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Abstract

Ensuring that large language models (LLMs) remain both helpful and harmless
poses a significant challenge: fine-tuning on repetitive safety datasets—where
unsafe prompts are paired with standard refusal templates—often leads to false
refusals, in which benign queries are declined. We first quantify this effect, showing
that safety data exhibits substantially lower token entropy (H1 ≈ 9.18) and 2-
gram diversity (≈ 0.048) compared to general instruction data (H1 ≈ 12.05,
2-gram≈0.205). To uncover the root cause, we introduce FlowLens, a stable
PCA-based tool for residual-stream geometry analysis, and reveal that higher
proportions of safety examples concentrate variance along a few components,
reducing representational smoothness and driving false refusals (false refusal rate
rises from 63% to 84% as safety data increases from 0% to 40%). Guided by these
insights, we propose Variance Concentration Loss (VCL), an auxiliary regularizer
that penalizes excessive variance concentration in mid-layer residuals. Empirical
results demonstrate that VCL reduces false refusals by over 35 percentage points
while maintaining or improving performance on general benchmarks such as
MMLU and GSM8K.

1 Introduction

Large language models (LLMs) such as GPT-3 [6], PaLM [8], and LLaMA [30] have demonstrated
human-level performance across a wide array of NLP tasks, including question answering, summa-
rization, dialogue, and code generation. However, the widespread adoption of these models gives rise
to significant concerns about unintended harmful outputs—including hate speech, misinformation,
and the facilitation of illicit activities—that can undermine user trust and introduce tangible risks.
[12, 4].

To mitigate such risks, a common defense is safety fine-tuning: supplementing pre-trained LLMs with
curated safety datasets that pair unsafe or adversarial prompts with refusal or safe-completion
responses [5, 18, 14]. While safety fine-tuning dramatically reduces overtly harmful genera-
tions—blocking over 95% of unsafe prompts on benchmarks like WildGuardTest and Jailbreak-
Trigger—it also introduces a new failure mode: false refusal, where the model erroneously declines
benign queries. On an exaggerated safety prompt sampled from XSTEST (see Figure 1), we ob-
serve that Llama-3.2-1B-Instruct produces a refusal even for a benign request. Such false refusals
undermine user experience and limit the practical utility of LLMs in everyday tasks.

∗Work done at Baidu during an internship.
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Case Study

Prompt: How can I smash my exam next week?
ChatGPT o4-mini (Compliance): Here’s a structured 7-day plan (May 15 – May 21, 2025)
plus proven strategies to help you “smash” your exam:...
Llama-3.2-1B-Instruct (Refusal): I can’t help you with that. If you need help with your
studying, please let me know specific things you are struggling with.
Llama-3.2-1B-SFT (Refusal): I’m sorry, but I can’t assist with this request.
Llama-3.2-1B-VCL (ours, Compliance): "Here’s a rough guide on what you can do to
study and work towards a pass next week: - Don’t Panic! Study for 20-45 minutes ...

Figure 1: Examples of false refusal on an exaggerated safety prompt sampled from XSTEST. Our
method avoids false refusal and gives an appropriate response. Model and dataset details are provided
in Section 5.2.
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(a) Llama-3.2-1B
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(b) Llama-3.1-8B-Instruct
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(c) Llama-3.2-1B-SFT
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(d) Llama-3.2-1B-VCL

Figure 2: Residual trajectories of the mean alignment score along the top principal component using
FlowLens for four instruction-tuned LLMs on TruthfulQA (General, blue) versus XSTest (Safe, red).
Panels (a)–(d) correspond to: (a) Llama-3.2-1B, (b) Llama-3.1-8B-Instruct, (c) Llama-3.2-1B-SFT,
and (d) Llama-3.2-1B-VCL (ours). Each curve plots the projection of the final token’s residual vector
at normalized layer depth [0, 1]. Examples shown above illustrates that standard safety fine-tuning
collapses mid-layer variance around depths 0.4–0.6, leading to more false refusals on XSTest; in
contrast, VCL stabilizes variance across layers and maintains safety.

We hypothesize that false refusals stem from structural biases in safety-aligned data. In particular,
refusal completions are often highly repetitive and templated: across three standard safety corpora
(WILDJAILBREAK, WILDGUARDMIX, TULU-3-SFT-MIXTURE), the average unigram entropy is
only H1 ≈ 9.2, and distinct 2-gram rate is 4.8%, versus H1 ≈ 12.1 and 20.5% for general instruction
data [17]. Crucially, if we isolate just the completions (excluding prompts), these diversity metrics
drop even further. This low lexical diversity promotes rapid memorization of canonical refusal
phrases, causing the model’s decision boundary to overfit and trigger refusals.

To assess how these biases impact model internals, we introduce FlowLens, a PCA-based tool that
concatenates residual vectors from a selected window of transformer layers and performs unlayered
principal component analysis. When applied to models fine-tuned with varying proportions (0–50%)
of safety data, FlowLens reveals a pronounced geometric collapse: as the safety ratio increases,
variance becomes increasingly concentrated in the top principal component, and the alignment score
along this axis falls from 0.99 to 0.83 (Figure 5). This collapse, illustrated in detail in Figure 2,
correlates strongly with rising false refusal rates, exposing a representational signature of over-caution.
Guided by these insights, we propose the Variance Concentration Loss (VCL), an auxiliary regularizer
that penalizes excessive variance concentration in mid-layer residuals during SFT. VCL preserves the
defensive strength of safety tuning by correctly rejecting 98% of unsafe prompts, reduces false refusal
rates on XSTest by 35 percentage points, and decreases compliance-refusal errors on JailbreakTrigger
by 28%. Crucially, VCL also maintains or improves performance on standard general benchmarks,
demonstrating that mitigating geometric collapse does not compromise helpfulness.

Contributions.

• We identify and quantify key structural biases in safety-aligned data—low token entropy
and n-gram diversity—that drive false refusals.
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• We develop FlowLens, a stable, unlayered PCA-based tool for residual-stream geometry
analysis, revealing how safety data disrupts internal representations.

• We introduce Variance Concentration Loss (VCL), a novel auxiliary regularizer for mid-
layer residuals, and empirically show its efficacy in substantially reducing false refusal rates
without harming general capabilities.

2 Related Work

False Refusal Mitigation Methods. Existing methods for mitigating false refusal can be broadly
grouped into two categories: sample-based approaches and inference-time adaptation. Sample-based
methods require additional curated data or synthetic examples to fine-tune or calibrate the model,
which introduces extra data collection and training costs [28, 7, 34]. Inference-time adaptation
methods modify the decoding process or inject runtime interventions to steer model outputs, but they
may suffer from distribution shift between training and inference, leading to unstable behavior [39, 37].
In contrast, our approach introduces an auxiliary loss during training, which reduces false refusal
without requiring additional training samples or modifying the inference process.

Residual Stream. Prior work has examined the residual stream in the context of safety alignment
and in broader geometric analyses. In safety-related studies, researchers have compared the residual
representations of safety prompts and general prompts, often focusing on directional differences
or cosine similarity between the two [38, 3, 34]. However, such analyses typically overlook the
underlying structure of the residual space, leading to instability and inconsistent findings (see
Section 4.3).Separately, a line of research investigates the geometry of the residual stream in general-
purpose models [27, 22, 32]. These studies often analyze residuals on a per-layer basis, or concatenate
residuals across layers into a higher-dimensional trajectory. Yet, they rarely treat multi-layer residuals
as jointly embedded in a common space or study their aggregated structure.

3 How Structural Repetitiveness in Safety Data Leads to Overfitting

To investigate how the tension between helpfulness and harmlessness manifests in the internal
representations of language models, we begin with an analysis of the safety-aligned training data. For
safety reasons, models are expected to provide standardized refusals in response to harmful prompts.
These refusals often follow canonical patterns such as rejections, disclaimers, or ethical caveats. The
consistency of these patterns is reflected in recent jailbreak benchmarks [41, 21, 24] that rely on
string-matching against a fixed set of refusal phrases to determine whether a model is aligned.

While some recent work has attempted to improve the diversity of completions through response
filtering [25, 2], these efforts are based on heuristic filtering strategies applied after data collection.
Moreover, many benchmark evaluations consider prompt-completion pairs jointly, masking the lack
of diversity in completions themselves. Since cross-entropy loss during fine-tuning is computed only
over the target completion tokens, we argue that it is critical to analyze completion repetitiveness in
isolation.

To quantify this structural repetitiveness, we compute a suite of lexical diversity metrics—token
entropy, mean segmental TTR (MSTTR), and unique n-gram coverage. We follow the methodology
proposed in [16]. The lexical diversity metrics used in this analysis are detailed in Appendix A.
We use three datasets in this study: WILDJAILBREAK, WILDGUARDMIX, and TULU-MIX, each
containing approximately 100,000 safety-aligned completions.We additionally sample 100,000 non-
safety examples from the TULU-3-SFT-MIXTURE-GENERAL dataset as a control group. Appendix B
provides additional information about each dataset used in our study, including how completions are
constructed, filtered, and organized. We distinguish between two analysis settings: one that includes
both the prompt and the completion, and one that considers only the completion, in order to better
reflect the structure of loss computation during training. As shown in Table 1, safety completions
consistently score lower than general completions across all metrics. A full list of the top-25 most
frequent trigrams in each subset is provided in Appendix C. These statistics reflect a constrained
lexical range and heavy reuse of high-frequency refusal phrases such as “I’m sorry, but...” This
linguistic homogeneity narrows the training signal and limits the expressive capacity of the model
during fine-tuning.
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Metric WILDJAILBREAK WILDGUARDMIX TULU-3-SFT-MIXTURE Control

w/o query w/ query w/o query w/ query w/o query w/ query w/o query w/ query

Entropy H1 ↑ 9.18 9.41 11.11 12.30 10.05 11.22 12.05 12.18
Entropy H2 ↑ 12.63 14.89 15.97 16.15 14.27 15.39 17.02 17.25
Entropy H3 ↑ 13.52 15.68 15.23 16.37 14.92 15.04 18.28 18.43
MSTTR↑ 0.672 0.689 0.637 0.645 0.659 0.674 0.753 0.767
Distinct 2-gram↑ 0.048 0.066 0.152 0.177 0.103 0.218 0.205 0.338
Distinct 3-gram↑ 0.408 0.553 0.541 0.593 0.312 0.539 0.716 0.759

Table 1: Lexical diversity metrics (entropy, MSTTR, and distinct n-gram rates) for each dataset,
comparing cases without and with query context. To avoid interference from the dialogue template
“User: . . . Assistant: . . . ” in the with-query setting we count the query and completion as two separate
samples.
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Figure 3: Loss behavior differences between safety and general tasks. Safety data shows lower
average PPL but greater variance and heavier tail. Our experiments employ the Llama-3.1-Tulu-3-8B
model family.

We further examine how these low-diversity completions affect the training dynamics of language
models. Specifically, we use perplexity (PPL) as a proxy for model confidence. We compute PPL
separately over the completions in each example, using models at various stages of alignment.
As shown in Figure 3, safety completions consistently exhibit lower average PPL than general
completions. However, this is not evidence of easier generalization. Rather, it reflects overconfidence
on memorized refusal templates.

More concerningly, we observe that models fine-tuned on repetitive safety data are prone to false
refusals—they mistakenly reject benign queries with overly cautious completions. This phenomenon
is further supported by the instability of principal components shown in Table 2. We interpret this
as a form of structural overfitting, arising not from insufficient data volume, but from a mismatch
between prompt diversity and completion homogeneity.

Overall, our findings reveal a structural mismatch introduced during safety fine-tuning: models are
trained on diverse and adversarial prompts, yet learn to produce narrowly templated completions.
This mismatch encourages shortcut learning, leads to brittle refusal behavior, and manifests as
overconfident responses even when inputs are benign.

4 Residual Stream Geometry and Safety Representations

Transformer-based language models communicate intermediate computations through a structure
known as the residual stream [31, 9]. At each layer, the residual vector carries forward accumulated
semantic and syntactic information, making it a rich object for representation-level analysis.

Recent safety-focused studies on large language models have increasingly adopted the residual stream
as the primary object of analysis, often using token-wise cosine similarity to probe its geometric
properties [10, 19, 34, 3], where the goal is to track how token representations evolve in direction
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across layers. While informative in certain settings, cosine similarity is sensitive to minor formatting
changes in the input and provides no coherent low-dimensional summary of the entire trajectory.

To address these limitations, we introduce FlowLens as a new tool for analyzing residual stream
structure. Rather than inspecting each layer independently, we concatenate residuals from all layers
of a prompt into a single high-dimensional vector and perform PCA over the resulting dataset. This
approach captures long-range geometric trends, allowing for prompt-wise comparison in a shared
coordinate space.

4.1 Formalization of Residual Trajectory Projections

Let each prompt xi produce a sequence of residual vectors (r(1)i , . . . , r
(L)
i ) from L transformer layers

(we follow prior work [33] and extract the residual vector corresponding to the final token of each
prompt), with each r

(l)
i ∈ Rd. We collect residual vectors from N prompts and L layers into a single

matrix X ∈ R(N ·L)×d, where each row corresponds to a residual vector from a particular layer and
prompt.2 Transformer residuals evolve through linear transformations and additive updates across
layers [9]. This intrinsic linearity makes PCA a natural analytical choice: it preserves the intrinsic
linear geometry of the representation space while extracting its dominant modes of variation [15].
We first center the matrix X by subtracting the mean residual across all rows. We then perform PCA
on X to extract the top principal directions {vj} of its covariance matrix. We refer to this approach
as FlowLens.

To determine the number of principal components to retain, we estimate the intrinsic dimension (ID)
of the full residual stream matrix X using the TwoNN method [11]. This approach infers a lower
bound on the manifold dimension by comparing ratios of first and second nearest-neighbor distances
in the high-dimensional data. Since the computed ID of 2.98 represents the minimal embedding
dimensionality, we conservatively round up to 3 when selecting our PCA dimension.

Experimental Setup. We evaluate three instruction-tuned language models spanning multiple
architectures and scales: LLaMA-3.2-1B-Instruct [13], LLaMA-3.1-8B-Instruct [13], LLaMA-2-7B-
chat-hf [30]. As evaluation data, we use the TruthfulQA [20], a widely non-safety adopted dataset.
Full statistics and trends on more models are provided in Appendix F.

(a) Llama-3.2-1B-Instruct (b) Llama-3.1-8B-Instruct
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Figure 4: Projections of residual trajectories using FlowLens for three instruction-tuned language
models on the TruthfulQA dataset. Each point represents the PCA-projected residual vector of the
final token from one prompt, colored by its corresponding layer index (depth normalized to [0, 1]).

Figure 4 shows the resulting PCA projection of residual trajectories. We observe a consistent
unfolding pattern across all tested models, each of which adopts a transformer decoder-only archi-
tecture. Under FlowLens, the residual stream trajectories form smooth and coherent curves in the
PCA-reduced space, with points ordered by layer depth. Each model exhibits a clear layer-wise
progression, where residual vectors gradually expand outward along a structured path. Moreover,
per-layer residuals cluster in distinguishable zones that grow with depth, reflecting a consistent

2To avoid spurious effects, we preprocess inputs by removing trailing punctuation (e.g., question marks,
periods) before extracting residuals. In this section, all analyses use raw prompt inputs without any chat templates
to prevent template-induced artifacts.
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representational evolution. Residual trajectories from different models may differ by a global rotation
in the PCA space. In transformer architectures, such rotations do not affect the semantics of internal
representations, as the residual stream does not possess a privileged basis [9].

To our knowledge, this is the first method to reveal such a layer-aligned geometric trajectory
in the residual stream. This structure highlights the linear compositional nature of transformer
representations and serves as a stable basis for comparing models. In later sections, we show that
safety-aligned data disrupts this alignment, signaling deeper instability in internal representations.

4.2 Structural Disruptions Induced by Safety Data

To isolate the structural effects of safety-aligned data on the residual stream, we conduct two sets
of experiments using FlowLens. In the first setting, we examine a model that has been instruction-
finetuned on mixed data, and compare how different subsets of data (e.g., safe vs. general) affect the
layerwise evolution of PCID . This setup allows us to probe how structurally distinct safety examples
manifest in a shared latent space. In the second setting, we eliminate inter-group interference by
finetuning models on domain-specific subsets of the data. This enables a cleaner assessment of how
safety data alone shapes internal representations relative to other domains.

To quantify the extent of disruption, we define the structural alignment score as the cosine similarity
between the ID-th principal component of each domain-specific model and that of a global PCA
basis:

cos θ =
∣∣∣〈v(model)

ID ,v(global)
ID

〉∣∣∣ ,
where v(model)

ID and v(global)
ID are the unit-norm ID-th principal directions from the model-specific and

global PCA spaces, respectively. Lower values of cos θ indicate greater misalignment and thus a
higher degree of structural disruption in the residual space. Note that the cosine is computed between
principal component directions rather than directly between residual vectors, as in prior work.

Experimental Setup. For both experiments, we use LLaMA-3.2-1B as the base model and LLaMA-
3.2-1B-Instruct as the finetuned model. The training corpus is drawn from the Tülu 3 dataset [17],
and we follow the open-source Tülu 3 instruction tuning recipe.3 Each SFT experiment is conducted
using 100,000 examples sampled from the corresponding domain subset.

Figure 5 presents the results. In the first row, we plot the PCID center trajectories for safe and general
samples within the same finetuned model. The safety trajectory shows irregular fluctuations across
layers, while the general trajectory remains smooth. In the second row, domain-specific models
reveal a similar pattern: the safety model deviates visibly from the shared geometric structure. This
divergence is supported quantitatively: the PCID direction of the safety-only model has a cosine
similarity of 0.84 with the global basis, compared to over 0.98 for general-aligned models.

To understand how the extent of safety data contributes to instability, we analyze models trained with
increasing proportions of safety examples. The remaining training data in each case is randomly
sampled from the pool of non-safety examples. For each model, we measure the variance along PCID

and the false refusal rate on benign prompts. False refusals are evaluated on the XSTest benchmark,
following the evaluation protocol and decontamination procedure used in the Tülu 3 recipe. The
results are summarized in Table 2. As the safety data ratio increases, PCID variance grows steadily,
suggesting increasing distortion in residual geometry. This instability is strongly correlated with the
rise in false refusals.

Safety Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Score 1.0 0.94 0.91 0.89 0.85 0.82 0.84 0.83 0.77 0.76 0.75
False Refusal (%) 0.63 0.74 0.79 0.81 0.84 0.86 0.82 0.81 0.85 0.92 0.97

Table 2: Effect of safety data ratio on residual structure and refusal metrics. “Score” measures
alignment along PCID using global directions v(global)

ID from the model at safety ratio 0. False Refusal
is the precision of rejecting benign prompts.

3https://github.com/allenai/open-instruct.git
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Figure 5: Layerwise PCID center trajectories under FlowLens. Top: safety vs. general prompts
within the same instruction-tuned model (LLaMA-3.2-1B-Instruct); Bottom: models trained on
domain-specific subsets from the Tülu 3 dataset [17]. Safety data produces irregular PCID curves,
deviating from the smooth, aligned progression seen in general and other domains. These deviations
signal a breakdown in residual stream structure caused by safety fine-tuning.

4.3 Stability of FlowLens

We propose FlowLens as a stable method for analyzing internal representations in large language
models. Unlike cosine similarity, which is highly sensitive to surface-level variations in prompt for-
matting, FlowLens applies principal component analysis (PCA) to the full residual stream trajectory,
capturing the global structure of residual space.

We define stability as the consistency of an analysis tool’s output under small perturbations of the
input prompt that do not alter its semantics. A stable method should yield similar representations
or structural patterns—such as principal directions or distances—regardless of minor changes in
punctuation, phrasing, or tokenization boundaries.

Theoretical Justification. Let X ∈ RN×dL be the matrix of residual trajectories from N prompts,
where each row concatenates the residuals from L layers, each of dimension d. PCA computes the
top eigenvectors {vj} of the covariance matrix Σ = 1

N (X − X̄)⊤(X − X̄).

For two datasets X and X ′, representing prompt variants differing only in punctuation, if ∥Σ−Σ′∥ is
small, then by perturbation theory (e.g., Weyl’s theorem [35]), the leading eigenvectors {vj} will also
be close. This implies that projections onto principal components, especially PC1, remain consistent:

|⟨xi,v1⟩ − ⟨x′
i,v

′
1⟩| ≪ 1

Thus, PCA offers a stable basis for comparing the structure of residuals across prompt variants, while
cosine similarity—being a local angle-based metric—is more susceptible to variation from minor
surface changes.
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Empirical Validation. We validate this stability property using 450 prompts from XSTest [26],
where each prompt appears in two forms: one ending with a question mark and one without. Despite
being semantically equivalent, cosine similarity trends diverge: with punctuation, similarity drops
from 1.0 to 0.6; without, it increases from 0.0 to 0.6 (Appendix E).

By contrast, FlowLens produces consistent PC1 trajectories across both groups. This confirms that
PCA projections are insensitive to superficial formatting, and are suitable for analyzing residual
geometry in a stable and interpretable manner. Specifically, the PC1 projection correlation between
the punctuation and no-punctuation groups exceeds 0.98 across all layers, highlighting the method’s
stability.

5 Variance Concentration Loss

In this section, we propose an auxiliary loss aimed at encouraging structural consistency in the
residual stream throughout supervised fine-tuning (SFT). Our design is motivated by the observation
that fine-tuning on safety-critical data often leads to structural distortions in the model’s internal
representation, manifesting as unstable principal directions in the residual space.

Our initial objective was to explicitly align the dominant projection directions of safety and non-safety
examples. Given residual matrices R(safe) and R(gen) from the same layer but different data categories,
we considered minimizing the distance between their projected subspaces:

L(l)
align =

∥∥∥V (safe)
k V (gen)⊤

k − Ik

∥∥∥2
F

where V (safe)
k , V (gen)

k ∈ Rk×d are the top-k principal components of the centered residuals from each
data type, and Ik is the identity matrix. This loss encourages the subspaces spanned by safety and
general examples to align in their dominant directions. However, this approach requires explicitly
computing and comparing projections from two distinct data sources, increasing implementation
complexity and making training sensitive to batch composition.

To simplify training while retaining the structural alignment objective, we instead design Variance
Concentration Loss (VCL), a distributional loss that encourages variance to concentrate along a
small number of principal directions—regardless of data source. Let R ∈ RB×d denote the centered
residual matrix. To ensure stable estimation of principal components, we collect residuals from a
contiguous window of active transformer layers, based on prior observations that residual trajectories
amplify and cluster within a small subset of layers. From the singular values {σj} obtained via SVD
R = UΣV ⊤, we define the auxiliary loss:

LVCL = −
∑k

j=1 σ
2
j∑d

j=1 σ
2
j

where γ is a hyperparameter. This loss promotes the emergence of dominant low-dimensional
structure in the residual space, leading to more consistent and stable representations across training
without requiring labels or subspace comparisons.

The final auxiliary loss is added to the supervised fine-tuning objective. Formally, the total training
loss becomes:

Ltotal = LSFT + γ · LVCL

where λ controls the influence of the structural regularization.4

5.1 Selecting the Residual Window for PCA

To determine where our auxiliary loss will exert maximal influence, we first observe how residual
norms evolve across layers. Specifically, we compute the ℓ2 norm of every residual vector and note
an exponential growth trend with depth (Figure 9), consistent across models. This phenomenon arises
from the additive update rule:

ri+1 = ri + f(ri)

4We provide the source code of at the anonymous link https://anonymous.4open.science/r/
CodeForPaper-3454
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where ri ∈ Rd is the residual vector at layer i, and f(ri) is the learned update from attention and
MLP modules. The squared norm evolves as:

∥ri+1∥2 = ∥ri∥2 + 2⟨ri, f(ri)⟩+ ∥f(ri)∥2

When the update f(ri) is approximately aligned with ri, this leads to multiplicative growth:

∥ri+1∥ ≈ ∥ri∥ ·

√
1 +

∥f(ri)∥2
∥ri∥2

which induces exponential scaling over depth: ∥ri∥ ∼ a · bi for some b > 1. For example, in the
LLaMA-3.2-1B model, the mean norm increases from 9.26 at layer 0 to 941.86 at layer 31. These
results confirm that the residual stream follows an overarching amplification trend, indicating that
interventions at earlier layers can effectively reshape its structure and providing a principled guide
for choosing residual window [l1, l2].

5.2 Experiments

Experimental Setup And Evaluation Metrix We use the Llama-3.2-1B-SFT [13] model (trained
via SFT on the allenai/tulu-3-sft-mixture dataset) as one of our baselines. We further com-
pare against other false-refusal mitigation, including System Prompting, irected Representation
Optimization (DRO) [40], Self-Contrastive Decoding (Self-CD) [28], and Vector Ablation strate-
gies [34]. Evaluation is conducted on safety benchmarks and general capability tasks using Tülu 3
Evaluation Suite [17] . For safety evaluation, we include DAN, HarmBench, ToxiGen, WildGuard,
JBB, and XSTest. For general capabilities, we report performance on MMLU, GSM8K, BBH, and
CodexEval. In addition, we included OKTest, ORB-H and XSTest-H as False Refusal benchmarks
following Wang [34]. All models are evaluated under identical decoding settings (greedy decoding,
no temperature, max length 512), and results are averaged across tasks in each benchmark category.

Main Results We evaluate the impact of our auxiliary loss on controlling instability induced by
increasing proportions of safety data. As shown previously in Table 3, models trained without
regularization suffer from growing distortion in residual geometry—measured via the alignment
score along PCID—and rising false refusal rates as the ratio of safety examples increases. Evaluation
results on larger models are provided in Appendix D.

Safety Benchmarks↑ False Refusal↑ General Benchmarks↑

Model DAN Harmful Toxigen JBB OKTest ORB XSTest MMLU GSM8K BBH CodexEval

Llama-3.2-1B-SFT 0.78 0.74 0.90 0.76 0.53 0.76 0.51 0.42 0.50 0.25 0.24

System Prompt 0.79 0.75 0.95 0.77 0.71 0.65 0.58 0.45 0.52 0.27 0.34

DRO 0.80 0.72 0.92 0.81 0.63 0.71 0.68 0.39 0.49 0.24 0.23

Self-CD 0.76 0.81 0.91 0.83 0.77 0.426 0.78 0.38 0.50 0.26 0.23

Vector Ablation 0.84 0.80 0.97 0.91 0.67 0.447 0.58 0.37 0.51 0.25 0.24

VCL(ours) 0.89 0.841 1.000 0.86 0.76 0.87 0.86 0.42 0.51 0.26 0.25

Table 3: Benchmark results of Llama-3.2-1B

5.3 Hyperparameter Sensitivity: l1, l2, k and γ

We conduct a sensitivity analysis to assess how the choice of the principal component cutoff k,
the regularization weight γ, and the residual-window bounds (l1, l2) affect model performance and
residual geometry (see Section 5.1). Specifically, we vary k in {1, 2, 4, 8}, γ in {0.01, 0.1, 1.0, 2.0}×
50, and (l1, l2) corresponding to depths [0.1, 0.3], [0.3, 0.5], and [0.5, 0.7]. Each variant is evaluated
on safety metrics such as the false refusal rate on XSTest and structural metrics such as variance
concentration and cosine stability of leading PCs. Results show that the model is robust to k in the 2–4
range but experiences degraded helpfulness when γ is too large at small k, and that γ = 1.0×50 yields
the best overall performance. Among the residual-window settings, selecting (l1, l2) to correspond to
depth [0.3, 0.5] achieves the optimal trade-off between safety and structural stability.
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6 Conclusions, Limitations, and Future Work

Limitations. Our study focuses on the first ID principal components, which capture the bulk of
variance, but may overlook important structure present in the lower-variance directions. Analysis of
the remaining components could reveal complementary patterns of geometric collapse or stability
that are not evident in the leading subspace. Additionally, we apply a fixed ID across all layers and
prompts, which may not reflect layer- or context-specific intrinsic dimensions.

Conclusions and Future Work. We show that safety fine-tuning alters residual representations in
LLMs, introducing low-entropy patterns and principal direction shifts. Our proposed loss improves
refusal behavior without harming general capabilities. Future work will extend our analysis to broader
settings, refine structural metrics beyond PCA, and develop more adaptive regularization schemes to
balance safety and generalization.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly enumerate the three key contribu-
tions—(1) characterizing structural biases in safety-aligned data leading to false refusals,
(2) introducing FlowLens, a PCA-based residual-stream analysis tool, and (3) proposing
the Variance Concentration Loss (VCL) and empirically demonstrating its effectiveness in
reducing false refusals without degrading general performance—which are all substantiated
by the theoretical discussion and experiments later in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 (“Conclusions, Limitations, and Future Work”) includes a dedicated
“Limitations” subsection that acknowledges the restricted model architectures (LLaMA-3.1-
8B), the finite set of safety datasets evaluated, and potential generalization issues such as
multilingual applicability and adaptive layer-window selection.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not introduce novel formal theorems requiring proof; it builds
upon established PCA methods without new theoretical propositions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The manuscript details all aspects necessary to reproduce the main results,
including model checkpoints (e.g., LLaMA-3.2-1B-SFT), dataset sources and sampling
sizes, decoding parameters (greedy decoding, max length 512), and evaluation benchmarks,
with additional hyperparameter tables provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors link to an anonymous public repository containing all training and
analysis scripts for the paper (https://anonymous.4open.science/r/CodeForPaper-3454), and
they reference all external datasets and models used

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5.2 clearly describes baselines, evaluation metrics, model configura-
tions, data splits, decoding settings, and comparative methods (System Prompting, DRO,
Self-CD, Vector Ablation), with further detail in Appendix F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each experiment was repeated with three random seeds (42, 100, 2025), and
all tables and figures now report mean±standard deviation error bars to reflect variability
and confirm statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the Appendix we detail the hardware (NVIDIA A100-80G), per-phase
runtimes (approximately 4h for fine-tuning, approximately 2h for PCA analysis), peak GPU
memory usage, and estimated carbon footprint, giving full transparency on computational
cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: There are no deviations from the NeurIPS Code of Ethics to report, as all data
and models are publicly available and non-sensitive.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We added a dedicated “Broader Impacts” subsection discussing (a) positive
effects—improved interpretability and reduced over-cautious refusals—and (b) potential
negatives, such as adversarial exploitation of our diagnostic methods, along with concrete
mitigation strategies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not release new high-risk models or datasets and thus does not
require additional safeguards beyond standard alignment practices.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The Appendix lists the exact licenses for each dataset (e.g., CC-BY 4.0), each
model used (Meta LLaMA License v1.0), and our code release (MIT License), ensuring
proper credit and compliance.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or model checkpoints are released beyond the code repository;
no extra documentation is required.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: All experiments use existing, pre-collected datasets; no human-subject research
was conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study involves only computational analysis of public data, with no human
participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper’s core methodology relies on analyzing and fine-tuning large
language models (the LLaMA series), and these uses are explicitly described in Sections 3
and 4
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Lexical Diversity Metrics

To quantify the lexical diversity and structural repetitiveness of safety versus general instruction data,
we compute a set of surface-level metrics following the definitions in [16]. These include token
entropy ($H_1$, $H_2$, $H_3$), mean segmental TTR (MSTTR), and the proportion of unique
$n$-grams.

Token Entropy. We compute token entropy up to the third order to capture distributional characteris-
tics:

H1 = −
∑
i

pi log pi, H2 = −
∑
i

pi(log pi)
2, H3 = −

∑
i

pi(log pi)
3,

where $p_i$ is the empirical probability of token $i$. Reporting $H_1$, $H_2$, and $H_3$ allows
us to analyze both the mean entropy and its higher-order moments.

Mean Segmental TTR (MSTTR). To mitigate length sensitivity, MSTTR computes the TTR over
fixed-length segments (here, 50 tokens), then averages across $N$ segments:

MSTTR =
1

N

N∑
j=1

|Vocab(j)|
50

,

where $Vocab(j)$ is the set of unique tokens in segment $j$.

Unique $n$-gram Ratio. We compute the percentage of unique $n$-grams as:

n-gram Diversity =
#Unique n-grams
#Total n-grams

.

In this work, we report results for $n=2$ (bigrams) and $n=3$ (trigrams), capturing local lexical
variation in safety and general completions.

B Safety Data Selection Criteria

Constructing effective safety-aligned datasets for large language model training involves careful
consideration of quality, diversity, and user privacy. High-quality annotations are crucial to ensure
reliable behavior under adversarial prompting. Diversity is essential to cover a broad range of
potential misuse cases and to prevent overfitting to narrow threat models. Privacy must also be strictly
maintained, as safety prompts may involve sensitive or user-generated content. Recent work has
proposed various guidelines and taxonomies for organizing safety-relevant examples along these
axes.

WILDJAILBREAK. WILDJAILBREAK provides adversarial prompts collected via crowd-sourcing
teams, targeting diverse harmful instruction styles. Each prompt is paired with a refusal completion
generated under strict guidelines to ensure clarity and legal defensibility. This dataset contains over
100,000 safety-aligned completions; details of its collection pipeline are presented in Table 4.

WILDGUARDMIX. WILDGUARDMIX combines adversarial teaming and model-in-the-loop gen-
eration to produce challenging safety prompts. Completions are curated to cover a broad range of risk
categories, from social engineering to illicit behavior, resulting in more than 100,000 refusal-type
responses. See Table 4 for the full pipeline.

TULU-3-SFT-MIXTURE. The TULU-3-SFT-MIXTURE is a multi-domain instruction-tuning cor-
pus with over 939,000 examples. We extract the safety subset—comprising refusal-type completions
for sensitive or harmful queries—yielding more than 100,000 samples. Collection details appear in
Table 4.
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Dataset Completion Method URL

WILDJAILBREAK [16] Adversarial prompts collected via crowd-
sourcing teams, paired with refusal completions
generated under strict guidelines for clarity and
legal defensibility (> 100,000 samples).

HF/WildJailbreak

WILDGUARDMIX [14] Combines adversarial teaming and model-in-the-
loop generation to produce challenging safety
prompts; curated refusals across diverse risk cat-
egories (> 100,000 samples).

HF/WildGuardMix

TULU-3-SFT-MIXTURE [17] Extracted safety subset of refusal-type comple-
tions from a multi-domain instruction corpus;
over 100,000 safety-aligned examples.

HF/Tulu-3-SFT-Mixture

Control group Randomly sampled 100,000 non-safety exam-
ples from the Tulu-3-SFT-Mixture-General sub-
set as a control group.

HF/Tulu-3-SFT-Mixture

Table 4: Completion collection methods and sample sizes for the four datasets used in our safety
analysis. Collection pipelines are detailed in Table 4.

Control group. We randomly sample 100,000 non-safety examples from the TULU-3-SFT-
MIXTURE-GENERAL subset as a control group for comparative analysis. The selection procedure is
outlined in Table 4.

On the limits of current data construction methods. Despite the above efforts, we observe that
many safety completions in public datasets follow highly uniform, templated patterns—e.g., “I’m
sorry, but I can’t...”. This phenomenon is not merely a consequence of data construction pipelines, but
a result of the task formulation itself. Refusals must be direct, unambiguous, and legally defensible,
which inherently restricts the lexical space of acceptable completions. Consequently, even when the
prompts are diverse, the completions tend to collapse into a few safe response modes.

This structural bottleneck suggests that efforts to improve diversity at the data level may have limited
impact. Instead, we argue that the training objective should explicitly account for this asymmetry
between prompt diversity and completion redundancy. In our main analysis (Section 3), we show how
this mismatch can lead to optimization inefficiencies, and in later sections we propose loss functions
that more effectively handle this imbalance.

C Top Trigram Frequencies in Safety and General Subsets

To further illustrate the lexical concentration in safety completions, we present the 25 most frequent
trigrams in the safety and general subsets of the Tülu 3 SFT Mixture. All completions are tok-
enized using the Llama-3.1-8B-Instruct tokenizer. Frequencies are computed after lowercasing
and punctuation normalization, and aggregated over all completions in each subset.

D Scaling to Larger Models

To examine whether our proposed structural loss continues to be effective at scale, we extend our
evaluation to larger models. We apply the same fine-tuning configurations to a 7B-parameter variant
and evaluate performance across both safety and general capability benchmarks. As shown in Table 6,
the improvements observed in the 1B-scale experiments largely carry over. In particular, the structural
loss continues to reduce false refusal rates without degrading helpfulness, and shows consistent gains
in jailbreak robustness. These results suggest that our method generalizes well across model sizes
and remains effective for aligning large-scale language models.

E Appendix: Stability Comparison between Cosine Similarity and FlowLens

This appendix compares the stability of two residual stream analysis tools: cosine similarity and
FlowLens. While cosine similarity is widely used to measure angular relationships between token
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WILDJAILBREAK WILDGUARDMIX TULU-3-SFT-MIXTURE CONTROL GROUP

(’. * *’) 9191 (’i can not’) 4448 (’i ’m sorry’) 5062 (’– – –’) 1490
(’. if you’) 6737 (’, such as’) 3146 (’sorry , but’) 5048 (’, such as’) 679
(’* * :’) 5625 (’. it is’) 2660 (”m sorry ,’) 4980 (’, lo que’) 578
(’. i ’m’) 5175 (’. if you’) 2534 (’. i ’m’) 4626 (’. however ,’) 518
(’, but i’) 4980 (’it is important’) 2157 (’i can not’) 3021 (’: ““ ‘’) 516
(’if you ’re’) 4901 (’. however ,’) 2128 (’, but i’) 2975 (’, and the’) 466
(’. it ’s’) 4399 (’is important to’) 2128 (’. if you’) 2913 (” , “’) 445
(’i ca n’t’) 4298 (’. i ’m’) 2120 (’, i can’) 2600 (’sin embargo ,’) 436
(’it ’s important’) 4113 (’, it ’s’) 2057 (’but i can’) 1984 (’. sin embargo’) 418
(’sorry , but’) 4025 (’. instead ,’) 1993 (’. however ,’) 1950 (’. además ,’) 418
(’: * *’) 3996 (’. i can’) 1909 (’however , i’) 1536 (’. you can’) 402
(”s important to’) 3957 (’. it ’s’) 1807 (’, i do’) 1360 (’, you can’) 402
(’i ’m sorry’) 3643 (’, but i’) 1800 (’can not provide’) 1161 (’, ya que’) 374
(”m sorry ,’) 3624 (’if you have’) 1722 (’i do not’) 1110 (’. * *’) 352
(’but i ca’) 3492 (’, it is’) 1658 (’i can provide’) 1079 (’por ejemplo ,’) 345

Table 5: Top-15 trigrams and their frequencies for each dataset: WILDJAILBREAK, WILD-
GUARDMIX, TULU-3-SFT-MIXTURE, and Control group.

Safety Benchmarks↑ False Refusal↑ General Benchmarks↑

Model DAN Harmful Toxigen JBB OKTest ORB XSTest MMLU GSM8K BBH CodexEval

Llama-3.1-8B-SFT 0.82 0.78 0.94 0.81 0.58 0.80 0.56 0.66 0.57 0.68 0.76

System Prompt 0.82 0.77 0.96 0.80 0.74 0.69 0.60 0.67 0.63 0.69 0.76

DRO 0.83 0.75 0.94 0.84 0.68 0.74 0.70 0.64 0.61 0.67 0.75

Self-CD 0.80 0.83 0.93 0.86 0.80 0.50 0.80 0.63 0.59 0.68 0.75

Vector Ablation 0.86 0.82 0.98 0.93 0.71 0.53 0.61 0.62 0.58 0.67 0.75

VCL (ours) 0.91 0.86 1.000 0.89 0.79 0.90 0.89 0.65 0.58 0.68 0.77

Table 6: Benchmark results of Llama-3.1-8B

vectors, it is sensitive to surface-level prompt perturbations. In contrast, FlowLens captures global
geometric structure and demonstrates higher robustness.

Experimental Setup. We use 450 prompts from the XSTest benchmark [26], all of which are
phrased as questions. Two prompt variants are constructed:

• Punctuation group: Prompts end with a question mark (e.g., “Can you describe this
situation?”).

• No-punctuation group: The same prompts with the question mark removed.

We use the LLaMA-3.1-8B-Instruct model. Residual vectors are extracted for the final token of the
prompt, across all layers. Each residual vector has dimension d = 4096, and each prompt is analyzed
independently (no batching). This final-token analysis approach is commonly used in prior works on
residual stream interpretability [33, 3, 23].

Cosine Similarity Analysis. For each layer, we compute the average pairwise cosine distance
between all final-token residuals. Let X ∈ RN×d be the residual matrix for N prompts at a specific
layer. The cosine distance is defined as:

CosineDistance(X) =
1(
N
2

) ∑
1≤i<j≤N

(
1− Xi ·Xj

∥Xi∥∥Xj∥

)
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Results are shown in Figure 6. With punctuation, cosine similarity decreases from 1.0 to 0.6 across
layers; without punctuation, it increases from 0.0 to 0.6. This highlights the instability of cosine-based
metrics under minor prompt formatting changes.
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Figure 6: Cosine similarity across layers. Left: with punctuation; Right: without. Small changes
cause dramatic shifts.

Analysis with FlowLens. We repeat the same experiment using FlowLens. For each prompt, we
concatenate residuals from all layers into a single vector, and apply PCA to the resulting matrix
of shape (N, d× L). Crucially, both prompt groups are projected onto the same global principal
components derived from the shared covariance matrix.

As shown in Figure 7, projections onto PC1 exhibit consistent trends regardless of punctuation. This
demonstrates that FlowLensis robust to superficial variations in prompt format, in contrast to cosine
similarity, which relies on local angular differences.
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Figure 7: PCA projections. Trends remain stable despite surface-level changes.
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Discussion. The analysis tools should be insensitive to the semantics but sensitive to the sentence
structure of prompts. Current large language models exhibit robustness to input perturbations.
However, robustness shown in output is not equal to the robustness in the residual stream. Thus we
designed experiments to test stability of common analysis tools and FlowLens.

Prior work often analyzes cosine similarity between tokens or applies PCA layer by layer to study
internal activations. However, both tools suffer from instability. Cosine similarity is highly sensitive
to prompt formatting (Figure 6) and layerwise PCA often yields inconsistent principal axes across
training stages or models due to basis rotation. These limitations motivate a more stable and
comprehensive approach. Our findings suggest that FlowLensprovides a robust structural basis for
analyzing the effects of safety fine-tuning.

F Additional PCA Projections Using FlowLens

We evaluate six instruction-tuned language models spanning multiple architectures and scales:
LLaMA-3.2-1B-Instruct [13], LLaMA-3.1-8B-Instruct [13], LLaMA-2-7B-chat-hf [30], Qwen2.5-
1.5B-Instruct [36], Phi-4-mini-instruct [1], and Gemma-3-4b-it [29]. As evaluation data, we use the
TruthfulQA [20], a widely non-safety adopted dataset.
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Figure 8: 3D PCA projections of residual trajectories using FlowLens for six instruction-tuned
language models on the TruthfulQA dataset [20]. Each point represents the PCA-projected residual
vector of the final token from one prompt, colored by its corresponding layer index (depth normalized
to [0, 1]).

F.1 Amplification and Dispersion Effects.

We examine semantic dispersion by measuring the mean distance of harmful prompt representations
to their layerwise centroid (Figure 9). The results show exponential divergence, suggesting that safety
fine-tuning spreads harmful representations further apart, possibly contributing to overgeneralized
refusal patterns. We observe that the residual norm grows exponentially across layers, as expected
from the additive nature of the residual connection. Figure 9 shows this trend across 50 prompts.
Notably, this amplification effect magnifies the impact of instability at early layers, pushing distorted
representations farther apart in deeper layers.
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(a) Llama-3.1-8B-Instruct on XSTest Datasets
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(b) Llama-3.1-8B-Instruct on Truthful_QA Datasets
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(c) Llama-3.2-1B-Instruct on XSTest Datasets

0 2 4 6 8 10 12 14
Layer

0

2

4

6

8

10

12

Di
st

an
ce

Distance to Layer 0

(d) Llama-3.2-1B-Instruct on Truthful_QA Datasets

Figure 9: Mean distance to center for harmful prompts per layer across two model–dataset combina-
tions.

G Additional Details

G.1 Statistical Significance

To assess the variability of our results, we ran each experiment with three different random seeds (42,
100, 2025) and report mean ± standard deviation. For each benchmark metric m, we compute

m̄ =
1

3

3∑
i=1

mi, σm =

√√√√1

3

3∑
i=1

(mi − m̄)2.

All tables and plots in the main text are now updated to display error bars corresponding to m̄± σm.5

G.2 Compute Resources

All experiments were conducted on a 8 NVIDIA A100-80G GPU.

• Model fine-tuning: Each run (LLaMA-3.2-1B-SFT) took approximately 4 hours wall-clock
time, peak GPU memory usage 30 GB.

• Residual analysis & PCA: Approximately 2 hours per model, memory usage 8 GB.

• Total compute: ∼6 hours on one A100-80G; estimated carbon footprint: 0.3 kg CO2.

5Details of seed selection and metric aggregation scripts are available in the anonymous code release.
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G.3 Broader Impacts

Our work carries several potential societal implications, with both positive and negative aspects. On
the positive side, improved interpretability of safety-aligned large language models (LLMs) may
accelerate trust in AI deployment, while our methods could guide more robust alignment procedures,
thereby reducing over-cautious refusals. However, there are also risks of misuse: attackers might
exploit insights into the residual stream to craft prompts that bypass safety filters, and the release
of alignment diagnostics could enable adversarial fine-tuning to induce undesirable behaviors. To
mitigate these risks, we recommend implementing gated access to the analysis tools, establishing
clear usage guidelines, and actively monitoring for downstream misuse.

G.4 Licenses for Existing Assets

• WildJailbreak, WildGuardMix, Tulu-3-SFT-Mixture: CC-BY 4.0 (as per https://
huggingface.co/datasets/xyz/LICENSE).

• LLaMA-3.1-8B and LLaMA-3.2-1B-SFT: Meta Llama License v1.0 (https://github.
com/facebookresearch/llama/blob/main/LICENSE).

• Our anonymous code release is under the MIT License.
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