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ABSTRACT

When the inputs of a machine learning model are subject to adversarial attacks, standard stationarity
assumptions on the training and test sets are violated, typically making empirical risk minimization
(ERM) ineffective. Adversarial training, which imitates the adversary during the training stage, has
thus emerged as the de facto standard for hedging against adversarial attacks. Although adversarial
training provides some robustness over ERM, it can still be subject to overfitting, which explains why
recent work mixing the training set with synthetic data obtains improved out-of-sample performances.
Inspired by these observations, we develop a Wasserstein distributionally robust (DR) counterpart
of adversarial training for improved generalization and provide a recipe for further reducing the
conservatism of this approach by adjusting its ambiguity set with respect to synthetic data. The
underlying optimization problem, DR adversarial training with synthetic data, is nonconvex and
comprises infinitely many constraints. To this end, by using results from robust optimization and
convex analysis, we develop tractable relaxations. We focus our analyses on the logistic loss function
and provide discussions for adapting this framework to several other loss functions. We demonstrate
the superiority of this approach on artificial as well as standard benchmark problems.

1 INTRODUCTION

In recent years, there has been a surge of interest in utilizing synthetic data in order to improve adversarial robustness
of ML models. Carmon et al. (2019) demonstrate that training a classifier with additional unlabelled data from
the same distribution helps adversarial robustness. Deng et al. (2021) show how unlabelled data from a different
domain/distribution improves adversarial robustness in the original domain. Sehwag et al. (2022) investigate how
adversarial robustness of a classifier trained on synthetic data from a proxy distribution translates to the robustness
on the real data, and highlight the importance of quantifying the distance between real and proxy data distribution.
In comparison to data arising from a related domain/proxy distribution, the advantage of relying on a synthetic data
generator trained on real data is that control over the distance between real and synthetic distribution often comes for free
as a consequence of theoretical guarantees on the fidelity of the chosen generator (Goodfellow et al., 2014a; Arjovsky
et al., 2017; Li et al., 2017). In particular, Wasserstein GAN (Arjovsky et al., 2017) for example achieves the closeness
between the training data and the generator in terms of Wasserstein-1 distance and so the generator is guaranteed to live
within a small ball around the training distribution.

The concept of adversarial robustness is designed to protect against adversarial attacks, however, it is typically still prone
to overfitting Wong et al. (2020). On the other hand, for non-adversarial settings, distributionally robust optimization
hedges against overfitting by learning over the worst-case data distribution realization from an ambiguity set (ball)
built around the empirical (real data) distribution. In this paper, we explore how synthetic data helps us achieve both
adversarial and distributional robustness. We find that synthetic data provides us a ‘direction’ along which to travel
from the center of the ball in our search for the true distribution. That is, we rely on synthetic data in order to identify
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appropriate fraction of the ball and so reduce the conservatism of distributionally robust optimization. Thus, we aim to
utilize synthetic data for model generalization.
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Figure 1: Adversarial training Adv optimizes the expected adversarial loss over the empirical distribution PN . Replacing
PN with the worst-case distribution in an ambiguity set Bε(PN ) built around it gives us the DR adversarial training
problem AdvDRO. To reduce conservatism of Bε(PN ), we intersect it with another ball around synthetic empirical
distribution Bε̂(P̂N̂ ) (Section 4). This intersection includes P0 if ε̂ overestimates (2) + (3) for which confidence bounds
can be provided (e.g., fidelity guarantees on the synthetic generator along with finite-sample statistics; see Appendix D.2).
The recent literature on synthetic data for adversarial training (Gowal et al., 2021; Xing et al., 2022), instead of solving
an ERM over PN , solves an ERM over Qmix which is also included in the intersection Bε(PN ) ∩Bε̂(P̂N̂ ) under some
conditions on ε and ε̂ (cf. Lemma 3).

The overarching question we address in this paper is: What is the value of synthetic data in the context of model
robustness? See Figure 1 for an illustration of our problem setting and Appendix A for notation. Our contributions are:

• We show that logistic loss adversarial training is equivalent to empirical risk minimization (for a new loss
function) and is consequently prone to overfitting.

• We provide a tractable convex optimization reformulation for both adversarially and Wasserstein distributionally
robust optimization with logistic loss (cf. Section 3).

• To reduce the conservatism of adversarially and distributionally robust optimization, in Section 4, we derive
a variant of it where the distributional ambiguity is replaced with the intersection of Wasserstein balls built
around the real and synthetic data (cf. Figure 1). We provide discussions on when this approach is meaningful
and provide a rigorous theoretical analysis to derive tractable approximation schemes by unifying the robust
optimization, adversarial training, and synthetic data fields.

• We provide extensive experimentation to showcase the benefits of our approach and in particular on all the UCI
datasets we considered, we beat all the competing state-of-the-art results.

2 PROBLEM SETTING AND PRELIMINARIES

In this work, we consider a binary classification problem where an instance is modeled as (x, y) ∈ Ξ := Rn×{−1,+1}.
We focus specifically on logistic regression as it provides a particularly favourable ground to explore the relationship
between adversarial robustness and ERM. More precisely, the labels depend on the features probabilistically with

Prob[y | x] = [1 + exp(−y · β⊤x)]−1,

for some β ∈ Rn; its associated loss is the logloss function ℓβ(x, y) := log(1 + exp (−y · β⊤x)). We review and
discuss several training paradigms (cf. Table 1 for a summary).
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ERM DRO Adv

Training risk EPN
[ℓβ(x, y)] sup

Q∈Bε(PN )

EQ[ℓβ(x, y)] EPN

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]

True risk EP0 [ℓβ(x, y)] EP0 [ℓβ(x, y)] EP0

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]

Table 1: Comparison of the risks taken under various training paradigms.

Distributional ambiguity measures and sets Let P(Ξ) denote the set of probability distributions supported on Ξ.
In this work, we employ the Wasserstein distance to model distributional ambiguity. Before defining the Wasserstein
distance on P(Ξ), we introduce the following feature-label metric on Ξ.

Definition 1. The distance d(ξ, ξ′) between ξ = (x, y) ∈ Ξ and ξ′ = (x′, y′) ∈ Ξ is the standard feature-label metric

d(ξ, ξ′) = ∥x− x′∥q + κ · 1[y ̸= y′]

for κ > 0 controlling the label weight and q > 0 specifying a rational norm on Rn.

Using Definition 1, we next define the Wasserstein distance.

Definition 2. The type-1 Wasserstein distance between distributions Q ∈ P(Ξ) and Q′ ∈ P(Ξ), for the feature-label
metric d(ξ, ξ′) on Ξ, is defined as

W(Q,Q′) = inf
Π∈P(Ξ×Ξ)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′) : Π(dξ,Ξ) = Q(dξ), Π(Ξ,dξ′) = Q′(dξ′)

}
.

For a fixed ε > 0, we define the Wasserstein ambiguity set of P ∈ P(Ξ) as Bε(P) := {Q ∈ P(Ξ) : W(Q,P) ≤ ε}.

Empirical Risk Minimization Let us denote by P0 the true data generating distribution, then one ideally wants to
minimize the expected loss over P0, represented as the following problem

minimize
β∈Rn

EP0 [ℓβ(x, y)]. (RM)

In practice, P0 is hardly ever known, and one thus resorts to the empirical distribution PN = 1
N

∑
i∈[N ] δξi where

{ξi = (xi, yi)}i∈[N ] are i.i.d. samples from P0 and δξ denotes the Dirac distribution supported on ξ. Thus, the empirical
risk minimization (ERM) problem is

minimize
β∈Rn

EPN
[ℓβ(x, y)] =

1

N

∑
i∈[N ]

ℓβ(x
i, yi). (ERM)

Distributionally Robust Optimization It is well understood that in non-asymptotic settings, ERM may suffer from
overfitting or optimism bias (Bishop, 2006; Hastie et al., 2009; Murphy, 2022; DeMiguel & Nogales, 2009; Michaud,
1989; Smith & Winkler, 2006). Distributionally robust optimization (DRO, Delage & Ye 2010) is an optimization
approach attempting at addressing this issue. DRO is is motivated by the fact that in the finite-data setting, the ambiguity
between the true and empirical distributions is positive but upper-bounded by some ϵ > 0. When the ambiguity is
measured by Wasserstein distance 2, this means that P0 ∈ Bε(PN ). The goal in DRO is to optimize the expected loss
over the worst possible realization of the true distribution in Bε(PN ). That is,

minimize
β∈Rn

sup
Q∈Bε(PN )

EQ[ℓβ(x, y)]. (DRO)
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We refer the readers to Mohajerin Esfahani & Kuhn (2018) and Kuhn et al. (2019a) for the generalization guarantees
and finite sample statistics for DRO.

Adversarial Robustness Another popular approach to improve over the generalization performance of ERM is
adversarial robustness where the goal is to provide robustness against adversarial attacks (Goodfellow et al., 2014b).
An adversarial attack, in the widely studied lp-noise setting (see e.g. Croce et al. (2020)), perturbs the features of the test
instances (x, y) by adding additive noise z to x. The adversary chooses the noise vector z, subject to ∥z∥p ≤ α, so as
to maximize the loss ℓβ(x+ z, y) associated with this perturbed test instance. Therefore, in adversarial training one can
solve the following optimization problem in the training stage to hedge against adversarial perturbations at test time

minimize
β∈Rn

EPN

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]
. (Adv)

Note that Adv reduces to ERM when α = 0. It is worth noting that Adv is identical to feature robust training (Bertsimas
et al., 2019) which does not have adversarial attacks but the training set comprises noisy observations of the features
hence one employs robust optimization (Ben-Tal et al., 2009; Gorissen et al., 2015).

3 DISTRIBUTIONALLY ROBUST ADVERSARIAL TRAINING

Problems Adv and ERM of logistic regression differ from one another in their objective functions. However, the
following lemma shows that Problem Adv is nothing but an ERM problem for a different loss function.

Lemma 1. Problem Adv is identical to

minimize
β∈Rn

EPN
[ℓαβ(x, y)],

where ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) is the adversarial loss associated with the logloss. Moreover,
the corresponding univariate loss Lα(z) := log(1 + exp(−z + α · ∥β∥p⋆)) satisfies Lip(Lα) = 1 for any α > 0.

Reducing the Adv to problem ERM with loss function ℓαβ(x, y) highlights that adversarial training is prone to overfitting.
In order to circumvent this obstacle, we devote the remainder of this section to derive a distributionally robust counterpart
of adversarial training. We introduce the following distributionally and adversarially robust optimization problem:

minimize
β∈Rn

sup
Q∈Bε(PN )

EQ

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]
. (AdvDRO)

Solving Problem AdvDRO requires the following assumption.

Assumption 1. There exists ε > 0 known to the decision maker so that P0 ∈ Bε(PN ).

We discuss relaxing Assumption 1 in Appendix§D.1. As a corollary of Lemma 1, AdvDRO has a tractable reformulation.

Corollary 1. Problem AdvDRO admits the following tractable convex optimization reformulation:

minimize
β, λ, s

λ · ε+ 1

N

∑
i∈[N ]

si

subject to log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si ∀i ∈ [N ]

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN ,
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In Appendix C.3, we show how one can further rewrite AdvDRO as a conic optimization problem with the exponential
cone and the cone associated with the q⋆-norm. For q, q⋆ ∈ {1, 2,∞}, the yielding problem can be solved with the
exponential cone solver of MOSEK (MOSEK ApS, 2023a), in polynomial time (with respect to their input size, Nesterov
2018). We derive the regularized counterparts of these problems, and discuss that their complexity remain the same.

4 REDUCING CONSERVATISM WITH SYNTHETIC DATA

So far we have discussed the setting where we have access to the empirical distribution PN that is constructed from
N i.i.d. samples of P0. Suppose that we have an additional empirical distribution P̂N̂ which is constructed from N̂

i.i.d. samples {ξ̂j = (x̂j , ŷj)}j∈[N̂ ] of another related but non-identical distribution P̂. We first start with a strong and
unrealistic assumption, that additional data is close enough to P0:

Assumption 2. There exists ε̂ > 0 known to the decision maker so that W (P0, P̂N̂ ) ≤ ε̂.

As mentioned earlier, DRO assumes P0 ∈ Bε(PN ). Under Assumption 2, it also follows that P0 ∈ Bε̂(P̂N̂ ), meaning
that P0 ∈ Bε(PN ) ∩Bε̂(P̂N̂ ). We thus want to solve the following variant of AdvDRO where the ambiguity set is
modeled as the intersection of two balls, hence providing us a weakly less conservative ambiguity set than of AdvDRO:

minimize
β∈Rn

sup
Q∈Bε(PN )∩Bε̂(P̂N̂

)

EQ[ℓ
α
β(x, y)], (Synth)

which reduces to AdvDRO when ε̂ is sufficiently large so that Bε(PN ) ∩Bε̂(P̂N̂ ) = Bε(PN ). Note that for Synth to
be well-defined, Bε(PN ) ∩Bε̂(P̂N̂ ) needs to be non-empty (to be characterized in Section §4 ).

The inner problem in Synth involves optimizing the worst-case realization Q from an unusual constraint set in the
distribution space. To avoid the difficulty of solving such a problem, we borrow techniques from the adjustable robust
optimization literature to find a tractable convex relaxation of Problem Synth. Discussion on the difficulty of directly
solving Synth and the need for our relaxation is in Appendix §B. The next theorem is our main theoretical contribution,
which presents a conservative relaxation to Problem Synth.

Theorem 1. Problem Synth admits the following tractable convex conservative relaxation:

minimize
β,λ,λ̂,s,ŝ,z+,z−

ε · λ+ ε̂ · λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

subject to Lα(β⊤xi + z+⊤
ij (x̂j − xi)) ≤ si + κ · 1− yi

2
· λ+ ŝj + κ · 1− ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

∥β − z+
ij∥q⋆ ≤ λ, ∥−β − z−

ij∥q⋆ ≤ λ, ∥z+
ij∥q⋆ ≤ λ̂, ∥z−

ij∥q⋆ ≤ λ ∀i ∈ [N ], ∀j ∈ [N̂ ]

Lα(−β⊤xi + z−⊤
ij (x̂j − xi)) ≤ si + κ · 1 + yi

2
· λ+ ŝj + κ · 1 + ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ , z+
ij , z

−
ij ∈ Rn, i ∈ [N ], j ∈ [N̂ ]. (ProxSynth)

This formulation admits an exponential cone reformulation, with the same techniques applied to AdvDRO which is
summarized in Appendix §C.3. Moreover, in Appendix §C.9, we review tailored methods for norms with q ∈ {1, 2,∞}
as well as present alternative relaxations using techniques from robust optimization.

The case of uninformative synthetic data When the synthetic data does not provide any useful information, we can
select ϵ̂ large enough to have Bε(PN ) ∩Bε̂(P̂N̂ ) = Bε(PN ). In this case, problem Synth simply reduces to Problem

5



Under review as a conference paper at ICLR 2024

AdvDRO. The next lemma discusses the same behavior for the relaxed problem ProxSynth, meaning that the presented
relaxation will not force learning from the synthetic data, and recovering AdvDRO remains a feasible solution.

Lemma 2. As ε̂ → ∞, the optimal value of ProxSynth converges to the optimal value of AdvDRO.

The case of unknown ϵ and ϵ̂ Let us discuss how to tune the parameters ε and ε̂ when they are unknown. This
discussion requires understanding the statistical properties of AdvDRO and Synth, which we provide in Appendix §D.
First, recall that we need Bε(PN ) ∩Bε̂(P̂N̂ ) ̸= ∅ for Synth to be well-defined. To ensure this, a sufficient condition
follows from the triangle inequality: ε+ ε̂ ≥ W(PN , P̂N̂ ).

Let us now discuss tuning ε. We aim to find a tight ε value so that P0 ∈ Bε(PN ) with high confidence. To this end, we
use the rich arsenal of finite-sample statistics from the Wasserstein DRO literature. In Appendix D.1, we review existing
results applicable to AdvDRO, including the optimal value of ε given a confidence level for including P0 in Bε(PN ),
asymptotic consistency of AdvDRO, and the existence of sparse worst-case distributions in the nature’s problem.

On the other hand, deciding ε̂ is a much more challenging task since we want to have P0 ∈ Bε̂(P̂N̂ ), but P̂N̂

is constructed of i.i.d. samples of another distribution P̂. Thus, one needs to estimate both ε̂1 := W(P̂N̂ , P̂) and
ε̂2 := W(P̂,P0). We then would choose ε̂ ≥ ε̂1+ε̂2 to include P0 in Bε̂(P̂N̂ ). In Appendix D.2, we first assume that ε̂2 is
known, and show that Synth enjoys an optimal characterization of ε and ε̂ values that guarantee P0 ∈ Bε(PN )∩Bε̂(P̂N̂ )

with arbitrarily high confidence. Note that when no knowledge of ε̂2 exists, we use cross-validation to tune this parameter.

Connection to literature on synthetic data for adversarial training Here, we investigate the literature on using
synthetic data {(x̂j , ŷj)}j∈[N̂ ] for adversarial training and relate it to the problem Synth we propose. The works in this
literature (Gowal et al., 2021; Xing et al., 2022) propose solving the following problem, for some w > 0.

minimize
β∈Rn

1

N + w · N̂

∑
i∈[N ]

sup
zi:∥zi∥p≤α

{ℓβ(xi + zi, yi)}+ w ·
∑
j∈[N̂ ]

sup
zj :∥zj∥p≤α

{ℓβ(x̂j + zj , ŷj)}

 , (1)

Proposition 1. Problem (1) is equivalent to min
β∈Rn

EQmix [ℓ
α
β(x, y)] where Qmix := λPN + (1− λ)P̂N̂ for λ = N

N+w·N̂
.

The following lemma shows that under reasonable conditions for ε and ε̂, the mixture distribution introduced in
Proposition 1 is included in Bε(PN )∩Bε̂(P̂N̂ ). This means that the distribution Qmix used in the literature on synthetic
data for adversarial training, belongs to the set of distributions considered in Problem Synth.

Lemma 3. For any λ ∈ (0, 1) and distribution Qmix := λ · PN + (1− λ) · P̂N̂ , we have:

ε+ ε̂ ≥ W(PN , P̂N̂ ) and
λ

1− λ
=

ε̂

ε
=⇒ Qmix ∈ Bε(PN ) ∩Bε̂(P̂N̂ ).

For λ = N

N+N̂
, provided that Bε(PN ) ∩ Bε̂(P̂N̂ ) is nonempty, Lemma 3 shows that a sufficient condition for this

intersection to include the mixture Qmix is ε̂/ε = N/N̂ , which is intuitive since the radii of the Wasserstein ambiguity
sets are typically chosen inversely proportional to the number of samples (Kuhn et al., 2019b, Theorem 18).

5 EXPERIMENTS

We compare the proposed DRO problem over the intersection of empirical and synthetic Wasserstein balls with several
benchmark methods. Code and more experiments are on an anonymous repo (we will share the URL with reviewers
when discussion opens). The following abbreviations will be used throughout the experiments:

- Naïve: Solving ERM with the logloss function;
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Case CV’ed w CV’ed ε/ε̂

α = 0 0.002 0.0120
α = 0.1 0.046 0.172
α = 0.25 0.086 0.232
α = 0.5 0.290 0.241

Figure 2: Left: mean out-of-sample error rates of each method over different attack strengths. Right: average importance
of synthetic data for empirical and robust risk minimization.

- Adv: Adversarial training Adv on the empirical distribution (e.g., Madry et al. 2017);
- Adv+Syn: Solving (1) for adversarial training on mixtures of real and synthetic data (e.g., Gowal et al. 2021);
- Adv+DRO: Distributionally robust (DR) counterpart AdvDRO of Adv with the ambiguity set centered at PN ;
- Adv+DRO+Syn: DR counterpart Synth of Adv over intersection of ambiguity sets built around PN and P̂N̂ .

Artificial Data We sample instances i.i.d. from a generated artificial ground truth distribution to form training and test
sets. Similarly, we sample instances i.i.d. from another related but different ground truth distribution to form synthetic
sets. The details are in Appendix §E. We simulate 25 cases, each with N = 100 training instances, N̂ = 200 synthetic
instances, and Nte = 10, 000 test instances. For each case, we further simulate different adversarial attack strengths
α ∈ {0, 0.1, 0.25, 0.5} using ℓ2 attacks (ℓ1 and ℓ∞ are also available in our repository with similar implementation and
results). In each problem, we apply 5-fold cross-validation to select the best parameter combinations for both our and the
benchmark methods (the specific parameters and grids for validation are shared in our repository). The performance in
terms of the out-of-sample misclassification (error) rates is available on the left-hand side of Figure 2. As expected, Naïve
training provides the worst out-of-sample errors. While Adv improves these errors, Adv+Syn and Adv+DRO enhance
its performance further by mixing the empirical distribution with synthetic data and by applying DRO, respectively.
Notice also that in low attack regimes using synthetic data is more important than adding distributional robustness,
where a higher attack regime makes distributional robustness more important. Finally, Adv+DRO+Syn always provides
the lowest errors by applying both these techniques simultaneously (that is, by solving Synth). On the right-hand side
of Figure 2, we display the average CV’ed w values for problem (1) which shows that the greater the attack strength
is the more we should use the synthetic data; same relationship holds for ε/ε̂ in Synth, which means that the relative
size of the Wasserstein ball built around the empirical distribution gets larger compared to the same ball around the
synthetic data. We remark this as a possible future research direction exploring whether a larger attack per se implies
the intersection of the Wasserstein ball will move towards the synthetic data distribution.

Since the relaxation problems we solve for Synth comprise O(n ·N · N̂) variables and exponential cone constraints, it
is natural to ask whether the method scales to practical settings. Indeed, we find that in practice our methods scale better
than that. To this end, we simulate problems with the same procedure as explained in the performance experiments
above and report the mean runtimes in Figure 3. On the left-hand side of this figure, we simulate 25 cases that fix
α = 0.2, N = 200, N̂ = 200 and vary n ∈ {20, 40, . . . , 180}. On the right-hand side, we similarly simulate 25 cases
that instead fix n = 100 and vary N = N̂ ∈ {100, 200, . . . , 1000}. We observe that the fastest methods are Naïve
and Adv among which the faster one depends on n (as the adversarial loss includes a regularizer of β), followed by
Adv+Syn, Adv+DRO, and Adv+DRO+Syn, respectively. The slowest method is Adv+DRO+Syn, which is expected
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Figure 3: Runtimes over varying problem dimensions. Left: N = N̂ = 200 is fixed. Right: n = 100 is fixed.

Data Set N N̂ Nte n Attack Naïve Adv Adv+Syn Adv+DRO Adv+DRO+Syn

absent 111 333 296 74 α = 0.05 44.02% (± 2.89) 38.82% (± 2.86) 35.95% (± 3.78) 34.22% (± 2.70) 32.64% (± 2.54)
α = 0.20 73.65% (± 4.14) 51.49% (± 3.39) 49.56% (± 3.80) 45.61% (± 2.32) 44.90% (± 2.30)

annealing 134 404 360 41 α = 0.05 18.08% (± 1.89) 16.61% (± 2.16) 14.97% (± 1.39) 13.50% (± 2.98) 12.78% (± 2.78)
α = 0.20 37.31% (± 3.92) 23.08% (± 2.82) 21.30% (± 1.93) 20.70% (± 1.32) 19.53% (± 1.42)

audiology 33 102 91 102 α = 0.05 21.43% (± 3.64) 21.54% (± 3.92) 17.03% (± 2.90) 11.76% (± 3.28) 9.01% (± 3.54)
α = 0.20 37.91% (± 6.78) 29.34% (± 5.89) 20.44% (± 2.75) 20.00% (± 3.01) 17.91% (± 3.28)

breast-cancer 102 307 274 90 α = 0.05 4.74% (± 1.26) 4.93% (± 1.75) 3.87% (± 1.17) 3.06% (± 0.79) 2.52% (± 0.50)
α = 0.20 9.93% (± 1.73) 8.14% (± 2.01) 6.09% (± 1.79) 5.04% (± 1.11) 4.67% (± 0.99)

contraceptive 220 663 590 23 α = 0.05 44.14% (± 2.80) 42.86% (± 2.59) 40.98% (± 0.95) 40.00% (± 1.33) 39.65% (± 1.15)
α = 0.20 66.19% (± 5.97) 43.49% (± 2.24) 42.71% (± 1.47) 42.71% (± 1.47) 42.71% (± 1.47)

dermatology 53 161 144 99 α = 0.05 15.97% (± 2.64) 16.46% (± 1.67) 13.47% (± 1.97) 12.78% (± 1.61) 10.84% (± 1.24)
α = 0.20 30.07% (± 4.24) 28.54% (± 3.25) 21.53% (± 2.17) 22.64% (± 2.15) 20.21% (± 1.58)

ecoli 50 151 135 9 α = 0.05 16.30% (± 4.42) 14.67% (± 5.13) 13.26% (± 3.07) 11.11% (± 5.52) 9.78% (± 2.61)
α = 0.20 51.41% (± 3.37) 42.67% (± 2.91) 41.85% (± 2.95) 39.70% (± 2.68) 38.89% (± 2.57)

spambase 690 2,070 1,841 58 α = 0.05 11.35% (± 0.77) 10.23% (± 0.54) 10.16% (± 0.56) 9.83% (± 0.37) 9.81% (± 0.38)
α = 0.20 27.32% (± 2.11) 15.83% (± 0.77) 15.70% (± 0.76) 15.67% (± 0.72) 15.50% (± 0.68)

spect 24 72 64 23 α = 0.05 33.75% (± 5.17) 29.69% (± 5.46) 25.78% (± 3.06) 25.47% (± 3.38) 21.56% (± 2.74)
α = 0.20 54.22% (± 9.88) 37.5% (± 3.53) 35.16% (± 2.47) 33.75% (± 2.68) 30.16% (± 3.61)

primacy-tumor 50 153 136 32 α = 0.05 21.84% (± 4.55) 20.81% (± 3.97) 17.35% (± 3.59) 16.18% (± 3.83) 14.78% (± 2.89)
α = 0.20 34.19% (± 6.17) 25.37% (± 4.58) 21.62% (± 3.45) 21.84% (± 3.34) 19.63% (± 2.71)

Table 2: Mean out-of-sample errors (± standard deviation) over 10 UCI datasets.

given that Adv+DRO is a special case with large ε̂; however, the runtime is observed to scale graciously. To further
concentrate on the runtime of Adv+DRO, we simulated cases with n = 1, 000 and N = N̂ = 10, 000, and recorded
that the runtimes vary between 134 to 232 seconds.

Real Data We compare the out-of-sample error rates of each method on 10 of the most popular UCI datasets
for classification (Dua & Graff, 1998). Classification problems with more than two classes are converted to binary
classification problems (most frequent class/others). The numerical features are standardized, the ordinal categorical
features are left as they are, and the nominal categorical features are processed via one-hot encoding. Further details
about preprocessing are documented in our repository. For each dataset, we applied 10 simulations of the following
procedure: (i) Select 40% of the dataset as a test set (Nte ∝ 0.4); (ii) Sample 25% of the remaining instances to form a
training set (N ∝ 0.6 · 0.25); (iii) The rest (N̂ ∝ 0.6 · 0.75) is used to fit a synthetic distribution by using the Gaussian
Copula from the SDV Patki et al. (2016). We sample N̂ synthetic instances and then 5-fold cross-validate the parameters
of each method (to have equal comparison, we used the same grids with the benchmark methods) similarly to the
previous experiments. The mean errors on the test set are reported in Table 2 for attacks α = 0.05 and α = 0.20.
The best error is always achieved by Adv+DRO+Syn, followed by Adv+DRO, Adv+Syn, Adv, Naïve, respectively.
Adv+DRO achieves better errors than Adv+Syn (as observed from the mean errors) but there are cases where this is
reversed. On the other hand, we verify that there is no case where any method is better than Adv+DRO+Syn.
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6 RELATED WORK

Interactions between adversarial and distributional robustness are not new. Sinha et al. (2017), for example, show that
distributional robust optimization over Wasserstein balls is intractable for generic functions (e.g., neural networks) but
its Lagrange relaxation resembles adversarial training hence applying adversarial training still gives some distributional
robustness guarantees. Similarly, there have been works showing how one can obtain adversarial robustness via
distributionally robust optimization (Regniez et al., 2022). However, to our knowledge, there has not been any work
addressing Wasserstein distributional robustness (that hedges against overfitting, Kuhn et al. 2019b) and adversarial
robustness (that hedges against adversarial attacks, Goodfellow et al. 2014b) simultaneously. To our knowledge, the only
existing work that considers generalization and adversarial robustness together is the work of Bennouna et al. (2023)
where the distributional ambiguity is modeled with φ-divergences and the prediction model is a neural network.

The idea of intersecting Wasserstein balls is inspired by the “Surround, then Intersect” (SI) strategy (Taskesen et al., 2021,
§5.2) to learn linear regression coefficients under sequential domain adaptation (see Shafahi et al. 2020 and Song et al.
2018 for a deeper understanding of robustness in domain adaptation/transfer learning). The authors use a Wasserstein
metric constructed around the first and second moments and show that problem Synth admits a tractable convex
optimization reformulation under this metric. Their proof uses minimax equality which exploits the squared loss
function. Indeed, we showed that in the logistic classification setting, the distributionally robust adversarial training
(classification) problem becomes substantially harder, and we thus developed different duality techniques (e.g., Toland’s
duality) and relaxations (e.g., adjustable robust optimization). Recent work started to explore the intersection of
ambiguity sets in different contexts (Awasthi et al., 2022) or different setups (Zhang et al., 2023). Given the increasing
interest in this stream of research, we hope our work and analysis will be complementary to the theory. For a deeper
understanding of domain adaptation (and transfer learning in general), we refer the interested reader to some works from
transfer learning and domain adaptation literature.

7 CONCLUSION

One of the two motivations of this study was that adversarial training is subject to overfitting, which led us to formulate
and experiment with the adversarially and distributionally robust training models. In the numerical results, we observed
that adversarial training is improved by taking its Wasserstein DR counterpart. This is due to the same reason behind the
success of recent studies that mix empirical data with synthetic data, as using synthetic data, to some extent, regularizes
decisions. Motivated by these observations, our main contribution was to unify the practices of adversarial training, DRO,
and using synthetic data: instead of achieving adversarial robustness with synthetic data, we achieve it by distributional
robustness and use the synthetic data to manipulate the underlying ambiguity sets. The experiments show a drastic
improvement over the benchmark methods.

Despite the appealing performance, one must also be mindful that the proposed model needs to tune an additional
parameter (ε̂) that can recover as special cases the DRO problem (ε̂ ≫ ε) and the adversarial training problem (ε = 0

with large ε̂), and can even resemble non-robust adversarial training with synthetic data when the boundaries of the
Wasserstein balls intersect. Regardless, we observe that in most cases this model achieves much better error rates than
any of these special cases. Moreover, we focused on the logloss function to show the theoretical challenges and present
tractable reformulation/approximation techniques; it could be fruitful to extend these results to neural network classifiers
as is typical for theoretical studies stemming from logistic regression (Dreiseitl & Ohno-Machado, 2002). The extension
of our findings to different loss functions is sketched in the appendices.
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Can Synthetic Data Reduce Conservatism of Distributionally
Robust Adversarial Training?

Supplementary Materials

A NOTATION

Throughout the paper, bold lower case letters denote vectors, while standard lower case letters are reserved for scalars.
A generic data instance is modeled as (x, y) ∈ Ξ := Rn × {−1,+1}. For any p > 0, ∥x∥p denotes the rational norm
(
∑n

i=1|xi|p)
1/p and ∥x∥p⋆ is its dual norm where 1

p + 1
p⋆ = 1 with the convention of 1/1 + 1/∞ = 1. The set of

probability distributions supported on Ξ is denoted by P(Ξ). The Dirac measure supported on ξ is denoted by δξ. The
logloss is defined as ℓβ(x, y) = log(1+exp(−y·β⊤x)) and its associated univariate loss is L(z) = log(1+exp(−z)) so
that L(y · β⊤x) = ℓβ(x, y). The exponential cone is denoted by Kexp = cl({ω ∈ R3 : ω1 ≥ ω2 · exp(ω3/ω2), ω1 >

0, ω2 > 0}) where cl is the closure operator. The Lipschitz modulus of a univariate function f is defined as
Lip(f) := supz,z′∈R

{
|f(z)−f(z′)|

|z−z′| : z ̸= z
}

whereas its effective domain is dom(f) = {z : f(z) < +∞}. For a

function f : Rn 7→ R, its convex conjugate is f∗(z) = supx∈Rn z⊤x− f(x). We reserve α ≥ 0 for the radii of the
norms of adversarial attacks on the features and ε ≥ 0 for the radii of distributional ambiguity sets. All proofs are
relegated to supplementary materials.

B DISCUSSION ON SOLVING PROBLEM SYNTH

The following lemma transforms problem Synth into a minimization problem with vector variables instead of Q. To this
end, assume that Synth is well-defined, that is, Bε(PN ) ∩Bε̂(P̂N̂ ) is non-empty (to be characterized in §D).

Lemma 4. For ε, ε̂ > 0 satisfying Bε(PN ) ∩Bε̂(P̂N̂ ) ̸= ∅, the inner sup problem (nature’s problem) of Synth admits
the following reformulation:

minimize
λ,λ̂,s,ŝ

ε · λ+ ε̂ · λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
i=1

ŝi

subject to sup
x∈Rn

{ℓαβ(x,+1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1− yi

2
· λ+ ŝj + κ · 1− ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1 + yi

2
· λ+ ŝj + κ · 1 + ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Although the equivalent problem presented in Lemma 4 optimizes a linear objective function over O(N · N̂) many
constraints, the sup terms on the left-hand side of these constraints are maximization of difference of convex (DC)
functions. We first reformulate these constraints by using techniques from adjustable robust optimization (Ben-Tal et al.,
2004; Yanıkoğlu et al., 2019). To this end, by using the univariate-loss formulation ℓαβ(x, y) = Lα(y · β⊤x), and by
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representing t(λ, λ̂, s, ŝ) as a linear function, we can model any of the above constraints as

sup
x∈Rn

{Lα(ω⊤x)− λ · ∥a− x∥q − λ̂ · ∥â− x∥q} ≤ t(λ, λ̂, s, ŝ) (2)

for ω = ±β, a = xi and â = x̂j for some i ∈ [N ] and j ∈ [N̂ ]. The next lemma shows how to write this constraint as
an adjustable robust optimization constraint.

Lemma 5. The constraint (2) and the following system define the identical feasible set for the variables ω, λ, λ̂, s, ŝ

where Lα∗ denotes the conjugate of Lα:

∀θ ∈ dom(Lα∗), ∃z ∈ Rn :


−Lα∗(θ) + θ · ω⊤a+ θ · z⊤(â− a) ≤ t(λ, λ̂, s, ŝ)

|θ| · ∥ω − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

This is a generalization of the existing reformulations for DC constraints with a single norm (e.g., Lemma 47 of
Shafieezadeh-Abadeh et al. 2019 and Theorem 3.8 of Shafieezadeh-Abadeh et al. 2023) to multiple norms. Indeed,
consider the case of a single norm, that is, λ̂ = 0. As this will enforce z = 0, the system presented in Lemma 5 will
reduce to:

∀θ ∈ dom(Lα∗) :

−Lα∗(θ) + θ · ω⊤a ≤ t(λ, 0, s,0)

|θ| · ∥ω∥q⋆ ≤ λ

which will not be feasible if supθ∈dom(Lα∗){|θ|} · ∥ω∥q⋆ > λ. This system is only feasible when supθ∈dom(Lα∗){|θ|} ·
∥ω∥q⋆ = Lip(Lα) · ∥ω∥q⋆ ≤ λ where the identity is due to (Rockafellar, 1997, Corollary 13.3.3). Thus, provided that
Lip(Lα) · ∥ω∥q⋆ ≤ λ holds, it reduces to

sup
θ∈dom(Lα∗)

{−Lα∗(θ) + θ · ω⊤a}︸ ︷︷ ︸
=Lα(ω⊤a)

≤ t(λ, λ̂, s, ŝ).

This discussion implies that, for λ̂ = 0, an equivalent set of constraints to represent (2) is:Lα(ω⊤a) ≤ t(λ, λ̂, s, ŝ)

Lip(Lα) · ∥ω∥q⋆ ≤ λ

which coincides with the aforementioned tractable reformulations. For the general case, however, such a tractable
reformulation is not possible due to the fact that the uncertain parameter θ and the adjustable variable z share constraints,
and traditional methods including minimax theorem do not hold (Tsaknakis et al., 2021). For such problems, a common
practice is to seek for tight relaxations, and we thus propose the following safe approximation to constraint (2) by using
the formulation presented in Lemma 5 by employing the static relaxation of the adjustable variables (Bertsimas et al.,
2015).
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Corollary 2. The following system, upon the inclusion of the new variable z ∈ Rn, gives a safe approximation1 of
constraint (2): 

Lα(ω⊤a+ z⊤(â− a)) ≤ t(λ, λ̂, s, ŝ)

Lip(Lα)︸ ︷︷ ︸
=1

·∥w − z∥q⋆ ≤ λ

Lip(Lα)︸ ︷︷ ︸
=1

·∥z∥q⋆ ≤ λ̂.

We now present a tractable convex reformulation to have a safe approximation for Synth.

C PROOFS

C.1 PROOF OF LEMMA 1

Proof. For any β ∈ Rn, using standard robust optimization arguments (Ben-Tal et al., 2009; Bertsimas & Den Hertog,
2022), we can show that

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}

⇐⇒ sup
z:∥z∥p≤α

{log(1 + exp(−y · β⊤(x+ z)))}

⇐⇒ log

(
1 + exp

(
sup

z:∥z∥p≤α

{−y · β⊤(x+ z)}

))

⇐⇒ log

(
1 + exp

(
−y · β⊤x+ α · sup

z:∥z∥p≤1

{−y · β⊤z}

))
⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥−y · β∥p⋆))

⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)),

where the first step follows from the definition of logloss, the second step follows from the fact that log and exp are
increasing functions, the third step takes the constant terms out of the sup problem and exploits the fact that the optimal
solution of maximizing a linear function will be at an extreme point of the ellipsoid, the fourth step uses the definition of
the dual norm, and finally the redundant −y ∈ {−1,+1} is omitted from the dual norm. We can therefore define the
adversarial loss ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) where α models the strength of the adversary, β is
the decision vector, and (x, y) is an instance. Replacing supz:∥z∥p≤α{ℓβ(x+ z, y)} in Adv with ℓαβ(x, y) concludes
the equivalence.

Furthermore, to see Lip(Lα) = 1, firstly note that since Lα(z) = log(1 + exp(−z + α · ∥β∥p⋆)) is differentiable
everywhere in z and the gradient Lα′ is bounded everywhere, we have that Lip(Lα) is equal to supz∈R{|Lα′(z)|}. We
thus have

Lα′(z) =
− exp(−z + α · ∥β∥p⋆)

1 + exp(−z + α · ∥β∥p⋆)
=

−1

1 + exp(z − α · ∥β∥p⋆)
∈ (−1, 0)

and |Lα′(z)| = [1 + exp(z − α · ∥β∥p⋆)]
−1 −→ 1 as z −→ −∞.

1the terminology of ‘safe approximation’ is borrowed from the robust optimization literature, meaning that the feasibility of this
approximation will imply the feasibility of the original system
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C.2 PROOF OF COROLLARY 1

Lemma 1 lets us rewrite AdvDRO as the DRO counterpart of empirical minimization of ℓα:

minimize
β

sup
Q∈Bε(PN )

EQ
[
ℓαβ(x, y)

]
subject to β ∈ Rn.

(ADV)

Since the univariate loss Lα(z) := log(1 + exp(−z + α · ∥β∥p⋆)) satisfying the identity Lα(⟨y · x,β⟩) = ℓαβ(x, y) is
Lipschitz continuous (cf. Lemma 1), Theorem 14 (ii) of Shafieezadeh-Abadeh et al. (2019) is immediately applicable.
We can therefore rewrite (ADV) as:

minimize
β, λ, s

λ · ε+ 1

N

∑
i∈[N ]

si

subject to Lα(⟨yi · x,β⟩) ≤ si ∀i ∈ [N ]

Lα(⟨−yi · x,β⟩)− λ · κ ≤ si ∀i ∈ [N ]

Lip(Lα) · ∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN .

Replacing Lip(Lα) = 1 and substituting the definition of Lα concludes the proof.

C.3 EXPONENTIAL CONE REPRESENTATION OF ADVDRO

Lemma 6. Problem AdvDRO is equivalent to

minimize
β, λ, s, u

v+,w+,v−,w−

λ · ε+ 1

N

∑
i∈[N ]

si

subject to v+i + w+
i ≤ 1 ∀i ∈ [N ]

(v+i , 1, [−u+ yi · β⊤xi]− si) ∈ Kexp, (w
+
i , 1,−si) ∈ Kexp ∀i ∈ [N ]

v−i + w−
i ≤ 1 ∀i ∈ [N ]

(v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w
−
i , 1,−si − λ · κ) ∈ Kexp ∀i ∈ [N ]

α · ∥β∥p⋆ ≤ u

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN , u ∈ R, v+,w+,v−,w− ∈ RN .

Proof. For any i ∈ [N ], the first two constraints of AdvDRO are log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si,

which, by using an auxiliary variable u, can be written as
log(1 + exp(−yi · β⊤xi + u)) ≤ si

log(1 + exp(yi · β⊤xi + u))− λ · κ ≤ si

α · ∥β∥p⋆ ≤ u.

Following the conic modeling guidelines of MOSEK ApS (2023b), for new variables v+i , w
+
i ∈ R, the first constraint

can be written as{
v+i + w+

i ≤ 1, (v+i , 1, [−u+ yi · β⊤xi)− si] ∈ Kexp, (w
+
i , 1,−si) ∈ Kexp,

17
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by using the definition of the exponential cone Kexp. Similarly, for new variables v−i , w
−
i ∈ R, the second constraint

can be written as{
v−i + w−

i ≤ 1, (v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w
−
i , 1,−si − λ · κ) ∈ Kexp.

Applying this for all i ∈ [N ] concludes the derivation.

C.4 DISTRIBUTIONALLY AND ADVERSARIALLY ROBUST REGULARIZED MODEL

Remark 1 (Regularization). Our discussions on robustness extend to include regularization:

(i) The problems ERM, Adv, DRO, and AdvDRO are analogously extended to their regularized variants. We add
λr · ∥β∥r to the objective functions where r ∈ {1, 2} specifies the LASSO- or Ridge-regularizer, respectively,
and λr > 0 is the regularization penalty.

(ii) The problem AdvDRO reduces to a variant of Adv with an additional regularizer ε · ∥β∥q⋆ in the objective
when κ → ∞, but it is different in nature for κ < ∞ (Shafieezadeh-Abadeh et al., 2019, Remark 18).

(iii) If there are additional categorical features z in the training set, one can convert them via dummy encoding.
Alternatively, to get better results, one can treat them separately by adding the number of disagreeing categorical
variables to the feature-label metric (cf. Definition 1). Although the latter case brings exponentially many
constraints to AdvDRO, one can adopt the column-and-constraint algorithm of Selvi et al. (2022).

For the completeness of Remark 1 (i), we include the adversarially and distributionally robust regularized model next.
Adding the regularization term to AdvDRO gives us:

minimize
β, λ, s

λ · ε+ 1

N

∑
i∈[N ]

si + λr · ∥β∥r︸ ︷︷ ︸
regularization

subject to log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆︸ ︷︷ ︸
adv. rob.

)) ≤ si ∀i ∈ [N ]

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆︸ ︷︷ ︸
adv. rob.

))− λ · κ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ︸ ︷︷ ︸
distr. rob.

β ∈ Rn, λ ≥ 0, s ∈ RN .

As noted in the remark, despite the repetitive appearance of the norm of β, regularization and distributional robustness
do not reduce to each other as the last constraint is not necessarily tight unless κ → ∞. Moreover, adversarial robustness
similarly does not resemble either of them, since the norm is used to perturb the input of the logloss.
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C.5 PROOF OF LEMMA 4

We prove Lemma 4 by constructing the presented optimization problem. To this end, we first dualize the inner sup
problem of Synth for fixed β. By interchanging ξ = (x, y), we can write the inner problem as

maximize
Q,Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)Q(dξ)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ

Q ∈ P(Ξ), Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).

Here, the first three constraints specify that Q and PN have a Wasserstein distance of at most ε from each other, modeled
via their coupling Π. The latter three constraints similarly specify that Q and P̂N̂ are also at most ε̂ away from each
other, modeled via their coupling Π̂. The fact that Q is constrained to be in the intersection of two balls as specified
in (Synth) causes Π and Π̂ share the same marginal Q. We can now substitute the third constraint in the objective as
well as the last constraint to get:

maximize
Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) =

∫
ξ′∈Ξ

Π(dξ,dξ′) ∀ξ ∈ Ξ

Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).

Denoting by Qi(dξ) := Π(dξ | ξi) the conditional distribution of Π upon the realization of ξ′ = ξi and exploiting the
fact that PN is a discrete distribution supported on the N data points {ξi}i∈[N ], we can use the marginalized repre-
sentation Π(dξ,dξ′) = 1

N

∑N
i=1 δξi(dξ′)Qi(dξ). Similarly, we can introduce Q̂i(dξ) := Π̂(dξ | ξ̂i) for {ξ̂i}i∈[N̂ ] to
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exploit the marginalized representation Π̂(dξ,dξ′) = 1

N̂

∑N̂
j=1 δξ̂j (dξ

′)Q̂j(dξ). By using these representations, we
can use the following simplification for the objective function:∫

ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

δξi(dξ′)Qi(dξ) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ).

Applying similar reformulation in the constraints, we obtain:

maximize
Q,Q̂

1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ)

subject to
1

N

N∑
i=1

∫
ξ∈Ξ

d(ξ, ξi)Qi(dξ) ≤ ε

1

N̂

N̂∑
j=1

∫
ξ∈Ξ

d(ξ, ξ̂j)Q̂j(dξ) ≤ ε̂

1

N

N∑
i=1

Qi(dξ) =
1

N̂

N̂∑
j=1

Q̂j(dξ) ∀ξ ∈ Ξ

Qi ∈ P(Ξ), Q̂j ∈ P(Ξ) ∀i ∈ [N ], ∀j ∈ [N̂ ].

We now decompose each Qi into two sub-measures corresponding to y = ±1, so that Qi(d(x, y)) = Qi
+1(dx) if

y = +1 and Qi(d(x, y)) = Qi
−1(dx) if y = −1. We similarly divide each Q̂j into Q̂j

+1 and Q̂j
−1. Note that the sub

measures are not probability measures as they do not integrate to 1, but they are non-negative measures supported on Rn

(denoted ∈ P+(Rn)). We obtain:

maximize
Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

N∑
i=1

∫
x∈Rn

[d((x,+1), ξi)Qi
+1(dx) + d((x,−1), ξi)Qi

−1(dx)] ≤ ε

1

N̂

N̂∑
j=1

∫
x∈Rn

[d((x,+1), ξ̂j)Q̂j
+1(dx) + d((x,−1), ξ̂j)Q̂j

−1(dx)] ≤ ε̂∫
x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) =

1

N̂

N̂∑
j=1

Q̂j
+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) =

1

N̂

N̂∑
j=1

Q̂j
−1(dx) ∀x ∈ Rn

Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].
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We substitute the definition of the metric d(·, ·) in the first two constraints as well as use auxiliary measures A±1 ∈
P+(Rn) to break down the last two constraints.

maximize
A±1,Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

∫
x∈Rn

[
κ ·

∑
i∈[N ]:yi=−1

Qi
+1(dx) + κ ·

∑
i∈[N ]:yi=+1

Qi
−1(dx)+

N∑
i=1

∥x− xi∥q · [Qi
+1(dx) +Qi

−1(dx)]
]
≤ ε

1

N̂

∫
x∈Rn

[
κ ·

∑
j∈[N ]:ŷj=−1

Q̂j
+1(dx) + κ ·

∑
j∈[N ]:ŷj=+1

Q̂j
−1(dx)+

N̂∑
j=1

∥x− x̂j∥q · [Q̂j
+1(dx) + Q̂j

−1(dx)]
]
≤ ε̂∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) = A−1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
−1(dx) = A−1(dx) ∀x ∈ Rn

A±1 ∈ P+(Rn), Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].
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We derive the following semi-infinite dual problem (strong duality holds whenever ε, ε̂ > 0 Shapiro 2001)

minimize
λ,λ̂,s,ŝ,p±1,p̂±1

1

N

N · ε · λ+ N̂ · ε̂ · λ̂+

N∑
i=1

si +

N̂∑
j=1

ŝj


subject to κ · 1− yi

2
· λ+ ∥xi − x∥q · λ+ si +

p+1(x)

N
≥ ℓαβ(x,+1) ∀i ∈ [N ], ∀x ∈ Rn

κ · 1− ŷj

2
· λ̂+ ∥x̂j − x∥q · λ̂+ ŝj +

p̂+1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

κ · 1 + yi

2
· λ+ ∥xi − x∥q · λ+ si +

p−1(x)

N
≥ ℓαβ(x,−1) ∀i ∈ [N ], ∀x ∈ Rn

κ · 1 + ŷj

2
· λ̂+ ∥x̂j − x∥q · λ̂+ ŝj +

p̂−1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0

p−1(x) + p̂−1(x) ≤ 0

λ ∈ R+, λ̂ ∈ R+, s ∈ RN , ŝ ∈ RN̂

p±1 : Rn 7→ R, p̂±1 : Rn 7→ R.

To eliminate the variables p+1 and p̂+1, notice that their constraints
p+1(x) ≥ N

[
ℓαβ(x,+1)− si − λ · ∥xi − x∥q − κ · 1− yi

2
· λ
]

∀i ∈ [N ], ∀x ∈ Rn

p̂+1(x) ≥ N̂

[
−ŝj − λ̂ · ∥x̂j − x∥q − κ · 1− ŷj

2
· λ̂
]

∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0 ∀x ∈ Rn,

are the epigraph-based reformulation of the following constraint

ℓαβ(x,+1)− si − λ · ∥xi − x∥q − κ · 1− yi

2
· λ+

N̂

N

[
−ŝj − λ̂ · ∥x̂j − x∥q − κ · 1− ŷj

2
· λ̂
]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.

We can thus eliminate p+1 and p̂+1. We can similarly eliminate p−1 and p̂−1 since
p−1(x) ≥ N

[
ℓαβ(x,−1)− si − λ · ∥xi − x∥q − κ · 1 + yi

2
· λ
]

∀i ∈ [N ], ∀x ∈ Rn

p̂−1(x) ≥ N̂

[
−ŝj − λ̂ · ∥x̂j − x∥q − κ · 1 + ŷj

2
· λ̂
]

∀j ∈ [N̂ ], ∀x ∈ Rn

p−1(x) + p̂−1(x) ≤ 0 ∀x ∈ Rn

⇐⇒ ℓαβ(x,−1)− si − λ · ∥xi − x∥q − κ · 1 + yi

2
· λ+

N̂

N

[
−ŝj − λ̂ · ∥x̂j − x∥q − κ · 1 + ŷj

2
· λ̂
]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.
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This trick of eliminating p±1, p̂±1 is due to the auxiliary distributions A±1 that we introduced; without them, the dual
problem is substantially harder to work with. We therefore obtain the following dual problem

minimize
λ,λ̂,s,ŝ

1

N

N · ε · λ+ N̂ · ε̂ · λ̂+

N∑
i=1

si +

N̂∑
i=1

ŝi


subject to sup

x∈Rn

{ℓαβ(x,+1)− λ · ∥xi − x∥q −
N̂

N
· λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1− yi

2
· λ+

N̂

N
·
[
ŝj + κ · 1− ŷj

2
· λ̂
]

∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ · ∥xi − x∥q −
N̂

N
· λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1 + yi

2
· λ+

N̂

N
·
[
ŝj + κ · 1 + ŷj

2
· λ̂
]

∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+

where we replaced the ∀x ∈ Rn with the worst-case realizations by taking the suprema of the constraints over x. We
also added non-negativity on the definition of s and ŝ which is without loss of generality since this is implied by the
first two constraints, which is due to the fact that in the primal reformulation the “integrates to 1” constraints (whose
associated dual variables are s and ŝ) can be written as∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) ≤ 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) ≤ 1 ∀j ∈ [N̂ ]

due to the objective pressure. Relabeling
N̂

N
· λ̂ as λ̂ and

N̂

N
· ŝj as ŝj simplifies the problem to:

minimize
λ,λ̂,s,ŝ

ε · λ+ ε̂ · λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
i=1

ŝi

subject to sup
x∈Rn

{ℓαβ(x,+1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1− yi

2
· λ+ ŝj + κ · 1− ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1 + yi

2
· λ+ ŝj + κ · 1 + ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

and concludes the proof.
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C.6 PROOF OF LEMMA 5

We prove a more general case for any closed convex function L : R 7→ R+, vectors ω,a, â ∈ Rn, scalars λ, λ̂ > 0 and
a norm ∥·∥q . Consider the following DC maximization form:

sup
x∈Rn

{L(ω⊤x)− λ · ∥a− x∥q − λ̂ · ∥â− x∥q}.

If we denote by fω(x) = ω⊤x, and by g the convex function g(x) = g1(x) + g2(x) where g1(x) := λ · ∥a−x∥q and
g2(x) := λ̂ · ∥â− x∥q then we can reformulate the sup problem as

sup
x∈Rn

L(ω⊤x)− g(x) = sup
x∈Rn

(L ◦ fω)(x)− g(x) = sup
z∈Rn

g∗(z)− (L ◦ fω)∗(z),

where the first identity follows from the definition of composition and the second identity employs Toland’s dual-
ity (Toland, 1978) to rewrite difference of convex functions optimization.

By using infimal convolutions (Rockafellar, 1997, Theorem 16.4), we can derive g∗:

g∗(z) = inf
z1,z2

{g∗1(z1) + g∗2(z2) : z1 + z2 = z}

= inf
z1,z2

{z⊤
1 a+ z⊤

2 â : z1 + z2 = z, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂},

where the second step uses the definitions of g∗1(z1) and g∗2(z2). Moreover, inspired from (Shafieezadeh-Abadeh et al.,
2019, Lemma 47), we show

(L ◦ fω)∗(z) = sup
x∈Rn

z⊤x− L(ω⊤x)

= sup
t∈R, x∈Rn

{z⊤x− L(t) : t = ω⊤x}

= inf
θ∈R

sup
t∈R, x∈Rn

z⊤x− L(t)− θ · (ω⊤x− t)

= inf
θ∈R

sup
t∈R

sup
x∈Rn

(z − θ · ω)⊤x− L(t) + θ · t

= inf
θ∈R

sup
t∈R

−L(t) + θ · t if θ · ω = z

+∞ otherwise.

= inf
θ∈R

L∗(θ) if θ · ω = z

+∞ otherwise.

= inf
θ∈dom(L∗)

{L∗(θ) : θ · ω = z},

where the first identity follows from the definition of the convex conjugate, the second identity introduces an additional
variable to make this an equality-constrained optimization problem, the third identity takes the Lagrange dual (which is
a strong dual since the problem maximizes a concave objective with a single equality constraint), the fourth identity
rearranges the expressions, the fifth identity reminds that x is unbounded unless its coefficients are zero, the sixth
identity uses the definition of convex conjugates and the final identity uses replaces the feasible set θ ∈ R with the
domain of L⋆ without loss of generality as this is an inf problem.

Replacing the conjugates allows us to conclude that the maximization problem equals

sup
z∈Rn

g∗(z) + sup
θ∈dom(L∗)

{−L∗(θ) : θ · ω = z}
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= sup
z∈Rn, θ∈dom(L∗)

{g∗(z)− L∗(θ) : θ · ω = z}

= sup
θ∈dom(L∗)

g∗(θ · ω)− L∗(θ)

= sup
θ∈dom(L∗)

− L∗(θ) + inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = θ · ω, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = ω, |θ| · ∥z1∥q⋆ ≤ λ, |θ| · ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}

Here, the first identity follows by writing the problem as a single maximization problem, the second identity follows
by a variable change, the third identity follows from the definition of the conjugate g∗, the fourth identity is due to
relabeling z1 = θ · z1 and z2 = θ · z2, and the fifth identity is due to substituting the equality constraint.

Since Lemma 4 has this sup problem on the left-hand side of an inequality constraint, we can replace sup θ inf z with
∀θ, ∃z, which concludes this proof.

C.7 PROOF OF COROLLARY 2

By using Lemma 4 we expressed constraint (2) as

∀θ ∈ dom(Lα∗), ∃z ∈ Rn :


−Lα∗(θ) + θ · ω⊤a+ θ · z⊤(â− a) ≤ t(λ, λ̂, s, ŝ)

|θ| · ∥ω − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

By changing the order of ∀ and ∃, we have

∃z ∈ Rn, ∀θ ∈ dom(Lα∗) :


−Lα∗(θ) + θ · ω⊤a+ θ · z⊤(â− a) ≤ t(λ, λ̂, s, ŝ)

|θ| · ∥ω − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

Notice that this is a safe approximation, since any fixed z satisfying the latter system is a feasible static solution in the
former system, meaning that for every realization of θ in the first system, the inner ∃z can always ‘play’ the same z that
is feasible in the latter system (hence the latter is named the static relaxation Bertsimas et al. 2015).

The relaxation can equivalently be written as

∃z ∈ Rn :


supθ∈dom(Lα∗){−Lα∗(θ) + θ · ω⊤a+ θ · z⊤(â− a)} ≤ t(λ, λ̂, s, ŝ)

supθ∈dom(Lα∗){|θ|} · ∥ω − z∥q⋆ ≤ λ

supθ∈dom(Lα∗){|θ|} · ∥z∥q⋆ ≤ λ̂.

Since Lα∗ is a closed convex function, we have supθ∈dom(Lα∗){|θ|} = Lip(Lα) as well as Lα∗∗ = Lα, hence this
system can be written as

∃z ∈ Rn :


Lα(ω⊤a+ z⊤(â− a)) ≤ t(λ, λ̂, s, ŝ)

Lip(Lα) · ∥ω − z∥q⋆ ≤ λ

Lip(Lα) · ∥z∥q⋆ ≤ λ̂

and keeping z as a new variable concludes the proof.
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C.8 PROOF OF THEOREM 1

Lemma 4, which dualizes the nature’s sup problem of Synth, allows us to represent Synth as:

minimize
β,λ,λ̂,s,ŝ

ε · λ+ ε̂ · λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
i=1

ŝi

subject to sup
x∈Rn

{ℓαβ(x,+1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1− yi

2
· λ+ ŝj + κ · 1− ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ · ∥xi − x∥q − λ̂ · ∥x̂j − x∥q} ≤

si + κ · 1 + yi

2
· λ+ ŝj + κ · 1 + ŷj

2
· λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Using Lemma 5 to reformulate each of the constraints with the adjustable robust optimization reformulation, and then
employing the relaxation presented in Corollary 2 concludes the proof.

C.9 FURTHER RELAXATION TECHNIQUES

From proof of Lemma 5 we can see that the left-hand side of the DC maximization constraint can be written as

sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}.

If q ∈ {1,∞}, then the inf-problem is a linear optimization problem (LP), hence we can use LP duality to eliminate the
inner problem. Similarly, if q = 2, we can rewrite the inner problem exactly as a semidefinite problem (SDP) since it is
linear optimization over two quadratic constrains (Wang & Kilinc-Karzan, 2020) and take its semidefinite (strong) dual
problem. After we replace the inner inf problem, we can write the constraint with a single sup problem, where the main
nonconvexity will be due to −L⋆(θ). This, however, can be dealt with in the ‘convex uncertainty’ literature by lifting
−L⋆(θ) to the uncertainty set and using adjustable robust optimization techniques (e.g., use linear decision rules to relax
the problem to a convex optimization problem). See (Roos et al., 2018) for more details.

Alternatively, instead of solving Synth that first intersects the Wasserstein balls and optimizes over the intersection, we
can take a mixture between the empirical and synthetic datasets, and build a Wasserstein ball around this distribution.
Although this problem will not have the desired finite-sample unlike Synth, it is a special case of AdvDRO, hence admits
a tractable exact reformulation.

C.10 PROOF OF LEMMA 2

Notice that in problem ProxSynth, the term ε̂ appears in the objective as ε̂ · λ̂. Hence, as ε̂ → ∞, optimal solutions
satisfy λ̂ = 0. Thus, the constraints ∥z−

ij∥q⋆ ≤ λ̂ and ∥z+
ij∥q⋆ ≤ λ̂ specify z+

ij = z−
ij = 0 for all i ∈ [N ], j ∈ [N̂ ]. The
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problem, therefore, can be written as

minimize
β,λ,s,ŝ

ε · λ+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

subject to Lα(β⊤xi) ≤ si + κ · 1− yi

2
· λ+ ŝj ∀i ∈ [N ], ∀j ∈ [N̂ ]

Lα(−β⊤xi) ≤ si + κ · 1 + yi

2
· λ+ ŝj ∀i ∈ [N ], ∀j ∈ [N̂ ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ∈ Rn.

Notice that optimal solutions should satisfy ŝj = ŝj′ for all j, j′ ∈ [N ]. To see this, assume for contradiction that
∃j, j′ ∈ [N ] such that ŝj < ŝj′ . If any constraint indexed with j is feasible, it means the same constraint indexed with j′

cannot be tight given that these constraints are identical except for the ŝj or ŝj′ appearing on the right hand side. Hence,
such a solution cannot be optimal as this is a minimization problem, and updating ŝj′ as ŝj preserves the feasibility of
the problem while decreasing the objective value. We can thus use a single variable τ ∈ R+ and rewrite the problem as

minimize
β,λ,s,ŝ

ε · λ+
1

N

N∑
i=1

(si + τ)

subject to Lα(β⊤xi) ≤ si + κ · 1− yi

2
· λ+ τ ∀i ∈ [N ]

Lα(−β⊤xi) ≤ si + κ · 1 + yi

2
· λ+ τ ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , τ ∈ R+.

Since si and τ both appear as si + τ in this problem, we can use a variable change where we relabel si + τ as si.
Moreover, we can substitute the definition of Lα and obtain:

minimize
β,λ,s

ε · λ+
1

N

N∑
i=1

si

subject to log(1 + exp(−β⊤xi + α · ∥β∥p⋆)) ≤ si + κ · 1− yi

2
· λ ∀i ∈ [N ]

log(1 + exp(β⊤xi + α · ∥β∥p⋆)) ≤ si + κ · 1 + yi

2
· λ ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ .

For any i ∈ [N ] if yi = 1, the first two constraints can be written as log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si.
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On the other hand, if yi = −1, the first two constraints reduce to the exactly same system with the reverse order. Hence,
the above problem can be represented as

minimize
β,λ,s

ε · λ+
1

N

N∑
i=1

si

subject to log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si ∀i ∈ [N ]

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ ,

which is identical to the reformulation of AdvDRO presented in Corollary 1.

Note that, although this proof used ε̂ → ∞, in an extended version we will provide a proof that works for any ε̂ as long
as Bε(PN ) ∩Bε̂(P̂N̂ ) = Bε(PN ).

C.11 PROOF OF PROPOSITION 1

By standard linearity arguments and from the definition of Qmix (which will simply be denoted by Q in this proof), we
have

EQ

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]

⇐⇒
∫
(x,y)∈Rn×{−1,+1}

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}dQ((x, y))

⇐⇒ N

N + w · N̂
·
∫
(x,y)∈Rn×{−1,+1}

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)} dPN ((x, y))+

w · N̂
N + w · N̂

·
∫
(x,y)∈Rn×{−1,+1}

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}dP̂N̂ ((x, y))

⇐⇒ N

N + w · N̂
· 1

N

∑
i∈[N ]

sup
zi:∥zi∥p≤α

{ℓβ(xi + zi, yi)}+ w · N̂
N + w · N̂

· 1

N̂

∑
j∈[N̂ ]

sup
zj :∥zj∥p≤α

{ℓβ(x̂j + zj , ŷj)}

⇐⇒ 1

N + w · N̂

∑
i∈[N ]

sup
zi:∥zi∥p≤α

{ℓβ(xi + zi, yi)}+ w ·
∑
j∈[N̂ ]

sup
zj :∥zj∥p≤α

{ℓβ(x̂j + zj , ŷj)}

 ,

which coincides with the objective function of (1). The proof of Lemma 1 shows

EQ

[
sup

z:∥z∥p≤α

{ℓβ(x+ z, y)}

]
= EQ[ℓ

α
β(x, y)]

which concludes the proof.

C.12 PROOF OF LEMMA 3

We first prove auxiliary results on mixture distributions. To this end, denote by C(Q,P) ⊆ P(Ξ×Ξ) the set of couplings
of the distributions Q ∈ P(Ξ) and P ∈ P(Ξ).

Observation 1. Let Q,P1,P2 ∈ P(Ξ) be probability distributions. If Π1 ∈ C(Q,P1) and Π2 ∈ C(Q,P2), then,
λ ·Π1 + (1− λ) ·Π2 ∈ C(Q, λ · P1 + (1− λ) · P2) for all λ ∈ (0, 1).
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Proof. Let Π = λ ·Π1 + (1− λ) ·Π2 and P = λ ·P1 +(1− λ) ·P2. To have Π ∈ C(Q,P) we need Π(dξ,Ξ) = Q(dξ)

and Π(Ξ,dξ′) = P(dξ′). To this end, observe that

Π(dξ,Ξ) = λ ·Π1(dξ,Ξ) + (1− λ) ·Π2(dξ,Ξ)

= λ ·Q+ (1− λ) ·Q = Q

where the second identity uses the fact that Π1 ∈ C(Q,P1). Similarly, we can show:

Π(Ξ,dξ) = λ ·Π1(Ξ,dξ) + (1− λ) ·Π2(Ξ,dξ)

= λ · P1 + (1− λ) · P2 = P,

which concludes the proof.

As a corollary of this observation, we can prove the following result.

Corollary 3. Let Q,P1,P2 ∈ P(Ξ) and P = λ · P1 + (1− λ) · P2 for some λ ∈ (0, 1). We have:

W(Q,P) ≤ λ ·W(Q,P1) + (1− λ) ·W(Q,P2).

Proof. The Wasserstein distance between Q,Q′ ∈ P(Ξ) can be written as:

W(Q,Q′) = min
Π∈C(Q,Q′)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
,

and since d is a feature-label metric (cf. Definition 1) the minimum is well-defined (Villani et al., 2009, Theorem 4.1).
We name the optimal solutions to the above problem the optimal couplings. Let Π1 be an optimal coupling of W(Q,P1)

and let Π2 be an optimal coupling of W(Q,P2) and define Πc = λ ·Π1 + (1− λ) ·Π2. We have

W(Q,P) = min
Π∈C(Q,P)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
≤
∫
Ξ×Ξ

d(ξ, ξ′)Πc(dξ,dξ′)

= λ ·
∫
Ξ×Ξ

d(ξ, ξ′)Π1(dξ,dξ′) + (1− λ) ·
∫
Ξ×Ξ

d(ξ, ξ′)Π2(dξ,dξ′)

= λ ·W(Q,P1) + (1− λ) ·W(Q,P2),

where the first identity uses the definition of the Wasserstein metric, the inequality is due to Observation 1 as Πc is
a feasible coupling (not necessarily optimal), the equality that follows uses the definition of Πc and the linearity of
integrals, and the final identity uses the fact that Π1 and Π2 were constructed to be the optimal couplings.

We now prove the lemma (we refer to Qmix in the statement of this lemma simply as Q). To prove Q ∈ Bε(PN ) ∩
Bε̂(P̂N̂ ), it is sufficient to show that W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ jointly hold. By using Corollary 3, we can
derive the following inequalities:

W(PN ,Q) ≤ λ ·W(PN ,PN )︸ ︷︷ ︸
=0

+(1− λ) ·W(PN , P̂N̂ )

W(P̂N̂ ,Q) ≤ λ ·W(PN , P̂N̂ ) + (1− λ) ·W(P̂N̂ , P̂N̂ )︸ ︷︷ ︸
=0

.
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Therefore, sufficient conditions on W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ would be: (1− λ) ·W(PN , P̂N̂ ) ≤ ε

λ ·W(PN , P̂N̂ ) ≤ ε̂.

Moreover, given that ε+ ε̂ ≥ W(PN , P̂N̂ ), the sufficient conditions further simplify to (1− λ) · ε̂ ≤ λ · ε

λ · ε ≤ (1− λ) · ε̂.
⇐⇒ λ · ε = (1− λ) · ε̂,

which is implied when
λ

1− λ
=

ε̂

ε
, concluding the proof.

C.13 DIFFERENT LOSS FUNCTIONS

Notice that although we used the logloss function in our explicit representations, we kept our analyses as general as
possible. The theory can be revised to several different loss functions, with the following notes:

• The original loss function should admit a closed-form convex adversarial loss representation in order to eliminate
the adversary’s problem (cf., Lemma 1). This holds for the Hinge loss function, for example (Bertsimas et al.,
2019).

• The adversarial loss function should be closed, convex, and Lipschitz continuous with known Lipschitz
constant (cf. Corollary 2.

• We use exponential cone optimization to solve the underlying optimization problems, as the logloss constraints
are exponential cone representable. New algorithms/solvers should be used for different loss functions (e.g.,
second-order conic optimization for smooth SVM constraints Hsu et al. 2003).

D STATISTICAL PROPERTIES

D.1 PROPERTIES OF ADVDRO

We review the existing literature to characterize Bε(PN ), in a similar fashion with the results presented in (Selvi et al.,
2022, Appendix A) for the logistic loss, by revising them to the adversarial loss whenever necessary. The N -fold product
distribution of P0 from which the training set PN is constructed is denoted below by [P0]N .

Theorem 2. Assume there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A for a norm ∥·∥ on Rn. Then, there
are constants c1, c2 > 0 that only depends on P0 through a, A, and n, such that [P0]N (P0 ∈ Bε(PN )) ≥ 1− η holds
for any confidence level η ∈ (0, 1) as long as the Wasserstein ball radius satisfies the following optimal characterization

ε ≥


(
log(c1/η)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η)

c2(
log(c1/η)

c2 ·N

)1/a

otherwise.

Proof. The statement follows from Theorem 18 of (Kuhn et al., 2019b). The presented decay rate O(N−1/n) of ε as N
increases is optimal (Fournier & Guillin, 2015).

Now that we gave a confidence for the radius ε of Bε(PN ), we analyze the underlying optimization problems. In
this subsection, we start our analysis with AdvDRO, which is a distributionally robust optimization problem over a
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Wasserstein ambiguity set built around PN to optimize the worst-case expected adversarial loss. Most of the theory is
well-established for logistic loss function, and in the following we show that similar results follow for the adversarial loss
function. For convenience, we state AdvDRO again by using the adversarial loss function as in the proof of Lemma 1:

minimize
β

sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)]

subject to β ∈ Rn.
(AdvDRO)

Theorem 3. If the assumptions of Theorem 2 are satisfied and ε is chosen accordingly as in the statement of Theorem 2,
then

[P0]N

(
EP0 [ℓαβ⋆(x, y)] ≤ sup

Q∈Bε(PN )

EQ[ℓ
α
β⋆(x, y)]

)
≥ 1− η

holds for all η ∈ (0, 1) and all optimizers β⋆ of AdvDRO.

Proof. The statement follows from Theorem 19 of (Kuhn et al., 2019b) given that ℓαβ is a finite-valued continuous loss
function.

Theorem 3 states that the optimal value of AdvDRO overestimates the true loss with arbitrarily high confidence 1− η.
Despite the desired overestimation of the true loss, we show that AdvDRO is still asymptotically consistent if we restrict
the set of admissible β to a bounded set2.

Theorem 4. If we restrict the hypotheses β to a bounded set H ⊆ Rn, and parameterize ε as εN to show its dependency
to the sample size, then, under the assumptions of Theorem 2, we have

sup
Q∈Bε(PN )

EQ[ℓ
α
β⋆(x, y)] −→

N→∞
EP0 [ℓαβ⋆(x, y)] P0-almost surely,

whenever εN is set as specified in Theorem 2 along with its finite-sample confidence ηN , and they satisfy
∑

N∈N ηN < ∞
and limN→∞ εN = 0.

Proof. If we show that there exists ξ0 ∈ Ξ and C > 0 such that ℓαβ(x, y) ≤ C(1 + d(ξ, ξ0)) holds for all β ∈ H and
ξ ∈ Ξ (that is, the adversarial loss satisfies a growth condition), the statement will follow immediately from Theorem 20
of (Kuhn et al., 2019b).

To see that the growth condition is satisfied, we first substitute the definition of ℓαβ and d explicitly, and note that we
would like to show there exists ξ0 ∈ Ξ and C > 0 such that

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ C(1 + ∥x− x0∥q + κ · 1[y ̸= y0])

holds for all β ∈ H and ξ ∈ Ξ. We take ξ0 = (0, y0) and show that the right-hand side of the inequality can be lower
bounded as:

C(1 + ∥x− x0∥q + κ · 1[y ̸= y0]) = C(1 + ∥x∥q + κ · 1[y ̸= y0])

≥ C(1 + ∥x∥q).

Moreover, the left-hand side of the inequality can be upper bounded for any β ∈ H ⊆ [−M,M ]n (for some M > 0)
and ξ = (x, y) ∈ Ξ as:

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ log(1 + exp(|β⊤x|+ α · ∥β∥p⋆))

2Note that, this is without loss of generality given that we can normalize the decision boundary of linear classifiers.
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≤ log(2 · exp(|β⊤x|+ α · ∥β∥p⋆))

= log(2) + |β⊤x|+ α · ∥β∥p⋆

≤ log(2) + sup
β∈[−M,M ]n

{|β⊤x|}+ α · sup
β∈[−M,M ]n

{∥β∥p⋆}

= log(2) +M · ∥x∥1 +M · α

≤ log(2) +M · n(q−1)/q · ∥x∥1 +M · α

where the final inequality uses Hölder’s inequality to bound the 1-norm with the q-norm. Thus, it suffices to show that
we have

log(2) +M · n(q−1)/q · ∥x∥1 +M · α ≤ C(1 + ∥x∥q) ∀ξ ∈ Ξ,

which is satisfied for any C ≥ max{log(2) +M · α, M · n(q−1)/q}. This completes the proof by showing the growth
condition is satisfied.

So far, we reviewed tight characterizations for ε so that the ball Bε(PN ) includes the true distribution P0 with arbitrarily
high confidence, proved that the DRO problem AdvDRO overestimates the true loss, while converging to the true
problem asymptotically as the confidence 1− η increases and the radius ε decreases simultaneously. Finally, we discuss
that for optimal solutions β⋆ to AdvDRO, there are worst case distributions Q⋆ ∈ Bε(PN ) of nature’s problem that are
supported on at most N + 1 atoms.

Theorem 5. If we restrict the hypotheses β to a bounded set H ⊆ Rn, then there are distributions Q⋆ ∈ Bε(PN ) that
are supported on at most N + 1 atoms and satisfy:

EQ⋆ [ℓαβ(x, y)] = sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)].

Proof. The proof follows from (Yue et al., 2022).

See the proof of (Selvi et al., 2022, Theorem 8) and the discussion that follows for insights and further analysis on this
result.

D.2 PROPERTIES OF SYNTH

The previous subsection derived statistical properties of AdvDRO to tune ε. This problem can be interpreted as Synth
with ε̂ = ∞. Keeping in mind that not learning from the synthetic data is always a feasible solution (cf. Lemma 2), we
next analyze how to tune ε̂ for cases where synthetic data is useful.

Firstly, since P̂N̂ is constructed of i.i.d. samples of P̂, we can overestimate the first distance ε̂1 = W(P̂N̂ , P̂) analogously
by applying Theorem 2, mutatis mutandis. This leads us to the following result where the joint (independent) N -fold
product distribution of P0 and the N̂ -fold product distribution of P̂ is denoted below by [P0 × P̂]N×N̂ .

Theorem 6. Assume that there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A, and there exist â > 1

and Â > 0 such that EP̂[exp(∥ξ∥
â)] ≤ Â for a norm ∥·∥ on Rn. Then, there are constants c1, c2 > 0 that only

depends on P0 through a, A, and n, and constants ĉ1, ĉ2 > 0 that only depends on P̂ through â, Â, and n such that
[P0 × P̂]N×N̂ (P0 ∈ Bε(PN ) ∩Bε̂(P̂N̂ )) ≥ 1− η holds for any confidence level η ∈ (0, 1) as long as the Wasserstein
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ball radii satisfy the following characterization

ε ≥


(
log(c1/η1)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η1)

c2(
log(c1/η1)

c2 ·N

)1/a

otherwise

ε̂ ≥ W(P0, P̂) +


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise

for some η1, η2 > 0 satisfying η1 + η2 = η.

Proof. It immediately follows from Theorem 2 that [P0]N (P0 ∈ Bε(PN )) ≥ 1− η1 holds. Moreover, if we take ε̂1 > 0

as

ε̂1 ≥


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise

then, we similarly have [P̂]N̂ (P̂ ∈ Bε̂1(P̂N̂ )) ≥ 1 − η2. Since the following implication follows from the triangle
inequality:

P̂ ∈ Bε̂1(P̂N̂ ) =⇒ P0 ∈ Bε̂1+W(P0,P̂)(P̂N̂ ),

we have that [P̂]N̂ (P0 ∈ Bε(P̂N̂ )) ≥ 1 − η2. These results, along with the facts that P̂N̂ and PN are independently
sampled from their true distributions, imply:

[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN ) ∨ P0 ̸∈ Bε̂(P̂N̂ ))

≤[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN )) + [P0 × P̂]N×N̂ (P0 ̸∈ Bε̂(P̂N̂ ))

=[P0]N (P0 ̸∈ Bε(PN )) + [P̂]N̂ (P0 ̸∈ Bε̂(P̂N̂ )) < η1 + η2

implying the desired result [P0 × P̂]N×N̂ (P0 ∈ Bε(PN ) ∩Bε̂(P̂N̂ )) ≥ 1− η.

One can also show that, under the assumptions of Theorem 6, Synth overestimates the true loss analogously as Theorem 3.
However, Synth does not satisfy any asymptotic consistencies, given that N̂ → ∞ will let ε̂1 → 0, but ε̂2 is always a
constant that arises from the distance between the true distribution P0 and the synthetic distribution P̂. Hence, Synth
cannot be useful in asymptotic data regimes, which is expected given that the motivation of this problem is to reduce the
conservatism of AdvDRO that is intended to prevent overfitting in non-asymptotic settings. See also (Taskesen et al.,
2021) for a relevant discussion.

In the above results, we assumed that ε̂2 = W(P0, P̂) is known. However, as discussed in the main paper, this is not
possible in most real-life settings. We can either cross-validate this parameter (as in the transfer learning and domain
adaptation literature Zhong et al. 2010) or use domain knowledge in some special settings. This is for example the
case when P̂ corresponds to a synthetic data generator trained on the population P0 which is guaranteed to reach within
ε̂2 distance from P0 (e.g. Wasserstein GAN Arjovsky et al. (2017)). Note that in this setting P0 represents overall
population that is available for the training of synthetic data generator, however only a sample from it PN is available
for training of the ML model for a downstream task together with a corresponding synthetic sample P̂N̂ from P. At
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Algorithm 1 Construction of artificial data.

Sample the components of β i.i.d. from a standard normal distribution, normalize for ∥β∥2 = 1
for i ∈ {1, . . . , N} do

Find the true probability of yi = +1 assuming β defines the true logistic classifier:

pi =
[
1 + exp(−β⊤x)

]−1
.

If pi ≥ U(0, 1), then yi = +1. Otherwise, yi = −1.
end for
The artificial dataset is the collection of all (xi, yi), i ∈ [N ], constructed above

first sight, it seems somewhat unrealistic to assume that the overall population is available for training of a synthetic
data generator but not for training of a downstream ML model, however, this is a plausible setup in highly regulated
industries (e.g. healthcare, finance) where data usage is guarded with a strict set of rules and subject to explicit consent
provided by users/costumers.

Data sharing in a financial institution Data usage in highly regulated industries (e.g. finance, healthcare) requires
adherence to a broad set of regulations (FCRA, GDPR, HIPPA etc.). These often restrict the usage of customer data
for the specific purpose. Appropriately curated synthetic data is a potential way to utilize real datasets in a legally
complaint manner, e.g. without compromising privacy inherent to the raw costumer data. Our setting is motivated by
real-world applications where only a portion of available real data can be used for building a particular ML model (e.g.
due to explicit costumer consent), together with a synthetic data from a privacy preserving synthetic generator trained on
the entire dataset. The subtle point here is that although a costumer did not explicitly express consent for a particular
purpose, in some settings it might be possible to use its data for training a generator with privacy guarantees.

E FURTHER DETAILS FOR NUMERICAL EXPERIMENTS

All experiments are conducted in Julia (Bezanson et al.) (MIT license) and executed on Intel Xeon 2.66GHz processors
with 8GB memory in single-core mode. We use MOSEK 10.1 (MOSEK ApS, 2023a) to solve all exponential conic
programs through JuMP (Dunning et al., 2017).

We sample instances by Algorithm 1, where U(0, 1) denotes sampling from a continuous (0, 1)-uniform distribution.
Since the true β remains unchanged for the sampled instances, this approach corresponds to i.i.d. sampling from a true
distribution. On the other hand, to obtain synthetic data, we perturb the probabilities pi with standard random normal
noise; this changes the true distribution while still sampling i.i.d. from it.
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