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Endowing Pre-trained Graph Models with Provable Fairness
Anonymous Author(s)

∗

ABSTRACT
Pre-trained graph models (PGMs) have received considerable atten-

tion in graph machine learning by capturing transferable inherent

structural properties and applying them to different downstream

tasks. Similar to pre-trained language models, PGMs also inherit

biases from human society, resulting in discriminatory behavior

in downstream applications. However, the debiasing process of

most existing methods is coupled with parameter optimization of

GNN, making them not efficient to debias PGMs. Moreover, these

debiasing methods lack a theoretical guarantee, i.e., provable lower

bounds on the fairness of model predictions, which directly provides

assurance in a practical scenario. To overcome these limitations, we

propose a novel framework that endows pre-trained Graph mod-

els with Provable fAiRness (called GraphPAR). GraphPAR freezes

the parameters of PGMs and applies a parameter-efficient adapter

on node representations to make the model’s predictions fairer.

Specifically, we design a sensitive attribute augmenter that extends

node representations with different sensitive attribute semantics

for each node. Then employ two adversarial debiasing methods

to optimize the adapter’s parameters. Furthermore, based on the

proposed framework GraphPAR, we quantify whether the fairness

of each node is provable fairness, i.e., predictions are always fair

within a certain range of sensitive attribute semantics. Experimen-

tal evaluations on real-world datasets demonstrate that GraphPAR

achieves state-of-the-art performance and fairness on node classi-

fication task. Furthermore, based on our GraphPAR, around 90%

nodes have provable fairness.
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1 INTRODUCTION
Graph Neural Networks (GNNs) [33, 41] have achieved signifi-

cant success in analyzing graph-structured data, such as social

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Pokec_z Pokec_n0.00
2.00
4.00
6.00
8.00

10.00

D
P(

%
)

GCN
DGI
EdgePred
GCA

(a) Demographic Parity (DP)

Pokec_z Pokec_n0.00

2.00

4.00

6.00

8.00

E
O

(%
)

GCN
DGI
EdgePred
GCA

(b) Equality Opportunity (EO)

Figure 1: An example shows that testing the fairness of
PGMs in downstream tasks. Fairness comparison of differ-
ent methods is reported using DP (↓), EO (↓) on Pokec_z and
Pokec_n datasets, using three pre-training methods (i.e., DGI,
EdgePred, GCA) and vanilla GCN.

network [12] or webpage network [39]. Recently, inspired by pre-

trained language models, pre-trained graph models (PGMs) have

received considerable attention in the field of graph machine learn-

ing. The aim is to capture transferable inherent structural properties

and apply them to different downstream tasks [17, 36, 42]. As a

powerful learning approach, PGMs have been applied in various

domains such as social network analysis [31], recommendation

systems [14], and drug discovery [37].

Due to the sensitive information such as gender, race, and reli-

gion present in pre-training corpora, it has been proven that pre-

trained language models inherit biases from human society [44].

This naturally gives rise to the following questions: Do pre-trained
graph models also inherit bias on graphs? In order to answer this

question, we apply three different pre-training methods on datasets

Pokec_z and Pokec_n. As depicted in Figure 1, we observe that

PGMs inevitably capture sensitive attribute semantics during the

pre-training phase, resulting in even more unfairness in down-

stream applications than vanilla GCN. Another question natu-

rally arises: How to improve the fairness of PGMs? Since different
downstream tasks may be associated with different sensitive at-

tributes [5, 28, 40], debiasing during the pre-training phase may

not be targeted to a specific task. Consequently, there is a need for

a flexible approach to debiasing in downstream tasks.

In recent years, an increasing number of methods have been pro-

posed for fair GNNs [6, 8, 21]. They design various fairness-related

losses to constrain the parameter optimization process of GNNs. For

example, methods based on counterfactual fairness [11, 26, 43] in-

troduce similarity loss that aims to maximize the similarity between

the original representations and counterfactual representations, to

learn node embeddings that are invariant to sensitive attribute. Ap-

proaches based on sensitive attribute classifiers [6, 38] introduce

adversarial loss to constrain GNNs from capturing sensitive infor-

mation, or to generate new graphs with fair topology and node

features [24].

Although the above methods achieve success for fair GNNs,

when employed for addressing fairness issues of PGMs, they have

twomain drawbacks: (1) Their debiasing process is coupled with the

1
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parameter optimization of GNNs. Due to that different downstream

tasks may have different sensitive attributes, maintaining a specific

PGM for each downstream task is not efficient. (2) Most existing

fairness methods lack theoretical analysis and guarantees [2, 19],

meaning that they do not provide a practical guarantee, i.e., provable

lower bounds on the fairness of model prediction. This is important

in practical scenarios when determining whether to deploy the

models [4, 9, 18, 32].

To address the above limitations, we propose an adapter tun-

ing framework called GraphPAR, which freezes the parameters

of PGMs and applies a parameter-efficient adapter on node rep-

resentations to make the model’s predictions fairer. Specifically,

we first design an augmenter that extends the node representation

with different sensitive attribute semantics for each node via linear

interpolation. Based on the augmented node representations, we

utilize two adversarial debiasing techniques to optimize adapter

parameters, preventing the propagation of sensitive attribute se-

mantics from PGMs to downstream task predictions. Furthermore,

with GraphPAR, we quantify whether the fairness of each node is

provable, i.e., predictions are always fair within a certain range of

sensitive attribute semantics. For example, when a person’s gen-

der semantics gradually transit from male to female, our provable

fairness guarantees that the prediction results will not change. In

summary, our debiasing framework GraphPAR is applicable to any

PGMs while providing fairness with theoretical guarantees. Exper-

imental evaluations conducted on three real-world datasets and

three pre-training methods demonstrate that GraphPAR achieves

state-of-the-art performance and fairness on node classification

task. Moreover, with the help of GraphPAR, around 90% of nodes

have provable fairness. The main contributions of this work can be

summarized as follows:

(1) We explore fairness in PGMs for the first time and discover

that PGMs may capture more sensitive attribute semantics than

supervised GNNs during the pre-training phase, resulting in un-

fairness in downstream applications.

(2) We propose a novel approach to endow PGMs with fairness

during the adaptation for downstream tasks. Specifically, we design

GraphPAR, which utilizes a sensitive semantic augmenter and two

adversarial debiasing methods to improve the fairness of PGMs

while providing theoretical guarantees for fairness.

(3)We conduct extensive experiments on three real-world datasets

to demonstrate the effectiveness of our model in achieving fair pre-

dictions and providing provable fairness.

2 RELATEDWORK
2.1 Pre-trained Graph Models
In the pre-training phase, owing to its huge model parameters,

PGMs can capture abundant knowledge from massive labeled and

unlabeled graph data. Based on pre-training tasks, the existing pre-

training methods mainly can be categorized into two categories:

contrastive pre-training and predictive pre-training. Contrastive

methods aim to maximize mutual information between different

views, encouraging the model to capture invariant semantic in-

formation across various perspectives. For example, DGI [36] and

InfoGraph [34] present approaches that aim to generate expres-

sive representations for either graphs or nodes by maximizing

the mutual information between graph-level representations and

substructure-level representations at various levels of granularity.

GraphCL [46] and its variants [35, 45] introduce a range of so-

phisticated augmentation strategies for graph-level pre-training.

Different from contrastive methods, predictive pre-training meth-

ods aim to equip graph models with an understanding of the uni-

versal structural and attribute semantics of graphs. For instance,

attribute masking is proposed by [17] where the input node/edge

attributes are randomly masked, and the GNN is asked to predict

them. EdgePred [13] samples negative sample edges and utilizes

a general GNN encoder to predict edge existence during the pre-

training phase. GraphMAE [16] addresses the overemphasis on

structure information in previous predictive methods by incorpo-

rating feature reconstruction and a re-mask decoding strategy for

self-supervised learning.

Despite the ability of PGMs to capture abundant knowledge that

proves valuable for downstream tasks, the conventional fine-tuning

process still has some drawbacks, such as overfitting, catastrophic

forgetting, and parameter inefficiency[23, 43]. To alleviate these is-

sues, recent research has focused on developing parameter-efficient

tuning (delta tuning) techniques that can effectively adapt pre-

trained models to new tasks [7]. Delta tuning [7] seeks to tune a

small portion of parameters and keep the left parameters frozen. For

example, prompt tuning [25] aims to modify model inputs rather

than model architecture. Adapter tuning [23] trains only a fraction

of the Adapter’s parameters to make PGMs adapt to downstream

tasks.

Though a large number of research have been proposed on how

to design pre-trainingmethods and how to fine-tune PGMs in down-

stream tasks, most of them focus on how to improve performance

while ignoring their plausibility in terms of fairness and so on.

2.2 Fairness of Graph
Recent studies [6, 21] show that GNNs tend to inherit bias from

training data and the message-passing mechanism of GNNs and

graph structure could magnify the bias [6]. Hence, many efforts

have been made for fair GNNs, generally categorized into three

different phases [2]. Pre-processing techniques remove bias or un-

fairness before GNN training occurs, by targeting the input graph

structure, input features, or both. For instance, EDITS [8] propose

a novel approach that utilizes the Wasserstein distance to address

both attribute-based bias and structural bias in GNNs, effectively

mitigating these biases. In-training techniques focus on modifying

the objective function of GNNs to learn fair and unbiased embed-

dings during training. For example, NIFTY [1] propose a novel mul-

tiple objective function, which incorporates fairness and stability

considerations. Graphair [24] introduces an automated augmen-

tation model that generates new fair graphs to achieve fairness

and informativeness simultaneously. A few post-processing meth-

ods have been proposed to remove bias from GNNs. FairGNN [6]

designs a framework that leverages GNNs for fair node classifica-

tion when only limited sensitive attribute information is available.

FLIP [27] addresses the problem of link prediction homophily with

postprocessing, as well as an adversarial framework.

Although all the aforementionedworks have achieved significant

success in graph fairness issues, most methods require optimizing

2
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the parameters of the GNN. Therefore, these methods cannot ef-

ficiently address the fairness of PGMs in downstream tasks. In

addition, they all lack theoretical analysis and fairness guarantees,

which are important in determining whether to deploy a model in

a real-world scenario.

3 PROBLEM DEFINITION
3.1 Notations
Given an attributed graph as G = (V, E,X), whereV = {𝑣1, ..., 𝑣𝑛}
represents the set of𝑛 nodes, E ⊆ V×V represents the set of edges,

X = {x1, . . . , x𝑛} represents the node features and xi ∈ R𝑑 . The
adjacency matrix of the graph G is denoted as A ∈ R𝑛×𝑛 , where
A𝑖 𝑗 = 1 if nodes 𝑣𝑖 and 𝑣 𝑗 are connected, otherwise A𝑖 𝑗 = 0. Each

node 𝑖 is associated with a binary sensitive attribute 𝑠𝑖 ∈ {0, 1} (we
assume one single, binary sensitive attribute for simplicity, but our

method can easily handle multivariate sensitive attributes as well).

Furthermore, we consider a PGM or GNN denoted as 𝑓 , which takes

the graph structure and node features as input and produces node

representations. The encoded representations for the 𝑛 nodes are

denoted by H = {h𝑖 }𝑛𝑖=1, where H = 𝑓 (V, E,X) and h𝑖 ∈ R𝑝 .
In the pre-training phase, the parameters of a PGM 𝑓 is opti-

mized via some self-supervised methods, such as graph contrastive

learning [34, 36, 45, 46] or graph context prediction [13, 15–17].

In downstream tasks, adapter tuning by freezing the parameter 𝑓𝜃
of PGMs and just training the parameter 𝑔𝜃 of adapter 𝑔 to adapt

PGMs for downstream tasks. Generally, |𝑔𝜃 | ≪ |𝑓𝜃 |, where |·| de-
notes the number of parameter. In adapter, given an input h𝑖 ∈ R𝑝 ,
a down projection projects the input to a 𝑞-dimensional space, after

which a nonlinear function is applied. Then the up-projection maps

the 𝑞-dimensional representation back to 𝑝-dimensional space.

3.2 Fairness Definition on Graph
Fairness definition on graph refers to the prediction that the model

should not be influenced by its sensitive attribute [26].

Definition 1 (Fairness onGraph). Given a graphG = (V, E,X),
the encoder 𝑓 (·) and the classifier 𝑑 (·) trained on this graph satisfies
fairness if for any node 𝑣𝑖 :

𝑃 ((𝑑 (𝑓 (X,A)𝑖 ))𝑆←𝑠 |X,A) = 𝑃 ((𝑑 (𝑓 (X,A)𝑖 ))𝑆←𝑠′ |X,A), 𝑠 .𝑡 .∀𝑠 ≠ 𝑠′,
(1)

where 𝑠, 𝑠′ ∈ {0, 1}𝑛 are two arbitrary sensitive attribute values. In
other words, such a definition requires the prediction result will not
change as the sensitive attribute value variations.

3.3 Fairness Definition on PGMs
In order to improve the fairness of PGMs in downstream tasks, it

is necessary to define fairness for PGMs. Combining the setting of

PGMs and Definition 1, the fairness of PGMs in downstream tasks

is defined in this work as follows:

Definition 2 (Fairness of PGMs in downstream tasks). A
PGM 𝑓 is fair in the downstream tasks if the model predictions are
the same under different sensitive attribute semantics, as formally
defined below:

𝑃 ((𝑑 (𝑔(ℎ𝑖 ))Sh←s) = 𝑃 ((𝑑 (𝑔(ℎ𝑖 ))Sh←s′ ), 𝑠 .𝑡 . ∀||s − s′ | |2 ≠ 0, (2)

where Sh is a vector with the same dimension as the representation
h, and its value represents the node’s sensitive attribute semantics. s
and s′ are different semantics representations of sensitive attribute.

The above fairness definition implies that prediction results

should be the same as the sensitive attribute semantics represen-

tation variations. For example, when a person’s gender semantics

representation gradually transits from male to female, fairness is

satisfied if the model predictions are always consistent, otherwise

not satisfied.

4 METHODOLOGY
According to Definition 2, in order to improve fairness for PGMs in

downstream tasks, in this section, we propose an adapter-tuning

framework called GraphPAR, which parameter-efficient improves

the fairness of PGMs. Adapter tuning is illustrated in Figure 2 (a)

and consists of two components: (1) Sensitive semantic augmenter.

We first compute a vector 𝜶 about sensitive attribute semantics,

and then extend the node representation with different sensitive

attribute semantics for each node via linear interpolation on 𝜶 . (2)

Training adapter. We employ random augmentation adversarial

debiasing and Min-max adversarial attack debiasing to tune the

parameters of the adapter.

4.1 Sensitive Semantic Augmenter
In order to extend the node representation with different sensitive

attribute semantics for each node, we design a sensitive seman-

tic augmenter. Initially, we leverage the known sensitive attribute

information and representations of the nodes to calculate a sen-

sitive attribute semantics vector 𝜶 . Subsequently, we extend the

node representation h𝑖 for each node via linearly interpolating

in the direction of 𝜶 , obtaining the sensitive attribute semantics

augmentation set S𝑖 .
Computing the sensitive attribute semantics vector𝜶 . Lever-

aging the capabilities of PGMs in capturing both graph structure

and node attributes, we expect to derive a vector 𝜶 that effectively

represents the sensitive attribute semantics. Firstly, we utilize the

given PGM 𝑓 to obtain node representations H. Then, based on

known nodes’ sensitive attribute 𝑠 , we partition the node repre-

sentations into positive and negative sets, i.e., H𝑝𝑜𝑠 and H𝑛𝑒𝑔 . We

calculate the average representation h𝑝𝑜𝑠 for nodes possessing

the sensitive attribute and h𝑛𝑒𝑔 for nodes lacking the sensitive at-
tribute, both obtained from H𝑝𝑜𝑠 and H𝑛𝑒𝑔 , respectively. Lastly, the

difference between h𝑝𝑜𝑠 and h𝑛𝑒𝑔 represents the sensitive attribute

semantics vector:

𝜶 = hpos − hneg, (3)

h𝑝𝑜𝑠 =
1

𝑛𝑝𝑜𝑠

𝑛𝑝𝑜𝑠∑︁
𝑖=1

H𝑝𝑜𝑠,𝑖 , h𝑛𝑒𝑔 =
1

𝑛𝑛𝑒𝑔

𝑛𝑛𝑒𝑔∑︁
𝑖=1

H𝑛𝑒𝑔,𝑖 , (4)

where 𝑛𝑝𝑜𝑠 and 𝑛𝑛𝑒𝑔 denote the number of positive and negative

samples.

With the vector 𝜶 , we expect to move in the direction of 𝜶 to

increase the presence of the sensitive attribute, while moving in the

opposite direction diminishes its presence. Thus, to verify whether

𝜶 satisfies our expectations, we conduct a test experiment using

𝜶 . First, we divide H into training and test sets. In the training

3
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Figure 2: Overview of GraphPAR. In the adapter tuning phase, we first utilize the PGMs to obtain node representations H. Then,
we design a sensitive semantic augmenter to augment the node representations with different sensitive attribute semantics, i.e.,
sensitive attribute samples S. Finally, we use the augmented node representations to train an adapter, improving the fairness
of PGMs. In the provable fairness phase, based on the smoothed versions of the trained adapter and classifier, we use the
smooth adapter to get its output bound guarantee 𝑑𝑐𝑠 , and use the smooth classifier to get its local robustness guarantee 𝑑𝑟𝑠 .
Sequentially, we quantify whether the fairness of each node is provable by comparing 𝑑𝑐𝑠 with 𝑑𝑟𝑠 .

set, we train a sensitive attribute classifier 𝑑𝑠𝑒𝑛𝑠 and compute the

𝜶 . Next, we move the node representations in the test set along

the direction of 𝜶 with varying augmentation degree 𝑡 . Lastly,

we utilize the trained classifier 𝑑𝑠𝑒𝑛𝑠 to predict the accuracy of

the sensitive attribute on the test set. The results are presented in

Figure 3, revealing the following findings:

(1) When no movement is performed, i.e., 𝑡 = 0, the predic-

tion accuracy of the sensitive attribute is highest. This indicates

that the pre-training may inevitably capture the sensitive attribute

information present in the dataset.

(2) As the magnitude of the augmentation degree |𝑡 | increases,
the prediction accuracy of 𝑑𝑠𝑒𝑛𝑠 gradually decreases until it reaches

50%. This is because modifying the node representations along

the same sensitive semantics direction leads all nodes to become

increasingly similar in terms of sensitive attribute semantics. For

instance, when moving in the direction of 𝑡 > 0, nodes initially

classified as negative samples shift to positive samples, while nodes

previously classified as positive samples become more strongly

associated with the sensitive attribute. Consequently, the sensitive

attribute classifier 𝑑𝑠𝑒𝑛𝑠 can only accurately classify half of the

nodes.

Augmenting sensitive attribute semantics for h. After ver-
ifying the effectiveness of 𝜶 , we employ it to augment a set of

sensitive attribute S𝑖 for each node representation h𝑖 . This aug-
mentation is achieved through a linear interpolation method and

can be expressed as:

S𝑖 := {h𝑖 + 𝑡 · 𝜶 | |𝑡 | ≤ 𝜖} ⊆ R𝑝 , (5)

Here, 𝜖 represents the augmentation range applied to the direc-

tion of the sensitive attribute semantics. The above augmentation

method offers two key advantages: (1) It efficiently extends node
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Figure 3: Under different augmentation degree 𝑡 of sensitive
attribute semantics, comparing sensitive attribute prediction
accuracy against different datasets.

representations with different semantics of sensitive attributes as

line segments. These line segments correspond to multiple points

in the original input space, thereby bypassing complex augmenta-

tion designs in the original input space [43, 47]. (2) Although this

work primarily focuses on single sensitive attribute scenarios, this

method can be simply extended to situations involving multiple

sensitive attributes. In such cases, interpolation can be performed

along multiple sensitive attribute semantics vectors.

4.2 Training Adapter for PGMs Fairness
Given any PGMs 𝑓 and the sensitive attribute augmentation set

S, we will now outline how to improve the fairness of PGMs by

training a parameter-efficient adapter 𝑔, while also ensuring the

performance of downstream tasks. Specifically, we employ two
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debiasing methods for training the adapter: random augmentation

adversarial training and min-max adversarial attacks training.

Randomaugmentation adversarial training (RandAT).Dur-
ing the adapter 𝑔 training process, we adopt a strategy where we

choose 𝑘 samples from the augmented sensitive attribute set S𝑖 to
obtain adversarial training set

ˆS𝑖 , i.e.,
ˆS𝑖 = {h𝑖 + 𝑡 𝑗 · 𝜶 }𝑘𝑗=1, 𝑡 𝑗 ∼ Uniform(−𝜖, 𝜖), (6)

where 𝜖 represents the augmentation range. These selected sam-

ples are then incorporated into the training of the adapter. The

optimization loss can be formulated as:

L
RandAT

= E𝑖∈V𝐿

[
Eh′∈{h𝑖 }∪ ˆS𝑖

[
ℓ (𝑑 ◦ 𝑓 (h′), 𝑦𝑖 )

] ]
, (7)

whereV𝐿 is the set of labeled nodes, 𝑑 is a downstream classifier,

and ℓ (·) is cross-entropy loss which measures the prediction error.

In RandAT, by including a diverse range of sensitive attribute

semantic samples in the tuning process, both the adapter 𝑔 and

the classifier 𝑑 become capable of handling variations in sensitive

information. This enables them to generalize effectively to samples

with different sensitive attribute semantics. Consequently, this ap-

proach helps mitigate potential discriminatory predictions, as the

adapter becomes more robust and adaptable to changes in sensitive

attribute semantics.

Min-max adversarial attacks training (MinMax). Unlike
RandAT, the thought behind MinMax is to find and optimize a

worst-case scenario in each round. Our objective is to minimize the

discrepancy between the representation h𝑖 and its corresponding

augmented sensitive attribute semantics set S𝑖 . This is achieved by

ensuring that the representation h𝑖 closely aligns with the represen-
tations within S𝑖 . To quantify this alignment, we seek to minimize

the distance between h𝑖 and S𝑖 . Hence, our optimization objective

entails minimizing the following loss function:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖 ) = max

h′
𝑖
∈S𝑖



𝑔 (h𝑖 ) − 𝑔 (
h′𝑖
)


2
, (8)

where h′
𝑖
is the any sample ofS𝑖 . MinimizingL𝑎𝑑𝑣 (h𝑖 ) is a min-max

optimization problem, and adversarial training is effective in this

scenario. Since the input domain of the inner maximization prob-

lem is a simple line segment about 𝜶 , we can perform adversarial

training [10] by uniformly sampling 𝑘 points from S𝑖 to construct

ˆS𝑖 and approximate it as follow:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖 ) ≈ max

h′
𝑖
∈ ˆS𝑖



𝑔 (h𝑖 ) − 𝑔 (
h′𝑖
)


2
, (9)

where h′
𝑖
have different sensitive attribute semantics with h𝑖 . To

ensure that the adapter 𝑔 does not filter out useful task information,

we introduce a downstream task classifier after the adapter. We add

an additional cross-entropy classification loss term to ensure the

performance of the downstream task:

L𝑐𝑙𝑠 (h𝑖 , 𝑦𝑖 ) = ℓ (𝑑 ◦ 𝑓 (h𝑖 ), 𝑦𝑖 ). (10)

The final optimization objective is as follows:

L = 𝜆L𝑀𝑖𝑛𝑀𝑎𝑥 + L𝑐𝑙𝑠 , (11)

where 𝜆 is a scale factor with respect to the fairness loss, which is

used to balance accuracy and fairness.

5 PROVABLE FAIR ADAPTATION OF PGMS
In this section, based on GraphPAR, we will primarily discuss how

to provide provable fairness for each node, i.e., the prediction results

are consistent within a certain range of sensitive attribute semantics.

We divide this process into two key components as depicted in

Figure 2 (b): (1) Smooth adapter. We construct a smoothed version

for the adapter using center smooth, which provides a bound for

the output variation of node representation h𝑖 within the range

of sensitive attribute semantics change. This guarantees that the

range of output results is contained within a minimal enclosing ball

centered at zwith a radius of𝑑𝑐𝑠 . (2) Smooth classifier. We construct

a smoothed version for the classifier using random smooth, which

provides a local robustness against the center z. By determining

whether all points within the minimum enclosing ball are classified

into the same class, i.e., 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , we quantify if the fairness of

each node is provable.

5.1 Provable Adaptation
To guarantee the range of change in the representation after ap-

plying the adapter 𝑔, we employ a technique called center smooth-

ing [22] to obtain a smoothed version of the adapter, denoted as 𝑔.

It provides a guarantee for the output bound of the adapter with a

representation t as the input, described in Theorem 1:

Theorem 1 (Center Smoothing [22]). Let 𝑔 denote an approx-
imation of the smoothed version of the adapter 𝑔, which maps a
representation h to the center point 𝑔(h) of a minimum enclosing ball
containing at least half of the points 𝒛 ∼ 𝑔(h +N(0, 𝜎2𝑐𝑠 𝐼 )). Then, for
an 𝑙2-perturbation size 𝜖1 > 0 on h, we can produce a guarantee 𝑑𝑐𝑠
of the output change with confidence 1 − 𝛼𝑐𝑠 :

∀h′ 𝑠 .𝑡 .∥h − h′∥2 ≤ 𝜖1 , ∥𝑔(h) − 𝑔(h′)∥2 ≤ 𝑑𝑐𝑠 . (12)

In adapter, since h′ − h = 𝑡 · 𝜶 , we have 𝜖1 = 𝑡 ∥𝜶 ∥2. Theo-
rem 1 implies that given a node representation h and its set of

sensitive attribute samples S𝑖 , a guarantee 𝑑𝑐𝑠 can be computed

with high probability. This 𝑑𝑐𝑠 represents the range of adapter’s

output changes, serving as a meaningful certificate. It guarantees

that when the sensitive attribute semantics of input h is perturbed

within a range defined by 𝜖 , the range of output remains within a

minimal enclosing ball.

5.2 Provable Classification
Subsequently, it is necessary to demonstrate that predictions for

all points within this minimum enclosing ball are classified consis-

tently. This consistency guarantees the effectiveness of debiasing

results.

Theorem 2. (Random Smoothing [3]) Let 𝑑 be a classifier and let
𝜀 ∼ N(0, 𝜎2𝑟𝑠 𝐼 ). The smoothing version of the classifier 𝑑 is defined as
follows:

𝑑 (𝒛) = arg max

𝑦𝑖 ∈Y
P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝑖 ) . (13)

Suppose 𝑦𝐴 ∈ Y and 𝑝𝐴, 𝑝𝐵 ∈ [0, 1] satisfy:

P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝐴) ≥ 𝑝𝐴 ≥ 𝑝𝐵 ≥ max

𝑦𝐵≠𝑦𝐴
P𝜺 (𝑑 (𝒛 + 𝜺) = 𝑦𝐵). (14)
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Then, we have 𝑑 (𝒛 + 𝜹) = 𝑦𝐴 for all 𝜹 satisfying ∥𝜹 ∥2 < 𝑑𝑟𝑠 , where
𝑑𝑟𝑠 can be obtain as follow:

𝑑𝑟𝑠 :=
𝜎𝑟𝑠

2

(Φ−1 (𝑝𝐴) − (Φ−1 (𝑝𝐵)), (15)

whereY denotes the set of class labels,Φ is the cumulative distribution
function (CDF) of the standard normal distribution N(0, 1), and Φ−1
is its inverse.

Theorem 2 derives a local robustness radius 𝑑𝑟𝑠 for the classi-

fier’s input by employing the smoothed version 𝑑 of the classifier 𝑑 .

This robustness guarantees that within the verified region of input,

which is bounded by 𝑑𝑟𝑠 , the classification output of 𝑑 remains

unchanged, providing a guarantee of stability and consistency in

the classifier’s predictions. Theorem 2 is especially important for

providing provable fairness, because if 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , then it guaran-

tees consistency in the predictions to different sensitive attribute

semantic samples.

5.3 GraphPAR Provides Provable Fairness
To establish a theoretical guarantee for the debiasing effect of

adapter 𝑔 and verify the fairness of the debiasing process, we define

the provable fairness of PGMs as follows:

Definition 3 (Provable Fairness of PGMs in downstream

tasks). Given a node representation h, the debiasing process𝑀 satis-
fies:

𝑀 (h) = 𝑀 (h′),∀ℎ′ ∈ S , (16)

where S is the set of sensitive attribute augmentations for h.

With the utilization of the aforementioned two smoothing tech-

niques, the provable fairness of PGMs is naturally achieved with

the following theorem:

Theorem 3. Assuming we have a PGM 𝑓 , a center smoothing
adapter 𝑔, and a random smoothing classifier 𝑑 . For node 𝑖 , if 𝑔 obtains
a output guarantee 𝑑𝑐𝑠 with confidence 1 − 𝛼𝑐𝑠 and 𝑑 obtains a local
robustness guarantee𝑑𝑟𝑠 with confidence 1−𝛼𝑟𝑠 , and satisfy𝑑𝑐𝑠 < 𝑑𝑟𝑠 ,
then the fairness of the debiasing𝑀 = 𝑑 ◦𝑔 ◦ 𝑓 (V, E,X)𝑖 is provable
with a confidence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 .

Proof. Assume that Theorem 3 holds for the node 𝑖 . We need

to show that with probability at least 1 − 𝜶𝑐𝑠 − 𝜶 𝑟𝑠 :

∀𝒉′ ∈ 𝑆 : 𝑑 ◦ 𝑔 (𝒉) = 𝑑 ◦ 𝑔
(
𝒉′
)
, (17)

where h ∈ H,H = 𝑓 (V, E,X).
Next, recall the definition of 𝑔ℎ (𝑡) := 𝑔(h + 𝑡 · 𝜶 ) and note that

for h′ = h + 𝑡 ′ · 𝜶 , the center smoothing of

𝑔h′ (𝑡) ∼ 𝑔h′ (𝑡 + N(0, 𝜎2𝑐𝑠 )) = 𝑔(h′ + (𝑡 + N(0, 𝜎2𝑐𝑠 )) · 𝜶 ),
𝑔ℎ (𝑡 + 𝑡 ′) ∼ 𝑔h (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠 )) = 𝑔(h + (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠 )) · 𝜶 ).

Since h′ = h + 𝑡 ′ · 𝜶 , the sampling distributions are the same,

hence 𝑔ℎ′ (𝑡) = 𝑔ℎ (𝑡 + 𝑡 ′), and in particular 𝑔(h′) = 𝑔h′ (0) = 𝑔h (𝑡 ′)
Now, let us get back to Equation 17. By definition of S, for all

h′ ∈ S, h′ = h+ 𝑡 ′ ·𝜶 for some 𝑡 ′ ∈ [−𝜖, 𝜖]. Moreover, zcs = 𝑔(h) =
𝑔h (0) and 𝑔(h′) = 𝑔h (𝑡 ′). Theorem 1 tells us that with confidence

1 − 𝛼𝑐𝑠 : 

𝑔h (0) − 𝑔h (
𝑡 ′
)


2
≤ 𝑑𝑐𝑠 , ∀𝑡 ′ ∈ [−𝜖, 𝜖]

⇐⇒


z𝑐𝑠 − 𝑔 (

h′
)


2
≤ 𝑑𝑐𝑠 , ∀h′ ∈ S, (18)

Table 1: Datasets Statistics.

Dataset Credit Pokec_n Pokec_z

#Nodes 30,000 66,569 67,797

#Features 13 266 277

#Edges 1,436,858 729,129 882,765

Node label Future default Working field Working field

Sensitive attribute Age Region Region

Avg. degree 95.79 16.53 19.23

provided that the center smoothing computation of 𝑑𝑐𝑠 does not

abstain.

Finally, we consider the last component of the pipeline – the

smoothed classifier 𝑑 . Provided that 𝑑 does not abstain at the input

𝑑𝑐𝑠 , Theorem 2 provides us with a radius 𝑑𝑟𝑠 around 𝑧𝑐𝑠 such that

with confidence 1 − 𝛼𝑟𝑠 :

𝑑 (z𝑐𝑠 ) = 𝑑 (z𝑐𝑠 + 𝜹) , ∀𝜹 s.t. ∥𝜹 ∥2 < 𝑑𝑟𝑠

⇐⇒𝑑 (z𝑐𝑠 ) = 𝑑
(
z′
)
, ∀z′ s.t.



𝒛𝑐𝑠 − z′


2
< 𝑑𝑟𝑠 . (19)

If 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , combining the conclusions in Equation 18 and Equa-

tion 19 and applying the union bound, we obtain that with confi-

dence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 we have 𝑑 (rcs) = 𝑑 (𝑔(h′)) for all h′ ∈ 𝑆 , that
is,

∀𝒉′ ∈ 𝑆 (𝒉) : 𝑑 ◦ 𝑔 (𝒉) = 𝑑 ◦ 𝑔
(
𝒉′
)

(20)

as required by Definition 3. The same proof technique can also be

extended to the multiple sensitive attribute vectors case. □

The detailed algorithms process of Theorem 3 is referred to

Appendix 1.

6 EXPERIMENTS
In this section, we extensively evaluate GraphPAR to answer the

following research questions (RQs):

• RQ1: How effective is GraphPAR compared to existing graph

fairness methods?

• RQ2: Compared to methods without debiasing adaptation, does

GraphPAR show improvement in the number of nodes with

provable fairness?

• RQ3: How do different hyperparameters of GraphPAR impact

the classification performance and fairness?

• RQ4: How parameter-efficient is GraphPAR?

Datasets. These are common graph datasets with sensitive at-

tributes collected from various domains, we choose three public

datasets Credit [43], Pokec_z and Pokec_n [6]. As for Credit, Credit
encompasses a network of individuals who are connected due to

the likeness of their spending and payment habits. The sensitive at-

tribute is the age of these individuals, and the objective is to predict

whether their default payment method is credit card or not. As for

Pokec_z and Pokec_n, datasets are created by sampling from Pokec

based on geographic regions. Pokec encompasses anonymized data

from the complete social network in 2012, encompassing user pro-

files that include details like gender, age, hobbies, interests, educa-

tion, occupation, and so forth. The sensitive attribute is region and

the working field is used as the predicted label. Detailed statistics

are listed in Table 1.
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Table 2: Performance and fairness (%±𝜎) on node classification. The best results are in bold and runner-up results are underlined.

Method
Credit Pokec_z Pokec_n

ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓)

GCN 69.73±0.04 79.14±0.02 13.28±0.15 12.66±0.24 67.54±0.48 68.93±0.39 5.51±0.67 4.57±0.29 70.11±0.34 67.37±0.38 3.19±0.86 2.93±0.95

FairGNN 72.50±4.09 81.80±3.86 9.20±3.35 7.64±3.58 67.47±1.12 69.35±3.14 1.91±1.01 1.04±1.11 68.42±2.04 64.34±2.32 1.41±1.30 1.50±1.23

NIFTY 70.89±0.59 80.23±0.54 9.93±0.59 8.79±0.71 65.83±3.90 66.99±4.26 5.47±2.13 2.64±1.02 68.97±1.21 66.77±1.27 1.68±0.90 1.38±0.91

EDITS 66.80±1.03 76.64±1.13 10.21±1.14 8.78±1.15 OOM OOM OOM OOM OOM OOM OOM OOM

DGI

Naive 75.72±2.18 84.73±2.00 7.87±2.22 6.51±2.79 67.87±0.51 70.23±0.80 4.69±1.95 3.03±1.34 68.58±1.22 65.66±1.37 3.58±3.09 4.99±3.68

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 76.88±1.33 85.85±1.36 5.93±2.91 4.44±3.34 67.05±1.33 70.50±0.69 1.90±1.22 0.84±0.28 68.92±1.55 65.61±1.33 1.19±0.65 2.11±1.60

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 74.37±2.91 83.46±2.64 3.81±2.37 2.60±2.48 68.32±0.55 68.35±2.38 1.64±0.78 0.53±0.39 68.43±0.55 68.20±2.22 1.73±0.76 1.11±0.88

EdgePred

Naive 69.66±1.74 79.30±1.63 7.89±2.28 6.67±2.42 67.33±0.44 69.17±0.52 6.00±3.04 3.95±2.52 68.60±0.53 65.56±0.79 2.48±0.86 5.29±2.71

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 69.97±2.35 79.55±2.24 6.36±2.19 4.83±2.70 66.87±1.12 68.86±0.46 1.99±1.12 2.27±1.23 68.49±1.41 65.45±1.02 1.79±0.85 3.69±0.68

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 68.53±1.23 78.19±1.14 5.10±2.31 4.52±2.17 67.51±0.55 69.03±0.82 1.45±1.40 1.15±0.85 69.10±0.91 65.00±1.10 1.28±0.97 3.31±2.06

GCA

Naive 75.28±0.51 84.35±0.47 8.56±0.97 6.21±0.90 67.63±0.44 70.24±0.98 7.68±2.19 4.82±1.43 67.85±1.23 65.81±1.35 2.90±2.61 3.23±1.05

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 75.50±1.29 84.66±1.27 5.51±2.44 3.98±1.96 66.73±2.22 70.32±0.73 4.23±2.50 2.94±1.84 68.11±0.44 64.43±1.05 2.35±1.12 2.42±1.62

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 73.74±2.01 82.96±1.74 4.90±1.90 2.96±1.66 66.59±1.28 68.74±1.17 2.33±2.28 2.42±1.72 68.11±0.70 65.49±1.57 1.41±0.86 0.94±0.59
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Figure 4: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Pokec_z dataset.

Baselines. We compare GraphPAR to four baseline models:

GCN [20] is the most common GNN; FairGNN [6] is a framework

for fair node classification using GNNs given limited sensitive at-

tribute information; NIFTY [43] achieves fairness by maximizing

the similarity of representations learned from the original graph

and their augmented counterfactual graphs. EDITS [8] debiases the

input network to remove the sensitive information in the graph

data. Since GraphPAR is based on PGMs, we include three types of

PGM as baseline models: contrastive pretraining models DGI [36]

and GCA [48] that maximize mutual information between different

views, as well as predictive pretraining model EdgePred [13] that

reconstructs masked edges as its task.

Experiment setup. For Credit we follow train/valid/test split

in [43], and for Pokec_z and Pokec_n we follow in [6]. Unless

otherwise specified, we set the hyperparameters as follows: For

the sensitive semantics augmented, sensitive attribute semantics

augmentation range 𝜖 = 0.5, number of randomly selected augmen-

tation samples 𝑘 = 20, fairness loss scale factor 𝜆 = 0.1. For the

adapter, the dimension size of down projection is half of the input

dimension size, the learning rate is 0.01, and the number of epochs

is 1000. We use GCN as the backbone for all PGMs, take the Adam

optimizer and implement GraphPAR with Pytorch [29]. To provide

further provable fairness, following the parameter settings in center

smooth [22] and random smooth [3], we utilize the trained adapter

and the classifier to obtain their smoothed versions respectively. We

report the experiment results over five runs with different random

seeds. The code and datasets will be publicly available after the

review.

6.1 Prediction Performance and Fairness (RQ1)
We test GraphPAR on the node classification task. To evaluate

the performance on classification and its fairness, we choose four

metrics: accuracy (ACC) and macro-F1 (F1) score, measure how

well the nodes are classified; demographic parity (DP) and equality

of opportunity (EO), measure how fair the classification is. The

results are shown in Table 2. The best results are shown in bold,

while the runner-up results are underlined. We interpret the results

as follows:

GraphPAR outperforms baseline models both in classifi-
cation and fairness performance. GraphPAR are demonstrated

to be superior in both classification and fairness performances,

enhancing existing PGM models as well as outperforming other

graph fairness methods. This result supports the effectiveness of

GraphPAR to addresses fairness issues in the embedding space:

(1) Powerful pre-training strategies enable the embeddings to

include intrinsic information for downstream tasks;

(2) Since PGMs also capture sensitive attribute information, the

sensitive semantics vector can be effectively constructed;

(3) Augmenting in the embedding space is independent of task

labels, thus the sensitive semantic augmenter does not corrupt the

downstream performance.

Performance of GraphPAR varies among different PGMs.
The performance of classification and fairness varies when choosing

different PGMs as the backbone of GraphPAR. Usually, we observe

that contrastive pre-training methods DGI and GCA perform better

than the predictive method EdgePred, implying the importance of

which PGM we are based.
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Table 3: Provable fairness results for different training
schemes. The best result on each metric is shown in bold.

Dataset PGM

Naive GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥

ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑)

Credit

DGI 72.80 27.63 75.39 37.05 72.71 89.59
EdgePred 66.87 5.41 67.02 44.20 66.41 96.28
GCA 72.86 0.28 73.25 20.26 70.10 92.92

Pokec_z

DGI 67.30 1.47 67.21 10.99 67.28 94.51
EdgePred 66.02 0 66.27 37.51 66.80 90.97
GCA 66.92 13.9 66.67 16.14 65.22 95.75

Pokec_n

DGI 68.45 0.70 67.52 0.52 68.38 77.97
EdgePred 67.58 0 68.15 21.17 68.15 88.76
GCA 67.49 17.80 67.52 10.03 67.30 91.16

RandAT and MinMax perform well, but in different ways.
It is worth mentioning that RandAT often achieves the best result

on classification while MinMax often performs the best on fairness.

The following differences in the training schemes directly lead to

the result above:

(1) RandAT uses all augmented samples in downstream tasks

while MinMax only uses the original data. As a result, RandAT

often outperforms MinMax on classification metrics ACC and F1,

regarding that classification benefits from data augmentation [30].

(2) To debias sensitive information,MinMaxminimizes the largest

distance between an individual h𝑖 and other samples h′
𝑖
in the sen-

sitive augmentation set S𝑖 , which can achieve a better debiasing

result against the sampling strategy in RandAT that performs ad-

versarial training on all augmented samples.

These empirical findings straightforwardly demonstrate the char-

acteristics of RandAT in Equation 7 and MinMax in Equation 8.

6.2 Debiasing Guarantee (RQ2)
To additionally guarantee how fair the classification is, we eval-

uate the provable fairness of GraphPAR compared with naive PGMs.

Here, themetrics are accuracy (ACC) and provable fairness (Prov_Fair)

in Definition 3. The result is presented in Table 3. We have the fol-

lowing observations:

(1) Different from naive PGMs that show little or nearly zero

provable fairness, RandAT achieves much better provable fairness,

and MinMax has its fairness guaranteed very well. According to

Theorem 3 where the provable fairness of PGMs satisfies 𝑑𝑐𝑠 < 𝑑𝑟𝑠 ,

since 𝑑𝑟𝑠 is the same, but 𝑑𝑐𝑠 is different among training schemes:

naive PGMs do not optimize 𝑑𝑐𝑠 , thus the fairness is nearly not

guaranteed; RandAT is trained with many samples with sensitive

semantics augmented, which has a positive effect on minimizing

𝑑𝑐𝑠 but not in an explicit way; MinMax achieves the best provable

fairness by directly optimizing 𝑑𝑐𝑠 with min-max training.

(2) Also, the classification performances of RandAT and MinMax

are competitive to naive PGMs. RandAT does not lose its classi-

fication performance because its augmentation is performed in

sensitive semantics and do not introduce noise to task-related infor-

mation; on the other hand, MinMax trains the downstream classifier

with original data after an adapter, implying that the adapter al-

most has no negative effect on the classification while guaranteeing

fairness.

In conclusion, the empirical results above support that when

trained with RandAT and MinMax, GraphPAR guarantees fairness

without compromising its classification performance.

6.3 Hyperparameter Sensitivity Analysis (RQ3)
To further validate how the hyperparameters impact the perfor-

mance of GraphPAR, we conduct sensitivity analysis experiments

on the augmentation range 𝜖 , augmentation sample number 𝑘 , and

fairness loss scale 𝜆. As shown in Figure 4, the best 𝑡, 𝑘, 𝜆 for fair-

ness metrics varies among different PGMs, different datasets, and

different training methods (RandAT and MinMax), but they consis-

tently outperform naive PGMs, illustrating the effectiveness of the

proposed GraphPAR. For example, on Pokec_z trained with Min-

Max, GraphPAR on DGI achieves the best fairness when 𝑡 = 0.5,

while 𝑡 = 0.3 for EdgePred. For DGI trained with MinMax, Graph-

PAR achieves the best fairness on Pokec_z when 𝜆 = 0.6, while

𝜆 = 0.7 for Credit. A key observation is when 𝜖 is tuned between

0 and 1, ACC and F1 tend to be stable, while EO and DP fluctuate.

This suggests that the sensitive semantic augmenter does not cor-

rupt task-related information while successfully capturing sensitive

information. We show more detailed results in the Appendix B.
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Figure 5: Comparison of PGMs and GraphPAR in the size of
parameters tuned.

6.4 Efficiency Analysis (RQ4)
We demonstrate the parameter efficiency of GraphPAR by compar-

ing the parameters tuned to PGMs. As the results are shown in Ta-

ble 5, the size of tuned parameters in GrahpPAR is 91% smaller than

the size of parameters in the PGM. By contrast, since the parameter

of the GNN encoder has to be tuned in traditional fair represen-

tation learning methods, the size of tuned parameters would be

equal to or even larger than the size of PGM, far exceeding that in

GraphPAR. In conclusion, GraphPAR is super parameter-efficient,

which is well-suited for PGMs.

7 CONCLUSION
In this work, we explore the fairness in PGMs for the first time and

discover that PGMs may capture more sensitive attribute semantics

during the pre-training phase. In order to address this problem, we

propose GraphPAR to endow PGMs with fairness during the adap-

tation for downstream tasks. Furthermore, based on the GraphPAR,

we provide theoretical guarantees for fairness. Extensive exper-

iments on real-world datasets demonstrate the effectiveness of

GraphPAR in achieving fair predictions and providing provable

fairness. In the future, we will further explore the research of PGMs

in other trustworthy directions.
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A THE ALGORITHM OF GRAPHPAR

Algorithm 1: GraphPAR
Data: Graph G = (V, E,X), pre-trained graph model 𝑓

Result: Adapter 𝑔 and classifier 𝑑 , and the provable fairness

of each node

1 1. GraphPAR Training:
2 for each epoch do
3 Compute the sensitive semantic vector as Eq 3;

4 Sample the augmentation set
ˆS𝑖 for each node 𝑖 as Eq 6;

5 if Train with RandAT then
6 L = L𝑐𝑙𝑠 + 𝜆L𝑅𝑎𝑛𝑑𝐴𝑇
7 else
8 L = L𝑐𝑙𝑠 + 𝜆L𝑀𝑖𝑛𝑀𝑎𝑥

9 end
10 Backward pass with L;
11 end

12 2. Provide Provable Fairness with Smoothing:
13 Do adversarial training on the classifier 𝑑 ;

14 Construct the smoothed adapter 𝑔 and the smoothed

classifier 𝑑 ;

15 for each node 𝑖 inV do
16 Compute the guarantee 𝑑𝑐𝑠,𝑖 of the adapter as

Theorem 1;

17 Compute the guarantee 𝑑𝑟𝑠,𝑖 of the classifier as

Theorem 2;

18 If 𝑑𝑐𝑠,𝑖 < 𝑑𝑟𝑠,𝑖 , then node 𝑖 has a provable fairness;

19 end

In this section, we describe the whole process of GraphPAR in

Algorithm 1. GrapPAR consists of two parts: 1) train the adapter

and classifier with RandAT or MinMax; 2) guarantee the fairness.

B HYPERPARAMETER SENSITIVITY
ANALYSIS

In this section, we conduct a more detailed hyperparameter sensi-

tivity analysis for GraphPAR, focusing on three key aspects: the

augmentation range, denoted as 𝜖 , the augmentation sample num-

ber, represented by 𝑘 , and the fairness loss scale, symbolized as 𝜆.

Each of these hyperparameters plays a crucial role in shaping the

performance and fairness of GraphPAR, and understanding their

sensitivity is vital for finding the best model for performance and

fairness.

Augmentation range sensitivity (𝜖). The augmentation range

𝜖 dictates the range of linear interpolation on sensitive attribute

semantics. Within a certain range, the larger the augmentation

range 𝜖 , the larger the range of sensitive attributes considered, and

the model fairer. For example, as depicted in Figure 7 (a), when the

PGM is DGI and the debiasing method is MinMax, the metrics of

DP and EO tend to decrease with increasing 𝜖 on the Credit dataset.

Fairness loss scale factor sensitivity (𝜆). 𝜆 is a scale factor

with respect to the fairness loss, which is used to balance accuracy

and fairness. We find that different pre-training methods require

different values of 𝜆. As depicted in Figure 6, for example, when the

PGM is DGI, the optimal 𝜆 is 0.7 in the Pokec_z and Credit datasets.

However, the optimal 𝜆 is 0.2 when the PGM is EdgePred.

Augmentation sample number sensitivity (𝑘). 𝑘 is the aug-

mentation sample number for each node representation. According

to Figure 8 and Figure 9, we find that the optimal 𝑘 is associated

with the dataset, the pre-training method, and the adapter training

strategy, but the general RandAT requires a larger 𝑘 value than

MinMax.
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Figure 6: The effect of fairness loss scale factor 𝜆 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 .
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Figure 7: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.
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(a) DGI-MinMax
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Figure 8: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Pokec_z dataset.
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(a) DGI-MinMax
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Figure 9: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.
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