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Abstract. Unsupervised domain adaptation (UDA) is essential for med-
ical image segmentation, especially in cross-modality data scenarios. UDA
aims to transfer knowledge from a labeled source domain to an unlabeled
target domain, thereby reducing the dependency on extensive manual an-
notations. This paper presents DRL-STNet, a novel framework for cross-
modality medical image segmentation that leverages generative adversar-
ial networks (GANs), disentangled representation learning (DRL), and
self-training (ST). Our method leverages DRL within a GAN to translate
images from the source to the target modality. Then, the segmentation
model is initially trained with these translated images and correspond-
ing source labels and then fine-tuned iteratively using a combination of
synthetic and real images with pseudo-labels and real labels. The pro-
posed framework exhibits superior performance in abdominal organ seg-
mentation on the FLARE challenge dataset, surpassing state-of-the-art
methods by 11.4% in the Dice similarity coefficient and by 13.1% in the
Normalized Surface Dice metric, achieving scores of 74.21% and 80.69%,
respectively. The average running time is 41 seconds, and the area un-
der the GPU memory-time curve is 11,292 MB. These results indicate
the potential of DRL-STNet for enhancing cross-modality medical image
segmentation tasks.

Keywords: Unsupervised domain adaptation · Organ segmentation· Cross-
modality· Feature disentanglement· Self-training

1 Introduction

In the realm of medical imaging, accurate segmentation of anatomical structures
is crucial for diagnostics, treatment planning, and patient monitoring [21,20,22].
However, acquiring annotated data for every imaging modality is both costly
and time-consuming. This challenge is exacerbated when multiple modalities
are involved, as it is impractical to obtain paired data for every patient due to
logistical constraints.
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Unsupervised domain adaptation (UDA) has emerged as a promising solution
to address this issue, which can efficiently adapt models between modalities with-
out the need for paired data [3,16,41,39,32,33]. Jiang et al. [16] and Yao et al. [41]
applied disentangled representation learning for abdominal organ segmentation.
However, the generalizability of their method to segment a wider range of ab-
dominal organs across multiple sources and sequences remains uncertain. Recent
studies have further improved the robustness and accuracy of these frameworks
through variational approximation and self-training techniques [39,32,19]. Ad-
ditionally, Shin et al. [33] incorporated transformers with GANs to learn intra-
and inter-slice self-attentive image translation for continuous segmentation in
the slice direction.

This paper presents DRL-STNet1, a novel framework for cross-modality med-
ical image segmentation that leverages generative adversarial networks (GANs)
[8], disentangled representation learning [1], and self-training [17]. It involves
two main steps as illustrated in Fig. 1: First, a source-to-target unpaired image
translation model is trained using a disentangled GAN. This model generates
synthetic images in the target modality while preserving the anatomical struc-
tures from the source modality. Second, a segmentation model is initially trained
using labeled synthetic images and iteratively fine-tuned using a combination of
synthetic and real images with pseudo-labels and real labels. DRL-STNet enables
precise segmentation in the target modality without requiring annotations for
target images or paired target-source domains. Our contributions are as follows:

– We introduce DRL-STNet, a novel unsupervised domain adaptation frame-
work for cross-modality medical image segmentation.

– Disentangled representation learning effectively translates images between
modalities while preserving anatomical structures without requiring paired
data.

– Self-training via pseudo-labeling facilitates iterative improvements by incor-
porating unlabeled data into the segmentation process.

– We provide a comprehensive evaluation of DRL-STNet, demonstrating its ro-
bustness and accuracy across various abdominal organs, imaging sequences,
and institutions, thereby highlighting its potential for clinical applications.
It surpasses state-of-the-art methods on the FLARE challenge dataset, im-
proving the Dice similarity coefficient by 11.4% and Normalized Surface Dice
by 13.1%.

2 Method

In this study, annotations Y a for volume Xa from the source modality a (e.g.,
CT scans) are available, while annotations for the volume Xb from the target
modality b (e.g., MRI scans) are not available. The goal is to achieve precise
segmentation on the target volume, a common challenge in clinical applications

1 The code is available at https://github.com/HuiLin0220/DRL-STNet.git

https://github.com/HuiLin0220/DRL-STNet.git
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Fig. 1. Overview of the proposed DRL-STNet framework. The framework consists of
five stages: Stage 1-2: Perform image translation from source to target. Train an image
translation model based on disentangled representation learning to generate synthetic
target volumes from real source volumes. Stage 3-5: Perform self-training via pseudo-
labeling. Train the segmentation model using the synthetic target volumes and the
corresponding source labels. Predict pseudo-labels on unlabeled target volumes and
finetune the segmentation model with the combined data. Stages 4 and 5 are performed
iteratively. The detailed architecture of the image translation model is described in Fig.
2. Viewing this figure in color is advised in the printed edition.

where obtaining annotations can be time-consuming, costly, or logistically diffi-
cult. Additionally, acquiring multiple imaging modalities from the same patient
can be challenging due to logistical constraints. Even when possible, the process
can take place several days apart, and the data may not be aligned. These fac-
tors often result in unpaired datasets Xa and Xb. This study addresses these
issues by focusing on unsupervised domain adaptation (UDA) to improve cross-
modality segmentation accuracy. While this paper specifically addresses CT-to-
MRI translation, the methodology can be applied to other modality pairs, such
as PET-to-CT or ultrasound-to-MRI, depending on the specific clinical require-
ments and data availability.

As shown in Fig. 1, the proposed DRL-STNet framework addresses unsuper-
vised domain adaptation (UDA) for cross-modality segmentation through image
translation and segmentation. The framework includes a 2D image translation
network that converts slices from the source modality Xa to the target modal-
ity Xb. This allows us to synthesize an artificial target dataset (e.g., MRI) from
the source data (CT) with ground-truth segmentation labels, enabling the train-
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ing of a segmentation model that works in the MRI domain. While training a
segmentation model

In the following section, we detail the network architectures for image trans-
lation and image segmentation.

2.1 Image Translation

Jiang et al. [16] and Yao et al. [41] have shown that disentangled learning is highly
effective in style transfer, particularly for cross-modality medical imaging, while
maintaining anatomical content. Inspired by them, our image translation model
is composed of one shared content encoder EC , two style encoders Ea

S and Eb
S ,

one shared decoder G, and two image discriminators Da and Db, and one content
discriminator Dc, as depicted in Fig. 2.

All encoders and the decoder are based on ResNet [9], and all discrimina-
tors are based on LSGAN [30]. The image in each domain is disentangled into
the content and style representations [18], ca, sa, cb, and sb. Each representa-
tion is a feature map obtained from the content or style encoder with a size
of C ×H ×W (128 × 128 × 128 in the following experiments), where C,H,W ,
respectively, represents the channel number, height, and width. The decoder G
reconstructs images by combining the content and style representations, obtain-
ing four reconstructed images of the form xij = G(ci, sj), where i, j ∈ {a, b}.
Note that the same decoder G is used for all image modalities, enabling it to
learn a joint image representation. The discriminators Da, Db are designed to
distinguish at the image level, and Dc are designed for the content level. A to-
tal of seven models, {EC , E

a
S , E

b
S , G,Da, Db, Dc}, are jointly trained using the

reconstruction and adversarial losses. The details about the losses are described
in the following:

Reconstruction loss: Reconstruction losses at the image level are intro-
duced to ensure the content and style encoders capture the entire image repre-
sentation. The content representation ca (cb) should contain all content infor-
mation, and the style representation sa (sb) should contain all style information
in the modality a (b). Based on this, the network should restore the original xa

(xb) from ca (cb) and sa (sb), constrained by:

Lrec = Exa∈χa ∥xa −G(ca, sa)∥+ Exb∈χb

∥∥xb −G(cb, sb)
∥∥ .

Adversarial loss: Adversarial losses at the image and content levels are used
to maintain the image and feature alignment. In a generative adversarial network
(GAN), the generator is trained to synthesize images to fool the discriminator,
while the discriminator is trained to distinguish fake images from real ones. To
ensure the quality of transferred images xba (xab), Da (Db) is trained to maximize
La
adv (Lb

adv), while Ea
S , EC , G (Eb

S , EC , G) are trained to minimize La
adv (Lb

adv).
Additionally, Dc is introduced to align content representation Lc

adv.
The adversarial losses are defined as:

Li
adv = Exi∈χi [log(Di(x

i))] + Ecj∈Cj ,si∈Si [log(1−Di(G(cj , si)))]
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Fig. 2. The proposed image translation model using representation disentanglement.
The model is composed of one shared content encoder Ec, two style encoders Ea

s and
Eb

s , and one shared decoder G. The image in each domain is disentangled into the
content and style representations. The source image (xa) can be transferred into the
target style (b) by combining ca and sb.

for i, j ∈ {a, b} and i ̸= j,

Lc
adv = Ecb∈Cb [log(Dc(c

b))] + Eca∈Ca [log(1−Dc(c
a))].

The total adversarial loss is decomposed of the individual adversarial losses:

Ladv = La
adv + Lb

adv + Lc
adv.

Finally, the overall loss function follows the conventional min-max optimization
known from GAN literature. To be minimized for the encoders and generator
and maximized for the discriminators is:

min
(Ea

S ,Eb
S ,EC ,G)

max
(Da,Db,Dc)

L(Ea
S , E

b
S , EC , G,Da, Db, Dc) = Ladv + Lrec.

2.2 Self-Training via Pseudo-Labeling

In Stage 2, given a volume and its corresponding annotation (Xa, Y a) from
the source domain, a slice xb from a volume in the target domain is randomly
selected for the style representation. The Xab is generated through the 2D image
translation model mentioned in Section 2.1 slice by slice. In Stage 3, the synthetic
pairs {Xab,Y } are used to train a segmentation network f that minimizes the
segmentation loss:

L =
∑

Lseg(Y
a, f(Xab))
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Then in Stage 4, the pseudo label Ŷ b of an unlabeled target scan Xb is
obtained by the trained segmentation model:

Ŷ b = f(Xb)

Synthetic target scans may have distribution gaps compared to real target
scans but come with precise annotations. In contrast, real target scans are paired
with incomplete pseudo labels. Literature [33] shows that integrating labeled
synthetic source scans (Xab, Y a) and pseudo-labeled real target scans (Xb, Ŷ b)
enhances the generalization ability. Therefore, these are combined in Stage 5 to
fine-tune the previously trained segmentation model f to minimize:

L =
∑

Lseg(Y
a, f(Xab)) +

∑
Lseg(Ŷ b, f(Xb))

A 3D self-configured nnU-Net [13] was utilized in this work for medical image
segmentation to better capture the correlations among slices within a single scan.
we do not optimize the segmentation efficiency.

2.3 Network Architecture

Image Translation Network. Our image translation module adopts an encoder-
decoder architecture based on ResNet blocks, following the design principles of
cycle-consistent adversarial networks. The architecture consists of:

– Encoder: Composed of several convolutional layers with residual connec-
tions, following the standard ResNet [9] structure. It progressively down-
samples the input image while preserving spatial features through residual
pathways.

– Decoder: Mirrors the encoder with upsampling operations (e.g., transposed
convolutions or nearest-neighbor upsampling followed by convolution) and
optional skip connections. It reconstructs the translated image from the en-
coded latent features.

– Discriminator: All discriminators are implemented based on LSGAN (Least
Squares GAN) [30], which stabilizes adversarial training by minimizing the
Pearson χ2 divergence. The discriminator consists of a sequence of convolu-
tional layers with LeakyReLU activations and outputs patch-wise predictions
(PatchGAN).

Segmentation Network. For medical image segmentation, we utilize a 3D
self-configuring nnU-Net [13], which automatically adapts its architecture
and training pipeline to the specific characteristics of the dataset. Built upon
the classic U-Net structure with an encoder-decoder design and long-range skip
connections that fuse multi-scale contextual information. The network employs
instance normalization and residual connections to improve training stability and
segmentation performance. A combination of Dice loss and cross-entropy loss is
used to optimize segmentation performance. This architecture enables effective
modeling of 3D spatial context and robust generalization across varying image
resolutions and anatomical structures.
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3 Experiments

3.1 Dataset

The training dataset is curated from more than 30 medical centers under the
license permission, including TCIA [4], LiTS [2], MSD [34], KiTS [10,11], au-
toPET [7,6], AMOS [15], LLD-MMRI [23], TotalSegmentator [37], and AbdomenCT-
1K [29], and past FLARE Challenges [26,27,28]. The training set includes 2050
abdomen CT scans and over 4000 MRI scans. The validation and testing sets in-
clude 110 and 300 MRI scans, respectively, which cover various MRI sequences,
such as T1, T2, DWI, and so on. The organ annotation process used ITK-
SNAP [42], nnU-Net [14], MedSAM [24], and Slicer Plugins [5,25].

The pseudo labels generated by the FLARE22 algorithms [12,36] were utilized
in this study. Due to variability in imaging orientations among MRI scans, we
specifically selected unlabeled axial-view MRIs. Scans depicting non-abdominal
regions—such as the heart, shoulder, or legs—were excluded to ensure anatomi-
cal consistency, retaining only those containing abdominal organs. A total of 50
CT scans and 50 MRIs were randomly selected for training the image translation
models, regardless of MRI sequence type, to develop a robust model capable of
translating CT images into various types of MRI sequences.

During the self-training stage, pseudo-labels for all abdominal MRIs were
used directly without any selection or refinement, enabling the model to fully
exploit the available pseudo-labeled data.

3.2 Pipeline

The translation pipeline consists of three main steps: cropping and resizing,
z-score normalization, and feeding the processed images into the image transla-
tion model. Similarly, the segmentation pipeline involves z-score normalization
followed by inference using the trained segmentation model.

To account for variations in size and resolution across the dataset, each slice
was cropped and resized to a uniform resolution of 512 × 512 pixels. During
preprocessing, z-score normalization was applied to standardize intensity values.
Additionally, a range of data augmentation techniques was employed to improve
model robustness, including random rotations, scaling, Gaussian noise, Gaussian
blur, brightness and contrast adjustments, and mirroring.

For segmentation, we adopted a standard 3D sliding window approach with
overlapping patches, where predictions in the overlapping regions were averaged
to produce the final segmentation. No postprocessing was applied in our pipeline.

3.3 Evaluation measures

The evaluation metrics encompass two accuracy measures—Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
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metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 60 seconds and 4 GB, respectively.

3.4 Implementation details

Environment settings The development environments and requirements are
presented in Table 1. For all experiments in our work, we utilized a workstation
equipped with a single NVIDIA Quadro RTX 8000 GPU with 48 GB of memory,
an Intel(R) Xeon(R) Gold 6226R CPU, and running CentOS 7.9.

Table 1. Development environments and requirements.

System CentOs 7.9
CPU Intel(R) Xeon(R) Gold 6226R CPU@1.2GHz
GPU (number and type) 2 NVIDIA Quadro RTX 8000 48G
CUDA version 12.4
Programming language Python 3.8
Deep learning framework torch 1.7.0, torchvision 0.8.1
Specific dependencies nnU-Net

Training protocols The training protocols for our experiments are summarized
in Table 2. We initialized the network using the Kaiming normal distribution
and trained it with a batch size of 2, using 3D patches of size 48 × 192 ×
192. The model was trained for a total of 800 epochs, employing Stochastic
Gradient Descent (SGD) as the optimizer with an initial learning rate of 0.01.
The learning rate followed a polynomial decay schedule. The entire training
process spanned 17 hours. For the loss function, we combined Dice loss with
cross-entropy to optimize segmentation performance. The model contained 30.71
million parameters, and the computational cost was measured at 1297.09 giga
floating-point operations per second (GFLOPs).

4 Results and discussion

4.1 Image Translation

Examples of source, target, and generative slices are shown in Fig. 3. Since
the difference between xCT and xCT−>CT and the difference between xCT and
xCT−>MRI−>CT are hard to tell, the content and style representations extracted
from the encoders can fully represent the slice image in the CT domain and the
decoder G effectively reconstruct the image from these disentangled representa-
tions. The same conclusion applies to the MRI domain. Based on the conclusions
above, xCT−>MRI and xMRI−>CT are highly likely to be reliable. For a UDA
problem, it is hard to evaluate the quality of xCT−>MRI and xMRI−>CT quan-
titatively, since they are unpaired.
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Table 2. Training protocols.

Network initialization Kaiming normal distribution
Batch size 2
Patch size 48×192×192
Total epochs 800
Optimizer SGD with Nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate schedule
Training time 17 hours
Loss function Dice and cross-entropy
Number of model parameters 30.71M
Number of flops 1297.09G

4.2 Segmentation Results

Comparison with state-of-the-art methods and ablation study To com-
pare the efficiency of our method with state-of-the-art approaches, we trained the
segmentation model using the same architecture on synthetic MRIs generated
by different Unsupervised Domain Adaptation (UDA) methods. The segmenta-
tion results on MRIs from the FLARE dataset’s validation set are presented in
Table 3. UDA methods, including CycleGAN [43], SIFA [3], and our proposed
DRL-STNet, significantly enhance segmentation accuracy.

Without UDA, the segmentation performance is significantly lower across all
organs, with an average Dice score of 6.13% and NSD of 6.00%. Both Cycle-
GAN and SIFA improve segmentation quality, with SIFA achieving better over-
all results—yielding an average Dice of 67.52% (p < 0.01) and NSD of 67.52%
(p < 0.01). DRL-STNet further enhances performance, reaching an average Dice
of 72.07% (p < 0.01) and NSD of 72.07% (p < 0.01). The best results are
achieved when DRL-STNet is combined with self-training, attaining an average
Dice of 74.21% and NSD of 80.69%. However, the improvement in Dice score
over DRL-STNet without self-training is not statistically significant (p = 0.35).
These findings highlight the effectiveness of the self-training strategy in boost-
ing segmentation accuracy, particularly in terms of surface alignment, making
our full method (DRL-STNet + ST) the most effective among the compared
approaches.

In terms of computational efficiency, all four methods exhibit similar infer-
ence times and GPU usage. This is largely because, aside from SIFA, all methods
employ the same segmentation model architecture and share identical prepro-
cessing and postprocessing pipelines. As a result, the computational cost remains
consistent across w/o UDA, CycleGAN, and our proposed method. Although our
method with self-training incurs a slightly higher computational cost than SIFA,
the difference is not statistically significant. More importantly, it achieves sub-
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Fig. 3. Examples of source (CT), target (MRI), and generated slices produced by the
proposed method. Since there is no ground truth for unpaired image translation, the
small differences between the first and second columns, as well as between the first and
fourth columns, suggest that our translation model is reliable.

stantially superior segmentation performance, offering a more favorable trade-off
between accuracy and efficiency.

Notably, our method with self-training achieves the highest segmentation
accuracy while maintaining an inference time of 34.7 seconds per scan and a
GPU cost of 8.18 GB. This demonstrates the efficiency and practicality of our
approach: it delivers state-of-the-art performance without compromising compu-
tational efficiency, making it highly suitable for real-world clinical deployment,
where both accuracy and resource constraints are critical.

Table 3. Comparison between the state-of-the-art and the proposed method for cross-
modality abdominal multi-organ segmentation on the FLARE dataset.

Methods DSC (%) ↑ NSD (%) ↑ Inference Time(s/scan) ↓ GPU Cost(G) ↓
w/o UDA 6.40 ± 5.22 6.13 ± 5.87 32.9 ± 24.5 7.86 ± 3.99

CycleGAN [43] 44.98 ± 22.40 49.06± 12.81 35.7 ± 22.9 8.26 ± 4.14
SIFA [3] 62.81 ± 19.42 67.52 ± 13.99 28.1 ± 18.4 4.18 ± 2.40

Ours w/o ST 66.65 ± 17.52 72.07 ± 12.71 33.8 ± 26.7 8.04 ± 3.24
Ours 74.21 ± 16.21 80.69 ± 13.81 34.7 ± 29.5 8.18 ± 4.01

Bold: Best results; UDA: Unsupervised domain adaptation; ST: self-training
R.kid: Right kidney; L.kid: Left kidney
DSC: Dice Similarity Coefficient; NSD: Normalized Surface Dice
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Quantitative results Table 4 presents the validation results for various organs
using the proposed segmentation method. The liver shows the highest perfor-
mance with a DSC of 93.76% and an NSD of 94.67%, followed closely by the
right kidney and left kidney, both of which also demonstrate strong segmenta-
tion accuracy with DSC scores of 91.11% and 91.44%, respectively. Organs such
as the spleen and aorta also perform well, achieving DSCs above 87%. However,
segmentation of smaller or more challenging structures like the right adrenal
gland and gallbladder is less accurate, with lower DSCs of 49.78% and 55.86%,
respectively, indicating areas for improvement. Overall, the average DSC across
all targets is 74.21%, with an average NSD of 80.69%, reflecting the method’s
robust performance across a variety of organs. The results highlight the method’s
effectiveness, particularly in segmenting larger, more distinct organs.

Table 4. Quantitative evaluation results of the proposed DRL-STNet.

Target Validation
DSC(%) NSD(%)

Liver 93.76 ± 2.74 94.67 ± 5.05
Right kidney 91.11 ± 7.87 89.67 ± 9.46
Spleen 90.26 ± 14.9 91.41 ± 16.5
Pancreas 77.14 ± 13.7 89.50 ± 13.3
Aorta 87.32 ± 8.36 92.11 ± 10.9
Inferior vena cava 74.14 ± 17.6 75.99 ± 21.3
Right adrenal gland 49.78 ± 18.8 65.72 ± 25.2
Left adrenal gland 56.52 ± 19.4 69.70 ± 23.1
Gallbladder 55.86 ± 30.1 48.09 ± 29.6
Esophagus 67.70 ± 14.3 85.64 ± 14.2
Stomach 76.91 ± 14.2 80.11 ± 16.7
Duodenum 52.82 ± 20.4 76.70 ± 27.5
Left kidney 91.44 ± 6.68 89.64 ± 7.99
Average 74.21 ± 16.2 80.69 ± 13.8

DSC: Dice Similarity Coefficient; NSD: Normalized Surface Dice

Qualitative results Fig. 4 presents segmentation results for various abdom-
inal organs across different cases from the validation set. The first two rows
showcase instances where our proposed method achieves accurate segmentation,
closely aligning with the ground truth. In these examples, organs such as the
liver, kidneys, and spleen are clearly delineated. In contrast, the last two rows
illustrate cases where the segmentation is less precise, particularly when com-
paring the results from our method with and without self-training (ST). These
comparisons demonstrate that while our method generally performs well, the
inclusion of self-training significantly enhances segmentation quality, especially
in challenging scenarios where organs are less distinct or image quality is lower.
The segmentation of smaller structures, such as the inferior vena cava, remains
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Case # amos_7891_0000 (slice #22)

Image

Case # amos_0581_0000 (slice #23)

Case # amos_8178_0000 (slice #40)

Case # amos_0522_0000 (slice #53)

Ours w/o STGround Truth Ours

liver aortaspleen inferior vena cavapancreasR. kid L.kid stomach

Fig. 4. Examples of segmentation results from the validation set. The first two rows
illustrate successful segmentation outcomes, while the last two rows demonstrate cases
with less accurate segmentation. The columns represent the original image, ground
truth, results from our method, and results from our method without self-training (ST).
Different organs are color-coded for clear visualization.
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particularly challenging. One direction for future work could be to focus on im-
proving the segmentation accuracy of these smaller and less distinct organs.

Segmentation efficiency The segmentation efficiency was quantitatively eval-
uated by examining the running time and GPU memory consumption across
various cases, as detailed in Table 4.2. The experiments were conducted on an
NVIDIA Quadro RTX 5000 GPU with 16 GB of memory. The running time
varied significantly depending on the image size, with smaller images (e.g., 192
× 192 × 100) requiring as little as 25.21 seconds and larger images (e.g., 1024
× 1024 × 82) taking up to 80.62 seconds. Despite the variation in image sizes
and running times, the maximum GPU memory usage remained relatively con-
sistent, hovering around 290 MB to 313 MB across all cases. The total GPU
memory consumption, represented as the area under the GPU Memory-Time
curve, ranged from 6937 MB to 23075 MB, reflecting the differences in computa-
tional demand based on image size and complexity. This analysis highlights the
relationship between image size, running time, and GPU memory utilization,
emphasizing the scalability of the segmentation process on the selected GPU
platform.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
amos_0540 (192, 192, 100) 28.49 296 7992
amos_7324 (256, 256, 80) 29.42 290 8098
amos_0507 (320, 290, 72) 31.2 313 8749
amos_7236 (400, 400, 115) 25.36 290 6995
amos_7799 (432, 432, 40) 25.21 290 6937
amos_0557 (512, 152, 512) 84.06 290 23075
amos_0546 (576, 468, 72) 36.54 290 10072
amos_8082 (1024, 1024, 82) 80.62 290 22146

4.3 Results on Final Testing Set

Table 6 presents the performance of our model on the testing set in terms of
segmentation accuracy and inference efficiency. The average Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD) are 48.5% and 50.6%, re-
spectively, with relatively large standard deviations, indicating variation across
different cases. Median values of DSC (67.2%) and NSD (69.3%) suggest that in
many cases, the model performs reasonably well. The average inference time is
approximately 61.9 seconds per volume, with a median of 43.6 seconds, reflecting
a moderately consistent runtime across samples.
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Table 6. Summary of segmentation and computational performance metrics on the
testing set.

Metric Value
DSC mean 48.5 ± 32.8
NSD mean 50.6 ± 36.0
Time mean (s) 61.9 ± 56.9
DSC median 67.2
NSD median 69.3
Time median (s) 43.6

DSC: Dice Similarity Coefficient; NSD: Normalized Surface Dice

4.4 Limitation and future work

Despite the promising results, our approach has several limitations. First, the
method relies heavily on the quality of the disentangled representations and
the accuracy of the image translation process. Any errors or inconsistencies in
these steps can propagate through the network and affect the final segmentation
results. Additionally, while our method works well with the FLARE dataset,
its generalizability to other datasets and modalities remains to be thoroughly
evaluated.

Another limitation is the potential for synthetic data to introduce artifacts
that do not exist in real target modality images. This can lead to segmentation
inaccuracies, especially in regions with complex anatomical structures [31]. Fur-
thermore, our approach currently requires significant computational resources
and training time, which may limit its practical applicability in real-world clin-
ical settings.

Future research directions can focus on addressing these limitations and im-
proving the robustness and efficiency of the DRL-STNet framework. Potential
areas for improvement include:

– Multi-Modality and Multi-Task Learning: Extending the framework
to handle multiple modalities and tasks simultaneously could improve the
generalizability and applicability of the method.

– Enhanced Representation Learning: Developing more robust methods
for disentangled representation learning to minimize the introduction of ar-
tifacts and ensure more accurate image translations. Exploring alternative
disentanglement techniques such as variational autoencoders (VAEs) could
be beneficial [38].

– Utilizing Diffusion Models for Domain Transfer: Investigating the use
of diffusion models for domain transfer, which have shown promising results
in maintaining high-level semantic information and generating high-quality
images [35].

– Combining Multiple Domain Adaptation Techniques: Exploring the
combination of GAN-based methods with other domain adaptation tech-
niques such as adversarial domain adaptation and self-ensembling methods
to enhance robustness and performance [39,3]
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5 Conclusion

In this paper, we presented DRL-STNet, an innovative framework for unsuper-
vised domain adaptation (UDA) in cross-modality medical image segmentation.
By leveraging generative adversarial networks (GANs), disentangled represen-
tation learning, and self-training, our method effectively translates images from
the source to the target modality, allowing for accurate segmentation of unan-
notated target images. Experimental results on the FLARE challenge dataset
demonstrated that DRL-STNet outperforms state-of-the-art methods in both
the Dice similarity coefficient and Normalized Surface Dice metrics, particularly
in segmenting abdominal organs.

In summary, while DRL-STNet shows great potential for unsupervised do-
main adaptation in medical image segmentation, there are several areas where
further research and development are needed to enhance its performance and
applicability. Addressing these challenges will be crucial for the successful inte-
gration of UDA techniques in clinical practice.
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