Language Models can Solve Computer Tasks

Geunwoo Kim Pierre Baldi
University of California, Irvine University of California, Irvine
kgw@uci.edu pfbaldi@ics.uci.edu
Stephen McAleer*

Carnegie Mellon University
smcaleer@cs.cmu.edu

Abstract

Agents capable of carrying out general tasks on a computer can improve efficiency
and productivity by automating repetitive tasks and assisting in complex problem-
solving. Ideally, such agents should be able to solve new computer tasks presented
to them through natural language commands. However, previous approaches to
this problem require large amounts of expert demonstrations and task-specific
reward functions, both of which are impractical for new tasks. In this work, we
show that a pre-trained large language model (LLM) agent can execute computer
tasks guided by natural language using a simple prompting scheme where the
agent Recursively Criticizes and Improves its output (RCI). The RCI approach
significantly outperforms existing LLM methods for automating computer tasks and
surpasses supervised learning (SL) and reinforcement learning (RL) approaches on
the MiniWoB++ benchmark. We compare multiple LLMs and find that RCI with the
InstructGPT-3+RLHF LLM is state-of-the-art on MiniWoB++, using only a handful
of demonstrations per task rather than tens of thousands, and without a task-specific
reward function. Furthermore, we demonstrate RCI prompting’s effectiveness in
enhancing LLMs’ reasoning abilities on a suite of natural language reasoning tasks,
outperforming chain of thought (CoT) prompting with external feedback. We find
that RCI combined with CoT performs better than either separately. Our code can
be found here: https://github.com/posgnu/rci-agent.

1 Introduction

A long-standing goal in artificial intelligence has been to create generally-intelligent agents that can
accomplish cognitive tasks as well as humans. Such agents should be able to solve any computer task
a human can by communicating via natural language. By automating repetitive tasks and providing
assistance in complex problem-solving, generally-intelligent virtual agents may radically increase
productivity.

Recently, large language models (LLMs) have shown remarkable in-context learning capabilities
across a variety of domains and tasks [[12,169, 517, 126164 18}, 146} 16]. Although LLMs can impressively
manipulate text and can use high-level API tools [59, 48, 41], previous approaches to using LLMs
that directly take keyboard and mouse actions on computers have had difficulty compared to imitation
learning and reinforcement learning approaches [24]. LLMs that take keyboard and mouse actions on
computers face a number of obstacles, such as ensuring that generated actions are task-appropriate
(task grounding), feasible in the agent’s current state (state grounding), and admissible to be executed
(agent grounding).

*Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/posgnu/rci-agent

Use the terminal below to list all For the user @kenda, click on the Use the textbox to enter "Dannie" Playing as 'X', win a game of tic- Expand the sections below, to find

files and delete a file ending with "Like" button. and press "Search”, then find and tac-toe. and click on the link "vitae".
the extension .jpg click the 4th search result.
earch lon
Pl Seah [Section#2 |
amet.
Blisse @kenda - 13h ago
Lorem pharetra, eleifend.
Quis fames.
Rose @est - 4h ago
Praesent a.
Guess the number between 0-9 Click on the [colored box. Click on the "no" button. Find the email by Brier and click ~ Switch between the tabs to find
and press Submit. Use the the trash icon to delete it. and click on the link "Quis".

feedback below to find the right
number.

vitae in morbi
pellentesque mauris diam

QECEAN Tab#2 | Tab #3

Pellentesque tr..

Waiting for your guess... Kiersten
sfg."."s' ".‘ﬂm ac.l?“."‘sa“ Mi ullamcorper .. Rhoncus rutrum amet,
Submit itricies nibh facilisis i habitant. Sagittis gravida
= Marin gittis g
submit

Neque. sed ornare potenti. Et, id

Magna elementum.. blandit id malesuada purus
- praesent egestas orci. Quis

Fredia purus.

Imperdiet.

Nulla nunc cons..

Figure 1: MiniWoB++ environment. Every task contains a natural language prompt in yellow. The
agent then uses keyboard strokes and mouse clicks to accomplish the task.

The previous best-performing approaches for taking actions on computers have not used LLM:s.
Instead, they have trained networks from scratch to predict actions given prompts and screenshots or
DOM information, either via supervised learning (SL) from expert demonstrations, reinforcement
learning (RL) on a handcrafted reward signal, or both (SL+RL) [30]. Although SL+RL works well
on a number of individual computer tasks, since it requires expert data and a reward function for
every task, it has not been shown to generalize to novel tasks in a few-shot setting.

In this work, we show that a pre-trained LLM agent can successfully execute computer tasks
guided by natural language. Our method employs a simple prompting scheme, which we call
Recursive Criticism and Improvement (RCI), that significantly outperforms existing LLM methods
for automating computer tasks. RCI works by first having the LLM generate an output based on
zero-shot prompting. Then, RCI prompts the LLM to identify problems with the given output. After
the LLM has identified problems with the output, RCI prompts the LLM to generate an updated
output.

When applying RCI to computer tasks, we improve task grounding, state grounding, and agent
grounding sequentially. Firstly, task grounding prompts the LLM with the task text, instructing it to
generate a high-level plan. Secondly, state grounding connects high-level concepts derived from the
task grounding step with actual HTML elements present in the current state, subsequently outputting
the appropriate action. Finally, agent grounding ensures the correct formatting of the action output
obtained from the state grounding step. RCI is applied to each of these three steps; however, we find
that critiquing the state-grounding step is only necessary once.

We evaluate the RCI approach on the MiniWoB++ benchmark [61]], and show it surpasses existing
SL, RL, and LLM approaches. Furthermore, it proves itself to state-of-the-art compared to existing
methods, using only a small number of demonstrations per task instead of tens of thousands, and
without relying on a task-specific reward function. This significant reduction in required demon-
strations and the elimination of task-specific reward functions make our method more practical and
accessible for new tasks. Furthermore, as the capabilities of LLMs continue to improve, one can
expect the performance of our method to improve as well.

In addition to its success in automating computer tasks, we also showcase the effectiveness of RCI
prompting in enhancing the reasoning abilities of LLMs on a suite of natural language reasoning tasks.
When external feedback is given, our method achieves a significant performance increase over zero-
shot prompting and slightly improves upon chain-of-thought [[73]] (CoT) prompting. Interestingly,
RCI and CoT have a synergistic effect, and their combination outperforms all other methods.

In summary, our work presents a new powerful and practical approach to enabling LLM agents to
execute computer tasks guided by natural language. The RCI prompting scheme not only outperforms

[Q: Valerie earns $5000 per month, 1/2 of what her brother earns. If their mother earns twice their combined salary, what's the total amount of

money they all have together?

)

Zero-Shot
A:
Valerie's brother earns $10,000 per month, while Valerie herself
earns half of that amount. Together, they earn a total of $15,000 per
month. Their mother's monthly earnings amount to $30,000, which
is twice the combined salary of Valerie and her brother. Thus, the
total amount of money they all have together is $30,000. (Wrong)

Few-Shot-CoT

<Few shot examples>

A:

Valerie earns $5000 per month, half of her brother's earnings,
making his monthly income $10000. Combined, Valerie and her
brother earn $15000 per month. Their mother earns double their

RCI

<Initial output generation>
A: Valerie's brother earns $10,000 per month, while Valerie herself
earns half of that amount. Together, they earn a total of $15,000 per
month. Their mother's monthly earnings amount to $30,000, which
is twice the combined salary of Valerie and her brother. Thus, the
total amount of money they all have together is $30,000.

<Critique>
Review your previous answer and find problems with your answer.

All individuals, including Valerie, her brother, and mother, should be
taken into account when calculating the overall sum of money.

combined salary, amounting to $30000 per month. In total, they
have $30000 collectively. (Wrong)

Zero-Shot-CoT

A: Let's think step by step. First, Valerie's brother earns 2x and
Valerie earns x (half of her brother's earnings). Next, their mother's
income is twice the combined earnings of Valerie and her brother. In
this case, their total income amounts to $30,000. (Wrong)

<Improve>
Based on the problems you found, improve your answer.

Valerie's brother earns $10,000 per month, while Valerie herself
earns $5,000. Together, they earn a total of $15,000 per month. Their
mother earns double their combined salary, which amounts to
$30,000 per montbh. In total, they have $45,000 collectively. (Correct)

Figure 2: Illustrative examples of explicit RCI prompting and baseline prompting approaches on
the GSM8K dataset. RCI prompting effectively addresses logical errors that arise in the baseline
prompting approaches. Prompts text is displayed in violet color.

previous methods in computer tasks, but also improves reasoning abilities for LLMs more broadly,
making it a significant contribution in the development of intelligent agents.

2 Methods

2.1 RCI Prompting

The self-critiquing ability of LLMs has demonstrated that LLMs can find errors in their own output
by themselves [58, |20} 3]]. In light of this, we introduce a simple reasoning architecture called RCI
prompting, where we prompt LLMs to find problems in their output and improve the output based
on what they find. This architecture is designed to further enhance the reasoning ability of LLMs
by inserting a critique step before generating the final answer. Figure 2] compares example traces of
RCI prompting and baseline prompting methods on GSM8K dataset where language models should
answer grade school math problems. While baselines elicit answers with a single step of prompting,
RCI consists of two steps: criticize the previous answer (e.g., "Review your previous answer and
find problems with your answer") and improve the answer based on the critique (e.g., "Based on
the problems you found, improve your answer"). In this way, RCI prompting finds errors (e.g., the
overall sum of money only considered Valerie and her brother) in the previous answer and generates
an improved answer (e.g., money from Valerie’s mother is included in the total) conditioned on
the critique. The iterative process of RCI can be continued until specific conditions are satisfied,
which could include receiving feedback from the environment, reaching the maximum predetermined
number of iterations, or adhering to certain heuristics. We define two approaches for achieving RCI:
explicit RCI and implicit RCI. Explicit RCI includes the critique in the prompt to generate improved
output and implicit RCI updates the previous output directly without sampling a critique explicitly.
Examples of explicit RCI and implicit RCI applied to computer tasks are illustrated in Figure [3| where
the action plan is improved based on an explicit critique while actions are updated without an explicit
critique. This process is described in more detail in the following section.

2.2 RCI for Computer Tasks

In this section we describe the application of RCI to computer tasks via a decomposition of action
selection into three reasoning steps: task grounding, state grounding, and agent grounding. The first
step, task grounding, involves generating a plan for task-solving and conditioning actions on this plan,
with RCI being used to improve the plan’s success rate. The state grounding subsection discusses the
importance of grounding actions in the environment for language-based agents and how implicit RCI
is used to refine task-grounded actions to be feasible in the current state. Lastly, the agent grounding

Use the terminal below to delete a Task iThe task is to use the terminal below to delete a file ending with the extension .rb.
file ending with the extension .rb '

‘ Explicit RCI O
temmal - L

Plan iti :
Critique [Based on this, the improved plan for the agent to

| complete the task are as follows.
i 1. Type "Is" command to list all files in the terminal
Type "rm [filename]" command to delete the file

Here is a plan to solve the task using | Find problems with this plan :

the instructions specified: This plan does not specify the filename

1. Type "rm [filename]" command to | of the file ending with the extension |

delete the file ending with ".rb". b. Without knowing the filename, the | ding with ".rb".

2. Press "enter" key i agent cannot delete the file ; i 3. Press "enter" key after typing each command to
) ’ | execute the command.

Task grounding

Initial state

terminal

15t step
2" step
3d step

Implicit RCI ‘O

According to the current| Considering the output on the webpage, |

| h i i i

Fan, the next pr\operi the specific \nstruct\().nAfor so\.vmg t.he3 that matches one of the regul
instruction should be “type | task should be ‘type’ instruction with | . "

" y i i " " i expressions is ‘type "rm code.rb'
rm [filename]™". i rm code.rb" command. |

Agent grounding

State grounding

Current state

Figure 3: An illustrative execution trace of the agent for terminal tasks with RCI prompting. The
language model generates a step-by-step plan for the high-level task described in natural language,
which in this case involves using the terminal to delete a file ending with ".rtb". We then run an
explicit RCI on this plan, where we sample an improved plan based on the critique and the previous
plan, resulting in an improvement in the task-grounding of the plan. For each step, we first sample
the task-grounded action that follows the improved plan, and then the implicit RCI updates the
task-grounded actions sequentially to provide state-grounding and agent-grounding. Finally, the
agent-grounded action is executed by the instruction-following agent on the environment. The
prompts are highlighted, and the remaining text shows the outputs generated by the language model.

step focuses on ensuring that actions are admissible for the computer agent by employing implicit
RCT and conditioning agent-grounded actions on the current state, task, and other grounded actions,
with a loop count set to optimize performance.

2.2.1 Problem Setting

We assume that we are given an instruction-following computer agent that can execute a set of
admissible actions given some natural language instructions. An instruction that is not part of the
admissible actions will be ignored. At every step, we receive a high-level natural language task
prompt and a state of the environment. Given the current state and task, we sample the most probable
action from LLMs. The generated natural language action is then fed into the computer agent.
Sampling the actions in a fully generative manner presents a challenge, as the actions must consider
the given task, feasibility in the current state, and admissibility for the computer agent simultaneously.
Therefore, we propose decomposing this action sampling into three reasoning steps each of which
considers task grounding, state grounding, and agent grounding. Task grounding improves actions to
be more effective in solving the given task, state grounding ensures the feasibility of actions in the
current state, and agent grounding considers the executability of actions given the specification of the
computer agent. We first sample a step-by-step plan to solve the given task which improves the task
grounding. Next, the task-grounded action is sampled conditioned on the current state, task, and the
generated plan. The state-grounded actions is generated conditioned on the task-grounded action.
If the task-grounded action is not executable by the computer agent, the agent-grounded action is
sampled. For each sampling of grounded action, we use RCI prompting to make LLM consider some
specific information for grounding.

2.2.2 Grounding Language Model in Computer Tasks

Task grounding. In the action sampling process, the first step involves generating a plan of
actionable steps for task solving from LLMs. Subsequently, actions are sampled from the same
LLMs, taking into account the present state, task, and generated plan. The benefits of conditioning on

the plan for improved grounding of actions are twofold. First, it enables LLMs to identify the stage
of task solving at which the agent is located, serving as a memory module. Second, we can perform
explicit RCI on the generated plan to further improve the plan’s success rate. Although the number of
explicit RCI loops can be arbitrary, we observe that a single pass of explicit RCI suffices for most of
MiniWoB++ tasks.

State grounding. In language-based agents, grounding actions in the environment is a crucial step
to enable real-world task performance. The aim of this phase is to enhance the task-grounded actions
to be feasible in the current state. Although the actions generated in the preceding phase may align
with the task, they may lack the specificity required to be executed in the current context. For example,
if the assigned task is to forward an email from Bob to Alice and the action obtained from the task
grounding phase is to click on an email from Bob in the email inbox, it is necessary to establish a
connection between the abstract concept of "email from Bob" and the concrete element, such as the
email heading, in the current webpage state represented by HTML. To achieve this goal, we perform
the implicit RCI and prompt the LLMs to consider the current state, which subsequently outputs
refined state-grounded actions. Moreover, the state-grounded action is additionally conditioned on
the task-grounded action. We avoid repeating the implicit RCI cycle more than once as it does not
impact the success rate based on our observations.

Agent grounding. To ensure the successful integration of language-based methodologies in
decision-making processes, it is imperative to establish a scalable framework that guarantees the
admissibility of actions derived from the language model. While the preceding steps of sampling
produce a state-grounded action that is both feasible and grounded in the task, it may not be executable
by the agent due to issues such as improper formatting. To address this, Implicit RCI is employed,
whereby an agent-grounded action is sampled conditioned on the current state, task, task-grounded
action, and state-grounded action. The LLMs are prompted to consider specifications of the computer
agent. The implicit RCI is repeatedly run until the resulting action is executable, with a maximum
loop count set to limit the number of iterations. Empirical analysis on MiniWoB++ tasks suggests
that setting the loop count to 3 yields optimal performance.

3 Evaluation

3.1 Reasoning tasks

In our grounding enhancement process, RCI prompts the LLM to criticize its prior output, considering
the given context (e.g., current task, state, and agent), which ultimately leads to improved output. We
first demonstrate the effectiveness of RCI prompts in augmenting the reasoning capabilities of LLMs
across a range of reasoning benchmarks. We compare RCI to Chain-of-Thought (CoT) prompting, a
state-of-the-art method recognized for its effectiveness in reasoning tasks.

Specifically, we compare our approach with Few-Shot-CoT [73|] where a few chain-of-thought
demonstrations are given as examples in prompting, and Zero-Shot-CoT [33]] that elicit multiple
reasoning steps by simply adding "Let’s think step by step” to the prompt. Following Kojima et
al. [33]], our evaluation is conducted with 8 datasets from two categories of reasoning: arithmetic and
commonsense. Please refer to Appendix [C.2]for a comprehensive depiction of the datasets. We use
the same experimental setting with their answer extraction method except that we use InstructGPT-3 +
RLHF (gpt-3.5-turbo) as the underlying language model. We use the same prompts that CoT uses and
we also use the answer cleansing approach used in CoT, but we only used answer extraction prompting
in zero-shot CoT experiments. We also use the same few-shot examples that were introduced in
[73] to evaluate Few-Shot CoT’s performance on five arithmetic reasoning tasks. A threshold is
established by setting the maximum number of RCI loops to two, terminating the loop once the
output aligns with the ground-truth data. We observed that in the absence of this external feedback
mechanism, the RCI process is prone to false negative critics, subsequently leading to a decrease in
performance. Experimental results indicate that RCI without external feedback achieves zero-shot
performance in half of the benchmark tests, but underperforms in others, as shown in Appendix

Comparison with Zero-Shot. RCI prompting is better at solving reasoning tasks compared to zero-
shot prompting. Table [I|summarizes the accuracy of our approach (Zero-Shot + RCI) and standard
zero-shot prompting for each reasoning benchmark. Zero-Shot + RCI substantially outperforms the

standard prompting in all benchmarks including arithmetic (GSM8K, MultiArith, AddSub, AQUA,
SVAMP, SingleEq) and common sense (CommonSenseQA, StrategyQA) tasks. RCI prompting
even achieves score gains from two arithmetic reasoning tasks (SingleEq and AddSub), which
do not require multi-step reasoning. This distinguishes our RCI prompting from the previous
CoT prompting methods [[73], 133] that are not useful in simple reasoning tasks. It is also worth
noting that RCI prompting achieves a significant performance gain in commonsense reasoning tasks
(CommonSenseQA and StrategyQA). While Wei et al. [[73] reported that only a substantially large
PalLM (540B) model can benefit from Few-Shot-CoT, RCI prompting can provide performance gain
even with a smaller InstructGPT-3 + RLHF (175B) model.

Arithmetic Common Sense

GSM8K MultiArith AddSub ~ SVAMP SingleEq AQuA CommonSenseQA StrategyQA

Zero-Shot 77.95 94.48 88.58 80.70 86.61 60.23 64.56 48.81
Zero-Shot + RCI 85.43 97.64 89.76 84.65 94.49 67.32 68.11 61.81

Table 1: RCI prompting increases the reasoning capability of LLMs on all of eight reasoning
benchmarks.

Comparison with Chain-of-Thought. The performance results of RCI and CoT baselines on
arithmetic reasoning tasks are summarized in Table [2] Notably, Zero-Shot + RCI outperforms
Zero-Shot CoT and Few-Shot CoT without any CoT prompting in four tasks except MultiArith.
In MultiArith tasks, where most of the standard prompting’s answers are correct (96.06%), RCI
prompting does not yield significant performance gains. RCI prompting has a synergistic collaborative
impact on the two CoT baselines. Namely, Zero-Shot CoT + RCI and Few-Shot CoT + RCI attain the
highest scores on four out of the five tasks. These findings suggest a promising avenue for future
research: combining RCI with other prompting methods for CoT, such as self-consistency [58]].

GSMB8K MultiArith AddSub SVAMP SingleEq

Zero-Shot 78.35 96.06 85.83 78.35 91.34
Zero-Shot + RCI 85.43 97.64 89.76 84.65 94.49
Zero-Shot CoT 82.28 96.85 83.86 79.92 89.37
Zero-Shot CoT + RCI 86.22 97.24 89.88 85.83 90.94
Few-Shot CoT 80.31 98.82 89.37 83.46 91.73
Few-Shot CoT + RCI 84.25 99.21 90.55 87.40 93.70

Table 2: Chain-of-Thought prompting exhibits a synergistic effect when coupled with RCI prompting
in arithmetic reasoning tasks.

3.2 Computer tasks
3.2.1 Setup

MiniWoB++ benchmark suite. The miniwob++ task suite is selected as the main benchmark to
evaluate our computer agent. MiniWoB++ [36], an extension of MiniWoB [61], is a web-based
simulation environment that offers a diverse range of computer tasks, from simple button-clicking to
complex compositional tasks requiring advanced reasoning, such as solving math problems. Its shared
action space, including keyboard and mouse, and a common state space centered around HTML code
enables our proposed agent to be thoroughly evaluated in ample tasks. Additionally, the varying levels
of complexity between tasks enable a systematic evaluation of our work. The action space consists of
two operations each of which controls the keyboard and mouse. The first action enables typing of
arbitrary characters or special keys such as Backspace and Enter. The second action involves moving
and clicking the mouse, allowing the agent to interact with visible HTML elements on a webpage.
All actions can be executed through natural language instructions defined by regular expressions that
are presented within the initial prompts provided to the LLMs. The regular expressions employed in
our evaluation are presented in Appendix [D] Our action space definition is similar to previous works,

MiniWoB++ Average Performance MiniWoB++ Average Performance

% B Few-Shot In-Context Learning (Ours) 0.94 0.94 i A vs. Amount of Data
o, 076 820 1 "] Ours
- . X
§ o CC-Net (SL + RL)
8 = o
(}; x Workflow guided exploration
° § (SL+RL)
> S X WebN-T5-38
>
(9 @ | WebN-T5-3B
< g (no action history) %
o
2. World of bits CC-Net (SL)
< (SL+RL)
Model Amount of Demos per Task
(a) (b)

Figure 4: (a) Average performance comparison with baselines. Our agent with RCI prompting
achieves state-of-the-art performance in MiniWoB++ environment. The tasks that were included in
the averaging process are indicated in Table[I8] (b) Relationship between performance and amount
of expert training data. Our agent displays comparable performance to the current state-of-the-art
scores on the MiniWoB++ benchmark, despite using the least amount of data.

such as [23] [36]), in which clicking actions directly interact with HTML elements. However, for
typing actions, we extend beyond simple form-filling by using keyboard-based typing actions. Instead
of relying on dictionary-based typing actions [30]], where the agent simply chooses from a predefined
dictionary of texts, our approach requires the agent to predict the proper text input. Our approach,
therefore, has a better generalization capability for diverse computer tasks. The state space of our
agent consists solely of HTML code.

Model choices. For the purpose of evaluating the effectiveness of RCI prompting, multiple lan-
guage models are used in our experiments. Specifically, we employ three models, namely, GPT-3
(davinci) [3]], InstructGPT-3 (text-davinci-002) [57]], and InstructGPT-3 + RLHF (gpt-3.5-
turbo, gpt-4) [47]]. Unless otherwise specified, we primarily evaluate our computer agent with the
InstructGPT-3 + RLHF models (gpz-3.5-turbo, gpt-4). Additionally, we use GPT-3 and InstructGPT-3
models for ablation studies. All the models were obtained through the OpenAl API, and further
details can be found in Appendix [C.T]

Evaluated tasks. We employ a set of 55 tasks to enable fair comparisons with baselines, as previous
works are only evaluated on a subset of tasks consistently. Furthermore, to assess the performance of
models on challenging tasks, we have selected tasks that involve free-form language typing actions,
which have been reported to have an almost-zero success rate in previous works (e.g., terminal).
Notably, certain commonly evaluated tasks in prior works are excluded due to the excessive length of
HTML code for some UI components, which are described in Appendix [C.3]

Metrics Consistent with prior studies, our main evaluation criterion is the success rate, which
measures the ability of our agent to actually complete the assigned task. This rate is calculated as the
proportion of successful episodes, which are defined as those in which the agent receives a positive
reward. We identified two modes of failure: the production of unexecutable actions and task failure.
When the agent generates an unexecutable action following the implicit RCI step, it fails immediately.
Moreover, an episode is considered unsuccessful when the agent, despite effectively executing the
plan generated, is unable to accomplish the task and thus receives no reward.

3.2.2 Outperforming baselines on MiniWoB++ task suite

We present Figure fa] which summarizes the average success rate of our agent and baseline models
over the MiniWoB++ benchmark. The results demonstrate significant outperformance of our approach
over supervised learning models. Specifically, we observe a 41% higher score than the WebN-T5-
3B, which employs a finetuned large language model with 12K expert demonstration data. Our
approach also outperforms reinforcement learning approaches that require an order of magnitude

more interactions with the environment. Among all the baselines, our approach achieves the second
highest score. The sole model that surpasses our agent is the CC-Net, which involves co-training
of reinforcement learning and imitation learning. However, a direct comparison with CC-Net is
not possible since it uses dictionary-based typing actions. In other words, CC-Net selects text from
a predefined list for typing actions in some tasks, while our approach is fully generative. Thus,
CC-Net (without dictionary-based action) in Figure a] serves as our appropriate comparison and we
outperform it by 6%. The performance data for CC-Net (with no dictionary-based action) is obtained
from the ablation study section in their paper [30].

Another comparative analysis is performed to evaluate the performance of our agent in contrast to the
state-of-the-art agents in three categories, namely supervised learning, reinforcement learning, and
a combination of both. To facilitate a fair comparison, we specifically isolate LLM-based state-of-
the-art approaches, which share similarities with our approach to solving computer tasks. The best
per-task performance achieved by each category is then aggregated, and the outcomes are presented
as SotA in Figure [da] The result shows that our agent surpasses SotA by 37 percentage points in
supervised learning and by 27 percentage points in reinforcement learning. Notably, our proposed
RCI prompting method outperforms the SotA LLM approach [24], even when the latter employs
both finetuning and few-shot examples in prompts. This outcome highlights the effectiveness of our
approach in extracting vital knowledge for computer tasks from language models. Our agent even
achieves a slight edge over SotA (less than 1 percentage point) in the combined use of supervised and
reinforcement learning, which employs significantly more expert data and online interactions. We
also provide task-level performance comparisons in Figure[T0] where tasks are arranged in ascending
order based on the difference between our agent’s performance and the baseline. We observed three
main failure modes of our agent: (i) underperformance in tasks that require long-horizon planning
(e.g., guess-number, search-engine, use-spinner), (ii) difficulty in selecting appropriate actions for
tasks that require multi-step reasoning (e.g., tic-tac-toe, use-autocomplete), and (iii) lower scores in
tasks that rely on visual rendering of HTML code to solve the task (e.g., count-shape). These failures
are explained in more detail in Appendix

3.2.3 Lowest sample complexity

Figure fib| provides a comparative analysis of the total number of samples used in several models and
their mean performance. We begin by discussing CC-Net [30] model, which employs 2.4 million
expert demonstrations (equivalent to 6,300 hours) collected from 77 human participants across 104
tasks for behavior cloning. This amounts to an average of 23,076 demonstrations per task. In contrast,
the WebN-T5-3B [24] model uses 12,000 expert demonstrations to fine-tune its pre-trained TS model.
Rather than directly updating model parameters with demonstration data, our approach involves
integrating two to three demonstrations into the prompt for in-context learning, which biases the
model output without any parameter updates. This approach allows our agent to generalize to unseen
tasks with only a handful of demonstrations. Our results show that our agent achieved a higher
success rate than all baselines, requiring 120x fewer samples than WebN-T5-3B and 11,000x fewer
samples than CC-Net. Given the challenges of obtaining expert demonstrations for computer tasks,
our findings demonstrate the practicality of our approach in automating such tasks.

3.2.4 Ablating the groundings

This section examines the impact of grounding improvement on task success rates. We conduct
ablations to isolate the contributions of task, state, and agent grounding improvements by eliminating
RCI prompting at each stage. We categorize tasks by three different difficulty levels to provide a
more detailed understanding of the effects of grounding improvements across a diverse range of tasks.
We conducted a task grounding ablation by eliminating the plan sampling stage. This modification
entails generating actions directly from the state, without the need for conditioning on a step-by-step
plan. State grounding is evaluated by directly applying the agent-grounding update to task-grounded
actions. Lastly, we ablate the implicit RCI of the agent grounding by letting the state-grounded
action be the final output of the agent. Figure [5illustrates the performance degradation resulting
from each ablation of grounding. Our results indicate that each grounding contribution is essential
to solving computer tasks, with each contributing almost equally to the overall success rate. The
reason for this is partially due to the fact that the three methods of improving grounding are not
mutually exclusive, but rather complementary, with one enhancement in grounding contributing to
multiple action groundings. Examples of cross-grounding improvement are provided in Appendix

Moreover, it has been observed that state grounding plays a crucial role in enabling an agent to use
relevant information during episodes, particularly in scenarios where the initial state does not offer
sufficient information to accomplish the task, such as terminal task. Interestingly, task grounding
significantly improves the success rate when a task requires a long-horizon action plan, such as
the click checkboxes large task. We also observe that agent grounding significantly enhances the
feasibility of actions. Notably, in simpler tasks, the success rate decreases by 60% in contrast to the
baseline without the agent grounding. This finding is of particular significance as it distinguishes
our work from prior investigations [T} 28], which employ additional trained model components. In
contrast, our study solely relies on the reasoning ability of language models.

E Medium Har
O 1.0 asy O 10 ediu O 10 ard
-— -— “—
® o8 © o8 ® o5
N o6 0 o6 N o6
o o o
0.4 0.4 0.4
0.2 0.2 0.2
A . A A
@ oo @ oo @ oo B N ==
Baseline W\(hou(Without Without Baseline W||h0u| Without Without Baseline Without Without Without

state agent state agent task state agent
groundlng grounding grounding ground\ng grounding grounding grounding grounding grounding

Figure 5: Ablation analysis on the different types of grounding across tasks with varying degrees of
difficulty. The experimental design employs the use of InstructGPT-3 + RLHF model (gpz-3.5-turbo).

3.2.5 Ablating the language model

The performance of our agent is contingent on the quality of the underlying pre-trained language
models used, so enhancing language models can lead to an improvement in the agent’s performance.
In this section, we present a comparison of the agent’s performance using three distinct language
models: GPT-3, InstructGPT-3, and InstructGPT-3 + RLHF (gp#-3.5-turbo). Our objective is to
investigate the relationship between LLMs’ capability and their ability to solve MiniWoB++ tasks.
The experimental setting employed in Section [3.2.4]is replicated in this study. Figure [f] depicts
the average success rate of three language models on tasks of varying difficulty levels. Our results
reveal that LLMs struggle to effectively complete tasks without instruction fine-tuning. This may
be attributed to the absence of intricate prompt engineering, as our observations have indicated
that GPT-3 displays sufficient competence in comprehending HTML code, regular expressions, and
engaging in reasoning.

Easy Medium Hard

D 1.00 D 1.00 9 100
© © ©
~ 075 ~ 075 ~ 075
? B B

0.50 0.50 0.50
3 3 3
O 025 O 025 O 025
2 - 2 | —
) 0.00) 0.00) 0.00

InstructGPT-3 InstructGPT-3 GPT-3 InstructGPT-3 InstructGPT-3 GPT-3 InstructGPT-3 InstructGPT-3 GPT-3
+RLHF +RLHF +RLHF

(Baseline) (Baseline) (Baseline)

Figure 6: Ablation study on different language models across tasks of varying degrees of difficulty.

4 Limitations

In the course of our work, several limitations became apparent that may serve as potential avenues
for further research. One central concern is our primary focus on the InstructGPT-3 + RLHF models
(gpt-3.5-turbo, gpt-4), leaving the generalization ability of RCI to other models unexplored. The
versatility of RCI across diverse models remains a pertinent question, suggesting that future studies
should expand their scope to determine the robustness and adaptability of RCI. Handling lengthy
HTML presents another challenge. The current model grapples with extensive HTML states. While it
has been suggested that efficiency might be bolstered by pruning HTML states to exclude non-critical

elements, the task itself is non-trivial. A fundamental constraint of LLMs is the limited context
length, which can hamper handling extensive HTML states effectively. Addressing this may require
architectural adjustments or novel parsing methods. Our agent’s action space, mainly restricted to
clicks and typing, limits its web navigation capabilities. There’s a need to diversify its actions for a
more seamless experience. Furthermore, The agent’s focus on short-term decisions overlooks the
necessity for long-term strategy, especially in tasks requiring coordinated sequences. Broadening
this focus is essential for versatile applications. Lastly, the intricate Ul components populating
contemporary websites present a challenge for LLMs to fully understand the HTML states. The
subtle nuances of such components, which may not be discernible through HTML alone, underscore
the need for adding more modalities to the state definition. Addressing these issues is crucial to
enhance the RCI agent, making it more adaptable and efficient in practical applications.

5 Discussion

This work is part of a growing literature showing that LLMs might be all you need for hard decision-
making problems [76]. In contrast to imitation learning and reinforcement learning approaches,
LLMs can solve novel tasks in a zero-shot or few-shot manner, and don’t require task-dependent
expert data or a reward function. Furthermore, we expect that as the capabilities of LLMs and
foundation models increase, our method will naturally improve as well. However, we find that
current capabilities of LLMs aren’t as powerful as task-dependent SL+RL approaches on some
computer tasks. Also, RCI is more expensive to run compared to approaches that just sample once
from the LLLM. There are many avenues for future research in increasing the capacity of LLMs in
decision-making tasks. First, our experiments use LLMs on HTML code, but ideally methods based
on multimodal foundation models [16, 55/ 2} 146]] will be able to take actions based on text, images,
audio, and video as input [4} 1844, [71]. Second, the results presented in this paper all use pre-trained
LLMs. We expect the performance of our method to increase when using LLMs fine-tuned to solve
computer tasks.

Importantly, current LLMs are poor at reasoning tasks, such as playing tic-tac-toe, because they do
not think ahead. Although RCI improves reasoning capabilities in LLMs, there exists much work
to be done on increasing the reasoning capabilities in LLMs. This will be crucial to accomplish
hard cognitive tasks on computers that require thinking ahead. Similar to other prompting-based
approaches for reasoning in LLMs, RCI can be viewed as using the LLM’s output to write to an
external memory, which is later retrieved to choose an action. LLMs with memory have been
demonstrated to be computationally universal [60], meaning that in principle all that is needed to
run arbitrary programs is the right prompt. Since RCI represents a basic version of this powerful
framework, we anticipate the development of more advanced RCI variations in the future. There
is a vast array of potential methods that repeatedly feed the output of particular prompts into the
LLM. For example, multiple different LLMs can simulate the information exchange between team
members in an organization. This would enable the merging of diverse perspectives to tackle complex
problems. In such a context, incorporating game theory and multi-agent systems research could
significantly enhance the overall performance. Reinforcement learning could be used to discover
effective structures involving loops and prompts [81]], either through human feedback or a given
reward function. This optimization process can be further refined by exploring the space of potential
loop and prompt structures, identifying those that yield the best results, and fine-tuning the model
accordingly [75]].

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant #2127309
to the Computing Research Association for the CIFellows 2021 Project.

References

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as I can, not
as I say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

10

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716-23736, 2022.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639-24654,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-
Yves Oudeyer. Grounding large language models in interactive environments with online
reinforcement learning. arXiv preprint arXiv:2302.02662, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can GPT learn
in-context? Language models secretly perform gradient descent as meta optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix
Hill, and Rob Fergus. Collaborating with language models for embodied reasoning. In Second
Workshop on Language and Reinforcement Learning, 2022.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo
Lopes, Yuhuai Wu, Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. Language
model cascades. arXiv preprint arXiv:2207.10342, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. International
Conference on Learning Representations, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. PaLM-E: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLaM: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547-5569. PMLR, 2022.

11

[18] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[19] Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Instruction-finetuned foundation models for multimodal web navigation. In Workshop on
Reincarnating Reinforcement Learning at ICLR, 2023.

[20] Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamilé Lukositté, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, et al. The capacity for
moral self-correction in large language models. arXiv preprint arXiv:2302.07459, 2023.

[21] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies.
Transactions of the Association for Computational Linguistics, 9:346-361, 2021.

[22] Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds,
Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment
of dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

[23] Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook Choi, Manoj Tiwari, Honglak Lee, and
Aleksandra Faust. Environment generation for zero-shot compositional reinforcement learning.
Advances in Neural Information Processing Systems, 34:4157-4169, 2021.

[24] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowd-
hery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding HTML with large
language models. arXiv preprint arXiv:2210.03945, 2022.

[25] Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate
the web. In International Conference on Learning Representations, 2019.

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
An empirical analysis of compute-optimal large language model training. Advances in Neural
Information Processing Systems, 35:30016-30030, 2022.

[27] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning
to solve arithmetic word problems with verb categorization. In EMNLP, pages 523-533, 2014.

[28] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118-9147. PMLR, 2022.

[29] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied
reasoning through planning with language models. In 6th Annual Conference on Robot Learning,
2022.

[30] Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia,
Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers. In International Conference on Machine
Learning, pages 9466-9482. PMLR, 2022.

[31] Taichi Iki and Akiko Aizawa. Do BERTSs learn to use browser user interface? Exploring
multi-step tasks with unified vision-and-language berts. arXiv preprint arXiv:2203.07828, 2022.

[32] Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. DOM-Q-NET: Grounded RL on structured
language. In International Conference on Learning Representations, 2019.

[33] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. In Advances in Neural Information Processing
Systems, 2022.

12

[34] Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Du-
mas Ang. Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3:585-597, 2015.

[35] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. Proceedings of ACL, 2017.

[36] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

[37] Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny
Zhou, and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation.
In International Conference on Learning Representations, 2023.

[38] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[39] Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it
takes two to tango. arXiv preprint arXiv:2209.07686, 2022.

[40] Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chad-
wick, Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, et al. Teaching
language models to support answers with verified quotes. arXiv preprint arXiv:2203.11147,
2022.

[41] Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al.
Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

[42] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. WebGPT: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[43] Rodrigo Nogueira and Kyunghyun Cho. End-to-end goal-driven web navigation. Advances in
Neural Information Processing Systems, 29, 2016.

[44] Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi,
Sameer Singh, and Roy Fox. Do embodied agents dream of pixelated sheep?: Embodied
decision making using language guided world modelling. arXiv preprint arXiv:2301.12050,
2023.

[45] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your

work: Scratchpads for intermediate computation with language models. In Deep Learning for
Code Workshop at ICLR, 2022.

[46] OpenAl. Gpt-4 technical report, 2023.

[47] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730-27744, 2022.

[48] Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. ART: Automatic multi-step reasoning and tool-use for large language
models. arXiv preprint arXiv:2303.09014, 2023.

[49] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy Liang. Mapping natural

language commands to web elements. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4970-4976, 2018.

13

[50] Panupong Pasupat and Percy Liang. Zero-shot entity extraction from web pages. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 391401, 2014.

[51] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? Proceedings of NAACL, 2021.

[52] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[53] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[54] Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie
Tellex. Planning with large language models via corrective re-prompting. Foundation Models
for Decision Making workshop at NeurIPS, 2022.

[55] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gémez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. Transactions on Machine Learning Research, 2022.

[56] Subhro Roy and Dan Roth. Solving general arithmetic word problems. EMNLP, 2016.

[57] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, et al. Multitask prompted training
enables zero-shot task generalization. In International Conference on Learning Representations,

2022.

[58] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

[59] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[60] Dale Schuurmans. Memory augmented large language models are computationally universal.
arXiv preprint arXiv:2301.04589, 2023.

[61] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In International Conference on Machine
Learning, pages 3135-3144. PMLR, 2017.

[62] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[63] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort: What and where pathways for
robotic manipulation. In Conference on Robot Learning, pages 894-906. PMLR, 2022.

[64] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using
deepspeed and megatron to train megatron-turing NLG 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[65] Shashank Srivastava, Oleksandr Polozov, Nebojsa Jojic, and Christopher Meek. Learning web-
based procedures by reasoning over explanations and demonstrations in context. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7652—7662,
2020.

[66] Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented
language models. In International Conference on Learning Representations, 2023.

14

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. Proceedings of NAACL-HLT,
2019.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. LaMDA: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. In International Confer-
ence on Learning Representations, 2023.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053,
2022.

Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought im-
itation with procedure cloning. Advances in Neural Information Processing Systems, 35:36366—
36381, 2022.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik R Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping reasoning
with reasoning. Advances in Neural Information Processing Systems, 35:15476—-15488, 2022.

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof Choromanski, Federico Tombari, Aveek
Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, et al. Socratic
models: Composing zero-shot multimodal reasoning with language. In International Conference
on Learning Representations, 2023.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. TEM-
PERA: Test-time prompt editing via reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Conference
on Learning Representations, 2023.

15

Appendix

A Broader Impacts

Although the results presented in this paper are only on a research benchmark, if we extrapolate
forward the capabilities of these models and methods, we anticipate vast broader impacts that have
the potential to revolutionize numerous industries. By allowing LLMs to execute tasks on computers,
our approach can enhance the capabilities of Al assistants and automation tools. This could lead to
increased efficiency, reduced labor costs, and improved user experiences across any sector which
uses computers to do work. We are most excited about gains in productivity in science and education,
including Al research, which will lead to even faster development of new beneficial technologies and
treatments.

However, there are many potential misuses and unintended consequences associated with allowing
these models to take actions in the world. Malicious actors may leverage LLMs to automate cyber-
attacks, manipulate information, or propagate disinformation on a large scale. Additionally, the
potential loss of jobs due to widespread automation could lead to economic disruption and increased
income inequality. There are also obvious security risks of running LLMs on computers (or even
virtual machines) such as prompt injection attacks. Perhaps most alarming, future LLMs taking
actions on computers may lead to catastrophic runaway chains of events, especially if LLMs are
integrated widely in the economy.

To mitigate these risks, it is crucial for researchers, policymakers, and industry leaders to work
together to establish regulations and ethical guidelines that govern the development and deployment
of such technologies. Ensuring transparency, accountability, and fairness in Al systems will be vital
in harnessing the benefits while minimizing potential harm. We also believe that the time has come
where we as a research community must discuss possible ways to coordinate to slow down the pace
of developing highly-disruptive technology, if necessary.

16

B Related Works

B.1 Automated computer tasks

The automation of computer tasks is an important topic for both information retrieval and natural
language processing [43) 150, 49, 31} 165]]. Recent efforts have focused on the development of
reinforcement learning agents that interact with websites using raw mouse and keyboard actions [61].
MiniWoB, a benchmark proposed in [61], has been extended in MiniWoB++ [36], which has become
a widely-used platform for studying models for computer tasks. Reinforcement learning and imitation
learning have been employed in several studies to tackle MiniWoB++ tasks [36} 25,132, 23]. However,
achieving human-level performance requires a significant amount of expert demonstration data (6,300
hours), as demonstrated in [30]. Recent work [24}[19] has suggested the use of large language models
(LLMs) to comprehend HTML code and vision transformer [[15] to extract screenshot image features,
with a few-shot in-context approach showing promising results without extensive RL exploration.
Nevertheless, significant amounts of expert demonstration data are still required to finetune LLMs. On
the contrary, the agent we suggest needs less than two demonstrations per task on average and doesn’t
necessitate any finetuning. WebGPT [42] and WebShop [[77]] show that LLMs can automate some
web-based tasks by introducing a handful of custom commands such as Search <query> and Next
Page. As a result, these methods are limited in scope and do not work on general computer tasks
which require keyboard strokes and mouse clicks. In contrast, our approach can tackle open-domain
tasks at scale.

B.2 LLMs with actions

In recent years, there have been significant advancements in large language models (LLMs), leading
to new possibilities for utilizing natural language for decision-making tasks. One approach involves
augmenting LLMs with executable actions [41]. Huang et al. [28]] showed that LLMs can be used
to plan and achieve simple household tasks, utilizing a method for grounding the actions generated
by LLMs by comparing their embeddings with a predefined list of admissible actions. However,
their work did not consider state grounding. Another study by Ahn et al. [1] proposed SayCan,
which grounded the actions by multiplying each candidate action’s probability under FLAN [72]
with the action’s value function, serving as an indicator for the suitability of actions. Huang et
al. [29] proposed an extension to the SayCan model called Inner Monologue, which incorporates a
feedback loop for state grounding. However, Inner Monologue still requires a pre-trained language-
conditioned robot policy with underlying reasoning capabilities that are not free-formed and flexible,
thereby hindering generalization to diverse task domains. Similarly, Zeng et al.[80] employed a
combination of LLMs with a visual-language model (VLM) and a pre-trained language-conditioned
robot policy [63]] to perform open vocabulary pick-and-place robotic tasks. Meanwhile, Dasgupta
et al.[13] used Chinchilla[26] as a planner for an agent in the PycoLab environment, but their actor
module requires pre-training with reinforcement learning (RL) to follow natural language instructions.
In a related line of research, Carta et al. [7] employed online RL fine-tuning to achieve functional
grounding of LLMs in the BabyAI-Text environment. In contrast to these previous approaches, our
method does not rely on additional model components beyond LLMs for grounding actions. Instead,
we propose the use of RCI prompting, which enables LLMs to update their actions to be grounded
autonomously. As a result, our approach can scale to a wider range of action spaces, including
keyboard and mouse actions. Furthermore, prior approaches have been limited by the need for
fine-tuning. In contrast, our RCI prompting method is a zero-shot approach that overcomes these
limitations. More recently, an approach to improve the efficacy of LLMs involves their integration
with APIs, allowing them to use external tools such as information retrieval systems, code interpreters,
and web browsers [59] 168,40, [22]]. Notably, these external tools necessitate manual engineering and
may be constrained in their functionality. In contrast, our agent is equipped with a general computer
interface, enabling it to access a wide range of functionalities offered by computers.

B.3 LLMs with reasoning

Recent research has also demonstrated that large language models (LLMs) exhibit enhanced per-
formance in compositional tasks when they produce traces of the underlying reasoning process
along with the final answer, as evidenced by studies such as [73} 145} 33/ [52]. This discovery has led
to the emergence of a new line of research where reasoning capabilities are used to address tasks

17

beyond reasoning [[78, [29], or enhance reasoning proficiency [33l |37, [70L [391 [79] I53| [75] |66, [14]].
Furthermore, various reasoning architectures have been proposed, expanding from naive prompting,
such as Selection-Inference [[11]], Least-to-Most [[82], and Faithful reasoning [10]. In the existing
literature, a work closely related to our research is ReAct [[78]] which interleaves reasoning and action
for resolving the issue of hallucination and error propagation as well as helping the model induce,
track, and update action plans. An alternative method, Reflexion [62], extends ReAct by improving
its performance by allowing LLMs to consider previous trial and error experiences. Nevertheless,
due to the necessity of multiple rounds of explicit task-specific success feedback from trial and
error, this approach may not scale as effortlessly as ours because it requires task-specific success
feedback. Similarly, Corrective Re-prompting, as proposed by Raman et al. [54] necessitates the
establishment of task-specific preconditions. RCI pertains to an extended reasoning architecture
where LLMs are instructed to find errors in their outputs and improve them accordingly, which can
further be used to ground actions generated from LLMs in decision-making problems. Saunders et
al. [58] used a similar approach to ours by utilizing the self-critiquing ability of LLMs to generate
critical feedback on summaries produced by LLMs. The aim is to accelerate the human evaluation
process by uncovering possible errors in the generated summaries. Likewise, Ganguli et al. [20],
employed LLMs to morally self-correct their outputs to prevent the generation of harmful content.
The most recent work that is in the same vein with RCI is Self-Refine [38] which uses localized and
aspect-based feedback to iteratively refine outputs from LLMs. However, our work is, to the best
of our knowledge, the first to demonstrate the self-critiquing capability of LLMs only with implicit
feedback (e.g., "Find problems with this plan") in enhancing reasoning proficiency.

18

C Experimental setup

C.1 Language models

In our evaluation, various pre-trained language models were used. RCI prompting on reasoning tasks
is evaluated using gpr-3.5-turbo, which is presented in Table[T]and Table[2] Our primary evaluation on
MiniWoB++ tasks is conducted using gpt-3.5-turbo and gpt-4, as shown in Figure 4afand Figure
We also used davinci, text-davinci-002, and gpt-3.5-turbo for our ablation study on MiniWoB++
tasks. For all model usage, a maximum token length of 256 and a temperature value of 0, indicating
greedy decoding, are used. All models are accessed through the OpenAl API between January 2023
and March 2023.

Language model # of parameters Max. tokens API provider ~API name
GPT-3 175 B(x1) 2,049 OpenAI API davinci
InstructGPT-3 —(x2) 4,097 OpenAI API text-davinci-002
InstructGPT-3 + RLHF —(%2) 4,096 OpenAI API gpt-3.5-turbo
InstructGPT-3 + RLHF —(%2) 8,192 OpenAI APT gpt-4

Table 3: Description of language models. (x1) We identify the model size of GPT-3 by referring to the
official document that OpenAl provides (https://beta.openai.com/docs/model-index-for-researchers).
(#2) The size of InstructGPT-based models remains undisclosed by its provider.

C.2 Reasoning tasks

We conducted an evaluation of RCI prompting on eight datasets, encompassing two categories of
reasoning tasks: arithmetic and commonsense. In the domain of arithmetic reasoning, we considered
six datasets: SingleEq [34], AddSub [27], MultiArith [56], AQuA [35], GSM8K [9]], and SVAMP [51]].
For commonsense reasoning, we utilized the CommonsenseQA dataset [67] and the StrategyQA
dataset [21]. To ensure a fair comparison with baselines, we specifically selected tasks that were
employed in the work of Kojima et al. [33]]. In the experiment on reasoning tasks, we enable RCI loop
to get implicit feedback to correct outputs. We fix the maximum number of loops to 2. Following
previous works [38, 162, [74], we use the correct label to decide when to stop the RCI loop. In our
setting, we can consider the correct label to be another source of feedback (label feedback).

C.3 MiniWoB++ task selection

In order to ensure a fair and comprehensive evaluation, a subset of MiniWoB++ tasks we use in the
evaluation is selected from the evaluation of WebN-T5-3B [24], the most recent work on MiniWoB++
tasks, which employs LLMs. However, certain tasks such as book-flight, choose-date-easy, choose-
date-medium, choose-date, and click-pie have been excluded from our evaluation due to their HTML
code exceeding the maximum context length of language models. On the other hand, some of the
challenging tasks such as terminal and simple-algebra have been included in the evaluation. The
choice of these tasks is determined by the suboptimal performance of CC-Net [30], which currently
represents the state-of-the-art model in the field. The purpose of this inclusion is to showcase
the potential of leveraging LLMs in computer tasks, in contrast to the conventional approaches of
Supervised Learning (SL) and Reinforcement Learning (RL). While our agent has not been evaluated
on tasks that necessitate additional actions, such as drag and copy & paste, we posit that their inclusion
can be readily achieved through the expansion of the actions space specification within the prompts.

C.4 MiniWoB++ task selection for ablation studies

In ablation studies, we categorize the tasks based on the success rate achieved by our agent with
gpt-3.5-turbo. We select a subset of tasks from three levels of difficulty, as depicted in Table]

19

click-shape ~ 0.98
easy [0.9, 1] click-widget = 0.98
enter-date ~ 0.96

click-checkboxes-soft 0.72
medium [0.6, 0.9) click-collapsible-2 0.62
click-tab-2 0.74

click-tab-2-hard ~ 0.56
hard [0, 0.6) count-shape 0.4
guess-number 0.2

Table 4: The tasks used in the ablation study are classified according to their level of difficulty.

C.5 Modifications on MiniWoB++ tasks

In Table[5] we outline several modifications that were incorporated into the MiniWoB++ benchmark
for the purpose of our evaluation with language models that have a limited context length.

Tasks | Modifications

social-media
social-media-some

social-media-all
We constrain the quantity of media components ranging from three to six.

email-inbox-forward-nl-turk
email-inbox-forward-nl
email-inbox-nl-turk

The quantity of randomly generated emails has been restricted to a range of three to six.

Table 5: Modifications on MiniWoB++ tasks.

20

D Prompts for MiniWoB++ tasks

We have an autonomous computer control agent that can perform a set of instructions to control
computers.

First, given the instruction that matches the regular expression, <type regex>, it can type a list of
characters via the keyboard. This instruction should specify the target keyboard input for the
agent to type. Before this typing instruction, you should first locate the cursor by clicking the
input box with the click instruction.

Second, given the instruction that matches the regular expression, <press regex>, it can press a
specific key on the keyboard.

Third, given the instruction that matches the regular expression, <clickoption regex>, it can click
an option HTML element in a list with an XPath that is visible on the webpage. The target of
this instruction should be a valid XPath.

Fourth, given the instruction that matches the regular expression, <movemouse regex>, it can
move the mouse cursor on an HTML element with an XPath that is visible on the webpage.
Lastly, given the instruction that matches the regular expression, <clickxpath regex>, it can click
an HTML element with an XPath that is visible on the webpage. The target of this instruction
should be a valid XPath.

Table 6: Agent specification.

<type regex> = "“type\s.{1,}$"

<press regex> = "“press\s(enter|arrowleft|arrowright|arrowup|arrowdown|
backspace) $"

<clickoption regex> = "~clickoption\s.{1,}$"

<movemouse regex> = "“movemouse\s.{1,}$"

<clickxpath regex> = "~clickxpath\s.{1,}$"

Listing 1: Regular expressions for specifying the admissible actions.

Based on the current plan and task, the next proper instruction should be

Table 7: Task grounding.

Considering the output on the webpage, the specific instruction should be *

Table 8: State grounding.

This action does not match the regular expressions. The updated instruction that matches one of
the regular expressions is

Table 9: Agent grounding.

21

E Examples of cross grounding

task: click on the "ok" button on the webpage.
plan:

1. type "sit arcu nullam:"

2. clickxpath //button| @data-wob_ref="6"]

We have a history of instructions that have been already executed by the autonomous agent so
far.
No instruction has been executed yet.

Based on the current plan and the task, the first instruction should be “type "sit arcu nullam:"".
Therefore, considering the output on the webpage, this instruction for solving the task should be
“clickxpath //button[@data-wob_ref="6"]".

Table 10: The state grounding optimizes the action plan. In the initial plan, the inclusion of the type
instruction is deemed superfluous for accomplishing the task.

task: Find the email by Clarinda and reply to them with the text "Vel id at.".
plan:

. clickxpath //div[@class="email-sender’ and text()="Clarinda’]

. clickxpath //span[@class="email-reply’]

. clickxpath //*[@id="reply-text"]

. type Vel id at.

. clickxpath //*[@id="send-reply"]

N W~

We have a history of instructions that have been already executed by the autonomous agent so
far.

0: clickxpath //div[@class="email-sender’ and text()="Clarinda’]

1: clickxpath //span[@class="email-reply’]

2: clickxpath //*[@id="reply-text"]

Based on the current plan and the task, the next proper instruction after the history should be
“type Vel id at™. Therefore, considering the output on the webpage, this instruction should be
“type Vel id at.”

Table 11: The state grounding corrects actions to be grounded in the task. Although the target
of typing action in the action plan is "Vel id at." the generated task-grounded action lacked the
last punctuation mark. Nonetheless, the state grounding update was successful in remedying this
discrepancy, resulting in the state-grounded action being "Vel id at." Consequently, the state-grounded
action now matches the typing action specified in the action plan.

22

F Failure modes on MiniWoB++ tasks

Click the button in the dialog box Select Kasey>Janet>Casie How many ys are there?
labeled "OK".
Kasey »
s Ronalday
Vel, amet. Nulla. Felis Dulei 7
tristique. c
Cancel OK ® 5 y 3
[o](8][e]
(a) click-dialog-2 (b) click-menu (c) count-shape

Figure 7: Screenshots.

F.1 click-dialog-2

The state-grounding process is occasionally inadequate for maintaining task-grounding of actions.
Specifically, in the click-dialog-2 task, grounding actions in the current state results in task-irrelevant
actions. Consequently, we opt to exclude the state grounding step for this particular task.

task: click the button in the dialog box labeled "x".

plan:

1. Clickxpath //div[@class="ui-dialog-titlebar ui-corner-all ui-widget-header ui-helper-clearfix
ui-draggable-handle’]/button[@title="Close’]

We have a history of instructions that have been already executed by the autonomous agent so
far.
No instruction has been executed yet.

Based on the current plan and task, the first instruction should be ‘clickxpath
//div[@class="ui-dialog-titlebar ui-corner-all ui-widget-header ui-helper-clearfix ui-draggable-
handle’]/button[@title="Close’]". Therefore, considering the output on the webpage, this
instruction should be * clickxpath //div[@class="ui-dialog-buttonset’]/button[@title="OK’]" to
click the button in the dialog box labeled "x".

Table 12: Example trajectory on click-dialog-2. The state grounding updates the task-grounded
actions to be irrelevant to the task.

F.2 click-menu

We find that including explanatory trajectories in the few-shot examples can significantly reduce
the number of required few-shot examples. Specifically, in the click-menu task, the selection of the
target component necessitates the mouse hovering over the expandable menu. Therefore, we provided
explanations regarding the mouse hovering technique in the few-shot examples.

F.3 count-shape

This task necessitates an agent to visually perceive rendered images on a canvas HTML element
and enumerate the relevant shapes. Unfortunately, our agent encounters difficulties in tackling such
tasks which entail the need for perceiving visual representations, as it solely depends on HTML
observation.

23

task: select Leonelle > Jane > Amabel from the HTML code provided.

plan:

1. movemouse //*[text()="Leonelle"] // we need to hover the mouse to expand the menu
2. movemouse //*[text()="Jane"] // we need to hover the mouse to expand the menu

3. clickxpath //*[text()="Amabel"]

task: select the option "Joye > Phylis" from the HTML code provided.

plan:

1. movemouse //*[text()="Joye"] // we need to hover the mouse to expand the menu

2. clickxpath //*[text()="Phylis"]

Table 13: Example trajectory on click-menu. Providing explanatory trajectory enhances the sample-
efficiency of few-shot examples.

task: answer the question "How many large items are there?".
plan:
1. Clickxpath //button[text()="2"]

Table 14: Example trajectory on count-shape. The agent struggle to solve tasks that requires visual
rendering of HTML.

Guess the number between 0-9 Enter the username "emile" and Playing as 'X', win a game of tic- Enter an item that starts with
and press Submit. Use the the password "yC" into the text tac-toe. "Iran".
feedback below to find the right fields and press login.
number.
Tags:

Waiting for your guess... Lo
Your session is

expiring soon.
T swme |

Exit to home page?

)

(a) guess-number (b) login-user-popup (c) tic-tac-toe (d) use-autocomplete

Figure 8: Screenshots.

F.4 guess-number

When considering decision-making that involves a long-term perspective, our agent encounters
difficulties in generating actions that are grounded in the current task. For instance, in this guess-
number task, the plan generated by our agent involves the sequential typing of numbers from O to 9
in order to solve the task. However, due to the high number of steps required (over 50), our agent
occasionally produces actions that deviate from the original plan, ultimately resulting in irreparable
failure.

F.5 login-user-popup

This task involves the identification of an optimal strategy for an agent to handle an unpredictable
pop-up window that emerges during a task. Due to the unexpected nature of the pop-up window,
pre-planning the closure of the window is not feasible. Our agent is designed to adapt the agent’s
actions to the current state, so it should generate an appropriate instruction to close the pop-up window
in the state-grounding step. Nevertheless, there are instances where it is unsuccessful in executing the
pop-up window closure, leading to task failure.

24

task: Guess the number between 0-9 and press Submit. Use the feedback below to find the right
number.

plan:

1. clickxpath //*[@id="tt"]
2. type 0

3. clickxpath //*[@id="subbtn"]
4. clickxpath //*[@id="tt"]
5. press backspace
6. type 1

7. clickxpath //*[@id="subbtn"]
8. clickxpath //*

9. press backspace

10. type 2

11. clickxpath //*[@id="subbtn"]
12. clickxpath //*[@id="tt"]

13. press backspace

14. type 3

15. clickxpath //*[@id="subbtn"]
16. clickxpath //*[@id="tt"]

17. press backspace

18. type 4

19. clickxpath //*[@id="subbtn"]
20. clickxpath //*[@id="tt"]

21. press backspace

22. type 5

23. clickxpath //*[@id="subbtn"]
24. clickxpath //*[@id="tt"]

25. press backspace

We have a history of instructions that have been already executed by the autonomous agent so
far.

0: clickxpath //*[@id="tt"]

: type O

: clickxpath //*[@id="subbtn"]

: press backspace

: type 1

: clickxpath //*[@id="subbtn"]

DB W~

Based on the current plan and the task, the next proper instruction should be “type 2°.

Table 15: Example trajectory on guess-number. The agent fails to generate task-grounded action
when long-horizon decision making is required.

F.6 tic-tac-toe

We also examine the causes of the poor success rate in playing tic-tac-toe. Two distinct factors are
identified as responsible for its failure. The first factor is that our agent is unable to adopt a defensive
strategy when its opponent is only one move away from victory and there is no immediate opportunity
to win the game. The second factor relates to the inability to consider the possibility of its attack
being blocked by the opponent. A case in point is the bottom-left illustration in Figure [9} where our
agent’s fourth move is ineffective since its diagonal direction is already obstructed by the opponent.

F.7 use-autocomplete

In use-autocomplete task, our agent demonstrated an ability to select words beginning with specific
characters. However, it struggles when it comes to selecting words that ended with particular

25

2
2 1 — LASP
4 4 3 5
4 6 3 6
2 1 1 2
513 5 4

Figure 9: Failure examples of tic-tac-toe task.

characters. This difficulty arose from the need to identify the correct word from the autocomplete list,
a process that required the agent to press the down arrow button the exact number of times needed to
locate the desired word within the list.

task: Enter an item that starts with "Se" and ends with "ia".

plan:

. click the input field (e.g., clickxpath //*[@id="tags"])

. type the starting word (e.g., type Se)

. press the down arrow key to select the word ends with "ia" (e.g., press arrowdown)
. select the word (e.g., press enter)

. click the submit button (e.g., clickxpath //*[@id="subbtn"])

AN N W N =

Table 16: Example trajectory on use-autocomplete. The agent fails to identify how many times it has
to press the down-arrow key.

26

G Additional results

Arithmetic Common Sense

GSM8K ~ MultiArith AddSub ~ SVAMP SingleEq AQuA CommonSenseQA StrategyQA

Zero-Shot 77.95 94.48 88.58 80.70 86.61 60.23 64.56 48.42
Zero-Shot + RCI 72.83 86.61 83.07 79.13 83.07 59.84 46.06 48.81
Zero-Shot CoT 82.28 96.85 83.86 79.92 89.37 n/a n/a n/a
Zero-Shot CoT + RCI 74.40 87.79 83.07 79.13 83.46 n/a n/a n/a
Few-Shot CoT 80.31 98.82 89.37 83.46 91.73 n/a n/a n/a
Few-Shot CoT + RCI 71.65 93.70 83.46 78.74 83.46 n/a n/a n/a

Table 17: In the absence of external feedback, RCI prompting on reasoning benchmarks exhibits
performance equivalent to, or below that of a zero-shot approach.

27

. The

ines
the performance of SotA

ing

I r I I r I r
I r I I r . r
I t I I r] t
] t I I r L r
e L I I r | r
I L I I r | r
— I — — , u ,
I L I I r 1 L
"] L I I r] r
I I r | r
— I — — , | ,
I I I I .
F r < b s,
)
< L L ..m ye,ﬁro%rov
0o, K0
5 ! g - i ® RN
) H o o r 1 Foloto, %%,
[S S L R L é«ﬁ«oee Yo
= - 4 , S
- I n 4 , + ,
- t K= K= [= [
£ = = , ”n ,
— [W W L = L
3 r I b= I
. , : : , s ,
2 [2 @ i g i
— r = = t [} t
= ,] ® I o I
o L Q. Qo L = [
g , £ £ , g ,
o , S Q i £ ,
o r © r 3] [400
. ; o RS
. F F 040\%\0
L t b 2oy
b L "%, % %
L 0\&,*.\\0
L r b 2o
I , |
L r |
r |
[L I
I , I
r I
[r]
[r I
[| r I
r . r)
_ r I . r .
r 1 | r 9 |
R R EEERE S ® o w g w oo g XY S © o W o B o ®
g R 88888 R 8 g8 388848 8R 8§ % 8888 8 R 8 % R 88388 8R
-~ S 6 5 S ¢ 5 & v -~ S 6 5 5 5 9 9 - S 6 S S ¢ 9 ¢ ¥ %, -~ S 6 5 5 5 g ¢
lenpisay lenpisay lenpisay lenpisay

h the state-of-the-art (SotA) basel

ison wit

The task-level performance compari

Figure 10

d by subtract

1me

ts the residual values, which are obta

from our agent’s performance.

y-axis represen

28

TASK Ours Ours (w/ WebN- CC-Net CC-Net CC-Net Others SotA SotA SotA
GPT-4) T5-3B (SL + (RL) (SL) (SL + (SL) (RL) (SL +
RL) RL) RL)
bisect-angle n/a n/a n/a 0.97 1.00 0.29 0.80 0.29 1.00 0.97
book-flight n/a n/a 0.00 0.87 0.00 0.00 1.00 0.00 1.00 0.87
chase-circle n/a n/a n/a 0.93 0.93 0.80 1.00 0.80 0.93 1.00
choose-date-easy n/a n/a 0.03 0.99 0.99 0.42 n/a 0.42 0.99 0.99
choose-date-medium n/a n/a 0.00 0.99 0.02 0.26 n/a 0.26 0.02 0.99
choose-date n/a n/a 0.00 0.97 0.01 0.12 1.00 0.12 1.00 0.97
choose-list 1.00 1.00 0.26 0.99 0.99 0.19 0.26 0.26 0.99 0.99
circle-center n/a n/a n/a 0.97 1.00 0.36 0.98 0.36 1.00 0.98
click-button-sequence 1.00 1.00 1.00 1.00 1.00 0.47 1.00 1.00 1.00 1.00
click-button 1.00 1.00 1.00 1.00 0.80 0.78 1.00 1.00 1.00 1.00
click-checkboxes-large 0.94 0.94 0.22 0.71 0.00 0.00 0.84 0.22 0.00 0.71
click-checkboxes-soft 0.72 0.96 0.54 0.95 0.12 0.04 0.94 0.54 0.12 0.95
click-checkboxes-transfer 1.00 1.00 0.63 0.99 0.55 0.36 0.64 0.63 0.55 0.99
click-checkboxes 1.00 1.00 0.96 0.98 0.45 0.32 1.00 0.96 1.00 0.98
click-collapsible-2 0.62 1.00 0.00 0.98 0.88 0.17 0.99 0.17 0.88 0.98
click-collapsible 1.00 1.00 0.00 1.00 1.00 0.81 1.00 0.81 1.00 1.00
click-color 1.00 1.00 0.27 1.00 1.00 0.82 1.00 0.82 1.00 1.00
click-dialog-2 1.00 1.00 0.24 1.00 1.00 0.88 1.00 0.88 1.00 1.00
click-dialog 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
click-link 1.00 1.00 1.00 0.99 0.94 0.59 1.00 1.00 1.00 1.00
click-menu-2 n/a n/a n/a 0.83 0.96 0.52 0.16 0.52 0.96 0.83
click-menu 1.00 1.00 0.37 0.94 0.48 0.22 0.13 0.38 0.48 0.94
click-option 1.00 1.00 0.87 0.99 0.78 0.21 1.00 0.87 1.00 1.00
click-pie n/a n/a 0.51 0.97 0.92 0.15 1.00 0.51 1.00 0.97
click-scroll-list 1.00 1.00 0.00 0.60 0.59 0.01 0.07 0.01 0.59 0.60
click-shades 1.00 1.00 0.00 1.00 0.02 0.04 0.99 0.04 0.02 1.00
click-shape 0.98 0.98 0.53 0.95 0.50 0.11 0.64 0.54 0.50 0.95
click-tab-2-easy n/a n/a n/a 0.99 0.94 0.61 n/a 0.61 0.94 0.99
click-tab-2-hard 0.76 0.98 0.12 0.98 0.87 0.19 n/a 0.19 0.87 0.98
click-tab-2-medium n/a n/a n/a 0.99 0.96 0.54 n/a 0.54 0.96 0.99
click-tab-2 0.74 1.00 0.18 0.98 0.91 0.27 1.00 0.27 1.00 0.98
click-tab 1.00 1.00 0.74 1.00 1.00 0.95 1.00 1.00 1.00 1.00
click-test-2 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
click-test-transfer n/a n/a n/a 1.00 1.00 0.94 n/a 0.94 1.00 1.00
click-test 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-widget 0.98 0.98 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00
copy-paste-2 n/a n/a n/a 0.63 0.00 0.01 0.00 0.01 0.00 0.63
copy-paste n/a n/a n/a 0.79 0.00 0.04 0.00 0.04 0.00 0.79
count-shape 0.40 0.40 0.41 0.85 0.70 0.21 0.76 0.43 0.70 0.85
count-sides n/a n/a n/a 1.00 1.00 0.74 0.30 0.74 1.00 1.00
drag-box n/a n/a n/a 1.00 0.19 0.61 0.31 0.61 0.19 1.00
drag-cube n/a n/a n/a 0.79 0.95 0.23 0.18 0.23 0.95 0.79
drag-item n/a n/a n/a 1.00 0.00 0.61 n/a 0.61 0.00 1.00
drag-items-grid n/a n/a n/a 0.98 0.00 0.05 0.01 0.05 0.00 0.98
drag-items n/a n/a n/a 0.99 0.00 0.13 0.41 0.13 0.00 0.99
drag-shapes n/a n/a n/a 0.99 0.23 0.26 0.92 0.26 0.23 0.99
drag-sort-numbers n/a n/a n/a 0.97 0.00 0.11 0.66 0.11 0.00 0.97
email-inbox-delete n/a n/a n/a 1.00 1.00 0.22 1.00 0.22 1.00 1.00
email-inbox-forward-nl-turk 0.94 0.94 033 1.00 0.00 0.00 n/a 0.33 0.00 1.00
email-inbox-forward-nl 1.00 1.00 0.60 1.00 0.00 0.00 n/a 0.60 0.00 1.00
email-inbox-forward n/a n/a n/a 1.00 0.00 0.01 n/a 0.01 0.00 1.00
email-inbox-important n/a n/a n/a 1.00 1.00 0.30 n/a 0.30 1.00 1.00
email-inbox-nl-turk 0.98 0.98 0.23 1.00 0.46 0.05 0.93 0.26 0.46 1.00
email-inbox-noscroll n/a n/a n/a 1.00 0.48 0.13 n/a 0.13 0.48 1.00
email-inbox-reply n/a n/a n/a 1.00 0.00 0.00 n/a 0.00 0.00 1.00
email-inbox-star-reply n/a n/a n/a 1.00 0.47 0.11 n/a 0.11 0.47 1.00
email-inbox 0.98 0.98 0.38 1.00 0.58 0.09 0.99 0.38 0.58 1.00
enter-date 0.96 0.96 0.00 1.00 1.00 0.02 1.00 0.02 1.00 1.00
enter-password 1.00 1.00 0.97 1.00 0.01 0.02 1.00 0.97 1.00 1.00
enter-text-2 n/a n/a n/a 0.98 0.00 0.04 0.00 0.04 0.00 0.98
enter-text-dynamic 1.00 1.00 0.98 1.00 1.00 0.39 1.00 0.98 1.00 1.00
enter-text 1.00 1.00 0.89 1.00 1.00 0.35 1.00 0.99 1.00 1.00
enter-time 1.00 1.00 0.00 0.97 0.89 0.04 0.90 0.04 0.89 0.97
find-midpoint n/a n/a n/a 0.97 0.97 0.35 0.31 0.35 0.97 0.97
find-word n/a n/a n/a 0.88 0.00 0.05 0.00 0.05 0.00 0.88
focus-text-2 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00
focus-text 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
grid-coordinate 1.00 1.00 0.49 1.00 0.02 0.66 1.00 0.66 0.02 1.00
guess-number 0.20 0.20 0.00 1.00 0.21 0.20 0.21 0.00 1.00
highlight-text-2 n/a n/a n/a 1.00 0.34 0.40 0.13 0.40 0.34 1.00
highlight-text n/a n/a n/a 1.00 1.00 0.51 0.90 0.51 1.00 1.00
identify-shape 0.76 1.00 0.88 1.00 1.00 0.68 1.00 0.89 1.00 1.00
login-user-popup 0.68 0.68 0.72 1.00 0.10 0.02 n/a 0.72 0.10 1.00
login-user 1.00 1.00 0.82 1.00 0.00 0.00 1.00 0.82 1.00 1.00
moving-items n/a n/a n/a 0.88 0.69 0.13 0.78 0.13 0.69 0.88
multi-layouts 0.72 0.96 0.83 1.00 0.00 0.00 1.00 0.83 0.00 1.00
multi-orderings 1.00 1.00 0.88 1.00 0.00 0.00 1.00 0.88 0.00 1.00
navigate-tree 0.86 1.00 0.91 0.99 0.94 0.32 1.00 0.99 1.00 0.99
number-checkboxes n/a n/a n/a 0.99 0.00 0.00 0.16 0.00 0.00 0.99
read-table-2 n/a n/a n/a 0.94 0.00 0.00 0.00 0.00 0.00 0.94
read-table n/a n/a n/a 0.97 0.00 0.01 0.00 0.01 0.00 0.97
resize-textarea n/a n/a n/a 1.00 0.68 0.27 0.11 0.27 0.68 1.00
right-angle n/a n/a n/a 0.98 0.98 0.26 0.38 0.26 0.98 0.98
scroll-text-2 n/a n/a n/a 1.00 1.00 0.88 0.96 0.88 1.00 1.00
scroll-text n/a n/a n/a 0.96 0.00 0.04 0.00 0.04 0.00 0.96
search-engine 1.00 1.00 0.34 1.00 0.01 0.15 1.00 0.34 1.00 1.00
simon-says n/a n/a n/a 0.00 0.00 0.02 0.28 0.02 0.00 0.28

29

simple-algebra
simple-arithmetic
social-media-all
social-media-some
social-media
terminal
text-editor
text-transform
tic-tac-toe
unicode-test
use-autocomplete
use-colorwheel-2
use-colorwheel
use-slider-2
use-slider
use-spinner
visual-addition

1.00
n/a
1.00
0.90
0.98
1.00
n/a
0.80
0.56
n/a
0.58
n/a
n/a
n/a
n/a
0.88
n/a

1.00
n/a
1.00
0.96
0.98
1.00
n/a
0.80
0.56
n/a
0.58
n/a
n/a
n/a
n/a
0.96
n/a

n/a
n/a
0.00
0.02
0.21
n/a
n/a
n/a
0.48
n/a
0.22
n/a
n/a
n/a
n/a
0.07
n/a

0.75
0.86
0.75
0.85
0.90
0.00
0.98
0.60
0.83
1.00
1.00
0.95
0.98
0.95
0.91
1.00
0.99

0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.10
0.76
1.00
1.00
0.85
0.82
0.00
0.47
0.02
0.00

0.03
0.38
0.00
0.01
0.03
0.00
0.11
0.19
0.32
0.86
0.07
0.38
0.68
0.03
0.18
0.47
0.36

0.04
0.07
1.00
0.42
1.00
0.00
0.01
0.00
0.47

n/a
0.98
1.00
1.00
0.15
0.51
0.17
0.01

0.03
0.38
0.00
0.02
0.24
0.00
0.11
0.19
0.48
0.86
0.22
0.38
0.68
0.03
0.18
0.47
0.36

0.00
0.00
1.00
0.02
1.00
0.00
0.00
0.10
0.76
1.00
1.00
0.85
0.82
0.00
0.47
0.02
0.00

0.75
0.86
0.75
0.85
0.90
0.00
0.98
0.60
0.83
1.00
1.00
1.00
1.00
0.95
0.91
1.00
0.99

Table 18: Comprehensive task-level success rate evaluation of baseline models in MiniWoB++ tasks.
Ours (w/ GPT-4) depicts the performance outcomes obtained through the use of the GPT-4 model for
some tasks, which are visually highlighted in the color blue. The performance of baseline models
has been sourced from prior studies [30 24]. The average success rates of the tasks highlighted
with violet color are shown in Figure[3] The state-of-the-art (SotA) in supervised learning (SL) is
represented by the works of [30} 24] while the SotA in reinforcement learning (RL) includes the
studies of [30, 25, 32]. Furthermore, the SotA in the combined application of SL and RL consists
of the contributions of [30, 61} [36]. Combined result of models proposed prior to CC-Net [30] is
denoted as Others, which include [61} 136, 25| [32]]. This corresponds to Aggregated SotA (Augmented)
baseline in previous works [30]. We generously estimate the performance of CC-Net (RL) based on

their figures.

30

	Introduction
	Methods
	RCI Prompting
	RCI for Computer Tasks
	Problem Setting
	Grounding Language Model in Computer Tasks

	Evaluation
	Reasoning tasks
	Computer tasks
	Setup
	Outperforming baselines on MiniWoB++ task suite
	Lowest sample complexity
	Ablating the groundings
	Ablating the language model

	Limitations
	Discussion
	Broader Impacts
	Related Works
	Automated computer tasks
	LLMs with actions
	LLMs with reasoning

	Experimental setup
	Language models
	Reasoning tasks
	MiniWoB++ task selection
	MiniWoB++ task selection for ablation studies
	Modifications on MiniWoB++ tasks

	Prompts for MiniWoB++ tasks
	Examples of cross grounding
	Failure modes on MiniWoB++ tasks
	click-dialog-2
	click-menu
	count-shape
	guess-number
	login-user-popup
	tic-tac-toe
	use-autocomplete

	Additional results

