 12, 14]. Inspired by the success of VLMs, the robotics community
adopted similar multi-modal architectures for imitation learning [10, 17, 24, 9]. More recent meth-
ods start from a pre-trained VLM backbone to leverage internet-scale pretraining [2, 3]. Followup
works have explored architectural modifications [8, 9, 7] to improve performance in instruction gen-
eralization and following. In contrast, our work improves existing policy performance through data
augmentation alone. Therefore, our method can be used alongside any policy architecture.

Data augmentation methods. Data augmentation is a powerful technique for enhancing model
robustness and generalization by generating additional synthetic training examples from existing
data. In robot learning, augmentation methods have developed along three main dimensions: visual
augmentation [1, 25, 26, 27], language augmentation [28, 29, 30], and trajectory augmentation [28,
31, 32]. Our work bridges language and trajectory augmentation by using VLMs to both relabel
trajectories and identify meaningful sub-task motions within longer demonstrations. DIAL [30],
which is most similar to our approach in terms of language augmentation, relies on a predetermined
set of labels and requires fine-tuning on related robotics data. In contrast, our method leverages zero-
shot VLM capabilities. NILS [33] is another framework that incorporates multiple large models
and heuristics to segment and relabel trajectories, whereas our method relies on a single iteratively
queried VLM without heuristics, making it simpler to reproduce. Lastly, SPRINT [28], another
closely related work, focuses on composing shorter skills into longer sequences. However, our
approach does the opposite by decomposing longer-horizon demonstrations into meaningful sub-
tasks. This makes our method particularly suitable for enhancing language-action diversity in open-
source robotics datasets.

3 Method

Here we describe how we design TREAD to segment and stitch robotics data, in three stages: (1)
segmentation using a VLM to process trajectories for semantic and motion-based properties to find
key sub-goal transitions, (2) labeling of the new sub-trajectories with sub-goals and to augment
the original dataset with language diversity, and (3) train a vision-language-action model on the
resulting dataset to improve robustness. The pseudocode for TREAD is shown in Algorithm 1.

3.1 Problem Formulation

We assume access to an offline dataset D of robot trajectories labelled with natural language task
instructions. Formally, we define a dataset D = [(τn, ℓn)]

N
n=1 consisting of N labeled trajectories,

where each trajectory τn = [(on
t ,a

n
t )]

T
t=1 contains observation-action pairs over T timesteps. Here,

on
t and ant denote the image observation and action at time t respectively, and ℓn denotes the nat-

ural language instruction describing the task demonstrated in trajectory τn. We then train a policy
π(· | ot, ℓ) via imitation learning to generate action distributions that mimic demonstrated behavior.
Specifically, we look at models trained by minimizing the bahavior cloning objective:

π̂∗ = argmin
π

∑
(τ,ℓ)∈D

∑
(ot,at)∈τ

LBC(π(· | ot, ℓ),at)

where LBC denotes a supervised loss (e.g., negative log-likelihood) between the predicted action
distribution and the demonstrated action.

We are interested in using data augmentation to improve the learned policy’s generalization perfor-
mance. Specifically, we address the question: how can we augment D with additional trajectory-
instruction pairs (τ, ℓ) derived from existing demonstrations, without requiring new data collection?
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Figure 2: TREAD pipeline overview. Given dataset D of N labeled trajectories [(τn, ℓn)]
N
n=1,

TREAD decomposes the dataset into semantically meaningful sub-trajectories through three stages:
(1) Subtask Decomposition: Given the original task instruction ℓ and initial frame o1, we prompt
the VLM to generate a sequence of sub-task labels [ℓ̃1, . . . , ℓ̃zn ]. (2) Motion Segmentation: The
VLM identifies temporal boundaries for each sub-task, resulting in a set of labeled sub-trajectories
[(τ̃1, ℓ̃1), . . . , (τ̃zn , ℓ̃zn)]. (3) Language Diversity: The VLM generates diverse paraphrases for
each sub-task instruction by leveraging visual context to incorporate object properties (color, shape,
material) and spatial relationships (relative positions, orientations).

3.2 Decomposition of Trajectories

Although our framework does not depend on a specific VLM, in this work we use Gemini Pro 2.5
[14]. Gemini is a multi-modal model that can take as input images, videos, and text, and output text.
Given a trajectory τn completing a long-horizon task ℓn, we first derive semantic sub-tasks and then
identify which parts of the trajectory complete those sub-tasks. We found that just asking the VLM
to segment the video in one-shot provided poor results; providing the model with subtasks resulted
in qualitatively better video segmentation. We accomplish this by chaining two VLM inference calls
shown in fig. 2. First, we prompt the VLM to create a plan of sub-task motion labels [ℓ̃1n, ℓ̃

2
n, . . . , ℓ̃

zn
n ],

given the higher-level task ℓn, and the first frame of the trajectory on
1 for grounding and context. Here

zn denotes the number of sub-tasks that are required to complete task ℓn in the scene as determined
by the VLM. For example, the task “place bowl in the top drawer” will require a different number of
sub-task motions depending on whether the top drawer is currently closed or open and the algorithm
should identify this and produce three sub-tasks instead of two.

Subsequently, we query the model with the video of the trajectory and prompt it to retrieve the
starting and ending seconds at which the previously identified sub-tasks occur. As a result, we now
have a process by which we can decompose a labeled trajectory (τ, ℓ) into an ordered set of labeled
sub-trajectories [(τ̃1, ℓ̃1), (τ̃2, ℓ̃2), ..., (τ̃z, ℓ̃z)], where τ̃ ⊂ τ denotes a sub-trajectory. Finally, we
can now process D to construct a new decomposed dataset:

D̃A = [(τ̃11 , ℓ̃
1
1), . . . , (τ̃

z1
1 , ℓ̃z11 ), . . . , (τ̃1n, ℓ̃

1
n), . . . , (τ̃

zn
n , ℓ̃znn )]

For details on the full prompts, see Appendix A. Practically, we decompose a dataset of 82 unique
scene-instruction tasks into 146 subtasks (see Section 4.1 for details on the dataset).

3.3 Instruction Diversity and Data Augmentation

Recent research has highlighted instruction following as a weakness of current VLA models [8, 7, 9],
attributing the difficulty to the models paying more attention to visual inputs than the language goal.
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While the mentioned works address the problem algorithmically, we argue that additional textual
diversity will help robustness to language. Many robotics datasets have considerably small linguistic
diversity which potentially leads to policies being overly sensitive to instruction wording. We use the
generated sub-trajectories to augment D. We consider the following textual augmentation method
for language diversity:

Grounded textual diversity. We can enhance linguistic diversity by leveraging VLMs to generate
visually grounded paraphrases of instructions. For each sub-trajectory (τ̃i, ℓ̃i), we prompt the VLM
with both the original instruction ℓ̃i and the first visual frame from τ̃i, requesting k language alterna-
tives that preserve the task semantics. As shown in fig. 2, including the image in the context allows
the model to incorporate spatial relationships and perceivable characteristics for more accurate goal
diversity beyond just using synonyms. For instance, given an instruction “pick up the blue coffee
mug,” our VLM might generate alternatives like “grasp the small coffee mug” (object attributes) or
“retrieve the coffee mug next to the laptop,” (spatial relationships). We apply this language augmen-
tation to our already decomposed dataset D̃A and denote the resulting dataset D̃H :

D̃H = [(τ̃11 , ℓ̂
1
1), . . . , (τ̃

z1
1 , ℓ̂z11 ), . . . , (τ̃1n, ℓ̂

1
n), . . . (τ̃

zn
n , ℓ̂znn )]

See Appendix A for the templated prompt we use for grounded textual diversity.

Algorithm 1 The TREAD algorithm
Input: Robotic dataset D and VLM G
1: function TREAD(D,G)
2: D̃A← DECOMPOSE(D,G)
3: D̃H ← DIVERSIFY(D̃A,G)
4: Train policy πA on mixture of D and DA

5: Train policy πH on mixture of D and DH

6: function DECOMPOSE(D,G) ▷ Section 3.2
7: D̃A← {}
8: for trajectory-instruction pair (τn, ℓn) in D do
9: o1← first observation in τn

10: v← [o1, . . . ,oT ] (video of trajectory τn)

11: [ℓ̃1n, . . . , ℓ̃
z
n]← G(o1, ℓn)

12: [(τ̃1
n, ℓ̃

1
n), . . . , (τ̃

z
n, ℓ̃

z
n)]← G(v, [ℓ̃1n, . . . , ℓ̃zn])

13: D̃A← D̃A ∪ [(τ̃1
n, ℓ̃

1
n), . . . , (τ̃

z
n, ℓ̃

z
n)]

14: return D̃A

15: function DIVERSIFY(D̃A,G) ▷ Section 3.3
16: D̃H ← {}
17: for sub-trajectory–instruction pair (τ̃ i

n, ℓ̃
i
n) in D̃A do

18: o1← first observation in τ̃ i
n

19: ℓ̂in← choose one from G(o1, ℓ̃
i
n)

20: D̃H ← D̃H ∪ (τ̃ i
n, ℓ̂

i
n)

21: return D̃H

3.4 Training a Vision-Language-Action Model

We study the quality of our dataset augmentation by training vision-language-action manipulation
policies on the augmented data. Using the datasets generated by TREAD, we finetune two generalist
robot policies: Octo (specifically Octo-Small 1.5) [17] and π0-FAST [7]. Octo is a diffusion-based
policy trained on the Open-X dataset [4], while π0-FAST leverages a pre-trained VLM backbone,
PaliGemma [23], trained on the cross-embodied robot data mixture from π0 [3], with actions dis-
cretized using the FAST tokenization scheme.

To determine the dataset weighting ratio such that the finetuned model achieves the best performance
across the original full trajectories (D) and relabeled sub-trajectories (D̃A/D̃H ), we conducted abla-
tion studies across multiple mixing ratios. We evaluated ratios (D:D̃A/D̃H ) of 1:2, 1:1.5 and 1:1.1.
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Figure 3: Example visualization of the sub-task keypoints produced by TREAD for the trajectory
“Put the white mug on the plate and put the chocolate pudding to the left of the plate”. Each frame
(from left to right) corresponds to the first frame of the sub-task (labeled above). The sub-task labels
in order are: (1) “Grasp the white mug” (2) “Lift the white mug” (3) “Move the white mug to the
plate” (4) “Place the white mug on the plate” (5) “Grasp the small rectangular object” (6) “Lift the
small rectangular object” (7) “Move the small rectangular object to the left of the plate” (8) “Place
the small rectangular object on the table.”

The final ratio was selected using Re-Mix [34]. For all experiments reported in Section 4.1, we use
the best-performing weighting ratio for each respective data mixture. Detailed performance results
for each weighting ratio across the evaluation tasks are provided in Appendix B.

For all data mixtures, we employ consistent finetuning parameters across models. We finetune Octo
for 50,000 steps, batch size of 256, using a linear warmup followed by cosine decay [35] with a peak
learning rate of 3 × 10−4. For π0-FAST, we perform full finetuning for 30,000 steps with a batch
size of 32, employing the same cosine decay schedule with warmup but with a peak learning rate of
2.5× 10−5. Based on test performance, we use checkpoints at step 30,000 for Octo and step 15,000
for π0-FAST across all dataset ablations (see Section 4).

4 Results

In our evaluation, we design experiments to investigate the effectiveness of training an agent on a
dataset augmented by TREAD on unseen tasks. Specifically, our experiments answer the following
research questions: (1) Does TREAD’s trajectory decomposition increase planning generalization?
(2) Does language augmentation help policy generalization to text-based goals?

We focus on robot manipulation and evaluate our method on the image-based dataset LIBERO [16],
a simulation benchmark designed for studying lifelong learning in robotic manipulation. The use
of LIBERO to evaluate VLA models pretrained on real-world data is a common practice to show
the capabilities of these models [7, 2, 8]. Due to resource constraints, we evaluate our method on a
subset of LIBERO as described below.

4.1 Experimental Setup

In our experiments, we evaluate the effects of both trajectory decomposition and instruction diversity
on policy performance through ablation studies using the following data mixtures:

1. Finetuned Octo/π0-FAST with no augmentations (Original Fine-tuned): We finetune
Octo/π0-FAST on the unaltered subset of LIBERO-100 trajectories D. This serves as our
comparison point, expected to perform adequately on in-distribution task-instruction pairs
but struggle with language-following in novel scenes or instruction text variations.

2. Finetuned Octo/π0-FAST with Trajectory Decomposition (TREAD w/o diverse la-
bels): We finetune Octo/π0-FAST on a mixture of the unaltered dataset D and its decompo-
sition D̃A. This ablation isolates the effect of trajectory decomposition, which should help
the policy perform tasks in new environments by leveraging subtask compositions seen
during training, even when the complete task-environment pairing is novel.

3. Finetuned Octo/π0-FAST with Trajectory Decomposition + Label Diversity (TREAD):
We finetune Octo/π0-FAST on a mixture of the unaltered dataset D and its linguistically
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enriched decomposition D̃H . This full implementation is expected to handle both novel
environments and textual variations by bringing diverse text instructions in distribution.

LIBERO. The LIBERO benchmark [16] consists of four task suites that are designed to examine
distribution shifts in the object types, the spatial arrangement of objects, the task goals, or the mix-
ture of the previous three. For our experiments, we focus on the LIBERO-100 task suite, which con-
tains 100 tasks involving diverse object interactions and versatile skills with 50 human-teleoperated
demonstrations each. In LIBERO-100, tasks are defined by the combination of scene and instruc-
tion, meaning that identical instructions performed in different scenes are treated as distinct tasks.
Importantly, we utilize the full LIBERO-100 suite rather than the smaller subsets employed by re-
cent works [2, 7]. This larger benchmark presents a more challenging evaluation setting that reduces
the risk of overfitting and provides a more rigorous test of our method’s ability to improve motion
and language generalization (see Section 4.2).

Due to resource constraints, we labeled five demonstrations per task and omitted any tasks per-
formed in STUDY_SCENEs for a total of 570 trajectories. An example of a labeled trajectory is shown
in Figure 3. To evaluate our research questions, we defined two sets of novel tasks within LIBERO:

4.2 Evaluation Tasks

Motion Generalization (MG): For research question (1), we created new instruction-scene pairs
by taking existing language instructions and pairing them with compatible but previously unpaired
scenes. For example, the instruction “open the top drawer of the cabinet” is paired with scene
KITCHEN_SCENE4 containing a cabinet, with this specific combination not appearing in the training
data. These tasks will evaluate whether trajectory decomposition helps the agent transfer learned
skills to novel environmental contexts. Importantly, these new instruction-scene pairs also evaluate
the model’s language-following capability, as the model must avoid defaulting to previously trained
tasks from those scenes and instead execute the specified instruction. We create 7 such novel scene-
instruction environments within the LIBERO framework.

Language Generalization (LG): For research question (2), we created linguistically modified ver-
sions of existing LIBERO-100 tasks. These modifications included variations such as reordering
clauses around conjunctions (changing “turn on the stove and put the moka pot on it” to “put the
moka pot on the stove and turn it on”) or removing unnecessary object specifiers when context
makes them redundant (changing “close the bottom drawer of the cabinet” to “close the drawer”).
These variations assess whether our language augmentation strategies improve policy robustness to
variations in instruction wording. We found 14 existing tasks within LIBERO-100 that satisfied our
criteria for instruction modification.

We evaluate all dataset ablations across both test cases. For each task, we conduct 30 policy rollouts
and report the average success rate. To provide a more nuanced understanding of policy capabilities,
we separately analyze performance on single-goal tasks (e.g. “close the drawer”) and two-goal
tasks (e.g. “put the bowl in the drawer of the cabinet and close it”). For two-goal tasks, we report
both partial success (completing only one goal) and complete success (achieving both goals).

4.3 Increased Zero-Shot Performance

The Motion Generalization results in Table 1 demonstrate TREAD’s effectiveness when policies
encounter familiar instructions in novel environments. Both TREAD and TREAD w/o diverse la-
bels outperform Original Fine-tuned across Single Goal tasks, with TREAD achieving 15% and 6%
higher success rates on Octo and π0-FAST respectively. This shows that the automatic segmentation
of TREAD is able to provide more trajectory and goal diversity which drives additional generaliza-
tion across more tasks.

The benefits of trajectory decomposition become more pronounced for complex, multi-step tasks.
In two-goal scenarios, TREAD achieves substantially higher first-goal completion rates - 30% im-
provement for Octo and 9% for π0-FAST - compared to baseline fine-tuning. The wider performance
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Table 1: LIBERO task performance results. Success rates (SR) with standard error across the
custom evaluation task suites (see Section 4.2) and LIBERO-10 within the LIBERO framework [16].
Results include policies fine-tuned on different data mixtures: original trajectory data (Original Fine-
tuned), mixture of the unaltered dataset and its decomposition (TREAD w/o div.), and mixture of
the unaltered dataset and its linguistically enriched decomposition (TREAD). Bold and underlined
values indicate best and second-best performance.

Test Case Metric (%) π0-FAST [7] Octo [17]
Original

Fine-tuned
TREAD
w/o div. TREAD

Original
Fine-tuned

TREAD
w/o div. TREAD

Language
Generalization

Single Goal SR 47±20 77±7 67±14 82±2 76±17 91±6
1 of 2 SR 63±11 62±10 67±9 76±6 70±6 77±4
2 of 2 SR 36±8 35±7 39±10 30±7 28±5 31±5

Motion
Generalization

Single Goal SR 28±18 31±20 34±16 7±4 27±10 22±15
1 of 2 SR 73±3 82±11 82±9 13±4 50±10 43±3
2 of 2 SR 7±3 0±0 0±0 0±0 0±0 0±0

LIBERO-10 1 of 2 SR 83±9 72±12 74±8 76±5 69±6 72±4
2 of 2 SR 57±10 43±12 57±10 40±7 41±4 38±4

Average SR 49±10 50±11 53±10 41±12 45±10 47±11

gap for multi-goal tasks likely stems from the increased opportunities for sub-trajectory overlap be-
tween training and test scenarios. Notably, the performance gains are more substantial for Octo,
which lacks the pretrained vision-language understanding of π0-FAST, suggesting that trajectory de-
composition provides particularly valuable inductive biases for models without built-in multimodal
reasoning capabilities.

4.4 Better Text Goal Following

The Language Generalization results in Table 1 reveal TREAD’s ability to handle linguistic vari-
ations of familliar task-instructions in known environments. In single-goal tasks, TREAD demon-
strates substantial improvements over Original Fine-tuned baselines, achieving 20% higher suc-
cess rates with Octo and 9% with π0-FAST. This improvement provides strong evidence that our
grounded textual diversity approach effectively prepares policies for the natural linguistic variations.

Interestingly, the performance benefits for Language Generalization are most apparent in shorter,
single-goal tasks rather than complex multi-step scenarios. This pattern likely reflects the mismatch
between the relatively concise language instructions in our decomposed sub-trajectories and the
longer, more complex instructions typical of multi-goal tasks. Additionally, longer-horizon tasks
provide more opportunities for compounding errors when policies encounter out-of-distribution lan-
guage conditioning, making it inherently more challenging to maintain robust language following
throughout extended task execution.

Importantly, we verify that our augmentation approach does not compromise performance on in-
distribution tasks. When evaluated on the in-distribution long-horizon tasks in LIBERO-10, TREAD
maintains comparable performance to Original Fine-tuned for two-goal success rates as seen in the
last row in Table 1.

5 Conclusion

In summary, we presented TREAD, a framework that uses off-the-shelf VLMs to perform a type
of trajectory segmentation and then stitching via training a large-scale BC model Octo [17]. We
find that fine-tuning Octo on our new dataset improves the performance, especially on more difficult
longer horizon tasks and novel tasks not seen during training. Future work should explore apply-
ing TREAD to larger datasets and larger models. However, our work shows that even with small
amounts of properly segmented and augmented data there are obvious performance gains.
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6 Limitations and Future Work

Despite these promising results, our work has several limitations that point to interesting directions
for future research. First, our work uses a large closed-source VLM, which limits reproducibility.
An important next step would be to evaluate TREAD with open-source alternatives [22, 13, 36] and
potentially fine-tune these models specifically on robotics data to improve their embodied under-
standing. Second, while our experiments focused on simulation environments, applying TREAD
to real-world datasets like BridgeV2 [6] would provide insight into its effectiveness for physical
deployment.
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A VLM Prompts

We provide the templated prompts we use for querying Gemini 2.5 for semantic sub-task breakdown
and motion identification in Figures 4, 5, and the template prompt for grounded paraphrasing in
Figure 6. The three example tasks used for few-shot prompting motion identification are taken from
the LIBERO-90 dataset. τN

Figure 4: The templated prompt we use for generating semantic sub-tasks. The placeholders
<FRAME 1> and <TASK INSTRUCTION> are replaced with the first image of the trajectory and the
trajectory instruction, respectively.

<VIDEO> 

The video is showing a robot arm performing the task "Put the white mug on the left plate." The task can be broken down into these possible sub-task motions: 

1. Grasp the white mug: Approach the white mug. Position the gripper around the body or handle of the mug and close the gripper to grasp it securely. 

2. Lift the white mug: Move the gripper vertically upwards, lifting the mug clear of the table surface and the other mugs. 

3. Move the white mug to the right plate: Move the gripper horizontally, carrying the mug across the table until it is positioned directly above the plate on the right. 

4. Place the white mug on the right plate: Move the gripper vertically downwards to gently place the white mug onto the surface of the right plate. Open the gripper to release the mug. 

Carefully look at the video and describe the sub-task motions you see being performed by the robot and the corresponding timecodes. 

Okay, here's the breakdown of the sub-task motions for placing the white mug on the left plate: 

1. 00:00 - 00:03 Grasp the white mug: The robot moves its gripper downwards and positions it around the white mug then closes the gripper to grasp it. 

2. 00:03 - 00:04 Lift the white mug The robot lifts the grasped mug vertically upwards, clear of the table. 

3. 00:04 - 00:06 Move the white mug to the right plate: The robot moves the mug horizontally towards the right, positioning it above the right plate. 

4. 00:06 - 00:08 Place the white mug on the right plate: The robot lowers the mug down onto the surface of the right plate and then opens its gripper to release the mug 

<VIDEO> 

You are provided with a video showing a robot arm performing the task <TASK INSTRUCTION». The task can be broken down into these possible sub-task motions: 

<SUB-TASK 1> 

<SUB-TASK 2> 

<SUB-TASK Z> 

You need to carefully look at the video and describe the sub-task motions you see being performed by the robot and the corresponding timecodes. Follow these guidelines: 

1. Start off by pointing to no more than 8 items in the image . The answer should follow the json format: [{"point”: <pointy, “label”: <label1>}, ...]. The points are in [y, x] format normalized to 
0-1000. One element a line. 

2. Determine the object movement and the resulting object relations. Explain the object movements. 

3. Combine motions for approaching and grasping objects. Also combine motions for placing and releasing objects. 

4. Finally, output the sub-tasks that you observe and the corresponding timecodes in the json format: [{"sub_task": <sub-task>, "time_range”: <timecodes>}, 

Figure 5: The templated prompt we use for recognizing semantic sub-tasks in a trajectory video.
We use few-shot prompting by providing the model with 3 example user-model exchanges before
the final query prompt (we include only one example for brevity). The placeholders <VIDEO> and
<TASK INSTRUCTION> are replaced with the trajectory video and the trajectory instruction, respec-
tively.

B Dataset Weighting Ratios

To determine the optimal balance between original demonstrations and augmented sub-trajectories,
we conducted ablations across different dataset mixing ratios. Table 2 presents results for Octo,
showing success rate performance across three task sets as described in Section 4.2.
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Figure 6: The templated prompt we use for grounded textual diversity (see Section 3.3). The place-
holders <FRAME 1> and <TASK INSTRUCTION> are replaced with the first image of the trajectory
and the trajectory instruction, respectively.

Table 2: Success rate performance of Octo [17] finetuned with different dataset weighting ratios for
(1) TREAD w/o diverse labels (D:D̃A) and (2) TREAD with diverse labels (D:D̃H ).

Metric Metric 1:2 1:1.5 Re-Mix
TREAD
w/o div. TREAD

TREAD
w/o div. TREAD

TREAD
w/o div. TREAD

Language
Generalization

Single Goal SR 0.73 0.89 0.51 0.69 0.76 0.73
1 of 2 SR 0.74 0.79 0.72 0.81 0.72 0.81
2 of 2 SR 0.30 0.30 0.32 0.33 0.30 0.36

Motion
Generalization

Single Goal SR 0.22 0.20 0.27 0.23 0.25 0.17
1 of 2 SR 0.42 0.40 0.38 0.40 0.49 0.31
2 of 2 SR 0.00 0.00 0.00 0.00 0.00 0.00

LIBERO-10 1 of 2 SR 0.69 0.77 0.68 0.71 0.74 0.70
2 of 2 SR 0.37 0.41 0.37 0.37 0.41 0.37

Figure 7: Visualization of some segmented trajectories produced by TREAD. From the top down,
the sub-task labels are (1) “Move the moka pot towards the stove burner”, (2) “Push the top drawer
closed”, and (3) “Place the red mug on the plate.” In visualization (2), we see that some segmenta-
tions made by the VLM terminate early.
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