
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Endowing Pre-trained Graph Models with Provable Fairness
Anonymous Author(s)

∗

ABSTRACT
Pre-trained graph models (PGMs) have received considerable atten-

tion in graph machine learning by capturing transferable inherent

structural properties and applying them to different downstream

tasks. Similar to pre-trained language models, PGMs also inherit

biases from human society, resulting in discriminatory behavior

in downstream applications. However, the debiasing process of

most existing methods is coupled with parameter optimization of

GNN, making them not efficient to debias PGMs. Moreover, these

debiasing methods lack a theoretical guarantee, i.e., provable lower

bounds on the fairness of model predictions, which directly provides

assurance in a practical scenario. To overcome these limitations, we

propose a novel framework that endows pre-trained Graph mod-

els with Provable fAiRness (called GraphPAR). GraphPAR freezes

the parameters of PGMs and applies a parameter-efficient adapter

on node representations to make the model’s predictions fairer.

Specifically, we design a sensitive attribute augmenter that extends

node representations with different sensitive attribute semantics

for each node. Then employ two adversarial debiasing methods

to optimize the adapter’s parameters. Furthermore, based on the

proposed framework GraphPAR, we quantify whether the fairness

of each node is provable fairness, i.e., predictions are always fair

within a certain range of sensitive attribute semantics. Experimen-

tal evaluations on real-world datasets demonstrate that GraphPAR

achieves state-of-the-art performance and fairness on node classi-

fication task. Furthermore, based on our GraphPAR, around 90%

nodes have provable fairness.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph Neural Networks, Fairness, Pre-trained Graph Models

ACM Reference Format:
Anonymous Author(s). 2018. Endowing Pre-trained Graph Models with

Provable Fairness. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,

New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph Neural Networks (GNNs) [33, 41] have achieved signifi-

cant success in analyzing graph-structured data, such as social

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Pokec_z Pokec_n0.00
2.00
4.00
6.00
8.00

10.00

D
P(

%
)

GCN
DGI
EdgePred
GCA

(a) Demographic Parity (DP)

Pokec_z Pokec_n0.00

2.00

4.00

6.00

8.00

E
O

(%
)

GCN
DGI
EdgePred
GCA

(b) Equality Opportunity (EO)

Figure 1: An example shows that testing the fairness of
PGMs in downstream tasks. Fairness comparison of differ-
ent methods is reported using DP (↓), EO (↓) on Pokec_z and
Pokec_n datasets, using three pre-training methods (i.e., DGI,
EdgePred, GCA) and vanilla GCN.

network [12] or webpage network [39]. Recently, inspired by pre-

trained language models, pre-trained graph models (PGMs) have

received considerable attention in the field of graph machine learn-

ing. The aim is to capture transferable inherent structural properties

and apply them to different downstream tasks [17, 36, 42]. As a

powerful learning approach, PGMs have been applied in various

domains such as social network analysis [31], recommendation

systems [14], and drug discovery [37].

Due to the sensitive information such as gender, race, and reli-

gion present in pre-training corpora, it has been proven that pre-

trained language models inherit biases from human society [44].

This naturally gives rise to the following questions: Do pre-trained
graph models also inherit bias on graphs? In order to answer this

question, we apply three different pre-training methods on datasets

Pokec_z and Pokec_n. As depicted in Figure 1, we observe that

PGMs inevitably capture sensitive attribute semantics during the

pre-training phase, resulting in even more unfairness in down-

stream applications than vanilla GCN. Another question natu-

rally arises: How to improve the fairness of PGMs? Since different
downstream tasks may be associated with different sensitive at-

tributes [5, 28, 40], debiasing during the pre-training phase may

not be targeted to a specific task. Consequently, there is a need for

a flexible approach to debiasing in downstream tasks.

In recent years, an increasing number of methods have been pro-

posed for fair GNNs [6, 8, 21]. They design various fairness-related

losses to constrain the parameter optimization process of GNNs. For

example, methods based on counterfactual fairness [11, 26, 43] in-

troduce similarity loss that aims to maximize the similarity between

the original representations and counterfactual representations, to

learn node embeddings that are invariant to sensitive attribute. Ap-

proaches based on sensitive attribute classifiers [6, 38] introduce

adversarial loss to constrain GNNs from capturing sensitive infor-

mation, or to generate new graphs with fair topology and node

features [24].

Although the above methods achieve success for fair GNNs,

when employed for addressing fairness issues of PGMs, they have

twomain drawbacks: (1) Their debiasing process is coupled with the

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

parameter optimization of GNNs. Due to that different downstream

tasks may have different sensitive attributes, maintaining a specific

PGM for each downstream task is not efficient. (2) Most existing

fairness methods lack theoretical analysis and guarantees [2, 19],

meaning that they do not provide a practical guarantee, i.e., provable

lower bounds on the fairness of model prediction. This is important

in practical scenarios when determining whether to deploy the

models [4, 9, 18, 32].

To address the above limitations, we propose an adapter tun-

ing framework called GraphPAR, which freezes the parameters

of PGMs and applies a parameter-efficient adapter on node rep-

resentations to make the model’s predictions fairer. Specifically,

we first design an augmenter that extends the node representation

with different sensitive attribute semantics for each node via linear

interpolation. Based on the augmented node representations, we

utilize two adversarial debiasing techniques to optimize adapter

parameters, preventing the propagation of sensitive attribute se-

mantics from PGMs to downstream task predictions. Furthermore,

with GraphPAR, we quantify whether the fairness of each node is

provable, i.e., predictions are always fair within a certain range of

sensitive attribute semantics. For example, when a person’s gen-

der semantics gradually transit from male to female, our provable

fairness guarantees that the prediction results will not change. In

summary, our debiasing framework GraphPAR is applicable to any

PGMs while providing fairness with theoretical guarantees. Exper-

imental evaluations conducted on three real-world datasets and

three pre-training methods demonstrate that GraphPAR achieves

state-of-the-art performance and fairness on node classification

task. Moreover, with the help of GraphPAR, around 90% of nodes

have provable fairness. The main contributions of this work can be

summarized as follows:

(1) We explore fairness in PGMs for the first time and discover

that PGMs may capture more sensitive attribute semantics than

supervised GNNs during the pre-training phase, resulting in un-

fairness in downstream applications.

(2) We propose a novel approach to endow PGMs with fairness

during the adaptation for downstream tasks. Specifically, we design

GraphPAR, which utilizes a sensitive semantic augmenter and two

adversarial debiasing methods to improve the fairness of PGMs

while providing theoretical guarantees for fairness.

(3)We conduct extensive experiments on three real-world datasets

to demonstrate the effectiveness of our model in achieving fair pre-

dictions and providing provable fairness.

2 RELATEDWORK
2.1 Pre-trained Graph Models
In the pre-training phase, owing to its huge model parameters,

PGMs can capture abundant knowledge from massive labeled and

unlabeled graph data. Based on pre-training tasks, the existing pre-

training methods mainly can be categorized into two categories:

contrastive pre-training and predictive pre-training. Contrastive

methods aim to maximize mutual information between different

views, encouraging the model to capture invariant semantic in-

formation across various perspectives. For example, DGI [36] and

InfoGraph [34] present approaches that aim to generate expres-

sive representations for either graphs or nodes by maximizing

the mutual information between graph-level representations and

substructure-level representations at various levels of granularity.

GraphCL [46] and its variants [35, 45] introduce a range of so-

phisticated augmentation strategies for graph-level pre-training.

Different from contrastive methods, predictive pre-training meth-

ods aim to equip graph models with an understanding of the uni-

versal structural and attribute semantics of graphs. For instance,

attribute masking is proposed by [17] where the input node/edge

attributes are randomly masked, and the GNN is asked to predict

them. EdgePred [13] samples negative sample edges and utilizes

a general GNN encoder to predict edge existence during the pre-

training phase. GraphMAE [16] addresses the overemphasis on

structure information in previous predictive methods by incorpo-

rating feature reconstruction and a re-mask decoding strategy for

self-supervised learning.

Despite the ability of PGMs to capture abundant knowledge that

proves valuable for downstream tasks, the conventional fine-tuning

process still has some drawbacks, such as overfitting, catastrophic

forgetting, and parameter inefficiency[23, 43]. To alleviate these is-

sues, recent research has focused on developing parameter-efficient

tuning (delta tuning) techniques that can effectively adapt pre-

trained models to new tasks [7]. Delta tuning [7] seeks to tune a

small portion of parameters and keep the left parameters frozen. For

example, prompt tuning [25] aims to modify model inputs rather

than model architecture. Adapter tuning [23] trains only a fraction

of the Adapter’s parameters to make PGMs adapt to downstream

tasks.

Though a large number of research have been proposed on how

to design pre-trainingmethods and how to fine-tune PGMs in down-

stream tasks, most of them focus on how to improve performance

while ignoring their plausibility in terms of fairness and so on.

2.2 Fairness of Graph
Recent studies [6, 21] show that GNNs tend to inherit bias from

training data and the message-passing mechanism of GNNs and

graph structure could magnify the bias [6]. Hence, many efforts

have been made for fair GNNs, generally categorized into three

different phases [2]. Pre-processing techniques remove bias or un-

fairness before GNN training occurs, by targeting the input graph

structure, input features, or both. For instance, EDITS [8] propose

a novel approach that utilizes the Wasserstein distance to address

both attribute-based bias and structural bias in GNNs, effectively

mitigating these biases. In-training techniques focus on modifying

the objective function of GNNs to learn fair and unbiased embed-

dings during training. For example, NIFTY [1] propose a novel mul-

tiple objective function, which incorporates fairness and stability

considerations. Graphair [24] introduces an automated augmen-

tation model that generates new fair graphs to achieve fairness

and informativeness simultaneously. A few post-processing meth-

ods have been proposed to remove bias from GNNs. FairGNN [6]

designs a framework that leverages GNNs for fair node classifica-

tion when only limited sensitive attribute information is available.

FLIP [27] addresses the problem of link prediction homophily with

postprocessing, as well as an adversarial framework.

Although all the aforementionedworks have achieved significant

success in graph fairness issues, most methods require optimizing

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Endowing Pre-trained Graph Models with Provable Fairness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

the parameters of the GNN. Therefore, these methods cannot ef-

ficiently address the fairness of PGMs in downstream tasks. In

addition, they all lack theoretical analysis and fairness guarantees,

which are important in determining whether to deploy a model in

a real-world scenario.

3 PROBLEM DEFINITION
3.1 Notations
Given an attributed graph as G = (V, E,X), whereV = {𝑣1, ..., 𝑣𝑛}
represents the set of𝑛 nodes, E ⊆ V×V represents the set of edges,

X = {x1, . . . , x𝑛} represents the node features and xi ∈ R𝑑 . The
adjacency matrix of the graph G is denoted as A ∈ R𝑛×𝑛 , where
A𝑖 𝑗 = 1 if nodes 𝑣𝑖 and 𝑣 𝑗 are connected, otherwise A𝑖 𝑗 = 0. Each

node 𝑖 is associated with a binary sensitive attribute 𝑠𝑖 ∈ {0, 1} (we
assume one single, binary sensitive attribute for simplicity, but our

method can easily handle multivariate sensitive attributes as well).

Furthermore, we consider a PGM or GNN denoted as 𝑓 , which takes

the graph structure and node features as input and produces node

representations. The encoded representations for the 𝑛 nodes are

denoted by H = {h𝑖 }𝑛𝑖=1, where H = 𝑓 (V, E,X) and h𝑖 ∈ R𝑝 .
In the pre-training phase, the parameters of a PGM 𝑓 is opti-

mized via some self-supervised methods, such as graph contrastive

learning [34, 36, 45, 46] or graph context prediction [13, 15–17].

In downstream tasks, adapter tuning by freezing the parameter 𝑓𝜃
of PGMs and just training the parameter 𝑔𝜃 of adapter 𝑔 to adapt

PGMs for downstream tasks. Generally, |𝑔𝜃 | ≪ |𝑓𝜃 |, where |·| de-
notes the number of parameter. In adapter, given an input h𝑖 ∈ R𝑝 ,
a down projection projects the input to a 𝑞-dimensional space, after

which a nonlinear function is applied. Then the up-projection maps

the 𝑞-dimensional representation back to 𝑝-dimensional space.

3.2 Fairness Definition on Graph
Fairness definition on graph refers to the prediction that the model

should not be influenced by its sensitive attribute [26].

Definition 1 (Fairness onGraph). Given a graphG = (V, E,X),
the encoder 𝑓 (·) and the classifier 𝑑 (·) trained on this graph satisfies
fairness if for any node 𝑣𝑖 :

𝑃 ((𝑑 (𝑓 (X,A)𝑖))𝑆←𝑠 |X,A) = 𝑃 ((𝑑 (𝑓 (X,A)𝑖))𝑆←𝑠′ |X,A), 𝑠 .𝑡 .∀𝑠 ≠ 𝑠′,
(1)

where 𝑠, 𝑠′ ∈ {0, 1}𝑛 are two arbitrary sensitive attribute values. In
other words, such a definition requires the prediction result will not
change as the sensitive attribute value variations.

3.3 Fairness Definition on PGMs
In order to improve the fairness of PGMs in downstream tasks, it

is necessary to define fairness for PGMs. Combining the setting of

PGMs and Definition 1, the fairness of PGMs in downstream tasks

is defined in this work as follows:

Definition 2 (Fairness of PGMs in downstream tasks). A
PGM 𝑓 is fair in the downstream tasks if the model predictions are
the same under different sensitive attribute semantics, as formally
defined below:

𝑃 ((𝑑 (𝑔(ℎ𝑖))Sh←s) = 𝑃 ((𝑑 (𝑔(ℎ𝑖))Sh←s′), 𝑠 .𝑡 . ∀||s − s′ | |2 ≠ 0, (2)

where Sh is a vector with the same dimension as the representation
h, and its value represents the node’s sensitive attribute semantics. s
and s′ are different semantics representations of sensitive attribute.

The above fairness definition implies that prediction results

should be the same as the sensitive attribute semantics represen-

tation variations. For example, when a person’s gender semantics

representation gradually transits from male to female, fairness is

satisfied if the model predictions are always consistent, otherwise

not satisfied.

4 METHODOLOGY
According to Definition 2, in order to improve fairness for PGMs in

downstream tasks, in this section, we propose an adapter-tuning

framework called GraphPAR, which parameter-efficient improves

the fairness of PGMs. Adapter tuning is illustrated in Figure 2 (a)

and consists of two components: (1) Sensitive semantic augmenter.

We first compute a vector 𝜶 about sensitive attribute semantics,

and then extend the node representation with different sensitive

attribute semantics for each node via linear interpolation on 𝜶 . (2)

Training adapter. We employ random augmentation adversarial

debiasing and Min-max adversarial attack debiasing to tune the

parameters of the adapter.

4.1 Sensitive Semantic Augmenter
In order to extend the node representation with different sensitive

attribute semantics for each node, we design a sensitive seman-

tic augmenter. Initially, we leverage the known sensitive attribute

information and representations of the nodes to calculate a sen-

sitive attribute semantics vector 𝜶 . Subsequently, we extend the

node representation h𝑖 for each node via linearly interpolating

in the direction of 𝜶 , obtaining the sensitive attribute semantics

augmentation set S𝑖 .
Computing the sensitive attribute semantics vector𝜶 . Lever-

aging the capabilities of PGMs in capturing both graph structure

and node attributes, we expect to derive a vector 𝜶 that effectively

represents the sensitive attribute semantics. Firstly, we utilize the

given PGM 𝑓 to obtain node representations H. Then, based on

known nodes’ sensitive attribute 𝑠 , we partition the node repre-

sentations into positive and negative sets, i.e., H𝑝𝑜𝑠 and H𝑛𝑒𝑔 . We

calculate the average representation h𝑝𝑜𝑠 for nodes possessing

the sensitive attribute and h𝑛𝑒𝑔 for nodes lacking the sensitive at-
tribute, both obtained from H𝑝𝑜𝑠 and H𝑛𝑒𝑔 , respectively. Lastly, the

difference between h𝑝𝑜𝑠 and h𝑛𝑒𝑔 represents the sensitive attribute

semantics vector:

𝜶 = hpos − hneg, (3)

h𝑝𝑜𝑠 =
1

𝑛𝑝𝑜𝑠

𝑛𝑝𝑜𝑠∑︁
𝑖=1

H𝑝𝑜𝑠,𝑖 , h𝑛𝑒𝑔 =
1

𝑛𝑛𝑒𝑔

𝑛𝑛𝑒𝑔∑︁
𝑖=1

H𝑛𝑒𝑔,𝑖 , (4)

where 𝑛𝑝𝑜𝑠 and 𝑛𝑛𝑒𝑔 denote the number of positive and negative

samples.

With the vector 𝜶 , we expect to move in the direction of 𝜶 to

increase the presence of the sensitive attribute, while moving in the

opposite direction diminishes its presence. Thus, to verify whether

𝜶 satisfies our expectations, we conduct a test experiment using

𝜶 . First, we divide H into training and test sets. In the training

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Mean

Mean
……

…

…

…

𝑘𝑘

𝑘𝑘

… …𝑘𝑘

…𝑘𝑘

𝑯𝑯𝒏𝒏𝒏𝒏𝒏𝒏

𝑯𝑯𝒑𝒑𝒑𝒑𝒑𝒑

Input Graph

Pre-trained
Graph Model

Smooth
Adapter

(b) Provable Fairness

𝒅𝒅𝒄𝒄𝒑𝒑

𝒅𝒅𝒄𝒄𝒑𝒑 ≤ 𝒅𝒅𝒓𝒓𝒑𝒑 Fair

Smooth
Classifier

𝒅𝒅𝒓𝒓𝒑𝒑

Adapter

(a) Adapter Tuning

Sensitive Semantic
Augmenter Classifier D

ow
n

R
eL

U

U
p

B
atch N

orm

Tunable
Frozen

Linear Interpolation
Minus

Sensitive Attribute
Samples

Figure 2: Overview of GraphPAR. In the adapter tuning phase, we first utilize the PGMs to obtain node representations H. Then,
we design a sensitive semantic augmenter to augment the node representations with different sensitive attribute semantics, i.e.,
sensitive attribute samples S. Finally, we use the augmented node representations to train an adapter, improving the fairness
of PGMs. In the provable fairness phase, based on the smoothed versions of the trained adapter and classifier, we use the
smooth adapter to get its output bound guarantee 𝑑𝑐𝑠 , and use the smooth classifier to get its local robustness guarantee 𝑑𝑟𝑠 .
Sequentially, we quantify whether the fairness of each node is provable by comparing 𝑑𝑐𝑠 with 𝑑𝑟𝑠 .

set, we train a sensitive attribute classifier 𝑑𝑠𝑒𝑛𝑠 and compute the

𝜶 . Next, we move the node representations in the test set along

the direction of 𝜶 with varying augmentation degree 𝑡 . Lastly,

we utilize the trained classifier 𝑑𝑠𝑒𝑛𝑠 to predict the accuracy of

the sensitive attribute on the test set. The results are presented in

Figure 3, revealing the following findings:

(1) When no movement is performed, i.e., 𝑡 = 0, the predic-

tion accuracy of the sensitive attribute is highest. This indicates

that the pre-training may inevitably capture the sensitive attribute

information present in the dataset.

(2) As the magnitude of the augmentation degree |𝑡 | increases,
the prediction accuracy of 𝑑𝑠𝑒𝑛𝑠 gradually decreases until it reaches

50%. This is because modifying the node representations along

the same sensitive semantics direction leads all nodes to become

increasingly similar in terms of sensitive attribute semantics. For

instance, when moving in the direction of 𝑡 > 0, nodes initially

classified as negative samples shift to positive samples, while nodes

previously classified as positive samples become more strongly

associated with the sensitive attribute. Consequently, the sensitive

attribute classifier 𝑑𝑠𝑒𝑛𝑠 can only accurately classify half of the

nodes.

Augmenting sensitive attribute semantics for h. After ver-
ifying the effectiveness of 𝜶 , we employ it to augment a set of

sensitive attribute S𝑖 for each node representation h𝑖 . This aug-
mentation is achieved through a linear interpolation method and

can be expressed as:

S𝑖 := {h𝑖 + 𝑡 · 𝜶 | |𝑡 | ≤ 𝜖} ⊆ R𝑝 , (5)

Here, 𝜖 represents the augmentation range applied to the direc-

tion of the sensitive attribute semantics. The above augmentation

method offers two key advantages: (1) It efficiently extends node

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Augmentation degree t

50

60

70

80

90

100

Se
ns

iti
ve

 A
tt

ri
bu

te
 A

C
C

(%
)

Credit
Pokec_z
Pokec_n

Figure 3: Under different augmentation degree 𝑡 of sensitive
attribute semantics, comparing sensitive attribute prediction
accuracy against different datasets.

representations with different semantics of sensitive attributes as

line segments. These line segments correspond to multiple points

in the original input space, thereby bypassing complex augmenta-

tion designs in the original input space [43, 47]. (2) Although this

work primarily focuses on single sensitive attribute scenarios, this

method can be simply extended to situations involving multiple

sensitive attributes. In such cases, interpolation can be performed

along multiple sensitive attribute semantics vectors.

4.2 Training Adapter for PGMs Fairness
Given any PGMs 𝑓 and the sensitive attribute augmentation set

S, we will now outline how to improve the fairness of PGMs by

training a parameter-efficient adapter 𝑔, while also ensuring the

performance of downstream tasks. Specifically, we employ two

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Endowing Pre-trained Graph Models with Provable Fairness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

debiasing methods for training the adapter: random augmentation

adversarial training and min-max adversarial attacks training.

Randomaugmentation adversarial training (RandAT).Dur-
ing the adapter 𝑔 training process, we adopt a strategy where we

choose 𝑘 samples from the augmented sensitive attribute set S𝑖 to
obtain adversarial training set

ˆS𝑖 , i.e.,
ˆS𝑖 = {h𝑖 + 𝑡 𝑗 · 𝜶 }𝑘𝑗=1, 𝑡 𝑗 ∼ Uniform(−𝜖, 𝜖), (6)

where 𝜖 represents the augmentation range. These selected sam-

ples are then incorporated into the training of the adapter. The

optimization loss can be formulated as:

L
RandAT

= E𝑖∈V𝐿

[
Eh′∈{h𝑖 }∪ ˆS𝑖

[
ℓ (𝑑 ◦ 𝑓 (h′), 𝑦𝑖)

]]
, (7)

whereV𝐿 is the set of labeled nodes, 𝑑 is a downstream classifier,

and ℓ (·) is cross-entropy loss which measures the prediction error.

In RandAT, by including a diverse range of sensitive attribute

semantic samples in the tuning process, both the adapter 𝑔 and

the classifier 𝑑 become capable of handling variations in sensitive

information. This enables them to generalize effectively to samples

with different sensitive attribute semantics. Consequently, this ap-

proach helps mitigate potential discriminatory predictions, as the

adapter becomes more robust and adaptable to changes in sensitive

attribute semantics.

Min-max adversarial attacks training (MinMax). Unlike
RandAT, the thought behind MinMax is to find and optimize a

worst-case scenario in each round. Our objective is to minimize the

discrepancy between the representation h𝑖 and its corresponding

augmented sensitive attribute semantics set S𝑖 . This is achieved by

ensuring that the representation h𝑖 closely aligns with the represen-
tations within S𝑖 . To quantify this alignment, we seek to minimize

the distance between h𝑖 and S𝑖 . Hence, our optimization objective

entails minimizing the following loss function:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖) = max

h′
𝑖
∈S𝑖

𝑔 (h𝑖) − 𝑔 (
h′𝑖
)

2
, (8)

where h′
𝑖
is the any sample ofS𝑖 . MinimizingL𝑎𝑑𝑣 (h𝑖) is a min-max

optimization problem, and adversarial training is effective in this

scenario. Since the input domain of the inner maximization prob-

lem is a simple line segment about 𝜶 , we can perform adversarial

training [10] by uniformly sampling 𝑘 points from S𝑖 to construct

ˆS𝑖 and approximate it as follow:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖) ≈ max

h′
𝑖
∈ ˆS𝑖

𝑔 (h𝑖) − 𝑔 (
h′𝑖
)

2
, (9)

where h′
𝑖
have different sensitive attribute semantics with h𝑖 . To

ensure that the adapter 𝑔 does not filter out useful task information,

we introduce a downstream task classifier after the adapter. We add

an additional cross-entropy classification loss term to ensure the

performance of the downstream task:

L𝑐𝑙𝑠 (h𝑖 , 𝑦𝑖) = ℓ (𝑑 ◦ 𝑓 (h𝑖), 𝑦𝑖). (10)

The final optimization objective is as follows:

L = 𝜆L𝑀𝑖𝑛𝑀𝑎𝑥 + L𝑐𝑙𝑠 , (11)

where 𝜆 is a scale factor with respect to the fairness loss, which is

used to balance accuracy and fairness.

5 PROVABLE FAIR ADAPTATION OF PGMS
In this section, based on GraphPAR, we will primarily discuss how

to provide provable fairness for each node, i.e., the prediction results

are consistent within a certain range of sensitive attribute semantics.

We divide this process into two key components as depicted in

Figure 2 (b): (1) Smooth adapter. We construct a smoothed version

for the adapter using center smooth, which provides a bound for

the output variation of node representation h𝑖 within the range

of sensitive attribute semantics change. This guarantees that the

range of output results is contained within a minimal enclosing ball

centered at zwith a radius of𝑑𝑐𝑠 . (2) Smooth classifier. We construct

a smoothed version for the classifier using random smooth, which

provides a local robustness against the center z. By determining

whether all points within the minimum enclosing ball are classified

into the same class, i.e., 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , we quantify if the fairness of

each node is provable.

5.1 Provable Adaptation
To guarantee the range of change in the representation after ap-

plying the adapter 𝑔, we employ a technique called center smooth-

ing [22] to obtain a smoothed version of the adapter, denoted as 𝑔.

It provides a guarantee for the output bound of the adapter with a

representation t as the input, described in Theorem 1:

Theorem 1 (Center Smoothing [22]). Let 𝑔 denote an approx-
imation of the smoothed version of the adapter 𝑔, which maps a
representation h to the center point 𝑔(h) of a minimum enclosing ball
containing at least half of the points 𝒛 ∼ 𝑔(h +N(0, 𝜎2𝑐𝑠 𝐼)). Then, for
an 𝑙2-perturbation size 𝜖1 > 0 on h, we can produce a guarantee 𝑑𝑐𝑠
of the output change with confidence 1 − 𝛼𝑐𝑠 :

∀h′ 𝑠 .𝑡 .∥h − h′∥2 ≤ 𝜖1 , ∥𝑔(h) − 𝑔(h′)∥2 ≤ 𝑑𝑐𝑠 . (12)

In adapter, since h′ − h = 𝑡 · 𝜶 , we have 𝜖1 = 𝑡 ∥𝜶 ∥2. Theo-
rem 1 implies that given a node representation h and its set of

sensitive attribute samples S𝑖 , a guarantee 𝑑𝑐𝑠 can be computed

with high probability. This 𝑑𝑐𝑠 represents the range of adapter’s

output changes, serving as a meaningful certificate. It guarantees

that when the sensitive attribute semantics of input h is perturbed

within a range defined by 𝜖 , the range of output remains within a

minimal enclosing ball.

5.2 Provable Classification
Subsequently, it is necessary to demonstrate that predictions for

all points within this minimum enclosing ball are classified consis-

tently. This consistency guarantees the effectiveness of debiasing

results.

Theorem 2. (Random Smoothing [3]) Let 𝑑 be a classifier and let
𝜀 ∼ N(0, 𝜎2𝑟𝑠 𝐼). The smoothing version of the classifier 𝑑 is defined as
follows:

𝑑 (𝒛) = arg max

𝑦𝑖 ∈Y
P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝑖) . (13)

Suppose 𝑦𝐴 ∈ Y and 𝑝𝐴, 𝑝𝐵 ∈ [0, 1] satisfy:

P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝐴) ≥ 𝑝𝐴 ≥ 𝑝𝐵 ≥ max

𝑦𝐵≠𝑦𝐴
P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝐵). (14)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Then, we have 𝑑 (𝒛 + 𝜹) = 𝑦𝐴 for all 𝜹 satisfying ∥𝜹 ∥2 < 𝑑𝑟𝑠 , where
𝑑𝑟𝑠 can be obtain as follow:

𝑑𝑟𝑠 :=
𝜎𝑟𝑠

2

(Φ−1 (𝑝𝐴) − (Φ−1 (𝑝𝐵)), (15)

whereY denotes the set of class labels,Φ is the cumulative distribution
function (CDF) of the standard normal distribution N(0, 1), and Φ−1
is its inverse.

Theorem 2 derives a local robustness radius 𝑑𝑟𝑠 for the classi-

fier’s input by employing the smoothed version 𝑑 of the classifier 𝑑 .

This robustness guarantees that within the verified region of input,

which is bounded by 𝑑𝑟𝑠 , the classification output of 𝑑 remains

unchanged, providing a guarantee of stability and consistency in

the classifier’s predictions. Theorem 2 is especially important for

providing provable fairness, because if 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , then it guaran-

tees consistency in the predictions to different sensitive attribute

semantic samples.

5.3 GraphPAR Provides Provable Fairness
To establish a theoretical guarantee for the debiasing effect of

adapter 𝑔 and verify the fairness of the debiasing process, we define

the provable fairness of PGMs as follows:

Definition 3 (Provable Fairness of PGMs in downstream

tasks). Given a node representation h, the debiasing process𝑀 satis-
fies:

𝑀 (h) = 𝑀 (h′),∀ℎ′ ∈ S , (16)

where S is the set of sensitive attribute augmentations for h.

With the utilization of the aforementioned two smoothing tech-

niques, the provable fairness of PGMs is naturally achieved with

the following theorem:

Theorem 3. Assuming we have a PGM 𝑓 , a center smoothing
adapter 𝑔, and a random smoothing classifier 𝑑 . For node 𝑖 , if 𝑔 obtains
a output guarantee 𝑑𝑐𝑠 with confidence 1 − 𝛼𝑐𝑠 and 𝑑 obtains a local
robustness guarantee𝑑𝑟𝑠 with confidence 1−𝛼𝑟𝑠 , and satisfy𝑑𝑐𝑠 < 𝑑𝑟𝑠 ,
then the fairness of the debiasing𝑀 = 𝑑 ◦𝑔 ◦ 𝑓 (V, E,X)𝑖 is provable
with a confidence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 .

Proof. Assume that Theorem 3 holds for the node 𝑖 . We need

to show that with probability at least 1 − 𝜶𝑐𝑠 − 𝜶 𝑟𝑠 :

∀𝒉′ ∈ 𝑆 : 𝑑 ◦ 𝑔 (𝒉) = 𝑑 ◦ 𝑔
(
𝒉′
)
, (17)

where h ∈ H,H = 𝑓 (V, E,X).
Next, recall the definition of 𝑔ℎ (𝑡) := 𝑔(h + 𝑡 · 𝜶) and note that

for h′ = h + 𝑡 ′ · 𝜶 , the center smoothing of

𝑔h′ (𝑡) ∼ 𝑔h′ (𝑡 + N(0, 𝜎2𝑐𝑠)) = 𝑔(h′ + (𝑡 + N(0, 𝜎2𝑐𝑠)) · 𝜶),
𝑔ℎ (𝑡 + 𝑡 ′) ∼ 𝑔h (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠)) = 𝑔(h + (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠)) · 𝜶).

Since h′ = h + 𝑡 ′ · 𝜶 , the sampling distributions are the same,

hence 𝑔ℎ′ (𝑡) = 𝑔ℎ (𝑡 + 𝑡 ′), and in particular 𝑔(h′) = 𝑔h′ (0) = 𝑔h (𝑡 ′)
Now, let us get back to Equation 17. By definition of S, for all

h′ ∈ S, h′ = h+ 𝑡 ′ ·𝜶 for some 𝑡 ′ ∈ [−𝜖, 𝜖]. Moreover, zcs = 𝑔(h) =
𝑔h (0) and 𝑔(h′) = 𝑔h (𝑡 ′). Theorem 1 tells us that with confidence

1 − 𝛼𝑐𝑠 :

𝑔h (0) − 𝑔h (
𝑡 ′
)

2
≤ 𝑑𝑐𝑠 , ∀𝑡 ′ ∈ [−𝜖, 𝜖]

⇐⇒

z𝑐𝑠 − 𝑔 (

h′
)

2
≤ 𝑑𝑐𝑠 , ∀h′ ∈ S, (18)

Table 1: Datasets Statistics.

Dataset Credit Pokec_n Pokec_z

#Nodes 30,000 66,569 67,797

#Features 13 266 277

#Edges 1,436,858 729,129 882,765

Node label Future default Working field Working field

Sensitive attribute Age Region Region

Avg. degree 95.79 16.53 19.23

provided that the center smoothing computation of 𝑑𝑐𝑠 does not

abstain.

Finally, we consider the last component of the pipeline – the

smoothed classifier 𝑑 . Provided that 𝑑 does not abstain at the input

𝑑𝑐𝑠 , Theorem 2 provides us with a radius 𝑑𝑟𝑠 around 𝑧𝑐𝑠 such that

with confidence 1 − 𝛼𝑟𝑠 :

𝑑 (z𝑐𝑠) = 𝑑 (z𝑐𝑠 + 𝜹) , ∀𝜹 s.t. ∥𝜹 ∥2 < 𝑑𝑟𝑠

⇐⇒𝑑 (z𝑐𝑠) = 𝑑
(
z′
)
, ∀z′ s.t.

𝒛𝑐𝑠 − z′

2
< 𝑑𝑟𝑠 . (19)

If 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , combining the conclusions in Equation 18 and Equa-

tion 19 and applying the union bound, we obtain that with confi-

dence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 we have 𝑑 (rcs) = 𝑑 (𝑔(h′)) for all h′ ∈ 𝑆 , that
is,

∀𝒉′ ∈ 𝑆 (𝒉) : 𝑑 ◦ 𝑔 (𝒉) = 𝑑 ◦ 𝑔
(
𝒉′
)

(20)

as required by Definition 3. The same proof technique can also be

extended to the multiple sensitive attribute vectors case. □

The detailed algorithms process of Theorem 3 is referred to

Appendix 1.

6 EXPERIMENTS
In this section, we extensively evaluate GraphPAR to answer the

following research questions (RQs):

• RQ1: How effective is GraphPAR compared to existing graph

fairness methods?

• RQ2: Compared to methods without debiasing adaptation, does

GraphPAR show improvement in the number of nodes with

provable fairness?

• RQ3: How do different hyperparameters of GraphPAR impact

the classification performance and fairness?

• RQ4: How parameter-efficient is GraphPAR?

Datasets. These are common graph datasets with sensitive at-

tributes collected from various domains, we choose three public

datasets Credit [43], Pokec_z and Pokec_n [6]. As for Credit, Credit
encompasses a network of individuals who are connected due to

the likeness of their spending and payment habits. The sensitive at-

tribute is the age of these individuals, and the objective is to predict

whether their default payment method is credit card or not. As for

Pokec_z and Pokec_n, datasets are created by sampling from Pokec

based on geographic regions. Pokec encompasses anonymized data

from the complete social network in 2012, encompassing user pro-

files that include details like gender, age, hobbies, interests, educa-

tion, occupation, and so forth. The sensitive attribute is region and

the working field is used as the predicted label. Detailed statistics

are listed in Table 1.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Endowing Pre-trained Graph Models with Provable Fairness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Performance and fairness (%±𝜎) on node classification. The best results are in bold and runner-up results are underlined.

Method
Credit Pokec_z Pokec_n

ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓)

GCN 69.73±0.04 79.14±0.02 13.28±0.15 12.66±0.24 67.54±0.48 68.93±0.39 5.51±0.67 4.57±0.29 70.11±0.34 67.37±0.38 3.19±0.86 2.93±0.95

FairGNN 72.50±4.09 81.80±3.86 9.20±3.35 7.64±3.58 67.47±1.12 69.35±3.14 1.91±1.01 1.04±1.11 68.42±2.04 64.34±2.32 1.41±1.30 1.50±1.23

NIFTY 70.89±0.59 80.23±0.54 9.93±0.59 8.79±0.71 65.83±3.90 66.99±4.26 5.47±2.13 2.64±1.02 68.97±1.21 66.77±1.27 1.68±0.90 1.38±0.91

EDITS 66.80±1.03 76.64±1.13 10.21±1.14 8.78±1.15 OOM OOM OOM OOM OOM OOM OOM OOM

DGI

Naive 75.72±2.18 84.73±2.00 7.87±2.22 6.51±2.79 67.87±0.51 70.23±0.80 4.69±1.95 3.03±1.34 68.58±1.22 65.66±1.37 3.58±3.09 4.99±3.68

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 76.88±1.33 85.85±1.36 5.93±2.91 4.44±3.34 67.05±1.33 70.50±0.69 1.90±1.22 0.84±0.28 68.92±1.55 65.61±1.33 1.19±0.65 2.11±1.60

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 74.37±2.91 83.46±2.64 3.81±2.37 2.60±2.48 68.32±0.55 68.35±2.38 1.64±0.78 0.53±0.39 68.43±0.55 68.20±2.22 1.73±0.76 1.11±0.88

EdgePred

Naive 69.66±1.74 79.30±1.63 7.89±2.28 6.67±2.42 67.33±0.44 69.17±0.52 6.00±3.04 3.95±2.52 68.60±0.53 65.56±0.79 2.48±0.86 5.29±2.71

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 69.97±2.35 79.55±2.24 6.36±2.19 4.83±2.70 66.87±1.12 68.86±0.46 1.99±1.12 2.27±1.23 68.49±1.41 65.45±1.02 1.79±0.85 3.69±0.68

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 68.53±1.23 78.19±1.14 5.10±2.31 4.52±2.17 67.51±0.55 69.03±0.82 1.45±1.40 1.15±0.85 69.10±0.91 65.00±1.10 1.28±0.97 3.31±2.06

GCA

Naive 75.28±0.51 84.35±0.47 8.56±0.97 6.21±0.90 67.63±0.44 70.24±0.98 7.68±2.19 4.82±1.43 67.85±1.23 65.81±1.35 2.90±2.61 3.23±1.05

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 75.50±1.29 84.66±1.27 5.51±2.44 3.98±1.96 66.73±2.22 70.32±0.73 4.23±2.50 2.94±1.84 68.11±0.44 64.43±1.05 2.35±1.12 2.42±1.62

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 73.74±2.01 82.96±1.74 4.90±1.90 2.96±1.66 66.59±1.28 68.74±1.17 2.33±2.28 2.42±1.72 68.11±0.70 65.49±1.57 1.41±0.86 0.94±0.59

0.2 0.4 0.6 0.8 1.0
Augmentation range

66.9

67.7

68.5

69.3

70.2

A
C

C
/F

1(
%

)

0.1

1.1

2.1

3.1

4.0

E
O

/D
P(

%
)ACC

F1
EO
DP

(a) DGI-MinMax

0.2 0.4 0.6 0.8 1.0
Augmentation range

66.4

67.7

69.1

70.4

71.7

A
C

C
/F

1(
%

)

0.1

0.8

1.4

2.0

2.7

E
O

/D
P(

%
)

(b) DGI-RandAT

0.2 0.4 0.6 0.8 1.0
Augmentation range

65.8

66.7

67.7

68.6

69.6

A
C

C
/F

1(
%

)
0.9

1.5

2.2

2.8

3.5

E
O

/D
P(

%
)

(c) EdgePred-MinMax

0.2 0.4 0.6 0.8 1.0
Augmentation range

65.8

66.9

68.0

69.2

70.3

A
C

C
/F

1(
%

)

0.6

1.4

2.2

3.0

3.8

E
O

/D
P(

%
)

(d) EdgePred-RandAT

Figure 4: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Pokec_z dataset.

Baselines. We compare GraphPAR to four baseline models:

GCN [20] is the most common GNN; FairGNN [6] is a framework

for fair node classification using GNNs given limited sensitive at-

tribute information; NIFTY [43] achieves fairness by maximizing

the similarity of representations learned from the original graph

and their augmented counterfactual graphs. EDITS [8] debiases the

input network to remove the sensitive information in the graph

data. Since GraphPAR is based on PGMs, we include three types of

PGM as baseline models: contrastive pretraining models DGI [36]

and GCA [48] that maximize mutual information between different

views, as well as predictive pretraining model EdgePred [13] that

reconstructs masked edges as its task.

Experiment setup. For Credit we follow train/valid/test split

in [43], and for Pokec_z and Pokec_n we follow in [6]. Unless

otherwise specified, we set the hyperparameters as follows: For

the sensitive semantics augmented, sensitive attribute semantics

augmentation range 𝜖 = 0.5, number of randomly selected augmen-

tation samples 𝑘 = 20, fairness loss scale factor 𝜆 = 0.1. For the

adapter, the dimension size of down projection is half of the input

dimension size, the learning rate is 0.01, and the number of epochs

is 1000. We use GCN as the backbone for all PGMs, take the Adam

optimizer and implement GraphPAR with Pytorch [29]. To provide

further provable fairness, following the parameter settings in center

smooth [22] and random smooth [3], we utilize the trained adapter

and the classifier to obtain their smoothed versions respectively. We

report the experiment results over five runs with different random

seeds. The code and datasets will be publicly available after the

review.

6.1 Prediction Performance and Fairness (RQ1)
We test GraphPAR on the node classification task. To evaluate

the performance on classification and its fairness, we choose four

metrics: accuracy (ACC) and macro-F1 (F1) score, measure how

well the nodes are classified; demographic parity (DP) and equality

of opportunity (EO), measure how fair the classification is. The

results are shown in Table 2. The best results are shown in bold,

while the runner-up results are underlined. We interpret the results

as follows:

GraphPAR outperforms baseline models both in classifi-
cation and fairness performance. GraphPAR are demonstrated

to be superior in both classification and fairness performances,

enhancing existing PGM models as well as outperforming other

graph fairness methods. This result supports the effectiveness of

GraphPAR to addresses fairness issues in the embedding space:

(1) Powerful pre-training strategies enable the embeddings to

include intrinsic information for downstream tasks;

(2) Since PGMs also capture sensitive attribute information, the

sensitive semantics vector can be effectively constructed;

(3) Augmenting in the embedding space is independent of task

labels, thus the sensitive semantic augmenter does not corrupt the

downstream performance.

Performance of GraphPAR varies among different PGMs.
The performance of classification and fairness varies when choosing

different PGMs as the backbone of GraphPAR. Usually, we observe

that contrastive pre-training methods DGI and GCA perform better

than the predictive method EdgePred, implying the importance of

which PGM we are based.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Provable fairness results for different training
schemes. The best result on each metric is shown in bold.

Dataset PGM

Naive GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥

ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑)

Credit

DGI 72.80 27.63 75.39 37.05 72.71 89.59
EdgePred 66.87 5.41 67.02 44.20 66.41 96.28
GCA 72.86 0.28 73.25 20.26 70.10 92.92

Pokec_z

DGI 67.30 1.47 67.21 10.99 67.28 94.51
EdgePred 66.02 0 66.27 37.51 66.80 90.97
GCA 66.92 13.9 66.67 16.14 65.22 95.75

Pokec_n

DGI 68.45 0.70 67.52 0.52 68.38 77.97
EdgePred 67.58 0 68.15 21.17 68.15 88.76
GCA 67.49 17.80 67.52 10.03 67.30 91.16

RandAT and MinMax perform well, but in different ways.
It is worth mentioning that RandAT often achieves the best result

on classification while MinMax often performs the best on fairness.

The following differences in the training schemes directly lead to

the result above:

(1) RandAT uses all augmented samples in downstream tasks

while MinMax only uses the original data. As a result, RandAT

often outperforms MinMax on classification metrics ACC and F1,

regarding that classification benefits from data augmentation [30].

(2) To debias sensitive information,MinMaxminimizes the largest

distance between an individual h𝑖 and other samples h′
𝑖
in the sen-

sitive augmentation set S𝑖 , which can achieve a better debiasing

result against the sampling strategy in RandAT that performs ad-

versarial training on all augmented samples.

These empirical findings straightforwardly demonstrate the char-

acteristics of RandAT in Equation 7 and MinMax in Equation 8.

6.2 Debiasing Guarantee (RQ2)
To additionally guarantee how fair the classification is, we eval-

uate the provable fairness of GraphPAR compared with naive PGMs.

Here, themetrics are accuracy (ACC) and provable fairness (Prov_Fair)

in Definition 3. The result is presented in Table 3. We have the fol-

lowing observations:

(1) Different from naive PGMs that show little or nearly zero

provable fairness, RandAT achieves much better provable fairness,

and MinMax has its fairness guaranteed very well. According to

Theorem 3 where the provable fairness of PGMs satisfies 𝑑𝑐𝑠 < 𝑑𝑟𝑠 ,

since 𝑑𝑟𝑠 is the same, but 𝑑𝑐𝑠 is different among training schemes:

naive PGMs do not optimize 𝑑𝑐𝑠 , thus the fairness is nearly not

guaranteed; RandAT is trained with many samples with sensitive

semantics augmented, which has a positive effect on minimizing

𝑑𝑐𝑠 but not in an explicit way; MinMax achieves the best provable

fairness by directly optimizing 𝑑𝑐𝑠 with min-max training.

(2) Also, the classification performances of RandAT and MinMax

are competitive to naive PGMs. RandAT does not lose its classi-

fication performance because its augmentation is performed in

sensitive semantics and do not introduce noise to task-related infor-

mation; on the other hand, MinMax trains the downstream classifier

with original data after an adapter, implying that the adapter al-

most has no negative effect on the classification while guaranteeing

fairness.

In conclusion, the empirical results above support that when

trained with RandAT and MinMax, GraphPAR guarantees fairness

without compromising its classification performance.

6.3 Hyperparameter Sensitivity Analysis (RQ3)
To further validate how the hyperparameters impact the perfor-

mance of GraphPAR, we conduct sensitivity analysis experiments

on the augmentation range 𝜖 , augmentation sample number 𝑘 , and

fairness loss scale 𝜆. As shown in Figure 4, the best 𝑡, 𝑘, 𝜆 for fair-

ness metrics varies among different PGMs, different datasets, and

different training methods (RandAT and MinMax), but they consis-

tently outperform naive PGMs, illustrating the effectiveness of the

proposed GraphPAR. For example, on Pokec_z trained with Min-

Max, GraphPAR on DGI achieves the best fairness when 𝑡 = 0.5,

while 𝑡 = 0.3 for EdgePred. For DGI trained with MinMax, Graph-

PAR achieves the best fairness on Pokec_z when 𝜆 = 0.6, while

𝜆 = 0.7 for Credit. A key observation is when 𝜖 is tuned between

0 and 1, ACC and F1 tend to be stable, while EO and DP fluctuate.

This suggests that the sensitive semantic augmenter does not cor-

rupt task-related information while successfully capturing sensitive

information. We show more detailed results in the Appendix B.

Pokec_z Pokec_n0
1500
3000
4500
6000
7500

Pa
ra

m
et

er
 N

um
be

r
PGMs
FairAdapter

(a) Infomax

Pokec_z Pokec_n0
1500
3000
4500
6000
7500

Pa
ra

m
et

er
 N

um
be

r

PGMs
FairAdapter

(b) EdgePred

Figure 5: Comparison of PGMs and GraphPAR in the size of
parameters tuned.

6.4 Efficiency Analysis (RQ4)
We demonstrate the parameter efficiency of GraphPAR by compar-

ing the parameters tuned to PGMs. As the results are shown in Ta-

ble 5, the size of tuned parameters in GrahpPAR is 91% smaller than

the size of parameters in the PGM. By contrast, since the parameter

of the GNN encoder has to be tuned in traditional fair represen-

tation learning methods, the size of tuned parameters would be

equal to or even larger than the size of PGM, far exceeding that in

GraphPAR. In conclusion, GraphPAR is super parameter-efficient,

which is well-suited for PGMs.

7 CONCLUSION
In this work, we explore the fairness in PGMs for the first time and

discover that PGMs may capture more sensitive attribute semantics

during the pre-training phase. In order to address this problem, we

propose GraphPAR to endow PGMs with fairness during the adap-

tation for downstream tasks. Furthermore, based on the GraphPAR,

we provide theoretical guarantees for fairness. Extensive exper-

iments on real-world datasets demonstrate the effectiveness of

GraphPAR in achieving fair predictions and providing provable

fairness. In the future, we will further explore the research of PGMs

in other trustworthy directions.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Endowing Pre-trained Graph Models with Provable Fairness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. 2021. Towards a uni-

fied framework for fair and stable graph representation learning. In Uncertainty
in Artificial Intelligence. PMLR, 2114–2124.

[2] April Chen, Ryan A Rossi, Namyong Park, Puja Trivedi, Yu Wang, Tong Yu,

Sungchul Kim, Franck Dernoncourt, and Nesreen K Ahmed. 2023. Fairness-

aware graph neural networks: A survey. arXiv preprint arXiv:2307.03929 (2023).
[3] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial

robustness via randomized smoothing. In international conference on machine
learning. PMLR, 1310–1320.

[4] EU COM. 2021. Laying down harmonised rules on artificial intelligence (artificial

intelligence act) and amending certain union legislative acts. Proposal for a

regulation of the European parliament and of the council.

[5] Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa Weis, Kevin Swer-

sky, Toniann Pitassi, and Richard Zemel. 2019. Flexibly fair representation

learning by disentanglement. In International conference on machine learning.
PMLR, 1436–1445.

[6] Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair

graph neural networkswith limited sensitive attribute information. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining. 680–
688.

[7] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,

Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:

A comprehensive study of parameter efficient methods for pre-trained language

models. arXiv preprint arXiv:2203.06904 (2022).
[8] Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022. Edits: Modeling

and mitigating data bias for graph neural networks. In Proceedings of the ACM
Web Conference 2022. 1259–1269.

[9] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations
in theoretical computer science conference. 214–226.

[10] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-

sander Madry. 2019. Exploring the landscape of spatial robustness. In Interna-
tional conference on machine learning. PMLR, 1802–1811.

[11] Zhimeng Guo, Jialiang Li, Teng Xiao, YaoMa, and SuhangWang. 2023. Improving

Fairness of Graph Neural Networks: A Graph Counterfactual Perspective. arXiv
preprint arXiv:2307.04937 (2023).

[12] Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-based mecha-

nism for social recommendations. IEEE Transactions on Industrial Informatics 17,
4 (2020), 2776–2783.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[14] Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and Hong Chen. 2021. Pre-

training graph neural networks for cold-start users and items representation. In

Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. 265–273.

[15] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov,

and Jie Tang. 2023. GraphMAE2: A Decoding-Enhanced Masked Self-Supervised

Graph Learner. In Proceedings of the ACM Web Conference 2023. 737–746.
[16] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,

and Jie Tang. 2022. Graphmae: Self-supervised masked graph autoencoders. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 594–604.

[17] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In

International Conference on Learning Representations.
[18] Elisa Jillson. 2021. Aiming for truth, fairness, and equity in your company’s use

of AI. Federal Trade Commission (2021).

[19] Nikola Jovanović, Mislav Balunovic, Dimitar Iliev Dimitrov, and Martin Vechev.

2023. FARE: Provably Fair Representation Learning with Practical Certificates.

(2023).

[20] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Öykü Deniz Köse and Yanning Shen. 2021. Fairness-aware node representation

learning. arXiv preprint arXiv:2106.05391 (2021).
[22] Aounon Kumar and TomGoldstein. 2021. Center smoothing: Certified robustness

for networks with structured outputs. Advances in Neural Information Processing
Systems 34 (2021), 5560–5575.

[23] Shengrui Li, Xueting Han, and Jing Bai. 2023. AdapterGNN: Efficient Delta

Tuning Improves Generalization Ability in Graph Neural Networks. arXiv
preprint arXiv:2304.09595 (2023).

[24] Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. 2022. Learn-

ing fair graph representations via automated data augmentations. In The Eleventh
International Conference on Learning Representations.

[25] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:

Unifying pre-training and downstream tasks for graph neural networks. In

Proceedings of the ACM Web Conference 2023. 417–428.
[26] Jing Ma, Ruocheng Guo, Mengting Wan, Longqi Yang, Aidong Zhang, and Jun-

dong Li. 2022. Learning fair node representations with graph counterfactual

fairness. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining. 695–703.

[27] Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, and Abdol Esfahanian.

2020. Bursting the filter bubble: Fairness-aware network link prediction. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 841–848.
[28] L. Oneto and Silvia Chiappa. 2020. Fairness in Machine Learning. ArXiv

abs/2012.15816 (2020).

[29] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[30] Luis Perez and Jason Wang. 2017. The effectiveness of data augmentation in

image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017).
[31] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 1150–1160.

[32] Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. 2020. Learn-

ing certified individually fair representations. Advances in neural information
processing systems 33 (2020), 7584–7596.

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. 2008. The graph neural network model. IEEE transac-
tions on neural networks 20, 1 (2008), 61–80.

[34] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. 2019. InfoGraph:

Unsupervised and Semi-supervised Graph-Level Representation Learning via

Mutual Information Maximization. In International Conference on Learning Rep-
resentations.

[35] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. 2021. Mocl:

Contrastive learning on molecular graphs with multi-level domain knowledge.

arXiv preprint arXiv:2106.04509 9 (2021).
[36] Petar Veličković, William Fedus, WilliamL. Hamilton, Pietro Liò, Yoshua Bengio,

and RDevon Hjelm. 2018. Deep Graph Infomax. International Conference on
Learning Representations,International Conference on Learning Representations
(Sep 2018). https://doi.org/10.17863/cam.40744

[37] Y Wang, J Wang, Z Cao, and AB Farimani. [n. d.]. MolCLR: Molecular contrastive

learning of representations via graph neural networks. arXiv 2021. arXiv preprint
arXiv:2102.10056 ([n. d.]).

[38] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler

Derr. 2022. Improving fairness in graph neural networks via mitigating sensi-

tive attribute leakage. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1938–1948.

[39] Fei Wu, Xiao-Yuan Jing, Pengfei Wei, Chao Lan, Yimu Ji, Guo-Ping Jiang, and

Qinghua Huang. 2022. Semi-supervised multi-view graph convolutional net-

works with application to webpage classification. Information Sciences 591 (2022),
142–154.

[40] Yiqing Wu, Ruobing Xie, Yongchun Zhu, Fuzhen Zhuang, Ao Xiang, Xu Zhang,

Leyu Lin, and Qing He. 2022. Selective fairness in recommendation via prompts.

In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2657–2662.

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[42] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. Simgrace: A

simple framework for graph contrastive learning without data augmentation. In

Proceedings of the ACM Web Conference 2022. 1070–1079.
[43] Jun Xia, Jiangbin Zheng, Cheng Tan, Ge Wang, and Stan Z Li. 2022. Towards

effective and generalizable fine-tuning for pre-trained molecular graph models.

bioRxiv (2022), 2022–02.

[44] Zhongbin Xie and Thomas Lukasiewicz. 2023. An Empirical Analysis of

Parameter-Efficient Methods for Debiasing Pre-Trained Language Models. arXiv
preprint arXiv:2306.04067 (2023).

[45] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph

contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[46] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[47] Xu Zhang, Liang Zhang, Bo Jin, and Xinjiang Lu. 2021. A multi-view confidence-

calibrated framework for fair and stable graph representation learning. In 2021
IEEE International Conference on Data Mining (ICDM). IEEE, 1493–1498.

[48] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

9

https://doi.org/10.17863/cam.40744

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A THE ALGORITHM OF GRAPHPAR

Algorithm 1: GraphPAR
Data: Graph G = (V, E,X), pre-trained graph model 𝑓

Result: Adapter 𝑔 and classifier 𝑑 , and the provable fairness

of each node

1 1. GraphPAR Training:
2 for each epoch do
3 Compute the sensitive semantic vector as Eq 3;

4 Sample the augmentation set
ˆS𝑖 for each node 𝑖 as Eq 6;

5 if Train with RandAT then
6 L = L𝑐𝑙𝑠 + 𝜆L𝑅𝑎𝑛𝑑𝐴𝑇
7 else
8 L = L𝑐𝑙𝑠 + 𝜆L𝑀𝑖𝑛𝑀𝑎𝑥

9 end
10 Backward pass with L;
11 end

12 2. Provide Provable Fairness with Smoothing:
13 Do adversarial training on the classifier 𝑑 ;

14 Construct the smoothed adapter 𝑔 and the smoothed

classifier 𝑑 ;

15 for each node 𝑖 inV do
16 Compute the guarantee 𝑑𝑐𝑠,𝑖 of the adapter as

Theorem 1;

17 Compute the guarantee 𝑑𝑟𝑠,𝑖 of the classifier as

Theorem 2;

18 If 𝑑𝑐𝑠,𝑖 < 𝑑𝑟𝑠,𝑖 , then node 𝑖 has a provable fairness;

19 end

In this section, we describe the whole process of GraphPAR in

Algorithm 1. GrapPAR consists of two parts: 1) train the adapter

and classifier with RandAT or MinMax; 2) guarantee the fairness.

B HYPERPARAMETER SENSITIVITY
ANALYSIS

In this section, we conduct a more detailed hyperparameter sensi-

tivity analysis for GraphPAR, focusing on three key aspects: the

augmentation range, denoted as 𝜖 , the augmentation sample num-

ber, represented by 𝑘 , and the fairness loss scale, symbolized as 𝜆.

Each of these hyperparameters plays a crucial role in shaping the

performance and fairness of GraphPAR, and understanding their

sensitivity is vital for finding the best model for performance and

fairness.

Augmentation range sensitivity (𝜖). The augmentation range

𝜖 dictates the range of linear interpolation on sensitive attribute

semantics. Within a certain range, the larger the augmentation

range 𝜖 , the larger the range of sensitive attributes considered, and

the model fairer. For example, as depicted in Figure 7 (a), when the

PGM is DGI and the debiasing method is MinMax, the metrics of

DP and EO tend to decrease with increasing 𝜖 on the Credit dataset.

Fairness loss scale factor sensitivity (𝜆). 𝜆 is a scale factor

with respect to the fairness loss, which is used to balance accuracy

and fairness. We find that different pre-training methods require

different values of 𝜆. As depicted in Figure 6, for example, when the

PGM is DGI, the optimal 𝜆 is 0.7 in the Pokec_z and Credit datasets.

However, the optimal 𝜆 is 0.2 when the PGM is EdgePred.

Augmentation sample number sensitivity (𝑘). 𝑘 is the aug-

mentation sample number for each node representation. According

to Figure 8 and Figure 9, we find that the optimal 𝑘 is associated

with the dataset, the pre-training method, and the adapter training

strategy, but the general RandAT requires a larger 𝑘 value than

MinMax.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Endowing Pre-trained Graph Models with Provable Fairness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0.2 0.4 0.6 0.8 1.0
Fairness Loss Scale

67.2

67.9

68.5

69.2

69.8

A
C

C
/F

1(
%

)

0.1

0.9

1.8

2.6

3.5

E
O

/D
P(

%
)

ACC
F1
EO
DP

(a) DGI-Pokec_z

0.2 0.4 0.6 0.8 1.0
Fairness Loss Scale

70.4

73.7

77.1

80.5

83.8

A
C

C
/F

1(
%

)

2.0

2.9

3.8

4.7

5.6

E
O

/D
P(

%
)

(b) DGI-Credit

0.2 0.4 0.6 0.8 1.0
Fairness Loss Scale

66.8

67.4

68.1

68.7

69.4

A
C

C
/F

1(
%

)

0.7

1.6

2.5

3.4

4.3

E
O

/D
P(

%
)

(c) EdgePred-Pokec_z

0.2 0.4 0.6 0.8 1.0
Fairness Loss Scale

67.4

70.3

73.1

76.0

78.9

A
C

C
/F

1(
%

)

3.9

4.5

5.1

5.7

6.3

E
O

/D
P(

%
)

(d) EdgePred-Credit

Figure 6: The effect of fairness loss scale factor 𝜆 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 .

0.2 0.4 0.6 0.8 1.0
Augmentation range

71.9

75.1

78.2

81.4

84.5

A
C

C
/F

1(
%

)

1.7

3.6

5.6

7.6

9.6

E
O

/D
P(

%
)ACC

F1
EO
DP

(a) DGI-MinMax

0.2 0.4 0.6 0.8 1.0
Augmentation range

74.4

77.4

80.3

83.3

86.3
A

C
C

/F
1(

%
)

3.2

4.6

6.1

7.5

8.9

E
O

/D
P(

%
)

(b) DGI-RandAT

0.2 0.4 0.6 0.8 1.0
Augmentation range

67.5

70.3

73.1

76.0

78.8

A
C

C
/F

1(
%

)

3.7

4.4

5.2

6.0

6.7

E
O

/D
P(

%
)

(c) EdgePred-MinMax

0.2 0.4 0.6 0.8 1.0
Augmentation range

68.1

71.4

74.7

78.0

81.3

A
C

C
/F

1(
%

)

3.8

4.8

5.7

6.7

7.7

E
O

/D
P(

%
)

(d) EdgePred-RandAT

Figure 7: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.

20 40 60 80 100
Number of random samples k

67.7

68.1

68.5

68.9

69.3

A
C

C
/F

1(
%

)

0.4

0.9

1.4

1.9

2.4

E
O

/D
P(

%
)ACC

F1
EO
DP

(a) DGI-MinMax

0 100 200 300 400 500
Number of random samples k

66.3

67.6

68.8

70.1

71.3

A
C

C
/F

1(
%

)

0.8

1.2

1.6

2.0

2.5

E
O

/D
P(

%
)

(b) DGI-RandAT

20 40 60 80 100
Number of random samples k

66.8

67.4

68.1

68.7

69.3
A

C
C

/F
1(

%
)

1.0

1.5

1.9

2.3

2.8

E
O

/D
P(

%
)

(c) EdgePred-MinMax

0 100 200 300 400 500
Number of random samples k

65.3

66.5

67.8

69.0

70.3

A
C

C
/F

1(
%

)

0.7

1.3

1.9

2.5

3.2

E
O

/D
P(

%
)

(d) EdgePred-RandAT

Figure 8: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Pokec_z dataset.

20 40 60 80 100
Number of random samples k

73.9

76.6

79.3

81.9

84.6

A
C

C
/F

1(
%

)

2.8

3.5

4.1

4.8

5.4

E
O

/D
P(

%
)ACC

F1
EO
DP

(a) DGI-MinMax

0 100 200 300 400 500
Number of random samples k

74.6

77.5

80.5

83.5

86.4

A
C

C
/F

1(
%

)

4.1

5.0

6.0

7.0

7.9

E
O

/D
P(

%
)

(b) DGI-RandAT

20 40 60 80 100
Number of random samples k

67.8

70.5

73.2

76.0

78.7

A
C

C
/F

1(
%

)

3.8

4.3

4.8

5.3

5.8

E
O

/D
P(

%
)

(c) EdgePred-MinMax

0 100 200 300 400 500
Number of random samples k

69.6

72.5

75.5

78.4

81.3
A

C
C

/F
1(

%
)

4.5

5.2

5.9

6.6

7.3

E
O

/D
P(

%
)

(d) EdgePred-RandAT

Figure 9: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pre-trained Graph Models
	2.2 Fairness of Graph

	3 Problem Definition
	3.1 Notations
	3.2 Fairness Definition on Graph
	3.3 Fairness Definition on PGMs

	4 Methodology
	4.1 Sensitive Semantic Augmenter
	4.2 Training Adapter for PGMs Fairness

	5 Provable Fair Adaptation of PGMs
	5.1 Provable Adaptation
	5.2 Provable Classification
	5.3 GraphPAR Provides Provable Fairness

	6 Experiments
	6.1 Prediction Performance and Fairness (RQ1)
	6.2 Debiasing Guarantee (RQ2)
	6.3 Hyperparameter Sensitivity Analysis (RQ3)
	6.4 Efficiency Analysis (RQ4)

	7 Conclusion
	References
	A The Algorithm of GraphPAR
	B Hyperparameter Sensitivity Analysis

