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ABSTRACT

Despite the increasing effectiveness of language models, their reasoning capabili-
ties remain underdeveloped. In particular, causal reasoning through counterfactual
question answering is lacking. This work aims to bridge this gap. We first derive
novel metrics that balance accuracy in factual and counterfactual questions, cap-
turing a more complete view of the reasoning abilities of language models than
traditional factual-only based metrics. Second, we propose several fine-tuning
approaches that aim to elicit better reasoning mechanisms, in the sense of the
proposed metrics. Finally, we evaluate the performance of the fine-tuned language
models in a variety of realistic scenarios. In particular, we investigate to what
extent our fine-tuning approaches systemically achieve better generalization with
respect to the base models in several problems that require, among others, inductive
and deductive reasoning capabilities.

1 INTRODUCTION

Factual Question

A number is divisible by six if it
has both two and three as prime
factors. Is {N} divisible by six?

Counterfactual Question

A number is divisible by six if it
has both two and three as prime
factors. Suppose that {N} had
three as one of its prime factors
(retaining all its other prime fac-
tors). Then, would it have been
been divisible by six?
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Figure 1: Error rate of Phi3-Mini in answering
factual vs. counterfactual questions—sampling 10
answers for each N ∈ {1, . . . , 100}. It performs
disproportionately better for the factual question
(cf. recall) as opposed to the counterfactual ques-
tion (cf. reasoning).

Large language models (LLMs) are shown to be ca-
pable of delivering astounding performance in nu-
merous tasks across various domains. Examples
stretch from writing assistants (Gan et al., 2023), to
sentiment analysis in social media (Simmering and
Huoviala, 2023), and even applications in healthcare
(González et al., 2023; Wong et al., 2023). While
the ever-increasing accuracy of these systems is now
undeniable, it is still rather unclear to what extent
this accuracy is due to effective recall of their train-
ing data vs. a genuine ability to reason by extract-
ing, understanding, and adapting the fundamental
concepts underlying that training data (Huang and
Chang, 2023; Li et al., 2023). Previous work sug-
gests that LLMs might exhibit some emergent rea-
soning capabilities (Bubeck et al., 2023; Kıcıman
et al., 2023). However, many have observed a sig-
nificant reasoning-recall gap: LLMs still perform
substantially better on recall-based tasks that do not
explicitly require reasoning (Zhang et al., 2023a; Ahn et al., 2024; Seals and Shalin, 2024).

Motivated by this discrepancy between how well LLMs can recall vs. reason, our goal in this paper is
to see whether they can be fine-tuned explicitly to improve their reasoning. While reasoning can take
different forms, we will focus on causal reasoning as it provides us with a clear distinction between
recall and reasoning1: the former is limited to inferring statistical correlations, whereas the latter
involves working with interventions and counterfactuals (Pearl, 2000). It has been previously shown
that LLMs struggle with counterfactual questions compared to purely factual questions (Jin et al.,
2024; González and Nori, 2024). This difficulty highlights the recall-reasoning discrepancy within
the causal domain (Figure 1).

1As an example, a different kind of reasoning would be symbolic reasoning, which involves manipulating
symbols that represent mathematical statements (MacColl, 1897; Kelley, 1992).
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Adopting a causal framework also allows us to consider an LLM’s ability to identify higher concepts
that are essential for connecting causes to their effects in causal reasoning, such as necessity and suffi-
ciency (Mackie, 1965; Lewis, 1973; Halpern and Pearl, 2005). For instance, a cause X is said to be
necessary for an effect Y if (i) without intervention, X and Y occur together and (ii) intervening to re-
move X results in no Y (Pearl, 1999). Therefore, for an LLM to be able to identify that X is necessary
for Y , it needs to not only determine the factual in (i) is indeed the case but also simultaneously recog-
nize the counterfactual would have been different as in (ii). This makes identification of necessity, or
similar relationships like sufficiency, a particularly good test of reasoning because it requires the LLM
to understand when to recall (cf. factual thinking) vs. when to reason (cf. counterfactual thinking).

We improve the causal reasoning of LLMs by adapting established methods of fine-tuning. In
particular, we consider supervised fine-tuning (SFT, e.g. Dai and Le (2015); Peters et al. (2018);
Radford et al. (2018); Khandelwal et al. (2019); Howard and Ruder (2018), used in Ziegler et al.
(2019); Ouyang et al. (2022)) and direct preference optimization (DPO, Rafailov et al. (2024), used
in Tian et al. (2023); Lin et al. (2024a)). For both of these approaches, we propose procedures to
generate supervised and preference-based datasets using factual questions as well as counterfactual
questions. We argue that generating demonstrations on a question-by-question basis only improves
the correctness of individual answers. As we discussed, identifying higher concepts such as necessity
and sufficiency requires coordination between how factual and counterfactual questions are answered
together. To target these higher concepts directly, we propose generating preference-based datasets
over dialogues involving both factual and counterfactual questions.

When the goal of fine-tuning is specifically to improve reasoning, a unique problem arises in evaluating
the fine-tuned LLMs: we cannot just measure performance for a held-out set of test samples within
the same reasoning task. If we do, it would be impossible to tell whether the LLM actually learned to
reason or whether it is still recalling the demonstrations we have made during fine-tuning.2 Hence,
measuring the generalization performance with respect to new reasoning tasks becomes crucial.3 We
cannot expect fine-tuning on one problem instance to arbitrarily generalize to all problem instances
either. So, building a systematic understanding regarding to what extent fine-tuning for reasoning
should be expected to generalize becomes important as well.

To build that understanding, we identify different modes in which reasoning in one problem is trans-
ferred to other problems. Notably, we define inductive generalization and deductive generalization.
Given a causal system where X → Y → Z, inductive generalization is the ability to reason about
the transitive relationship X → Z when demonstrated how to reason about X → Y and Y → Z.
Conversely, deductive generalization is the ability to reason about the relationships X → Y and
Y → Z when demonstrated how to reason about X → Z. We show that fine-tuning for reasoning
generalizes much more effectively in an inductive mode rather than a deductive mode (among many
other insights in Section 5).

Contributions. We have four major contributions, corresponding to each of the following sections:

§2 We describe a framework for fine-tuning based on causal reasoning and formally categorize
the ways in which reasoning generalizes from one problem to another. These categories are
common-effect, common-cause, inductive, and deductive.

§3 We introduce novel metrics to measure the reasoning performance of an LLM, defining necessity
and sufficiency inconsistency rates (N-IR & S-IR) based on probabilities of necessity and suffi-
ciency from the causality literature. We also introduce the concepts of absent necessity and absent
sufficiency to supplement cause-effect relationships covered neither by necessity nor sufficiency.

§4 We propose procedures to generate datasets to be used with SFT and DPO to fine-tune for
reasoning by incorporating counterfactual feedback. In particular, we argue for generating
dialogues that involve paired factual and counterfactual questions to directly target the reasoning
metrics we introduce in Section 3. We call this causal consistency feedback.

§5 Finally, we evaluate the performance of the procedures proposed in Section 4 using the metrics
introduced in Section 3. Moreover, we investigate to what extent that performance generalizes in
relation to our categorization in Section 2.

2For instance, chain-of-thought prompting aims to improve reasoning by providing examples of how a prob-
lem can be solved in smaller steps. While such prompting is effective, unless tested on cases that require a novel re-
arrangement of those smaller steps, its effectiveness can be attributed to successful imitation of the provided exam-
ples and is not necessarily the result of true reasoning (Wei et al., 2022, see Appendix D.1 for further discussion).

3We are interested in this particular notion of generalization although there are other notions, see Appendix E.
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Figure 2: Different modes of generalization, in terms of the cause-effect relationships demonstrated during
fine-tuning (i.e. D, blue) vs. the relationship that the fine-tuned model is evaluated on (i.e. PX→Y , orange).

2 FINE-TUNING FOR REASONING

World Model. We consider a causal world model, in which X (cause) and Y (effect) are two binary
variables, indicating the absence or presence of some conditions. We will denote with x, y the values
taken by X and Y respectively when the conditions they represent are present, and with x′, y′ the
complements of these values (i.e. the values taken by X and Y when the conditions they represent are
absent). The context, denoted by U , consists of all exogenous variables. Without any loss of generality,
we assume that all randomness in the model is captured through these exogenous variables, and all
endogenous variables, including X and Y , are deterministic functions of the exogenous variables
(i.e. the context U ). We denote these deterministic functions as X = fX(U) and Y = fY (X,U).
Additionally, we denote the the potential effects under the potential interventions for each unit in the
population as Yx = Y |do(X = x) = fY (x, U) and Yx′ = Y |do(X = x′) = fY (x

′, U).

Language Model. We can estimate different effects using a language model. Formally, let q(u)
be a factual question template that describes the world model in natural language and asks what the
factual effect would be for a specific context u. Denoting the language model by ℓ, let a = ℓ(q(u))
be the model’s answer to this question, which will be in natural language form. To transform the
answer into binary form, we use a mapping h such that Ŷ = h(a) = h(ℓ(q(u))) ∈ {y, y′}.4 Similar
to the factual case, suppose we also have interventional question templates q̃x(u) and q̃x′(u) that
describe the world model. However, these templates ask for the potential effects under interventions
do(X = x) or do(X = x′). This leaves us with the following estimates for the two potential effects.
For a given context u, we rely on the factual question template when the effect is factual, and on
the interventional question template when the effect is counterfactual:

Ŷx =
{
h ◦ ℓ ◦ q(U) if X = x

h ◦ ℓ ◦ q̃x′(U) if X = x′ Ŷx′ =
{
h ◦ ℓ ◦ q̃x(U) if X = x

h ◦ ℓ ◦ q(U) if X = x′ (1)

Problem. Let P describe the context distribution such that U ∼ P . Moreover, let PX→Y denote
the corresponding distribution of cause X = fX(U) and potential effects Yx(U) = fY (x, U),
Yx′(U) = fY (x

′, U) such that X,Yx, Yx′ ∼ PX→Y . Suppose we are interested in optimizing some
metric V[ℓ;PX→Y ] ∈ R that measures the reasoning performance of the language model ℓ for the
cause-effect relationship PX→Y (we discuss the design of V in the subsequent section). Then, the
problem of fine-tuning for reasoning can be expressed as

maximize V[ℓ;PX→Y ] given ℓ0,P,D = {PXi→Yi
}i (2)

where ℓ0 is the target language model, and D is the set of different cause-effect relationships PXi→Yi

that are available as demonstrations. These relationships may involve causes {Xi} and effects {Yi}
other than the cause X or the effect Y of interest. We refer to the case where only the cause-effect
relationship of interest is demonstrated such that D = {PX→Y } as the “in-domain” problem.

Modes of Generalization. As we have discussed in the introduction, an in-domain evaluation
is not sufficient alone to assess the success of fine-tuning for reasoning. Therefore, we categorize
different ways in which reasoning can generalize—that is, how D might relate to PX→Y when
PX→Y ̸∈ D. We identify four main structures, summarized in Figure 2:

(i) Common-Cause: When the relationship X → Y is demonstrated, common-cause generalization
refers to the ability to reason about other relationships X → Ỹ that involve the same cause X .

4In practice, this mapping would also be a language model prompted to reduce given answers to a binary
“negative” or “positive” (see the appendix for the exact prompt used in this paper).
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(ii) Common-Effect: When the relationship X → Y is demonstrated, common-effect general-
ization refers to the ability to reason about other relationships X̃ → Y that involve the same
effect Y . Unlike common-cause generalisation, the task of determining the factual effect without
intervention remains the same, regardless of whether X or X̃ is the cause of interest.

(iii) Inductive: When the relationship A → B and B → C are demonstrated, inductive general-
ization refers to the ability to reason about the transitive relationship A → C. This ability may
be hindered if A has a direct effect on C that is not mediated by B. We will investigate this
empirically in Section 5.

(iv) Deductive: Similar to inductive generalization, consider the causal relationship A → B →
C. When the relationships A → C and B → C are demonstrated, effect-based deductive
generalization is the ability to reason about the relationship A → B. Similarly, when the
relationships A → C and A → B are demonstrated, cause-based deductive generalization
refers to the ability to reason about the relationship B → C. We will investigate the potential
differences between the two scenarios empirically in Section 5.

3 METRICS OF REASONING

Having defined the problem of fine-tuning for reasoning, we now discuss what would be a good
measure of reasoning ability (i.e. a good choice for V). In Section 3.1, we define error rates based
on the correctness of answers given by the language model to individual questions. In Section 3.2,
we go beyond these simple error rates and propose various inconsistency rates that capture the
causal consistency between the factual and counterfactual answers given within the same context. As
emphasized in the introduction, such consistency is necessary to identify causal relationships such
as necessity and sufficiency. Later, in Section 4, we will describe various methods for generating
datasets that aim to optimize either of these metrics.

3.1 CORRECTNESS

Ignoring relationship between factual and counterfactual effects, the correctness of an individual
answer a = ℓ ◦ q(u) | ℓ ◦ q̃x(u) | ℓ ◦ q̃x′(u) can be characterized by the factual error rate (F-ER) and
the counterfactual error rate (CF-ER) respectively:

F-ER = P{Ŷ ̸= Y } CF-ER = P
{
Ŷx′ ̸= Yx′ if X = x

Ŷx ̸= Yx if X = x′

}
(3)

where Ŷ , Ŷx, and Ŷx′ represent the binary values implied by the answer a. Using these two metrics,
we define the average error rate as Avg-ER = (F-ER + CF-ER)/2.

Why are factual and counterfactual correctness alone not enough? Being able to correctly
estimate factuals (cf. F-ER) or counterfactuals (cf. CF-ER) is, of course, an important step in causal
reasoning. However, what we ultimately want is to characterize the relationship between a cause and
its effect. For instance, is the cause necessary for the effect to occur? Is it sufficient? Or do the cause
and the effect only occur together (necessary and sufficient)? Identifying such relationships rely on
the estimated factuals and counterfactuals collectively—only getting one right but not the other might
not always lead to a correct characterization of the cause-effect relationship. By measuring the factual
and counterfactual accuracy separately, F-ER and CF-ER fail to capture any dependencies between
the two answers and how they might be describing a larger relationship together.

As a concrete example, consider necessity. According to Pearl (1999), when a cause X and an
effect Y occur together (i.e. X = x and Y = y), the cause is said to have been necessary for the
effect if the effect would not have occurred in the absence of the cause (i.e. Yx′ = y′). Making an
accurate judgement regarding whether there is a necessity relationship between X and Y requires
both Ŷ and Ŷx′ to be correct when X = x and Y = y. However, no factual or counterfactual estimate
needs to be correct when X = x′ (as it is immediately apparent that cases where X = x′ do not affect
necessity), and similarly, only the factual estimates needs to be correct when X = x but Y = y′.
F-ER and CF-ER do not account for this complex requirement at all. In particular, depending on
how X and Y are distributed, a language model can achieve F-ER and CF-ER as high as 1/2 by
always estimating either Yx or Yx′ correctly (but not both together) while never reaching an accurate
conclusion regarding necessity.

4
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3.2 CAUSAL CONSISTENCY

Previous work (González and Nori, 2024) has considered the use of “probabilities of causation”
together with F-ER and CF-ER to provide a set metrics that fully characterize the relationship
between a cause and its effect. Similar to necessity, Pearl (1999) also provides a causal definition of
sufficiency: whether the cause would have produced the effect (i.e. Yx = y) when both the cause and
the effect are absent (i.e. X = x′ and Y = y′). The probability of necessity (PN) and the probability
of sufficiency (PS) are defined as:

PN := P{Yx′ = y′|X = x, Y = y} PS := P{Yx = y|X = x′, Y = y′} (4)

The answers given by the language model to factual and counterfactual questions and the effects
Ŷx, Ŷx′ estimated from those answers naturally induce an empirical pair of PN and PS values:

P̂N = P{Ŷx′ = y′|X = x, Ŷ = y} P̂S = P{Ŷx = y|X = x′, Ŷ = x′} (5)

Why are PN and PS correctness alone not enough? To evaluate reasoning in language models,
González and Nori (2024) use (1) a probabilistic measure (γ-overlap) to assess how well the distri-
butions of P̂N and P̂S match the true PN and PS, and (2) the factual and counterfactual error rates.
We refine this approach by defining unifying metrics that simultaneously take both aspects of the
problem into account, thereby simplifying the evaluation process.

Due to the averaging done by probabilities, achieving a perfect PN-PS with the language model only
requires identifying correct vs. predicted marginal frequencies, without needing individual units to
be accurate. Although this is captured by the factual and counterfactual error rates F-ER and CF-ER,
it is convenient to have a single metric that encapsulates both dimensions of the problem. We address
this by requiring the necessity or sufficiency relationships identified by the language model to be
accurate on a unit-by-unit basis. A unit is a realization of the exogenous variable U . It induces the
values of X and Y as well as the counterfactual outcome YX′ , where X ′ represents the complement
of the observed X regardless of its value. Note that YX = Y is the factual outcome.

We focus on necessity where a unit/context might exhibit one of three situations: (i) Necessity occurs,
denoted by “N”, meaning that both X and Y occur, X = x and Y = y, and the cause was necessary
for the effect, YX′ = y′. (ii) Necessity does not occur, which we denote by “N′”, meaning that both
X and Y occur but the cause was not necessary for the effect, YX′ ̸= y′. (iii) Not relevant case as
necessity is concerned, which we denote by ̸#, when neither X nor Y (or both) did occur. Since
value of the context variable U fully characterizes the unit, we can define unit-wise necessity as

N (X,Y, YX′ ;U) =


N if X = x ∧ Y = y ∧ YX′ = y′

N′ if X = x ∧ Y = y ∧ YX′ ̸= y′

̸# if X = x′ ∨ Y = y′
(6)

The necessity inconsistency rate (N-IR) is the frequency with which the language model estimates
the unit-wise necessity N inaccurately (see Appendix F for an alternative interpretation of N-IR):

N-IR := EP(U)[N (X, Ŷ , ŶX′ ; U) ̸= N (X,Y, YX′ ; U)], (7)

where EP(U) denotes the expectation over U and Ŷ , ŶX′ are the analogous factual and counterfactuals
to Y , YX′ estimated from the model. Remark that PN = EP(U)[N = N|N ≠ ̸#] by construction.
Also note that N-IR = 0 implies that P̂N = PN. However, errors made in different units can no
longer ‘balance each other out’ to achieve N-IR = 0. We can also define context-wise sufficiency S in
an analogous way: (i) S = S if X = x′, Y = y′, YX′ = y, (ii) S = S′ if X = x′, Y = y′, YX′ ̸= y,
and (iii) S = ̸# otherwise. This induces the sufficiency inconsistency rate S-IR = P{Ŝ ≠ S}.

Neither PN and PS nor the inconsistency rates N-IR and S-IR are sensitive to all answers given by the
language model. This is because necessity and sufficiency only concern cases where X = x, Y = y
and X = y′, Y = y′. For instance, when X = x′ and Y = y and the factual effect has been
estimated correctly such that Ŷ = Y , the counterfactual estimate Ŷx has no impact on PN, PS, N-IR,
or S-IR. Regardless of whether Ŷx = Yx, all four quantities stay the same. To cover all possible
counterfactuals we can ask a language model for, it makes sense to also evaluate counterfactuals
of the type Yx′ = y|X = x, Y = y′ and Yx = y′|X = x′, Y = y. Of course, the probabilities
of these counterfactuals can be defined by means of PN and PS by changing the default observed
state. However, here we name them as absent necessity and absent sufficiency to be explicit about the

5
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two extra cases where language model can make mistakes.5 In our context-based framework, the
corresponding context-wise AN and AS are defined in a similar fashion as N and S , which induce
the inconsistency rates AN-IR = P{ÂN ̸= AN} and AS-IR = P{ÂS ̸= AS}. As a reasoning
metric, we define the average inconsistency rate as Avg-IR = (N-IR + S-IR + AN-IR + AS-IR)/4.
This metric has the following properties: (i) it accounts for all characterizations of the necessity
and sufficiency of the target causal effect, and (ii) it is unit-dependent, so factual and counterfactual
accuracy errors cannot be balanced out.
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Figure 3: Causal consistency vs. correctness. Despite having
the same Avg-ER, different types of error distributions lead to
widely different PN & PS characteristics.

An Illustrative Example. We illustrate
the difference between correctness and
causal consistency as follows. Consider
the following language models: (i) Factu-
ally Correct answers all factual questions
correctly (F-ER = 0) but makes occasional
mistakes in answering counterfactual ques-
tions. This represents an extreme version
of the imbalance highlighted in the intro-
duction. (ii) Uniformly Correct makes both
factual and counterfactual mistakes at equal
rates (F-ER = CF-ER), but these mis-
takes happen independently of each other.
(iii) Causally Consistent reasons on a unit-
by-unit basis (as opposed to question-by-
question) and either gets both the factual question and counterfactual question right or gets both
of them wrong. Suppose the cause never prevents the effect such that (X,Yx, Yx′) ∈ {(x, y′, y′),
(x, y′, y), (x, y, y), (x′, y′, y′), (x′, y′, y), (x′, y, y)} (with equal probabilities).

Figure 3 shows the PN & PS as well as N-IR & S-IR of these models for fixed levels of Avg-ER
as the error shifts between contexts where the cause may be necessary (i.e. X = x) vs. contexts
where it may be sufficient (i.e. X = x′). Despite having the same Avg-ER, the three models induce
widely different PN & PS values, representing different causal interpretations. While Figure 3a might
suggest that the factually correct models are the best performing, this is purely coincidental. Due to
the averaging done by PN & PS, the mistakes made in different units end up balancing each other out.
Looking at N-IR & S-IR in Figure 3b reveals that the causally consistent models are actually the best,
even outperforming models with significantly smaller Avg-ER.

4 FINE-TUNING WITH COUNTERFACTUAL FEEDBACK

Despite the significant differences between correctness and causal consistency, success in either
metric relies on accurate estimates of counterfactual outcomes. Therefore, to solve the fine-tuning
problem in (2), it is essential to leverage the counterfactual information available in demonstrations
D, irrespective of the metric we aim to target as V. We present a data-centric approach to achieve
this and propose three methods for generating datasets using counterfactual feedback. These datasets
can then be utlised by existing algorithms for fine-tuning such as SFT or DPO. These methods are
summarized in Figure 4.

Supervised Counterfactual Feedback. Recall that we assumed access to an extractor h that can
reduce answers given in natural language to binary outcomes ŷ = h(a) ∈ {y, y′}. Now, further
suppose that we can perform this extraction in reverse, denoted as H: Given a question q and the true
outcome ytrue corresponding to this question, we can form a natural language answer a = H(q, ytrue).
In practice, we achieve this by prompting a language model to provide an answer to question q
that starts with “Yes” or “No” (see the appendix for the full prompt). Based on these answers, we
generate a dataset D of both factual and counterfactual questions and their answers:

D = { qf = q(U), af = H(qf, Y ),
qcf = q̃X′(U), acf = H(qcf, YX′) }U,X,Y,YX′∼D

This dataset can directly be used with any SFT algorithm to fine-tune the target model ℓ0.
5Note that the use of these quantities is an alternative but equivalent characterization of all possible counter-

factual outcomes to the one in Pearl (1999), where the probabilities of disablement Yx′ = y′|Y = y and the
probability of enablement Yx = y|Y = y′ are introduced.
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Preference-based Counterfactual Feedback. SFT can be limited by the quality of answers
generated as ground-truth and their similarity to the model’s original answers. Without access to a
language model that is already better at reasoning than our target model, it might challenging to build
an answer generator H that provides high quality samples. In that case, it is desirable to provide
direct feedback to the answers generated by the target language model. We do so by first generating
multiple answers to different questions (using a high sampling temperature to get sufficient variation):

D = { U, qf = q(U), af[1] ∼ ℓ0(qf), . . . , af[N ] ∼ ℓ0(qf),

qcf = q̃X′(U), acf[1] ∼ ℓ0(qcf), . . . , acf[N ] ∼ ℓ0(qcf) }U,X,Y,YX′∼D (8)
Then, we form a preference-based dataset where correct answers are preferred over incorrect answers:

af[i] ≻ af[j] ⇐⇒ 1{h(af[i]) = Y } > 1{h(af[j]) = Y } (9)
acf[i] ≻ acf[j] ⇐⇒ 1{h(acf[i]) = YX′} > 1{h(acf[j]) = YX′} (10)

The DPO algorithm can directly be used with this dataset to maximize the likelihood of preferred
answers (i.e. a[i]) relative to the answers they are preferred over (i.e. a[j]).

Preference-based Causal Consistency Feedback. Running DPO with preferences determined
by a reward function, where alternatives with higher rewards are preferred over those with lower
rewards, is equivalent to maximizing that reward function (Rafailov et al., 2024). In our case, this
means that running DPO with the above preferences would, in effect, minimize the average error rate
(i.e. Avg-ER), as these preferences are generated by treating correctness (i.e. 1{h(a) = Ŷ = Y })
as a reward function. To target the inconsistency rates introduced in Section 3.2, we propose to
(i) pair factual and counterfactual questions, (ii) prompt the target language model to answer them
simultaneously, and then (iii) elicit preferences based on the joint answer. Formally,
(af[i], acf[i]) ≻ (af[j], acf[j]) ⇐⇒ R(h(af[i]), h(acf[i]);U) > R(h(af[j]), h(acf[j]);U) (11)
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NoŶ0 =

Target LM

Ŷ
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(c) Preference-based CCF

Figure 4: Summary of the proposed fine tuning methods.
Supervised and preference-based counterfactual feed-
back (CF) target correctness: the former by generating
correct answers given each question and the latter by
sampling answers and preferring the correct ones over
the others. Causal consistency feedback (CCF) targets
causal consistency instead: Asking both the factual and
the counterfactual questions within the same dialogue
allows us to elicit preferences according to relationships
between the factual and counterfactual answers.

where R(Ŷ , ŶX′ ;U)=1{N =N̂ }+1{S= Ŝ}
+ 1{AN = ÂN} + 1{AS = ÂS}. We call
this causal consistency feedback (CCF) (see Fig-
ure 4b vs. 4c). CFF explicitly targets Avg-IR
rather than Avg-ER and can still be used directly
with the DPO algorithm.

5 EXPERIMENTS

We begin with a proof-of-concept case study.
We analyze a hand-crafted puzzle to assess
the effectiveness of all fine-tuning techniques
introduced in Section 4 when trained on dif-
ferent types of datasets within the context
of the in-domain causal reasoning scenarios
(§5.1). We also address the research question
posed in Section 1, i.e., to what extent the
performance improvements in causal reasoning
achieved through the fine-tuning process gener-
alize across all the generalization modes (§5.2).
Subsequently, we use three additional real-world
problems to examine our findings (§5.3).

5.1 IN-DOMAIN REASONING

We evaluate all fine-tuning techniques when
trained on various types of demonstrations in
a synthetic in-domain reasoning problem.

Experimental Setup. See Figure 5. The
puzzle describes a candy party. The context is
defined by the four-dimensional random vector
U = (NA, NB , NC , ND) where each element
follows the same uniform distribution U(1, 12).
The causal structure, derived from the narratives,
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Figure 5: Top: Hand-crafted puzzle with the original
factual question, causal structure, and a counterfactual
question. blue and orange arrows show the cause-effect
interventions demonstrated to the model during fine-
tuning and evaluation phases. Bottom: In-domain re-
sults. The y-axis in both figures represents S-IR, while
the x-axes represent F-ER and CF-ER, respectively. We
focus on S-IR because, in this puzzle, the cause is more
sufficient than necessary for producing the effect.

is presented in the middle section of the figure.
We selected A: Anna is happy or not as the cause
(X), and D: Dave is happy or not as the effect
(Y ). The factual questions q(u) are obtained by
randomly drawing values for the four numerical
variables from the distribution U , The counter-
factual questions q̃X′(u) are generated by intro-
ducing an assumption that negates the cause i.e.
if in the context A is “Anna is happy” based on
the value of NA, the injected assumption would
be “suppose that Anna is not happy”, and vice
versa. Since we are assessing the in-domain rea-
soning scenario, the cause-effect demonstration
used during the fine-tuning phase are likewise
employed in the evaluation phase.

We first generate dataset D = {(q(u), af )} ∪
{(q̃X′(u), acf )} for each fine-tuning techniques
introduced in Section 4 following the algo-
rithms shown in Appendix B. Then we fine-
tune the mini version of Phi-3 (Abdin et al.,
2024) on D. We include five baselines: the
base language model (Phi-3 mini) without fine-
tuning (Base), the base model fine-tuned using
the SFT and DPO methods on factual examples
{(q(u), af )} exclusively (SFT-OnlyF and DPO-
OnlyF), and the base model fine-tuned using the
SFT and DPO methods on counterfactual exam-
ples {(q̃X′(u), acf )} exclusively (SFT-OnlyCF
and DPO-OnlyCF). For OnlyF and OnlyCF, we
have doubled the number of contexts sampled
so that every method still has access to the same
number of question-answer examples. As our
proposed methods, we include the base model fine-tuned using SFT, DPO, and CCF methods on both
factual and counterfactual examples (SFT-F&CF, DPO-F&CF, and DPO+CCF).

Results. Figure 5 shows the sufficiency inconsistency rate (S-IR) in relation to the fac-
tual/counterfactual error rates (F/CF-ER) across all approaches.6 SFT and DPO models, trained
exclusively on either factual or counterfactual examples (SFT+OnlyF, SFT+OnlyCF, DPO+OnlyF,
and DPO+OnlyCF) do not improve S-IR, even though they manage to reduce the corresponding
F/CF-ER. However, when given access to both types of examples, DPO+F&CF shows an improve-
ment in S-IR, though this improvement is not as pronounced as the reduction observed in F/CF-ER,
particularly in CF-ER. The SFT+F&CF model shows a significant enhancement in both S-IR and
F-ER, but it fails to make progress in CF-ER. Finally, by directly addressing causal consistency,
with S-IR factored into the reward during fine-tuning, the DPO+CCF model achieves substantial
improvements across F-ER, CF-ER, and S-IR. These results highlight the crucial role of effectively
coordinating factual and counterfactual feedback for advanced reasoning tasks.

5.2 MODES OF GENERALIZATION

In this section, we answer the question “to what extent the performance improvements in causal
reasoning achieved through the fine-tuning process generalize across all the generalization modes
defined in Section 2”. As mentioned in Section 2, an in-domain evaluation alone is inadequate
for fully assessing the success of fine-tuning for reasoning and differentiating it from basic recall.
Therefore, we evaluate all fine-tuning methods in the generalization modes introduced in Section 2.

Experimental Setup. To allow for the problem in Figure 5 to reflect all possible generalization
modes we made slight modifications to the puzzle context, creating two variations: chain NDE and
chain WDE (refer to Structure-2 and Structure-3 in Appendix C.1). The top section in Figure 6

6When evaluating models, we sample 10 answers for each question, which gives us a distribution over ER/IR
(rather than just a point estiamtion).
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Figure 6: Generalization results in the candy party puzzle. Top: Eight scenarios involving three different
causal structures: the bipartite graph {A,B} → {C,D} (Structure-1 in Appendix C.1) as well as the chain
A → B → C with and without a direct effect from A to C (Structure-2 and Structure-3 in Appendix C.1).
blue and orange arrows show the cause-effect interventions demonstrated to the model during fine-tuning and
evaluation phases. Bottom: The causal reasoning ability of the fine-tuned models generalizes most effectively in
inductive demonstrations. However, with common-cause/effect and deductive demonstrations, they no longer
show the same reasoning improvements as observed in the in-domain setting.

displays all the causal structures used for each generalization mode, along with the cause-effect
interventions demonstrated during the fine-tuning and evaluation phases. Based on the findings from
the in-domain reasoning experiments (Section 5.1), where both SFT and DPO fine-tuning methods
showed significantly better performance when provided with both factual and counterfactual examples,
we include here only the methods SFT-F&CF, DPO-F&CF, DPO+CCF, and the Base model.

Results. The bottom section in Figure 6 presents the causal reasoning performance of all systems
across the different generalization modes. We observe that: (i) Common-Cause/Effect. Fine-tuning
based on demonstrations that involve just the target cause or the target effect (but not both as in the
in-domain case) no longer leads to improvements in S-IR (unlike the in-domain case). While we do
see improvements in N-IR, this can be attributed to better recall and not necessarily to better reasoning.
The common-effect case leads to the greater improvement in N-IR precisely because the task of identi-
fying factuals remains the same in this mode of generalization. (ii) Induction. Fine-tuning generalizes
best when performed inductively. This is because relationships involving both the target cause and the
target effect have been demonstrated, albeit not together. (iii) Deductions. While harder than induc-
tion, deduction is also possible as long as there are no direct effects that circumvent the intermediate
variable. If there are such effects, deduction based on a shared cause becomes virtually impossible:
Without any intervention on the intermediate variable, it is challenging to tell how much of the shared
cause’s effect is mediated through the intermediate variable vs. how much of it is not. Meanwhile,
this seems to be identifiable to some extent when interventions on the intermediate variable are
demonstrated as in deduction based on a shared effect (see Appendix G for a more detailed analysis).

5.3 REAL-WORLD PROBLEMS

Experimental Setup. We present three real-world causal reasoning problems: in the Healthcare
domain, we examine breast cancer treatment and develop a simplified problem that determines
how different treatment options—namely, radiotherapy/chemotherapy and surgery—are assigned
to patients based on cancer type, tumor size, and nodal involvement. This model is grounded in a
real-world guideline (MD Anderson Cancer Center) and published statistics on the disease (Orrantia-
Borunda et al., 2022; Sezgın et al., 2020; Carey et al., 2006). In the Engineering domain, we
implement an automatic fault detection algorithm for transmission lines (Reddy et al., 2016). This
algorithm aims to identify the type of fault occurring on a transmission line using three different
measurements. In the Math Benchmarking domain, we select a math question from GSM8K (Cobbe
et al., 2021), a widely used benchmark for evaluating language models on grade school math problems.
A detailed explanation of these three problems, including the context, factual and counterfactual
questions, causal structures, and the cause-effect interventions demonstrated during the fine-tuning
and evaluation phases across different generalization modes, can be found in Appendix C.2, C.3, C.4
respectively. For the real-world problems, we sample the same number of contexts for each method
as this is more likely to be the case in a real-world application, where each context would correspond
to an individual entry (e.g. a single patient in the healthcare domain, see Appendix C for details).
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Table 1: Average generalization performance across three real-
world causal reasoning problems. The scores are normalized
relative to the Base approach’s scores in each generalization
mode. Higher scores indicate a greater number of errors
made by the approach, with scores above 1.0 meaning that the
approach makes more mistakes than the Base model, which
has not undergone any fine-tuning.

Mode Metric
Base OnlyF F&CF (Ours)
Base SFT DPO SFT DPO DPO+CCF

In-Domain Avg-ER 1.00 0.82 0.86 0.42 0.53 0.48
Avg-IR 1.00 0.73 0.72 0.44 0.51 0.47

Common-Cause Avg-ER 1.00 1.35 1.75 1.17 1.62 2.04
Avg-IR 1.00 1.30 1.49 1.14 1.42 1.80

Common-Effect Avg-ER 1.00 0.60 0.71 0.53 0.66 0.64
Avg-IR 1.00 0.49 0.60 0.42 0.53 0.50

Inductive Avg-ER 1.00 0.86 0.79 0.60 0.58 0.69
Avg-IR 1.00 0.74 0.62 0.51 0.50 0.59

Deductive, Cause-B. Avg-ER 1.00 0.70 0.67 0.61 0.58 0.57
Avg-IR 1.00 0.62 0.59 0.53 0.53 0.51

Deductive, Effect-B. Avg-ER 1.00 0.83 0.83 0.90 0.95 0.77
Avg-IR 1.00 0.91 0.87 0.93 0.89 0.76

Results The results for all three prob-
lems across in-domain and different gen-
eralization modes are available in Table 2
in Appendix A. Given the extensive num-
ber of experiments in this table, we have
summarized the Average Error Rate (Avg-
ER) and Average Inconsistency Rate (Avg-
IR) scores in Table 1. For this summary,
we first normalized the scores of each ap-
proach relative to the scores of the cor-
responding Base approach. Then, for
each generalization mode (including the
in-domain scenario), we calculated the av-
erage score of each tested method across
all applicable problems. Not all generaliza-
tion modes can be tested for every problem
due to differences in causal structures, and
the average score includes only the prob-
lems that were tested for each generaliza-
tion mode. In Table 1, higher scores indicate more errors, and scores above 1.0 signify that the
approach makes more mistakes than the Base model. We observe that: (i) In the in-domain scenario,
when the fine-tuning is guided by both factual and counterfactual examples (-F&CF), the language
models show a significant improvement in causal reasoning ability. (ii) Similar to what we observed in
previous experiments, this improvement generalizes to most generalization modes, with the exception
of common-cause and effect-based deduction. (iii) In most of modes, language models trained with
causal consistency feedback (DPO+CCF) demonstrate a lower error and inconsistency rate.

6 RELATED WORK

Reasoning Evaluation. While our work focuses on reasoning elicitation, there is a plethora of
work on reasoning evaluation (Frohberg and Binder, 2021; Wu et al., 2023; Chang et al., 2024).
Parmar et al. (2024) evaluate logical reasoning, Cohn and Hernandez-Orallo (2023) evaluate spatial
reasoning, Gandhi et al. (2024) evaluate social reasoning, and Li et al. (2022); Jin et al. (2023);
Ashwani et al. (2024); Li et al. (2024); Wang (2024) evaluate causal reasoning. Of course, being
able to determine which model is better at reasoning is an important aspect of reasoning elicitation.
We have explored this aspect in Section 3 building on the work of González and Nori (2024). This
allowed us to consider relationships like necessity and sufficiency, which we have shown to require a
higher level of reasoning than simply answering counterfactual prompts.

Counterfactual Frameworks. Counterfactual frameworks have been employed to explore various
aspects of large language models. For instance, Lin et al. (2024b) formulate preference alignment
as a causal inference problem and develop an alternative approach to algorithms like DPO. In Wu
et al. (2021); Nguyen et al. (2024), counterfactual inputs are used to explain a model’s predictions.
Additionally, Kandpal et al. (2023); Zhang et al. (2023b) model memorization through counterfactuals.

Fine-tuning with Factual Feedback. Finally, while we fine-tune language models for reasoning
with counterfactual feedback, previous work has considered fine-tuning for factuality: providing
factually correct answers to questions that do not involve no interventions (Tian et al., 2023; Tong
et al., 2024; Lin et al., 2024a). Khalifa et al. (2020); Korbak et al. (2022a;b) propose methods for
controlled generation, which aim to constrain a model’s answers using binary reward functions.
While they suggest using correctness as the reward function to improve factuality, we have shown that
targeting metrics like causal consistency require more fine-grained feedback (beyond a binary reward).

7 CONCLUSION

This work introduced the problem of fine-tuning for reasoning, along with (i) a taxonomy for general-
ization modes, (ii) multiple metrics that address the limitations of existing performance measures, and
(iii) methods for generating fine-tuning data with counterfactual feedback. We showed that fine-tuning
for reasoning requires both factual and counterfactual examples, and that paring examples related
through a shared context can lead to improvements. A key limitation of our approach is the restriction
of causes and effects to binary variables, which allows us to focus on high-level relationships like
necessity and sufficiency present in human reasoning (see Appendix H for further discussion).
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A BREAKDOWN OF THE RESULTS IN SECTION 5.3

Table 2: Results of Healthcare, Engineering, and Math Benchmarking problems. For some scenarios in Math
Benchmarking, N-IR and AS-IR are equal to 0.00 for all algorithms because the target cause X is never present
without an intervention due to how these scenarios are structured.

Scenario Alg.
Correctness Causal Consistency

F-ER C-ER Avg-ER N-IR S-IR AN-IR AS-IR Avg-IR

H
ea

lth
ca

re
B

re
as

tC
an

ce
rT

re
at

m
en

t

Base 23.57(0.00) 28.93(0.00) 26.25(0.00) 20.62(0.00) 4.34(0.00) 11.47(0.00) 32.01(0.00) 17.11(0.00)

In-domain

SFT-OnlyF 3.12(0.04) 20.82(0.02) 11.97(0.02) 1.50(0.01) 2.09(0.02) 3.01(0.02) 19.93(0.01) 6.63(0.01)
DPO-OnlyF 10.77(1.83) 28.57(2.07) 19.67(1.94) 9.10(2.24) 4.76(0.10) 6.00(0.16) 25.32(1.10) 11.29(0.66)
SFT-F&CF 1.64(0.01) 0.08(0.00) 0.86(0.00) 0.85(0.00) 0.80(0.00) 0.82(0.00) 0.87(0.00) 0.84(0.00)
DPO-F&CF 12.53(5.04) 8.74(1.69) 10.63(3.14) 8.65(3.04) 4.32(0.30) 5.00(0.28) 11.07(4.93) 7.26(1.58)
DPO+CCF 9.55(1.16) 5.16(0.15) 7.36(0.52) 7.97(1.21) 1.70(0.01) 3.59(0.04) 9.31(1.51) 5.64(0.36)

Com-Cause

SFT-OnlyF 48.86(3.27) 38.82(0.91) 43.84(1.65) 42.38(2.82) 10.55(0.10) 13.96(0.03) 45.71(2.06) 28.15(0.65)
DPO-OnlyF 64.56(1.93) 67.95(0.19) 66.25(0.70) 53.01(1.45) 13.20(0.06) 14.25(0.00) 64.77(0.58) 36.31(0.28)
SFT-F&CF 25.99(0.55) 38.14(0.81) 32.07(0.07) 25.83(0.35) 4.10(0.04) 13.07(0.01) 41.42(0.38) 21.10(0.06)
DPO-F&CF 53.92(2.45) 63.62(4.52) 58.77(2.10) 46.27(0.44) 14.09(0.01) 14.44(0.04) 53.23(2.34) 32.01(0.33)
DPO+CCF 80.18(4.78) 72.85(0.21) 76.52(1.55) 70.55(1.67) 15.96(0.03) 14.93(0.00) 68.67(3.67) 42.53(0.69)

Com-Effect

SFT-OnlyF 3.16(0.04) 20.87(0.02) 12.01(0.02) 1.45(0.01) 2.21(0.02) 2.94(0.03) 20.06(0.01) 6.67(0.01)
DPO-OnlyF 5.93(0.02) 30.30(2.44) 18.11(0.54) 11.75(2.24) 3.77(0.00) 4.61(0.00) 21.60(0.03) 10.43(0.12)
SFT-F&CF 1.45(0.01) 20.43(0.02) 10.94(0.00) 1.60(0.00) 0.53(0.00) 1.40(0.00) 19.68(0.01) 5.80(0.00)
DPO-F&CF 2.96(0.03) 22.44(0.02) 12.70(0.00) 1.40(0.01) 2.08(0.03) 4.14(0.01) 19.84(0.00) 6.86(0.00)
DPO+CCF 2.17(0.04) 22.78(0.11) 12.48(0.07) 0.36(0.00) 2.58(0.07) 3.16(0.05) 19.60(0.00) 6.42(0.02)

Deductive
(Cause-Based)

SFT-OnlyF 1.56(0.01) 20.30(0.01) 10.93(0.01) 1.14(0.00) 0.65(0.01) 1.40(0.01) 20.12(0.00) 5.83(0.00)
DPO-OnlyF 18.52(4.41) 32.93(4.36) 25.73(4.34) 13.03(2.76) 6.52(0.21) 6.80(0.20) 30.30(2.82) 14.16(1.11)
SFT-F&CF 1.32(0.00) 22.37(0.00) 11.84(0.00) 1.28(0.00) 0.15(0.00) 3.07(0.00) 20.48(0.00) 6.24(0.00)
DPO-F&CF 4.25(0.14) 24.37(0.14) 14.31(0.12) 1.45(0.04) 3.21(0.09) 5.99(0.09) 20.36(0.03) 7.75(0.04)
DPO+CCF 5.05(0.04) 25.17(0.17) 15.11(0.07) 2.95(0.03) 3.97(0.07) 6.42(0.08) 20.12(0.00) 8.36(0.02)

E
ng

in
ee

ri
ng

Tr
an

sm
is

si
on

L
in

e
Pr

ot
ec

tio
n

Base 16.39(0.00) 27.10(0.00) 21.75(0.00) 13.70(0.00) 27.52(0.00) 2.71(0.00) 13.96(0.00) 14.47(0.00)

In-domain

SFT-OnlyF 2.94(0.05) 29.64(0.06) 16.29(0.01) 4.84(0.02) 26.73(0.00) 0.94(0.02) 2.18(0.01) 8.67(0.00)
DPO-OnlyF 3.76(0.05) 31.30(0.06) 17.53(0.00) 6.63(0.01) 26.42(0.00) 1.00(0.00) 3.23(0.05) 9.32(0.00)
SFT-F&CF 1.39(0.00) 6.43(0.05) 3.91(0.01) 3.27(0.04) 4.32(0.03) 0.46(0.00) 0.93(0.00) 2.25(0.00)
DPO-F&CF 10.23(2.60) 33.48(1.15) 21.86(1.76) 6.94(0.29) 30.13(0.77) 5.34(1.23) 6.87(0.82) 12.32(0.72)
DPO+CCF 7.64(0.89) 23.00(0.60) 15.32(0.71) 6.61(0.12) 19.61(0.77) 4.44(0.32) 4.03(0.37) 8.67(0.32)

Com-Cause

SFT-OnlyF 14.61(0.08) 30.28(0.17) 22.44(0.11) 13.80(0.08) 27.23(0.00) 0.81(0.00) 14.02(0.07) 13.96(0.02)
DPO-OnlyF 11.25(0.15) 30.78(0.20) 21.02(0.18) 11.04(0.15) 26.60(0.00) 0.21(0.00) 11.73(0.16) 12.39(0.04)
SFT-F&CF 14.05(0.10) 34.43(0.15) 24.24(0.12) 13.13(0.06) 32.64(0.18) 0.92(0.01) 13.60(0.06) 15.07(0.05)
DPO-F&CF 12.52(0.17) 31.46(0.10) 21.99(0.11) 10.84(0.12) 31.40(0.12) 1.72(0.08) 11.41(0.11) 13.84(0.06)
DPO+CCF 14.20(0.09) 35.72(0.00) 24.96(0.02) 13.26(0.07) 35.68(0.01) 0.94(0.01) 13.56(0.06) 15.86(0.02)

Com-Effect

SFT-OnlyF 2.71(0.05) 29.26(0.04) 15.99(0.01) 4.39(0.03) 26.73(0.00) 0.78(0.01) 2.07(0.02) 8.49(0.01)
DPO-OnlyF 2.71(0.05) 29.26(0.04) 15.99(0.01) 4.39(0.03) 26.73(0.00) 0.78(0.01) 2.07(0.02) 8.49(0.01)
SFT-F&CF 0.95(0.00) 26.41(0.00) 13.68(0.00) 0.82(0.00) 26.41(0.00) 0.15(0.00) 0.80(0.00) 7.04(0.00)
DPO-F&CF 2.28(0.09) 34.30(1.84) 18.29(0.48) 3.04(0.10) 25.71(0.02) 0.46(0.00) 8.74(1.32) 9.49(0.13)
DPO+CCF 1.51(0.00) 32.98(2.12) 17.25(0.49) 2.41(0.04) 26.55(0.00) 0.22(0.00) 6.50(1.23) 8.92(0.11)

Inductive

SFT-OnlyF 2.58(0.02) 31.10(0.10) 16.84(0.03) 5.85(0.07) 26.41(0.00) 0.57(0.00) 2.38(0.03) 8.80(0.01)
DPO-OnlyF 2.68(0.05) 31.36(0.07) 17.02(0.00) 6.22(0.00) 25.69(0.01) 0.46(0.00) 2.89(0.06) 8.81(0.00)
SFT-F&CF 1.43(0.00) 20.25(0.17) 10.84(0.04) 0.91(0.00) 20.53(0.16) 0.52(0.00) 0.91(0.00) 5.72(0.01)
DPO-F&CF 2.85(0.02) 22.23(0.69) 12.54(0.22) 2.53(0.03) 22.27(0.67) 0.33(0.00) 2.56(0.03) 6.92(0.07)
DPO+CCF 2.34(0.06) 26.23(0.01) 14.29(0.02) 1.37(0.01) 26.03(0.01) 1.05(0.04) 1.47(0.01) 7.48(0.01)

M
at

h
B

en
ch

m
ar

ki
ng

Te
st

in
g

on
:S

→
T

Base 47.35(0.00) 26.32(0.00) 36.84(0.00) 0.00(0.00) 61.50(0.00) 48.24(0.00) 0.00(0.00) 27.44(0.00)

In-domain

SFT-OnlyF 37.21(0.58) 28.91(0.08) 33.06(0.25) 0.00(0.00) 52.17(0.41) 40.10(0.69) 0.00(0.00) 23.07(0.14)
DPO-OnlyF 28.28(0.95) 57.39(3.22) 42.83(1.84) 0.00(0.00) 66.84(1.15) 29.78(0.79) 0.00(0.00) 24.15(0.24)
SFT-F&CF 22.52(0.18) 14.05(0.17) 18.29(0.07) 0.00(0.00) 32.07(0.22) 23.45(0.18) 0.00(0.00) 13.88(0.05)
DPO-F&CF 14.06(0.10) 26.87(1.71) 20.47(0.32) 0.00(0.00) 37.78(1.52) 15.90(0.07) 0.00(0.00) 13.42(0.07)
DPO+CCF 19.38(0.04) 36.13(0.44) 27.75(0.19) 0.00(0.00) 50.89(1.13) 21.03(0.02) 0.00(0.00) 17.98(0.09)

Inductive

SFT-OnlyF 37.25(0.78) 33.46(0.02) 35.36(0.17) 0.00(0.00) 53.39(0.46) 42.11(0.62) 0.00(0.00) 23.88(0.13)
DPO-OnlyF 15.31(0.27) 42.93(0.01) 29.12(0.10) 0.00(0.00) 52.54(0.31) 18.06(0.28) 0.00(0.00) 17.65(0.07)
SFT-F&CF 24.27(0.08) 27.13(0.20) 25.70(0.04) 0.00(0.00) 40.98(0.05) 27.00(0.11) 0.00(0.00) 16.99(0.02)
DPO-F&CF 16.13(1.16) 26.86(1.39) 21.49(0.31) 0.00(0.00) 38.28(0.95) 18.44(1.08) 0.00(0.00) 14.18(0.18)
DPO+CCF 22.21(1.33) 29.94(1.19) 26.07(0.34) 0.00(0.00) 48.44(1.23) 23.51(1.16) 0.00(0.00) 17.99(0.23)

M
at

h
B

en
ch

m
ar

ki
ng

Te
st

in
g

on
:S

→
R

Base 50.25(0.00) 51.11(0.00) 50.68(0.00) 0.00(0.00) 67.30(0.00) 58.65(0.00) 0.00(0.00) 31.49(0.00)

In-domain

SFT-OnlyF 45.16(0.01) 56.90(0.13) 51.03(0.03) 0.00(0.00) 68.02(0.02) 52.95(0.05) 0.00(0.00) 30.24(0.00)
DPO-OnlyF 39.11(0.06) 72.29(0.45) 55.70(0.16) 0.00(0.00) 76.30(0.06) 40.57(0.06) 0.00(0.00) 29.22(0.00)
SFT-F&CF 44.55(0.01) 32.88(0.09) 38.71(0.01) 0.00(0.00) 62.18(0.00) 47.15(0.01) 0.00(0.00) 27.33(0.00)
DPO-F&CF 15.43(3.99) 8.56(0.68) 11.99(1.99) 0.00(0.00) 20.06(5.01) 16.48(3.99) 0.00(0.00) 9.14(1.12)
DPO+CCF 17.12(1.78) 8.06(0.87) 12.59(1.26) 0.00(0.00) 23.48(4.74) 17.88(1.72) 0.00(0.00) 10.34(0.75)

Deductive
(Effect-Based)

SFT-OnlyF 46.17(0.03) 42.46(0.18) 44.31(0.05) 0.00(0.00) 66.31(0.04) 49.46(0.10) 0.00(0.00) 28.94(0.00)
DPO-OnlyF 39.36(0.78) 48.96(2.24) 44.16(0.38) 0.00(0.00) 65.83(0.41) 44.21(1.15) 0.00(0.00) 27.51(0.06)
SFT-F&CF 46.57(0.04) 48.58(1.08) 47.57(0.22) 0.00(0.00) 66.05(0.10) 52.63(0.05) 0.00(0.00) 29.67(0.01)
DPO-F&CF 39.50(0.00) 61.68(4.62) 50.59(1.15) 0.00(0.00) 73.43(0.47) 39.61(0.00) 0.00(0.00) 28.26(0.03)
DPO+CCF 31.05(0.96) 50.27(4.58) 40.66(1.93) 0.00(0.00) 63.75(2.23) 32.92(0.80) 0.00(0.00) 24.17(0.34)

M
at

h
B

en
ch

m
ar

ki
ng

Te
st

in
g

on
:R

→
T

Base 47.35(0.00) 58.82(0.00) 53.08(0.00) 28.77(0.00) 50.11(0.00) 25.69(0.00) 22.44(0.00) 31.76(0.00)

In-domain

SFT-OnlyF 36.07(0.97) 65.96(0.02) 51.01(0.30) 21.32(0.09) 54.11(0.02) 26.60(0.27) 9.97(0.25) 28.00(0.13)
DPO-OnlyF 28.28(0.95) 22.81(0.12) 25.54(0.42) 32.30(0.31) 2.88(0.01) 0.24(0.00) 28.46(0.92) 15.97(0.14)
SFT-F&CF 23.12(0.12) 45.03(0.13) 34.08(0.11) 16.87(0.02) 39.39(0.09) 18.67(0.03) 4.76(0.04) 19.92(0.04)
DPO-F&CF 24.33(2.42) 22.38(0.16) 23.35(0.47) 30.27(0.30) 6.11(0.45) 3.74(0.46) 21.18(1.63) 15.32(0.39)
DPO+CCF 21.03(0.05) 20.91(0.55) 20.97(0.16) 27.75(0.11) 5.52(0.17) 0.83(0.01) 20.58(0.06) 13.67(0.03)

Deductive
(Cause-Based)

SFT-OnlyF 37.87(0.81) 62.75(0.10) 50.31(0.36) 23.38(0.11) 51.63(0.07) 26.27(0.28) 12.13(0.25) 28.35(0.14)
DPO-OnlyF 15.31(0.27) 19.98(0.03) 17.65(0.08) 23.77(0.23) 4.04(0.02) 0.24(0.00) 15.61(0.28) 10.91(0.06)
SFT-F&CF 25.41(0.10) 53.63(0.15) 39.52(0.05) 19.12(0.04) 44.40(0.03) 18.22(0.07) 7.55(0.12) 22.32(0.02)
DPO-F&CF 24.33(1.01) 38.62(6.13) 31.48(2.94) 29.16(0.35) 22.64(5.93) 0.66(0.00) 24.69(1.07) 19.29(1.00)
DPO+CCF 15.97(0.42) 40.45(3.76) 28.21(1.45) 23.14(0.23) 25.35(3.48) 1.85(0.02) 14.88(0.56) 16.31(0.46)
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Table 3: Summary of Healthcare, Engineering, and Math Benchmarking problems. We report the number of
context samples for each generalization mode if that generalization mode is available within the corresponding
problem domain. While we sample 100 contexts for each causal relationship but some generalization modes
(namely induction and deduction) involve training on more than one causal relationship.

Generalization Mode Healthcare Engineering Math Benchmarking

S → T S → R R→ T

In-Domain 100 100 100 100 100
Common-Cause 100 100 (n/a) (n/a) (n/a)
Common-Effect 100 100 (n/a) (n/a) (n/a)
Inductive (n/a) 200 200 (n/a) (n/a)
Deductive (Cause-Based) 400 (n/a) (n/a) (n/a) 200
Deductive (Effect-Based) (n/a) (n/a) (n/a) 200 (n/a)

B DESCRIPTION OF THE ALGORITHMS IN SECTION 4

Algorithm 1 Supervised Counterfactual Feedback

1: Inputs: Demonstrations D = {PXi→Yi}, question templates q, q̃, answer generator H
2: Output: Dataset D = {q, a} of questions and answer pairs

3: D← {}
4: for PXi→Yi ∈ D, n ∈ {1, . . . , N} do
5: u,X, Y, YX′ ∼ PXi→Yi ▷ Sample a context, cause, and potential effects
6: qf ← q(u), qcf ← q̃X′(u) ▷ Generate questions given the context
7: af ← H(qf, YX), acf ← H(qcf, YX′) ▷ Generate answers given the correct outcome
8: D← D ∪ {(qf, af), (qcf, acf)}
9: end for

Algorithm 2 Preference-based Counterfactual Feedback

1: Inputs: Demonstrations D = {PXi→Yi}, question templates q, q̃, answer extractor h, target model ℓ0
2: Output: Dataset D = {(q, a) ≻ (q′, a′)} of preferences over question-answer pairs

3: D← {}
4: for PXi→Yi ∈ D, n ∈ {1, . . . , N} do
5: u,X, Y, YX′ ∼ PXi→Yi ▷ Sample a context, cause, and potential effects
6: qf ← q(u), qcf ← q̃X′(u) ▷ Generate questions given the context
7: for m ∈ {1, . . . ,M} do
8: af[m] ∼ ℓ0(qf), acf[m] ∼ ℓ0(qcf) ▷ Collect answers from the language model
9: ŶX [m]← h(af[m]), ŶX′ [m]← h(acf[m]) ▷ Extract outcome estimates from answers

10: end for
11: for m ∈ {1, . . . ,M}, m′ ∈ {1, . . . ,M} do
12: if YX = ŶX [m] ̸= ŶX [m′] then
13: D← D ∪ {(qf, af[m]) ≻ (qf, af[m

′])} ▷ Elicit factual preferences
14: end if
15: if YX′ = ŶX′ [m] ̸= ŶX′ [m′] then
16: D← D ∪ {(qcf, acf[m]) ≻ (qcf, acf[m

′])} ▷ Elicit counterfactual preferences
17: end if
18: end for
19: end for
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Algorithm 3 Preference-based Causal Consistency Feedback

1: Inputs: Demonstrations D = {PXi→Yi}, question templates q, q̃, answer extractor h, target model ℓ0
2: Output: Dataset D = {(qf, af, qcf, acf) ≻ (q′f , a

′
f , q

′
cf, a

′
cf)} of preferences over dialogues

3: D← {}
4: for PXi→Yi ∈ D, n ∈ {1, . . . , N} do
5: u,X, Y, YX′ ∼ PXi→Yi ▷ Sample a context, cause, and potential effects
6: qf ← q(u), qcf ← q̃X′(u) ▷ Generate questions given the context
7: for m ∈ {1, . . . ,M} do
8: af[m] ∼ ℓ0(qf), acf[m] ∼ ℓ0(qf, af[m], qcf) ▷ Collect answers from the language model
9: ŶX [m]← h(af[m]), ŷX′ [m]← h(acf[m]) ▷ Extract outcome estimates from answers

10: r[m]←R(ŶX [m], ŶX′ [m];u), r[m′]←R(ŶX [m′], ŶX′ [m′];u) ▷ Compute consistency scores
11: end for
12: for m ∈ {1, . . . ,M}, m′ ∈ {1, . . . ,M} do
13: if r[m] ≥ r[m′] then
14: D← D ∪ {(qf, af[m], qcf, acf[m]) ≻ (qf, af[m

′], qcf, acf[m
′])} ▷ Elicit preferences

15: end if
16: end for
17: end for

C DETAILS OF THE EXPERIMENTS

In all our experiments, we specifically used the version of Phi-3-mini available on https:
//huggingface.co/microsoft/Phi-3-mini-128k-instruct. This version has a
context length of 128k and 3.8B parameters, and has been fine-tuned for instruction following.
Table 4 summarizes its performance on various reasoning benchmarks in comparison with other
language models, as reported in the Hugging Face repository. Overall, Phi-3 mini demonstrates
competitive performance on these benchmarks.

Table 4: Reasoning performance of Phi-3-Mini-128K-Ins in comparison to other language models.

Benchmark Phi-3-Mini-128K-Ins Gemma-7B Mistral-7B Mixtral-8x7B Llama-3-8B-Ins GPT3.5-Turbo-1106
ARC Challenge 10-shot 85.5 78.3 78.6 87.3 82.8 87.4
BoolQ 0-shot 77.1 66 72.2 76.6 80.9 79.1
MedQA 2-shot 56.4 49.6 50 62.2 60.5 63.4
OpenBookQA 10-shot 78.8 78.6 79.8 85.8 82.6 86
PIQA 5-shot 80.1 78.1 77.7 86 75.7 86.6
GPQA 0-shot 29.7 2.9 15 6.9 32.4 29.9
Social IQA 5-shot 74.7 65.5 74.6 75.9 73.9 68.3
TruthfulQA (MC2) 10-shot 64.8 52.1 53 60.1 63.2 67.7
WinoGrande 5-shot 71.0 55.6 54.2 62 65 68.8

When collecting datasets, we always sample 100 contexts per causal relationship and generate 10
answers for each question per context. This is with the exception of Section 5.1 where we double
the number of contexts for OnlyF and OnlyCF to end up with the same number question-answer
examples as other methods. In other words, for those experiments, F&CF has access to 100 context
samples with two question-answer examples for each context sample (one factual, one counterfactual).
Meanwhile, OnlyF and OnlyCF have access to 200 context samples with a single question-answer
example for each context (either factual or counterfactual).

This means, for the rest of the experiments, F&CF has more question-answer examples in its training
dataset, but crucially, each method still sees the same number of problem instances. For example, in
the healthcare domain, OnlyF and F&CF sees the same set of breast cancer patients (each patient
corresponding to a context); the training data for F&CF does not include any new patients; and the
additional CF feedback is provided only for the existing patients. Therefore, the comparison between
OnlyF and F&CF remains fair, which would not have been the case if the context variables for the
factual dataset and the counterfactual dataset were sampled independently.

In Section 5.1, we preferred the setup with the same number of question-answer examples across
methods to be absolutely certain that any improvement we see is due to the type of feedback being
provided. In Sections 5.2 and 5.3, we preferred the setup with the same number of context variables
across methods because this is likely to be the case in practice (for instance, if we apply these methods
in a healthcare setting, the number of patients would be constant for each method).
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In order to obtain error bars, we repeat each experiment five times. The extractor h is implemented
using Llama 3 8B with the following prompt:

I will give you a question and its answer. Determine whether the meaning of the
answer is ‘POSITIVE’ or ‘NEGATIVE’. An answer is ‘POSITIVE’ if it contains
phrases like ‘yes’, ‘it holds’, ‘correct’, ‘true’, or similar affirmations. An answer is
‘NEGATIVE’ if it contains phrases like ‘no’, ‘it does not hold’, ‘incorrect’, ‘false’,
or similar negations. Respond only with one word: ‘POSITIVE’ or ‘NEGATIVE’.
Question: ‘{q}’ Answer: ‘{a}’ Is the meaning ‘POSITIVE’ or ‘NEGATIVE’?

Similarly, the answer generator H , in the case of supervised counterfactual feedback, is implemented
using Llama 3 8B with the following prompt:

I will give you a question and the initial word of its answer. Complete the answer
starting form the provided word. Respond only with the complete answer. Question:
{q} Answer: {No/Yes}, ...

C.1 REASONING PROBLEM: PUZZLE

This hand-crafted puzzle, centered around a candy party, has been used in the experiments conducted
in Section 5.1 and 5.2. Based on different generalization modes, we developed three variations of this
puzzle, each featuring distinct causal structures:

Structure-1: Bipartite Graph

• Context: Anna, Bill, Cory, and Dave are going to a party, where the host is going to distribute
candies. Anna will be happy if she gets at least 4 candies. Bill will be happy if he gets at least 6
candies. Cory will be happy if Anna and Bill are both happy or if he gets at least 8 candies. Dave
will be happy if Anna and Bill are both happy or if he gets at least 10 candies. After distributing
the candies, Anna gets {NA}, Bill gets {NB}, Cory gets {NC}, and Dave gets {ND}.

• Factual Question: Is {Anna/Bill/Cory/Dave} happy? Be as concise as possible.

• Interventional Question: Now, suppose that {Anna/Bill/Cory/Dave} {is/is not} happy
regardless of the candy distribution. With this assumption, is {Anna/Bill/Cory/Dave} happy?
Be as concise as possible.

• Causal Relationships:

A = NA ≥ 4 (12)
B = NB ≥ 6 (13)
C = (A ∧B) ∨ (NC ≥ 8) (14)
D = (A ∧B) ∨ (ND ≥ 10) (15)

• Causal Structure:

Structure-2: Chain with No Direct Effect (NDE)

• Context: Anna, Bill, and Cory are going to a party, where the host is going to distribute
candies. Anna will be happy if she gets at least 5 candies. Bill will be happy if Anna is happy
or if he gets at least 7 candies. Cory will be happy if Bill is happy or if he gets at least 9 candies.
After distributing the candies, Anna gets {NA}, Bill gets {NB}, and Cory gets {NC}.

• Factual Question: Is {Anna/Bill/Cory} happy? Be as concise as possible.
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• Interventional Question: Now, suppose that {Anna/Bill/Cory} {is/is not} happy regardless
of the candy distribution. With this assumption, is {Anna/Bill/Cory} happy? Be as concise as
possible.

• Causal Relationships:

A = NA ≥ 5 (16)
B = A ∨ (NB ≥ 7) (17)
C = B ∨ (NC ≥ 9) (18)

• Causal Structure:

Structure-3: Chain With Direct Effect (WDE)

• Context: Anna, Bill, and Cory are going to a party, where the host is going to distribute candies.
Anna will be happy if she gets at least 5 candies. Bill will be happy if Anna is happy or if he
gets at least 7 candies. Cory will be happy if Annd and Bill are both happy or if he gets at least 9
candies. After distributing the candies, Anna gets {NA}, Bill gets {NB}, and Cory gets {NC}.

• Factual Question: Is {Anna/Bill/Cory} happy? Be as concise as possible.

• Interventional Question: Now, suppose that {Anna/Bill/Cory} {is/is not} happy regardless
of the candy distribution. With this assumption, is {Anna/Bill/Cory} happy? Be as concise
as possible.

• Causal Relationships:

A = NA ≥ 5 (19)
B = A ∨ (NB ≥ 7) (20)
C = (A ∧B) ∨ (NC ≥ 9) (21)

• Causal Structure:

C.2 REAL-WORLD REASONING PROBLEM: HEALTHCARE

In Section 5.3 we introduced three real-world problems to validate our experimental findings from
the proof-of-concept puzzle reasoning problem. Here, we offer a more detailed explanation of one of
these real-world reasoning problems—the Healthcare problem.

• Context: There are four types of breast cancer patients (based on their ERPR and HER2
indicators): (1) If a patient is ERPR positive and HER2 negative, they are ‘Luminal A’. All
luminal A patients should undergo surgery. (2) If a patient is ERPR positive and HER2 positive,
they are ‘Luminal B’. Luminal B patients should undergo surgery if their tumor is smaller than
1 cm and there is no nodal involvement. Luminal B patients should undergo therapy if their
tumor is larger than 1 cm or if there is nodal involvement. (3) If a patient is ERPR negative and
HER2 positive, they are ‘Enriched’. Enriched patients should undergo surgery if their tumor is
smaller than 1 cm and there is no nodal involvement. Enriched patients should undergo therapy
only if their tumor is larger than 1 cm (even if there is nodal involvement). (4) If a patient is
ERPR negative and HER2 negative, they are ‘Basal’. Basal patients should undergo surgery
if their tumor is smaller than 1 cm and there is no nodal involvement. Basal patients should
undergo therapy only if their tumor is larger than 1 cm (even if there is nodal involvement).
Jane is ERPR {negative/positive} and HER2 {negative/positive}. Her tumor is {Tcm} cm and
there is {nodal involvement/no nodal involvement}.
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• Factual Question: Will she undergo {surgery/therapy}? Be as concise as possible.

• Possible Interventional Questions: If {Jane had been ERPR positive/Jane had been ERPR neg-
ative/Jane had been HER2 positive/Jane had been HER2 negative/the tumor had been larger than
1 cm/the tumor had been smaller than 1 cm/there had been nodal involvement/there had been no
nodal involvement}, would she have undergone {surgery/therapy}? Be as concise as possible.

• Causal Relationships:

HERPR, HHER2 ∼


(1, 0) with probability 0.50

(1, 1) with probability 0.15

(0, 1) with probability 0.20

(0, 0) with probability 0.15

(22)

Ctype ∼


Luminal A if HERPR ∧ ¬HHER2

Luminal B if HERPR ∧HHER2

Enriched if ¬HERPR ∧HHER2

Basal if ¬HERPR ∧ ¬HHER2

(23)

Tcm ∼


N (µ = 3.07, σ = 2.22) if Luminal A
N (µ = 2.96, σ = 1.45) if Luminal B
N (µ = 2.42, σ = 1.03) if Enriched
N (µ = 3.32, σ = 3.64) if Basal

(24)

T = (Tcm ≥ 1) (25)

N ∼


B(p = 86/251) if Luminal A
B(p = 35/79) if Luminal B
B(p = 18/32) if Enriched
B(p = 41/99) if Basal

(26)

Ysurgery =


1 if Luminal A
¬T ∧ ¬N if Luminal B
¬T ∧ ¬N otherwise

(27)

Ytherapy =


0 if Luminal A
T ∨N if Luminal B
T otherwise

(28)

• Causal Structure and In-domain Fine-tune/Evaluate Relations:
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• Causal Structure and Common-Cause Fine-tune/Evaluate Relations:

• Causal Structure and Common-Effect Fine-tune/Evaluate Relations:

• Causal Structure and Cause-Based Deduction Fine-tune/Evaluate Relations:

C.3 REAL-WORLD REASONING PROBLEM: ENGINEERING

In Section 5.3 we introduced three real-world problems to validate our experimental findings from
the proof-of-concept puzzle reasoning problem. Here, we offer a more detailed explanation of one of
these real-world reasoning problems—the Engineering problem.

• Context: The type of fault on a transmission line is determined through three factors X, Y, and
Z. These factors are ‘close to zero’ if they are less than 0.1. (1) If only one of the factors is
close to zero, it is a line-to-line fault. When there is a line-to-line fault, it is BC fault if factor X
is close to zero, AC fault if factor Y is close to zero, and AB fault if factor Z is close to zero.
(2) If exactly two of the factors are close to zero, it is a line-to-ground fault. When there is a
line-to-ground fault, it is AG fault if factors Y and Z are both close to zero, BG fault if factors
X and Z are both close to zero, and CG fault if factors X and Y are both close to zero. For
some faulty transmission line, X = X, Y = Y, and Z = Z.

• Possible Factual Question: {Is there a line-to-line/line-to-ground fault? / Is the fault type
BC/AC/AB/AG/BG/CG?} Be as concise as possible.

• Possible Interventional Questions: If factor X/Y/Z had been/had not been close to zero,
{would there have been a line-to-line/line-to-ground fault? / would the fault have been type
BC/AC/AB/AG/BG/CG}? Be as concise as possible.

• Causal Relationships:

X ∼ N (µ = X̄, σ = 0.1) (29)
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Y ∼ N (µ = Ȳ , σ = 0.1) (30)

Z ∼ N (µ = Z̄, σ = 0.1) (31)
X0 = (X < 0.1) (32)
Y0 = (Y < 0.1) (33)
Z0 = (Z < 0.1) (34)
LL = (X0 ∧ ¬Y0 ∧ ¬Z0) ∨ (¬X0 ∧ Y0 ∧ ¬Z0) ∨ (¬X0 ∧ ¬Y0 ∧ Z0) (35)
LG = (¬X0 ∧ Y0 ∧ Z0) ∨ (X0 ∧ ¬Y0 ∧ Z0) ∨ (X0 ∧ Y0 ∧ ¬Z0) ∨ (X0 ∧ Y0 ∧ Z0) (36)
BC = LL ∧X0 (37)
AC = LL ∧ Y0 (38)
AB = LL ∧ Z0 (39)
AG = LG ∧ Y0 ∧ Z0 (40)
BG = LG ∧X0 ∧ Z0 (41)
CG = LG ∧X0 ∧ Y0 (42)

where X̄ , Ȳ , and C̄ are drawn randomly from the values reported in Reddy et al. (2016).

• Causal Structure and In-domain Fine-tune/Evaluate Relations:

• Causal Structure and Common-Cause Fine-tune/Evaluate Relations:

• Causal Structure and Common-Effect Fine-tune/Evaluate Relations:

• Causal Structure and Induction Fine-tune/Evaluate Relations:
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C.4 REAL-WORLD REASONING PROBLEM: MATH BENCHMARKING

In Section 5.3 we introduced three real-world problems to validate our experimental findings from
the proof-of-concept puzzle reasoning problem. Here, we offer a more detailed explanation of one of
these real-world reasoning problems—the Math Benchmarking problem.

• Context: Carla is downloading a {Nsize} GB file. Normally she can download 2 GB/minute,
but in 100 minutes, Windows will force a restart to install updates, which takes {Nminutes}
minutes. After the restart, Carla can resume her download.

• Possible Factual Question: {Will Windows force a restart before the download is com-
plete? / Will the download take longer than 120 minutes?} Be as concise as possible.

• Possible Interventional Questions: If {she were downloading a file twice the size / Windows
had forced a restart before the download was complete / Windows had not forced a restart before
the download was complete}, would {Windows have forced a restart before the download was
complete? / the download have taken longer than 120 minutes?} Be as concise as possible.

• Causal Relationships:

Nsize ∼ U(50, 300) (43)
Nminutes ∼ U(10, 30) (44)
S ∼ B(p = 0.5) (45)
Ndownload time = [Nsize ∗ 2 ∗ S +Nsize(1− S)]/2 (46)
R = (Ndownload time ≥ 100) (47)
T = (Ndownload time +R ∗Nminutes) ≥ 120) (48)

• Causal Structure and Induction Fine-tune/Evaluate Relations:

• Causal Structure and Deduction Cause-Based Fine-tune/Evaluate Relations:

• Causal Structure and Deduction Effect-Based Fine-tune/Evaluate Relations:
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D POSSIBLE ALTERNATIVES TO OUR FINE-TUNING APPROACH

D.1 CHAIN-OF-THOUGHT PROMPTING

Responses of a language model can be improved in different ways, not just through fine-tuning. For
instance, one could pursue prompt engineering instead. When eliciting reasoning, our focus has been
fine-tuning while chain-of-thought prompting is a form of prompt engineering. These two approaches
mainly differ in terms of what point they intervene on: Prompt engineering modifies the inputs passed
to the language model whereas fine-tuning modifies the language model itself. Importantly, this
means that the use of these two techniques are largely orthogonal to each other and definitely not
mutually exclusive. In our case, chain-of-thought prompting is not a competing method against
ours but rather a separate avenue for further improvement that could be pursued in conjunction with
fine-tuning. Because of this, we did not consider it as a baseline in our experiments.

Notably, when used to elicit reasoning, chain-of-thought prompting would be subject to the same
evaluation challenge that our fine-tuning approach faces: Examples provided in a chain-of-thought
prompt might lead to more accurate answers for “in-domain” questions, however, this does not mean
the examples was successful in eliciting reasoning unless the accuracy generalizes to new problems
(that require forming novel chains using the same concepts).

D.2 FORMAL REPRESENTATIONS AND DEDICATED SOLVERS

Since the reasoning problems we consider are straightforward to solve once translated into a formal
representation (like the structural equations in Appendix C), an alternative solution strategy could
be to extract such formal representations from the natural language descriptions of the problem
and rely on dedicated solvers to compute outcomes in an exact manner. However, the extraction of
formal representations would remain a bottleneck for performance in such a strategy as off-the-shelf
language models are not effective at this task. For instance, OpenMathInstruct-1 (Toshniwal et al.,
2024) achieves an accuracy of 84.6% on GSM8K by generating “code-interpreter” solutions, which
list the computations performed to arrive at the final answer in a formal language. However, this
required fine-tuning CodeLlama-70B to generate responses in the style of these code-interpreter
solutions using a custom dataset with 18 million problem-to-code examples.

In short, although extracting formal representations (like code-interpreter solutions) could enable
exact computation of answers thereafter, fine-tuning a language model to accurately extract such
representations is likely a more complex task than fine-tuning the model to provide direct answers.
This challenge is especially pronounced for small language models like Phi-3-Mini, which has 3.8B
parameters compared to the 70B of OpenMathInstruct-1. This makes our approach even more suited
to the domain of small language models.

Additionally, our setting poses an even further complication for the formal-representation route: The
reasoning problems we consider are not simple forward computations as in math problems but rather
involve causal systems with multiple possible interventions, each intervention altering the forward
computation necessary to obtain the final answer.

E CLARIFICATION REGARDING THE TERM “GENERALIZATION”

Generalizing from a few examples to a larger input space, potentially involving never-seen-before
inputs as in the case of 2-4 digit multiplication to 5-7 digit multiplication, is a useful and non-trivial
property for a language model to have. This type of generalization remains a challenge within what
we term the “in-domain” problem. In fact, the results in Figure 5 show how DPO+CCF outperforms
other baselines in this regard.

While there are many notions of generalization, what we argue is that reasoning fundamentally
involves breaking a problem down to its basic components and synthesizing them in novel ways
that enable generalization to entirely new problems. In a causal graph, this may correspond to an
understanding of individual edge relations in a way that would enable one to make estimations for
any composite relationship. This is the type of generalization we are interested in. Here, sample
efficiency in learning to solve a fixed problem would not necessarily be indicative of reasoning ability.
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F AN INTUITIVE EXPLANATION OF OUR INCONSISTENCY RATES

An alternative interpretation of the inconsistency rates we introduce is to frame reasoning about
necessity or sufficiency as a classification problem. For instance, focusing on necessity, each context
variable U , along with the cause X and the potential effect Y, YX′ induced by U , needs to be assigned
to one of three classes:

(i) N: The cause and the effect both occurred together, and the cause was necessary for the effect to
occur, meaning the effect would not have occurred otherwise if the cause was prevented. In a
case like this, one might say “For the observed effect, the cause was a necessary condition.”

(ii) N′: The cause and the effect both occurred together, but the cause was not necessary for the effect
to occur, meaning the effect would have occurred anyways even if the cause was prevented. In a
case like this, one might say “For the observed effect, the cause was not a necessary condition.”

(iii) ∅: It is not meaningful to talk about necessity as either the cause or the effect did not occur.
Note that the previous cases take the occurrence of the cause and the effect as a given, and make
statements about what would have happened to the effect if the cause were to be prevented. This
is consistent with Pearl’s definition of PN as a conditional probability with the condition being
X = x and Y = y.

According to the underlying causal model, each context has a corresponding ground-truth “label”
as defined in Equation 6 Given a language model, its answers provide estimates for the unknown
potential outcomes, which in turn imply a prediction of this ground-truth “label”. The necessity
inconsistency rate (N-IR) is the error rate for this classification task (how often the predicted label
differs from the ground-truth label).

G FURTHER ANALYSIS OF THE GENERALIZATION RESULTS

In this section, we expand upon our analysis in Section 5.2, giving more detailed explanations as well
as share new observations.

In Figure 6a, we see that common-effect generalization leads to an asymmetric improvement in N-IR
and S-IR. This is because, in common-effect generalization, the effect of interest is fixed between
training and testing, hence the factual questions regarding this fixed effect remain the same as well
(factual questions do not depend on the cause as there are no interventions involved). Meanwhile, the
cause that is being intervened on changes, hence the fine-tuned model now needs to answer a different
set of counterfactual questions during test time than the ones seen during training time. Therefore, we
would expect common-effect generalization to be more challenging in terms of CF-ER as opposed to
F-ER. Since in our constructed examples, causes tend to be sufficient for effects rather than necessary,
performing well in terms of S-iR is more dependent on counterfactual question answering while N-IR
is more dependent on factual question answering. Most contexts can be dismissed as irrelevant as
far as necessity is concerned (i.e. N = ∅) by estimating the factual outcome to be negative, whereas
determining sufficiency requires determining whether the counterfactual outcome is positive or it is
also negative. Therefore, we see a greater improvement in terms of N-IR.

Across all generalization modes presented in Figure 6, by far the most challenging one is cause-based
deduction with direct effect (“WDE”), where no method strictly improves the base model. This is
due to the problem structure: When A affects C both directly as well as indirectly through B, it is
not possible to separate the two types of effects without seeing any interventions on the intermediary
B. Notice how this stops being an issue for cause-based deduction with no direct effect (“NDE”).
Interestingly, we still see an improvement in terms of N-IR (at the cost of worse performance in
S-IR). This is similar to the previous example: Seeing demonstrations for A → C at least improves
the model’s ability to answer factual questions regarding C, which translates to better F-ER when
reasoning about B → C, which in turn translates to better N-IR as before (B is sufficient for C hence
most contexts can readily be dismissed as irrelevant as far as necessity is concerned just by estimating
the factual outcome correctly).

Finally, when there is no direct effect, we see that cause-based deduction and effect-based deduction
are similarly effective. However, cause-based deduction is slightly better in terms of S-IR whereas
effect-based deduction is slightly better in terms of N-IR. This is again the result of each variable
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being sufficient for the next variable. When reasoning about B → C (cause-based deduction),
determining sufficiency requires estimating the outcome under the intervention B = 0 → 1 when
B = 0. Since A is sufficient for B, this intervention can indirectly be performed through the
intervention A = 0 → 1. However, determining sufficiency requires estimating the outcome under
the intervention B = 1 → 0 when B = 1. This can no longer be achieved consistently through A (it
could still be the case that B = 1 even after the intervention A = 1 → 0). Therefore, S-IR is the
easier metric for cause-based deduction. A similar thing happens when reasoning about A → B
(effect-based deduction). Determining necessity requires observing B = 1 → 0 if we perform the
intervention A = 1 → 0. After performing A = 1 → 0, if we observe C = 1 → 0 instead, we can
still conclude this must be because B = 1 → 0 as B is sufficient for C (i.e. B =⇒ C). However,
determining sufficiency requires observing B = 0 → 1 after the intervention A = 0 → 1. Here, it
can already be the case that C = 1 as B is not a necessary condition for B, preventing us to reason
about B indirectly through C.

H FURTHER DISCUSSION

H.1 WHAT TO DO WHEN CAUSES AND EFFECTS ARE NON-BINARY?

The math benchmarking domain (detailed in Appendix C.4) is a good example of how non-binary
causes and effects can be handled within our formulation. In this domain, we consider a particular
math problem within the GSM8K dataset, which is about Carla downloading a file with a certain
size (denote it with NX ) and how long it would take to download this file in minutes (denote it with
NY ). Note that both of these variables would be non-binary. As an effect, we consider whether the
download takes longer than 120 minutes, that is Y = 1 if NY > 120 and Y = 0 otherwise. As an
intervention, we consider what would have happened if Carla was downloading a file that is twice the
size. For this, we defined X such that X = 1 if the intervention has occurred and X = 0 if it has not;
and the post-intervention file size is given by N ′

X = X · (2NX) + (1−X) ·NX .

Generally, when interested in a non-binary outcome NY , one can consider binary events dependent
on that outcome instead. Similarly, when interested in interventions on a non-binary target NX ,
one can decide on a particular intervention and let the cause X be the binary indicator of whether
that intervention has occurred or not. We mainly focused on binary causes and effects because the
concepts of necessity and sufficiency are the most meaningful for binary variables. However, it is
worth mentioning there is also work that aims to extend these concepts to categorical variables (Li
and Pearl, 2024).

H.2 DEFINING FALSE NECESSITY AND FALSE SUFFICIENCY

We can breakdown necessity and sufficiency inconsistency rates in to finer components such as
false necessity and false sufficiency. In our framework, false necessity and false sufficiency can
be interpreted as the events N̂ = N ∧ N ≠ N and Ŝ = S ∧ S ̸= S respectively. However, notice
that both of these events are the same event as Ŷ ̸= Y ∨ ŶX′ ̸= YX′ , that is either a factual or a
counterfactual error has been made. These failures are already covered by factual and counterfactual
error rates.

Overall, the individual inconsistency rates we introduce, N-IR, S-IR, AN-IR, and AS-IR, together with
the individual error rates, F-ER and CF-ER, are already a finer breakdown of aggregated metrics like
Avg-IR and Avg-ER, both of which represent general accuracy (the former accounts for correlations
between factual and counterfactual errors whereas the latter looks at them independently).
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