
Under review as a conference paper at ICLR 2021

NEUROCHAINS: EXTRACT LOCAL REASONING
CHAINS OF DEEP NEURAL NETS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how to explain the main steps/chains of inference that a deep neural net
(DNN) relies on to produce predictions in a local region of data space. This prob-
lem is related to network pruning and interpretable machine learning but the high-
lighted differences are: (1) fine-tuning of neurons/filters is forbidden: only exact
copies are allowed; (2) we target an extremely high pruning rate, e.g., ≥ 95%; (3)
the interpretation is for the whole inference process in a local region rather than
for individual neurons/filters or on a single sample. In this paper, we introduce an
efficient method, NeuroChains, to extract the local inference chains by optimizing
a differentiable sparse scoring for the filters and layers to preserve the outputs on
given data from a local region. Thereby, NeuroChains can extract an extremely
small sub-network composed of filters exactly copied from the original DNN by
removing the filters/layers with small scores. We then visualize the sub-network
by applying existing interpretation technique to the retained layer/filter/neurons
and on any sample from the local region. Its architecture reveals how the inference
process stitches and integrates the information layer by layer and filter by filter.
We provide detailed and insightful case studies together with three quantitative
analyses over thousands of trials to demonstrate the quality, sparsity, fidelity and
accuracy of the interpretation within the assigned local regions and over unseen
data. In our empirical study, NeuroChains significantly enriches the interpretation
and makes the inner mechanism of DNNs more transparent than before.

1 INTRODUCTION

Deep neural networks (DNNs) greatly reshape a variety of tasks — object classification, semantic
segmentation, natural language processing, speech recognition, robotics, etc. Despite its success
on a vast majority of clean data, DNNs are also well-known to be sensitive to small amounts of
adversarial noises. The lack of sufficient interpretability about their success or failure is one major
bottleneck of applying DNNs to important areas such as medical diagnosis, public health, trans-
portation systems, financial analysis, etc.

Interpretable machine learning has attracted growing interest in a variety of areas. The forms of
interpretation vary across different methods. For example, attribution methods (Bach et al., 2015;
Sundararajan et al., 2017; Shrikumar et al., 2017; Montavon et al., 2017; Kindermans et al., 2017;
Smilkov et al., 2017) produce the importance score of each input feature to the output prediction for
an given sample, while some other methods (Zeiler & Fergus, 2014; Simonyan et al., 2013; Erhan
et al., 2009) aim to explain the general functionality of each neuron/filter or an individual layer re-
gardless of the input sample. Another line of works (Ribeiro et al., 2016; Wu et al., 2018; Hou &
Zhou, 2018) explain DNNs in a local region of data space by training a shallow (e.g., linear) and eas-
ily interpretable model to approximate the original DNN on some locally similar samples. Thereby,
they reduces the problem to explaining the shallow model. These methods essentially reveal the
neuron to neuron correlations (e.g., input to output, intermediate layer/neuron to output, etc), but
they cannot provide an overview of the whole inference process occurring inside the complicated
structure of DNNs.

In this paper, we study a more challenging problem: Can we unveil the major hidden steps of in-
ference in DNNs and present them in a succinct and human-readable form? Solving this problem
helps to answer many significant questions, e.g., which layer(s)/neuron(s) plays the most/least im-

1

Under review as a conference paper at ICLR 2021

portant role in the inference process? Do two similar samples really share most inference steps? Do
all samples need the same number of neurons/layers to locate the key information leading to their
correct predictions? How/when/where does a failure happen during the inference on a DNN? Which
neuron(s)/layer(s)/feature(s) are shared by different samples from the same region even when their
labels differ? Are DNNs using entirely different parts for data from different local regions? Some
of them are related to other problems such as network pruning (Han et al., 2015; Li et al., 2016) and
neural architecture search (NAS) (Zoph & Le, 2017). For example, are winning tickets (Frankle &
Carbin, 2018; Liu et al., 2018) universal over different local regions and classes? Does the weight
sharing scheme in recent NAS methods (Pham et al., 2018; Liu et al., 2019; Ying et al., 2019) limit
the searching space or quality?

L1B1 Combine ALLInput image Conv1 L2B1 L4B3L3B1 L4B1

L4B3C3_456

L4B3SC_1457

L4B3SC_769

L4B3SC_511

L4B1C2_48

L4B1C2_328

L4B1C3_524

L3B1C2_221

L3B1C3_683

L3B1C3_818

L2B1SC_75

L2B1SC_342

L2B1SC_424

L1B1SC_177

L1B1SC_252

Conv1_1

Conv1_40

Conv1_43

ScoreCam[36] RAP[37]

Baselines

Figure 1: Inference chain by NeuroChains for ResNet-
50 (pre-trained on ImageNet) when applied to 20 test
images of “dalmatian” and ”strawberry”. Top: The
sub-network retains only 13/67 layers and 75/26560
filters of the ResNet-50. The scores for selected fil-
ters are represented using the colormap on the top-
right. Middle: The per-layer featuremaps gener-
ated by SMOE (Mundhenk et al., 2019) show a clear
trends of firstly extracting the local patterns (dots on
dalmatian and strawberry) and gradually covering a
global shapes of the classes. Bottom: Filters with the
largest scores are visualized using the method by Er-
han et al. (2009). In shallower layers, L4B1C2 48
and L4B1C3 524 capture a more local black spot pat-
tern of the dalmatian, L3B1C3 683 captures the eyes
and nose patterns; L3B1C3 818 extracts the local color
pattern of strawberry. In the last bottleneck layer,
L4B3SC 769 and L4B3SC 1457 capture the global pat-
terns of dalmatian’s black and white fur; L4B3C3 456
and L4B3SC 511 captures the main shape and color
of strawberry. It shows an inference chain for straw-
berry: L1B1SC 177 → L2B1SC 75 and L2B1SC 342
→ L3B1C3 818 → L4B1C2 328 → L4B3C3 456 and
L4B3SC 511.

We develop an efficient tool called Neu-
roChains to extract the underlying inference
chains of a DNN for a given local data re-
gion. Specifically, we aim to extract a much
smaller sub-network composed of a subset of
neurons/filters exactly copied from the original
DNN and whose output for data from the local
region stays consistent with that of the origi-
nal DNN. In experiments, we assume the data
from the same classes reside in a local region.
While the selected filters explain the key infor-
mation captured by the original DNN when ap-
plied to data from the local region, the archi-
tecture of the sub-network stitches these infor-
mation sequentially, i.e., step by step and layer
by layer, and thus recover the major steps of in-
ference that lead to the final outputs. Despite
its combinatorial nature, we parameterize the
sub-network as the original DNN with an ad-
ditional score multiplied to each filter/layer’s
output featuremap. Thereby, we formulate the
above problem of sub-network extraction as op-
timizing a differentiable sparse scoring of all
the filters and layers in order to preserve the
outputs on all given samples.

The above problem can be solved by an ef-
ficient back-propagation that only updates the
scores with fixed filter parameters. The objec-
tive is built upon the Kullback–Leibler (KL) di-
vergence between the sub-network’s output dis-
tribution and that of the original DNN, along
with an `1 regularization for sparse scores over
filters. We further use a sigmoid gate per layer
to choose whether removing the entire layer.
The gate plays an important role in reducing
the sub-network size since most local regions
do not rely on all the layers. In practice, we fur-
ther apply a thresholding to the sparse scores
to obtain an even smaller sub-network and em-
ploy an additional fine-tuning to the filter scores
on the sub-network. We illustrate the sub-
network’s architecture and visualize its filters
and intermediate-layers’ featuremaps by exist-
ing methods (Mundhenk et al., 2019; Erhan et al., 2009).

NeuroChains is a novel pruning technique specifically designed for interpreting the local inference
chains of DNNs. As aforementioned, it potentially provides an efficient tool to study other problems
in related tasks. However, it has several fundamental differences to network pruning and exist-

2

Under review as a conference paper at ICLR 2021

ing interpretation tasks, which deter methods developed for these two problems from addressing
our problem. Comparing to network pruning: (1) fine-tuning is not allowed in NeuroChains;
(2) it targets a much larger pruning rate for succinct visualization, e.g., ≥ 95% for VGG-19 and
≥ 99% for ResNet-50 on ImageNet with ≤ 200 filters remained; (3) it is for data from a local
region instead of the whole data distribution. Comparing to mainstream interpretation tasks:
(1) NeuroChains produces an interpretation of the entire inference process in a local region (which
may contain different classes) rather than of one neuron/filter or output on/around a single sample;
(2) the sub-network’s architecture provides orthogonal information to the importance of individual
neurons/filters.

2 RELATED WORKS

Interpretable machine learning methods can be mainly categorized into the ones aiming to eval-
uate the importance of each input feature of a single sample and the ones explaining individual
neurons/filters. Approaches in the first category usually rely on certain back-propagation from the
DNN’s output to derive an importance score for each input feature or hidden node. Earlier works
are based on the back-propagated gradients, e.g., deconvolution (Zeiler & Fergus, 2014), back-
propagation (Simonyan et al., 2013) and guided back-propagation (Springenberg et al., 2014). Sun-
dararajan et al. (2017) proposed to (approximately) calculate the integral of the gradients along a
path between a baseline point and the input sample, which ensures the sensitivity and implemen-
tation invariance lacking in some previous methods. More recent methods propose novel back-
propagation rules to directly derive the attribution scores of neurons from output to input, e.g.,
DeepLIFT (Shrikumar et al., 2017), deep Taylor decomposition (Montavon et al., 2017), and layer-
wise relevance propagation (LRP) (Bach et al., 2015).

Methods in the second class treat DNNs as black boxes and seek a simple model to explain how the
DNN’s output changes in a local region. For example, they add perturbations to different parts of
the input to evaluate how the perturbations change the output (Ancona et al., 2017), which reflect
the importance of different parts. Zeiler & Fergus (2014) covered different parts of the input image
with a gray square, which led to different prediction probabilities on the true class. Instead, Zintgraf
et al. (2017) replaced each patch in the input image with the surrounding patch and tracked the
induced changes in the output. In LIME (Ribeiro et al., 2016), Ribeiro et al. trained a sparse linear
model on noisy input-output pairs as a local surrogate approximating the original DNNs, where the
sparse weights are used to explain the importance of input features. As mentioned before, our main
difference to the above methods are we explain DNNs for a local region of multiple samples and we
further explain how DNNs step by step integrate the information of important filters/neurons.

Network pruning (Han et al., 2015; Li et al., 2016) remove redundant neurons/nodes or connec-
tions/weights from a pre-trained DNN and fine-tune the sub-network. Structural pruning removes
whole layers/channels/filters/neurons according to a certain norm of the associated weights (Li et al.,
2016) or sparsity (Hu et al., 2016). In contrast, Frankle & Carbin (2018); Liu et al. (2018) prune
a DNN during its training. Luo et al. (2017) apply pruning to two adjacent convolution layers at
each time to take the dependency between the two layers into account. Several recent works em-
pirically verify “lottery ticket hypothesis”, i.e., there exists sub-networks (i.e., winning tickets) that
can reach comparable generalization performance as the original DNN if re-trained. In contrast, the
sub-network extracted by NeuroChains cannot be fully re-trained since it has to preserve the original
DNN’s filters, and our goal is to retain the generalization performance only for a local region.

3 NEUROCHAINS

3.1 PROBLEM: EXTRACT LOCAL INFERENCE CHAINS AS SUB-NETWORKS

Although the DNNs widely used nowadays are usually composed of hundreds of layers and millions
to billions of hidden nodes. When applied to samples from a local region in data space, it is plausible
that its inference process mainly relies on a small subset of layers/neurons/filters. In this paper,
we verify this conjecture by developing an efficient and practical algorithm, i.e., NeuroChains, to
extract the subset and its underlying architecture as a sub-network whose weights/filters are selected
and exactly copied from the original DNN while its outputs in a given local region retain the ones

3

Under review as a conference paper at ICLR 2021

produced by the original DNN. Although DNNs are usually non-smooth in definition if using a non-
smooth piece-wise activation such as ReLU, when trained with the commonly used techniques, e.g.,
data augmentation, mix-up, dropout, the resulted DNNs are relatively smooth in a sufficiently small
local region.

In order to preserve the original inference chains, we do not allow any fine-tuning or re-training on
any filter or the the weight vector corresponding to any neuron: they can only be exactly copied from
the original DNN. Let F (·; {W `}`=1:L) (a mapping from input to output) denote the original DNN,
W ` represents the set of filters/weight vectors in layer-`, and W `[i] represents the ith filter/weight
vector in layer-`. Any sub-network fulfilling our above requirement can be defined and parame-
terized by an indicator vector M ` per layer, whose each entry is a {0, 1} value indicating whether
retaining the associated filter/neuron in W `. We further define operator ◦ as

(W ` ◦M `)[i] ,

{
W `[i], M `[i] = 1;
0, M `[i] = 0.

(1)

Thereby, {M `}`=1:L defines a qualified sub-network for inference chain and its weights are {W ` ◦
M `}`=1:L, where we extend the operator ◦ to make W ◦M = {W ` ◦M `}`=1:L given the original
DNN’s weights W = {W `}`=1:L. Given a set of samples X drawn from a local region of data
space, we can formulate the problem of finding an inference chain as the following combinatorial
optimization, which aims to find the most sparse indicator M (i.e., the sub-network with the fewest
filters retained) that does not change the outputs of the original DNN for ∀x ∈ X , i.e.,

min
{M`}`=1:L

L∑
`=1

‖M `‖1 s.t. F (x;W) = F (x;W ◦M), ∀x ∈ X . (2)

However, directly solving this combinatorial optimization is impractical since the possible choices
forM ` is of exponential number. In this paper, we relax the 0-1 indicator vectorM ` to a real-valued
score vector S` of the same size. We define an operator � applied to W ` and its associated scores
S` as

(W ` � S`)[i] , S`[i] ·W `[i]. (3)
Note we do not limit entries in S` within [0, 1] due to the possible redundancy among filters in
the original DNN, i.e., there might be filters of similar functionality for the given samples and
a preferred pruning should be able to only preserve one of them and multiply it by the number
of those redundant filters in the sub-network. In addition, less constrains are easier to handle
in optimization and helpful to find sub-network whose outputs are closer to that of the original
DNN, since the class of sub-networks with parameters W � S includes all the sub-networks with
parameters W ◦M . Hence, we relax the challenging combinatorial optimization to the following
unconstrained continuous optimization, i.e.,

min
{S`}`=1:L

1

|X |
∑
x∈X

l(F (x;W), F (x;W � S)) + λ

L∑
`=1

‖S`‖1, (4)

where l(·, ·) is a loss function aiming to minimize the distance between the original DNN’s output
F (x;W) and the sub-network’s output F (x;W � S). In our experiments, for classification, we use
KL-divergence between the output distributions over classes, where the two output distributions are
computed by applying softmax to F (x;W) and F (x;W � S) respectively, i.e.,

l(F (x;W), F (x;W � S)) = DKL(softmax(F (x;W))||softmax(F (x;W � S))). (5)

In addition, empirical evidences (Krueger et al., 2017; Singh et al., 2016) show that for most
samples there exist some layers that can be entirely removed without changing the final prediction.
Hence, only a few hard and confusing samples need more delicate features, while most other
samples can be correctly classified based on simple patterns from shallower layers. Therefore, in
NeuroChains, we apply a sigmoid function with input score α` as a gate G` determining whether
removing the entire layer-` during pruning, i.e.,

G` = 1/
[
1 + exp(−α`/T

)
], (6)

where T is a temperature parameter. With a gate G` applied after each layer-` whose input and
output has the same size (which is common in many DNNs), we can recursively define the input

4

Under review as a conference paper at ICLR 2021

H`+1(·) to the next layer-(`+ 1), i.e., H`+1(x; {W `′ � S`′ , α`′}`′=1:`) ={
G` · F `(H`;W ` � S`) + (1−G`) ·H`(x; {W `′ � S`′ , α`′}`′=1:`−1), if input size = output size
F `(H`;W ` � S`) otherwise

(7)
where F `(H`;W ` � S`) denotes the output of layer-`. The reason to use a gate here is that we
expect to either remove the whole layer or retain it without adding an extra shortcut (which will
change the original DNN’s architecture). We apply a T < 1 to sharpen the gate values. Since
we prefer to remove non-informative layers, in the objective, we add another regularization α` to
encourage the removal of entire layers (because decreasing α reduces G` and thus increase the
chance of layer removal). Therefore, the final optimization for NeuroChains is

min
{S`,α`}`=1:L

1

|X |
∑
x∈X

l(F (x;W), HL+1(x; {W `′�S`
′
, α`

′
}`′=1:L))+λ

L∑
`=1

‖S`‖1+λg

L∑
`=1

α`, (8)

Our objective above is similar to the one used in Network Slimming (Liu et al., 2017) but we
optimize it for a local region (so we can consider to remove layers) and we do not allow fine tuning
on weights W .

3.2 ALGORITHM

Table 1: Information of pre-trained DNNs in this paper.

STATISTICS RESNET-50 VGG-19

TOP-1 TEST ACCURACY 76.5% 72.9%
TEST IMAGES/SUB-NETWORKS 10000/1688 10000/1746
CONVOLUTIONAL FILTERS 26560 4480
PARAMETERS OF CONV-LAYERS 23454912 20018880
PARAMETERS OF FC-LAYERS 2048000 123633664

Our algorithm is simply a stan-
dard back-propagation for the
optimization problem in Eq. (8),
which produces sparse scores
for filters and gate values for
layers. Note the weights in W
are fixed and the backpropaga-
tion only updates S. We initial-
ize the filter scores S = 1 so
W � S = W at the beginning of optimization. We initialize the gate score α` = 0 for all ` = 1 : L
so G` = 0.5 at the beginning, i.e., the probabilities to remove or to retain a layer is equal. For clas-
sification, we set loss l(·, ·) to be the KL-divergence between the output distributions of the original
DNN and the sub-network. After convergence of the optimization, we then apply a simple thresh-
olding to these scores to further remove more filters and layers: (1) we remove the filters with score
under a threshold τ ; (2) we remove layer-` if G` < 0.5. This yields a sufficiently small sub-network
architecture but the scores might be sub-optimal in preserving the original DNN’s outputs within the
local region. Therefore, we further fine-tune the nonzero scores in S (note filters are always fixed),
i.e, the scores for the retained filters/layers, by minimizing Eq. (8) without the two regularizations,
if the first term in Eq. (8) exceeds a threshold t. Given a sub-network produced by NeuroChains,
we then visualize its architecture and scores as the structure of the inference chains. Moreover, we
visualize the retained filters and layers on the chains by their activation patterns and featuremaps,
respectively, using existing interpretation methods (Mundhenk et al., 2019; Erhan et al., 2009).

4 EXPERIMENTS

In experiments, we apply NeuroChains to extract the inference chains of two widely-adopted CNNs
pre-trained on ImageNet, i.e., VGG-19 and ResNet-50. We provide the basic information of the two
DNNs in Table 1. In the following, We will present three quantitative analyses over hundreds of
case studies, which show that (1) NeuroChains is capable to produce sub-networks retaining only
< 5% of filters and meanwhile preserve the outputs of the original DNN in most cases; (2) every
filter selected by NeuroChains is important to preserving the outputs since removing one will leads
to considerable drop in performance; (3) the sub-network extracted based on a finite number of
samples can be generalized to unseen samples in nearby regions. To demonstrate the effectiveness
of NeuroChains in local regions in the non-smooth raw-input space, we evaluate the sub-network on
the adversarial examples of each sample. We also study the firing behaviour of filters in the original
network and the sub-network. We will then provide several detailed and insightful case studies and
visualizations of extracted sub-networks for different local regions.

5

Under review as a conference paper at ICLR 2021

0 100 200 300 400 500 600 700 800
Number of filters after pruning

0.0

0.2

0.4

0.6

0.8

1.0
De

cr
ea

se
 o

f p
ro

ba
bi

lit
y

fo
r t

he
 o

rig
in

al
-D

NN
 p

re
di

ct
ed

 c
la

ss

Figure 2: Left: Size and fidelity (how well the sub-networks preserve the original DNN’s outputs) of 1500
sub-networks extracted by NeuroChains for ResNet-50 in different case studies (local regions). The x-axis
refers to the number of retained filters, while the y-axis is the induced decrease of probability on the original-
DNN predicted class. It shows that NeuroChains can usually find very small sub-networks and meanwhile
preserve the original DNN’s outputs. Right: Faithfulness (filter score and degeneration by removing the
filter) of 783 sub-networks, each extracted by NeuroChains on 20 uniform samples randomly drawn from
two classes. The x-axis refers to the filter scores, while the y-axis denotes the decrease of the sub-network’s
probability on the original-DNN predicted class after removing a filter from the sub-network. It shows that the
sub-networks suffer from more degeneration if removing a filter with higher score (magenta line and the shaded
areas show strong linear correlation between the two). Hence, the scores faithfully reflect the importance of
filters in explaining the original DNNs.

4.1 IMPLEMENTATION DETAILS

20 40 60 80 100 120 140 160 180 200 220 240 260
Number of nearest neighbours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 fi
de

lit
y

Figure 3: Averaged test fidelity (stability) of 1500
sub-networks extracted by NeuroChains for VGG-19
when applied to unseem images in nearby local regions.
For each sub-network and every image used to extract
it, we rank images from the validation set of Deng
et al. (2009) by their distance to the image (in VGG-
19 penultimate-layer’s output space) and obtain its K-
nearest neighbors. We evaluate the test fidelity (accu-
racy of preserving the original DNN’s predicted class)
of the sub-network over these unseem K-NN images for
all the images used to extract it (duplicates removed).
The x-axis refers to 20K since each sub-network is ex-
tracted for 20 samples, while the y-axis is the test fi-
delity averaged over all the 1500 sub-networks.

We implement NeuroChains by Py-
Torch (Paszke et al., 2017). In every case
study, we firstly randomly sample 2 classes and
then randomly sample 10 images from each
class’s images that the original DNN has high
confidence, e.g., ≥ 95%. Note high confidence
does not guarantee the correctness since it
can be associated with a wrong class. We
choose images with high confidence since the
inference on them mostly represent the original
DNN’s inference chains in the region. We
apply inference on those 20 images and their
outputs are used in solving the optimization of
Eq (8) in order to extract the local inference
chain in the form of a sub-network. For models
with shortcuts, e.g., ResNet-50, the sigmoid
gate is applied to prune a bottleneck block
rather than a layer. A layer inside a block will
be removed if the scores of all filters in the
layer are nearly 0.

We use Adam optimizer for both the optimiza-
tion of Eq (8) and fine-tune phases for fil-
ter/layer scores. We use a fixed learning rate 0.005 in the former and 0.01 in the latter. We set
temperature T = 0.2 in the sigmoid gate (Eq. (6)) to encourage the gate valueG` close to either 0 or
1, and the threshold τ to goal scores is set to 0.1 so that the outputs of sub-networks are as consistent
as possible. We only tried a limited number of choices on tens of experiments, and chose the best
combination balancing the fidelity and sub-network size, and then applied it to all other experiments
without further tuning. In particular, we tried τ ∈ {0.01, 0.1, 0.5}, λ ∈ {0.001, 0.005, 0.01, 0.1},
and λg ∈ {1, 2, 5}. For different models, the weights of two penalties in Eq. (8) are different. For
VGG-19, we use λ = 0.007 and λg = 2. While we choose λ = 0.0065 and λg = 0.9 for ResNet-50.

6

Under review as a conference paper at ICLR 2021

This choice performs consistently well and robust on all other experiments. We fine-tune S in the
pruned network if the KL-divergence after training is greater than threshold t = 0.1. The iteration
steps of training and fine-tune is 300 and 50 respectively. We stop training or fine-tuning when the
loss difference is less than 0.02. It costs only ∼ 90s for VGG-19 and ∼ 55s for ResNet50 to extract
a sub-network on a single GPU since we only optimize a few number of scores.

4.2 QUANTITATIVE ANALYSES

In Melis & Jaakkola (2018), they propose three criteria to evaluate the interpretation methods for
DNNs, i.e., faithfulness, stability and explicitness. In this paper, we extend some of their notations
and present three quantitative analyses of NeuroChains over 1500 case studies for different local
regions, i.e., (1) Fidelity: does the sub-network preserve the original DNN’s outputs on the given
samples? how does it change for sub-networks of different sizes? (2) Faithfulness: how much de-
generation on the fidelity will be caused if removing one filter from the sub-network? (3) Stability:
what is the fidelity (the accuracy of preserving the original DNN’s prediction) of the sub-network
on unseen test images from nearby regions? In this paper, we evaluate the fidelity and faithfulness
by the decreasing amount of probability on the original DNN’s predicted class when using the sub-
network for inference; we evaluate the stability by evaluating the test fidelity of the sub-network
over an image’s K-nearest neighbor images from an validation set (details below Figure 14). All the
above metrics are averaged over 1500 sub-networks and across all the images used to extract each
sub-network.

L0
_1

1

L0
_2

9

L0
_3

2

L5
_2

8

L5
_6

3

L5
_8

5

L2
_2

1

L2
_2

6

L2
_3

1

L1
0

_6
5

L1
0

_1
0

5

L1
0

_1
2

2

L1
9

_1
0

3

L1
9

_2
4

0

L1
9

_3
5

8

L2
3

_1
9

8

L2
3

_2
0

5

L2
3

_3
3

6

L2
5

_2
9

4

L2
5

_5
0

6

L2
5

_4
1

3

L3
2

_3
0

L3
2

_3
7

6

L3
2

_4
5

5

L3
2

_3
5

2

L3
4

_4
9

0

L3
4

_5
0

9

L3
4

_4
8

3

L0
L1

0
L1

9
L2

5
L2

3
L3

2
L3

4
L2

C
o

m
b

in
e

A
LL

L5
In

p
u

t
im

ag
e

Sc
o

re
C

am
[3

6
]

R
A

P
[3

7
]

B
as

el
in

es

Figure 4: Inference chain by NeuroChains for VGG-19 when applied to images of “Indigo bunting” and
”sorrel”. Left: The sub-network retains only 9/16 layers and 118/4480 filters of the VGG-19. Middle: In the
SMOE featuremaps, the eyes of both indigo bunting and sorrel, the feathers of indigo bunting, and the legs of
sorrel are gradually located as the key features. Right: In shallow layers, filters extract local patterns like eyes
(L23 198, L23 205 and L25 506) and feathers (L25 294 and L25 413). In the last two layers, L32 30 captures
the eyes of sorrel (big and with eyelids) while L32 352 shows the eyes and the whole head of the bird; L32 455
captures the pattern of sorrel legs; L34 490 captures the contour of sorrel’s main body. It implies an inference
chain for Indigo bunting: L10 105 → L19 103 → L23 205 → L25 506 and L25 294 → L32 352 → L34 483.
The left plot of Figure 2 shows the fidelity for sub-networks of different sizes (measured by the
number of filters) that are extracted by NeuroChains. Note most sub-networks only retain ≤ 1% of
ResNet-50 for succinct visualization but they preserve the outputs of ResNet-50 with high fidelity.

The right plot in Figure 2 reports the faithfulness of extracted sub-networks, i.e., how a sub-
network’s performance in preserving the original DNN’s output degrade if removing one filter from
it, and what is the relationship between this degeneration and the score of the removed filter. The

7

Under review as a conference paper at ICLR 2021

statistics on 1500 sub-networks in Figure 2(right) show that removing even only one filter from the
sub-network can significantly degrade the explanation performance. Hence, NeuroChains usually
find the smallest sub-networks without redundancy among retained filters/layers, i.e., every critical
inference step is retained. Moreover, the degeneration and the score are strongly and positively cor-
related, indicating that our optimized scores faithfully reflect the importance of filters in explaining
the original DNN. We also present another faithfulness study based on a quotient metric defined
below. Let p, q ∈ ∆c (∆c is the probability simplex for c classes) be the output probability vectors
of the original neural net and the extracted sub-network respectively for a same input. We define a
quotient metric to measure the change of class prediction between p and q, i.e.,

Q(p, q) =
q[y]−maxz∈[c],z 6=y q[z]

p[y]−maxz∈[c],z 6=y p[z]
, y ∈ arg max

z∈[c]
p[z], (9)

where y is the predicted class by the original neural net, andQ(p, q) is the quotient of two probability
differences computed respectively on the original neural net and the sub-network. In particular, it
computes the difference of probabilities for class y and the highest-rated other class. The sign of
Q(p, q) indicates whether the predicted class changes (e.g., it changes if Q(p, q) < 0) while the
magnitude of Q(p, q) measures the change in prediction confidence. The result is given in Figure 8
of Appendix.

We report the average stability of 1500 sub-networks extracted by NeuroChains in Figure 14 of
Appendix. It shows that each sub-network can still achieve a high fidelity (the accuracy of preserving
the original DNN’s output) within a relatively large local region (e.g., 100 unseen samples) around
the 20 samples used to extract the sub-network. It therefore indicates that the inference chains
extracted for a finite number of samples by NeuroChains can be applied and generalized to other
unseen samples from the same region or even the nearby regions. So NeuroChains is an effective
solution to the problem raised in the introduction.

In order to evaluate NeuroChains on the local regions in the raw input space, we extract sub-networks
for uniformly random drawn samples and then evaluate the sub-networks on these samples’ adver-
sarial examples generated by two types of attacks: fast gradient sign method (FGSM) and projected
gradient descent (PGD). Figure 5 compares the robustness of the original neural net (LEFT plot)
and the extracted sub-networks (RIGHT plot) under different attacks: each of the plots show the
histogram of the output probability for the ground-truth class on those samples (original and adver-
sarial). The left plot shows that the two types of adversarial attack are very effective on the original
neural net in reducing the probability of ground truth class. In contrast, the right plot shows that the
NeuroChains extracted sub-networks are much more robust to the attacks, because the optimization
in NeuroChains not only removes the irrelevant filters but also strengthens the important filters by
assigning them weights > 1. This demonstrates the effectiveness of NeuroChains when applied
to local regions in the non-smooth raw-input space, and the extracted sub-networks in this case
significantly improves the robustness of the original model in defending adversarial attacks.

Figure 5: Robustness of original model (LEFT) vs. extracted sub-networks (RIGHT) under different attacks.
The firing behaviour of the same filter in the original network and the sub-network is usually differ-
ent since NeuroChains combines similar filters by assigning scores/weights > 1 to some filters. For
this reason, one filter’s featuremap produced in the sub-network is usually a combination of the fea-
turemaps produced by multiple (pruned) filters from the original network, so the correlation between
the same filter’s featuremaps in the two networks can be small. In this way, we can better compress
the networks to sub-networks with much fewer filters that are easier to interpret while preserving
the original network’s inference process. To see this phenomenon, we present two case studies in

8

Under review as a conference paper at ICLR 2021

Figure 6. It shows that each featuremap of the original network’s filter only represents one part of
the object, while the featuremap of the preserved filter in the sub-network combines all the parts to
form a complete representation of the object in the image. More complete quantitative analyses for
both VGG-19 and ResNet-50 can be found in the Appendix.

Figure 6: Firing behaviour (featuremaps) of filters in the original network and the sub-network.
4.3 CASE STUDIES

We present three case studies of the sub-networks extracted by NeuroChains . For Figure 1 and
Figure 4, the data points are from classes which are easy to tell apart while in Figure 7 images
are always mis-classified. More case studies are given in Appendix. The visualization in each case
study is composed of five parts: (1) the sub-network’s architecture and filter scores; (2) the 20 images
from 2 classes used to extract the sub-network. The sub-network is supposed to explain the inference
chains on images from the same local region of those 20 images; (3) one image from each class and
the visualization of the image’s per-layer featuremaps in the sub-network, which is produced by
SMOE (Mundhenk et al., 2019); (4) for comparison, we also present the interpretations produced
by two recent works (Wang et al., 2019; Nam et al., 2019) on the two images; (5) visualization
of each filter retained in the sub-network using Erhan et al. (2009) after zoomed-in. In the caption
below each case study, we highlight some filters/featuremaps and their related class. We also provide
examples of inference chains composed of filters stitched by the sub-network’s architecture. They
show that NeuroChains considerably enrich the explanation details of DNN’s inference process in
a local data region. By connecting the important filters from different layers, the extracted sub-
network highlights the main steps leading to the output prediction.

L0
L1

0
L1

9
L2

3
L2

1
L3

2
L3

4
C

o
m

b
in

e
A

LL
L5

In
p

u
t

im
ag

e L0
_5

2

L0
_2

9

L0
_1

0
L5

_1
4

L5
_8

5

L5
_3

9

L1
0

_1
0

6

L1
0

_1
6

9

L1
0

_2
5

1

L1
4

_2
0

L1
4

_3
0

L1
4

_9
6

L1
9

_3
5

L1
9

_1
4

5

L1
9

_3
6

4

L2
3

_2
1

6

L2
3

_4
4

9

L2
3

_2
2

0

L2
8

_2
8

3

L2
8

_3
7

8

L2
8

_4
7

8

L3
2

_4
5

L3
2

_1
7

4

L3
2

_3
5

1

Sc
o

re
C

am
[3

6
]

R
A

P
[3

7
]

B
as

e
lin

es

Figure 7: Inference chain by NeuroChains for VGG-19 when applied to images of “Castle” and ”Stone Wall”
which confuse DNN models. Left: The sub-network retains only 10/16 layers and 138/4480 filters of the VGG-
19. Middle: In the SMOE featuremaps, the wall of castle and the windows of the wall are gradually located
as the wrong key features. Right: For castle: L14 96 → L19 145 → L23 216 and L23 220 → L28 283
→ L32 351; For stone wall: L14 20 → L19 364 → L23 449 → L28 378 → L32 45. Filters like L19 364,
L23 216 and L28 378 confuse the model and cause wrong predicts since they capture the patterns of both
classes.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. A unified view of gradient-
based attribution methods for deep neural networks. In NIPS 2017-Workshop on Interpreting,
Explaining and Visualizing Deep Learning. ETH Zurich, 2017.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. 2018.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Bo-Jian Hou and Zhi-Hua Zhou. Learning with interpretable structure from rnn. arXiv preprint
arXiv:1810.10708, 2018.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan,
Been Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and patternat-
tribution. arXiv preprint arXiv:1705.05598, 2017.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary
Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron C. Courville, and Chris Pal. Zone-
out: Regularizing rnns by randomly preserving hidden activations. In International Conference
on Learning Representations, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. In Advances in Neural Information Processing Systems, pp. 7775–7784, 2018.

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017.

10

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

Under review as a conference paper at ICLR 2021

T Nathan Mundhenk, Barry Y Chen, and Gerald Friedland. Efficient saliency maps for explainable
ai. arXiv preprint arXiv:1911.11293, 2019.

Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, and Seong-Whan Lee. Relative attributing
propagation: Interpreting the comparative contributions of individual units in deep neural net-
works, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pp. 4095–4104, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 3145–3153, International Convention Centre, Sydney, Australia, 06–
11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/shrikumar17a.
html.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of deep archi-
tectures. In Advances in Neural Information Processing Systems 29, pp. 28–36. 2016.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–
3328. JMLR. org, 2017.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks, 2019.

Mike Wu, Michael C Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi-
Velez. Beyond sparsity: Tree regularization of deep models for interpretability. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97, pp. 7105–7114, 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017. URL
https://arxiv.org/abs/1611.01578.

11

http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
https://arxiv.org/abs/1611.01578

Under review as a conference paper at ICLR 2021

5 APPENDIX

5.1 QUANTITATIVE ANALYSIS

We performed 783 experiments each using 20 samples uniformly drawn from two classes (not only
the high-confidence samples) and achieved 783 new sub-networks by NeuroChains on VGG-19.
We evaluated these newly generated sub-networks using the quotient metric “A quotient of ”diff to
highest scoring other class (extracted)” / ”diff to highest scoring other class (original)” Eq. (9). We
visualized the result in Figure 8: The left plot is the histogram of the quotient computed over all
the 783×20 samples. The histogram shows that most samples keep the original predicted label after
pruning, i.e., NeuroChains can preserve the original DNN’s outputs in most cases. Moreover, the
number of filters preserved in these sub-networks is 157(mean) ± 43(std), which is small enough
to explain. The right plot reports the Faithfulness of NeuroChains in terms of the quotient’s sign.
We remove each filter from each sub-network and report how many samples’ predicted labels are
changed after the removal, i.e., the quotient is negative. Each point in the scatter plot corresponds
to a sub-network, the x-axis is the score of the removed filter given by NeuroChains, and the y-axis
is the proportion of samples with negative quotients. The plot shows a strong linear correlation
between the score of the removed filter and the degradation of faithfulness. Since removing filters
with high scores results in more samples with predicted class changing after pruning, the score given
by NeuroChains measures the importance of filters in DNN inference.

Figure 8: Histogram of the quotient metric in Eq. (9) computed over all the 783×20 samples (LEFT).
Faithfulness of NeuroChains in terms of the quotient’s sign (RIGHT).

We evaluate the stability of NeuroChains using the nearest neighbours from the penultimate-layer
representation space. Because ReLU pattern does not provide an ideal metric to measure the distance
of samples, even in the raw input space: (1) the number of ReLU linearity zones grows exponentially
with the number of hidden nodes. Most ReLU linearity zones are empty and do not contain any real
sample; (2) For the few ReLU linearity zones that do contain samples, each only contains one sample
and by large chance its neighboring linearity zones are empty, and this is true for most practical
cases as empirical studies suggested. So it is almost impossible to find two samples sharing the
same ReLU linearity zone or even close in their ReLU patterns of the first layer; (3) For two ReLU
linearity zones that are only different in one facet of their polyhedra (i.e., only one digit of their
ReLU patterns flips), their corresponding linear models can still be very different (the linear model
is an extreme case of sub-network). Therefore, we speculate that samples close to each other in
terms of their ReLU patterns do not share a sufficiently small sub-network preserving their original
predictions.

That being said, we evaluated each NeuroChains extracted sub-network of VGG-19 using 20 sam-
ples randomly drawn from two classes on the K-th nearest neighbour (NN) of each sample by sorting
the Hamming distance on their ReLU patterns. The K-NN samples’ prediction cannot be well pre-

12

Under review as a conference paper at ICLR 2021

Figure 9: Mean±std of L2 distance in the the penultimate-layer representation space between each
sample and its K-nearest neighbours from the penultimate-layer representation space (blue) and
ReLU pattern space (red).

served on the sub-networks, because the nearest neighbors in terms of ReLU patterns have very
different semantic concepts or classes from the samples that the sub-networks are extracted for.
Hence, the local region of ReLU patterns is not a local region on the smooth data manifold. To see
this, in Figure 9, for each sample, we computed its L2 distance to the ReLU pattern K-NN sample’s
penultimate-layer representation for K = 1, 2, · · · , 10 (the red curve reports mean±std), and we
compared them with the L2 distance to the K-NN in the penultimate-layer representation space (the
blue curve reports mean±std). It shows that the ReLU pattern K-NN has a much larger L2 distance
in the semantic space (i.e., penultimate-layer representation), so it is very different in concepts to
the original sample. Moreover, we show some examples of the ReLU pattern K-NN images and the
penultimate-layer K-NN images for the sample in Figure 10, which show that ReLU pattern K-NN
images are much less related to the original sample.

In Figure 11, we show two case studies of comparing SMOE generated heatmaps for the original
network and the NeuroChains extracted sub-network. We can see that the patterns extracted by the
two networks are consistent and are all critical patterns for the class, e.g., the eyes and fists of kanga-
roos and the feet and face of the horse. However, compared with the original network, these patterns
are strengthened in much shallower layers of the sub-network, producing better interpretations. This
observation is also consistent with the result of analysis on adversarial attacks in Figure 5.

In Figure 12, we compare the capability of preserving the original neural network’s outputs between
NeuroChains and magnitude-based pruning (removing the filters whose output featuremaps’ average
magnitude (L2 norm) over all considered samples is small). In particular, under the same setting of
each experiment in the paper, we prune the original VGG-19 and retain the filters with the largest
featuremap magnitude in each layer, 180 in total (more than 157(mean) ± 43(std) filters for sub-
networks extracted by NeuroChains), and we then fine-tune the filters’ scores/weights as we did for
NeuroChains. Figure 12 shows the histogram of the KL divergence between the original output class
distribution and the one produced by the sub-networks. For sub-networks generated by NeuroChain,
the KL-divergence in most cases stays close to 0, while the output preserving capability of simple
pruning is much worse.

13

Under review as a conference paper at ICLR 2021

Figure 10: Case studies of an image, its 10-nearest neighbours in the output space of penultimate
layer (Top), and its 10-nearest neighbours in the raw input space in terms of Hamming distance
between first-layer ReLU patterns (Bottom).

Figure 11: Case studies of SMOE generated heatmaps for the original network and the NeuroChains
extracted sub-network.

14

Under review as a conference paper at ICLR 2021

Figure 12: Comparison of NeuroChains and magnitude-based pruning on the capability of preserv-
ing the original network’s output distribution (smaller KL divergence means better preservation)
over 783×20 uniform samples.

50 100 150 200 250 300 350 400
Number of filters after pruning

5

4

3

2

1

0

1

Lo
ga

rit
hm

 o
f K

L-
di

ve
rg

en
ce

0 100 200 300 400 500 600 700 800
Number of filters after pruning

5

4

3

2

1

0

1

2

Lo
ga

rit
hm

 o
f K

L-
di

ve
rg

en
ce

Figure 13: Statistics of the output discrepancy between sub-networks extracted by NeuroChains
and the original network: VGG-19 (Left) and ResNet-50 (Right). The x-axis refers to the number
of filters in sub-DNNS, the y-axis is the logrithm of KL-divergence between the output distribu-
tions produced by the sub-networks and the original network. The KL-divergence for most samples
are small, indicating the sub-networks preserve the original network’s output distribution for most
samples.

15

Under review as a conference paper at ICLR 2021

20 40 60 80 100 120 140 160 180 200 220 240
Number of nearest neighbours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 fi
de

lit
y

Figure 14: Histogram of stability of sub-networks extracted by NeuroChains for ResNet-50. The
x-axis refers to 20K for the K-nearest neighbours of the 20 samples used to extract the sub-network)
in the penultimate-layer representation space, while the y-axis is the test fidelity (averaged over all
sub-networks), i.e., the accuracy of sub-networks in preserving the predicted class by the original
network on the unseem K-nearest neighbours.

16

Under review as a conference paper at ICLR 2021

50 100 150 200 250 300 350 400
Number of filters after pruning

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
cr

ea
se

 o
f p

ro
ba

bi
lit

y
fo

r t
he

 o
rig

in
al

-D
NN

 p
re

di
ct

ed
 c

la
ss

Figure 15: Left: Scatterplot with a jointly density estimate of the performance of sub-networks ex-
tracted by NeuroChains for VGG-19. Each point corresponds to a sample. The x-axis refers to the
number of filters in the sub-network, the y-axis measures the decrease of probability on the origi-
nal network predicted class. For VGG-19, most sub-networks’ output probabilities drop very little
regardless of how many filters are retained. Right: Scatterplot with a jointly density estimate of
faithfulness of sub-DNNs extracted by NeuroChains for VGG-19. The x-axis refers to the scaling
score of removed filter, the y-axis is the decrease of average probability for the original-DNN pre-
dicted class compared with the complete sub-DNNs. For VGG-19, it seems the higher the score, the
more the probability drops. The slope of the magenta line is the linear (Pearson) correlation, while
the shaded area around the line represents the confidence interval.

1 0 1 2 3
Score of removed filter

5

4

3

2

1

0

1

2

3

Lo
ga

rit
hm

 o
f K

L-
di

ve
rg

en
ce

Figure 16: Scatterplot with a jointly density estimate of faithfulness of sub-networks extracted
by NeuroChains for VGG-19 (Left) and ResNet50 (Right). The x-axis refers to the scaling score
(weight) of removed filter in the sub-networks, the y-axis is the logrithm of KL-divergence between
the outputs of the new sub-networks (after removal) and the original sub-networks (before removal).
For both VGG-19 and Resnet-50, it shows that the higher the score, the higher the KL-divergence.

17

Under review as a conference paper at ICLR 2021

5.2 MORE DETAILS ABOUT CASE STUDIES

On the sub-network’s architecture, we use “L0” to denote the corresponding convolution layer in
VGG-19 and “L0 1” to denote the first filter from this layer. For ResNet-50, we further use “L1B1”
to denote the first sub-block in the first bottleneck block, “SC” for the shortcut connection and “C1”
for the first convolution layer in the sub-block. The redder the node in the sub-network, the larger
the scaling score, conversely, the bluer the node, the lower the score. More case studies can be
found in the Appendix. In SMOE, Mundhenk et al. propose to measure information at the end of
every feature scale and then combined them into a saliency map. We apply this technique to each
layer of the sub-network since each layer may prefer different features. In each of our case study,
a featuremap-overlaid input image is shown for each layer and for the whole sub-network which is
marked as ”Combine All”. The visualization of each selected filter is achieved by maximizing its
activation w.r.t. the input. Afterward, we shows the patterns that the filter aims to detect which is
independent of the input image.

5.3 CASE STUDIES

18

Under review as a conference paper at ICLR 2021

L0 L10 L19 L25L23 L32 L34L28 Combine ALLL5RAP[37] L30

L34_478

L34_456

L34_184L32_24

L32_353

L32_128

L30_468

L30_62

L30_414

L28_210

L28_283

L28_277

L25_81

L25_488

L25_294

L23_92

L23_410

L23_314

L19_31

L19_69

L19_335

L10_83

L10_125

L10_111

L5_16

L5_122

L5_35

L0_9

L0_11

L0_28

Input image ScoreCam[36]

Baselines

Figure 17: Inference chain by NeuroChains for VGG-19 when applied to images of “bald eagle” and ”castle”.
Top: The sub-network retains only 10/16 layers and 118/4480 filters. Middle: The per-layer featuremaps
generated by SMOE. Since there is nothing similar between bald eagles and castles, it’s easy for VGG-19 to
tell them apart. Different types of feathers are an important feature of eagle and the contour of the castle is
highlighted. Bottom: Filters with the largest scores. In shallower layers, L23 314 and L19 69 capture the
patterns of feathers and eyes of eagle, which are different from other species. L28 277 in the deeper layer
combines the above two patterns. L25 81 identify the half circle of feathers around neck to be key pattern of
eagle. L32 24 and L34 184 can be explained as detectors of the whole head and neck of eagle that combines
all the patterns detected in previous layers. L23 92 shows the pattern of small room with windows. L28 210,
L28 283, L30 62 and L32 24 extract clear patterns of castle. It shows an inference chain for eagle: L10 83 →
L19 69, L23 314 and L25 294 → L28 277 → L30 414 → L32 128 → L34 184. It shows an inference chain
for castle: L10 125 → L19 31 → L23 92 → L28 210 and L28 283 → L30 62 and L30 468 → L32 24 →
L34 478.

19

Under review as a conference paper at ICLR 2021

L0 L10 L19 L23L21 L32 L34 Combine ALLL5Input image

L34_66

L34_79

L34_302

L32_128

L32_403

L32_458

L32_465

L23_269

L23_481

L23_393

L21_184

L21_484

L21_312

L19_358

L19_484

L19_424

L10_20

L10_105

L10_111

L5_14

L5_122

L5_48

L0_11

L0_28

L0_19

ScoreCam[36] RAP[37]

Baselines

Figure 18: Inference chain by NeuroChains for VGG-19 when applied to images of “kangaroo” and ”banana”.
Top: The sub-network retains only 8/16 layers and 148/4480 filters. Middle: The per-layer featuremaps
generated by SMOE. The black ball-shape pattern exists both in kangaroos and bananas. The hands and eyes
of kangaroos are highlighted, and the ends of bananas are lit up. These parts are all black and round in images.
Bottom: Filters with the largest scores. L21 312, L23 269, L23 393 are all related to the black round pattern.
L21 312 shows the basic black round pattern. L23 269 looks like the eyes and noses of animals while in
L23 393 these nodes are closely arranged like a hand of bananas. To better distinguish this two class, VGG-19
introduces some key patterns for each class. L32 465 and L34 79 depict the whole image of hands of bananas.
L34 66 combine the previous features and show the pattern of animal faces. It shows an inference chain for
kangaroo: L10 105 → L19 358 → L21 312 and L21 484 → L23 269 → L32 403 → L34 66.

20

Under review as a conference paper at ICLR 2021

L1B1 Combine ALLInput image Conv1 L2B1 L4B3L3B1 L4B1

L4B3C1_247

L4B3C2_107

L4B3SC_1538

L4B1C3_1010

L4B1C3_769

L4B1C1_274L3B1C3_857

L3B1C3_806

L3B1C1_154

L2B1SC_53

L2B1SC_193

L2B1SC_342

L1B1C3_78

L1B1C3_67

L1B1C1_39

Conv1_24

Conv1_51

Conv1_37

ScoreCam[36] RAP[37]

Baselines

Figure 19: Inference chain by NeuroChains for Resnet-50 when applied to images of “pineapple” and ”leop-
ard”. Top: The sub-network retains only 17/67 layers and 157/26560 filters. Middle: The per-layer fea-
turemaps generated by SMOE. Both the body and leaves of the pineapple are highlighted. The special skin
texture is enough for ResNet-50 to identify leopard. Bottom: Filters with the largest scores. By observ-
ing the patterns in the activation maximization result and the highlighted regions in the featuremap, we can
find that some filters extract different local patterns appearing at different parts of pineapple. For example,
L4B1C3 1010 capture the texture and the color of the main body, L3B1C1 154 capture the patterns of the leaf
part. It is interesting to see that L4B3C2 107 is the accurate descriptor of the main body and the leaf parts
and thus provide nearly orthogonal features. For leopard, the skin marked with black spots is its most obvious
feature. L4B1C1 274 extracts the basic texture and color while L4B3SC 1538 and L4B3C1 247 really show
the skin pattern of the leopard. It shows an inference chain for pineapple: L2B1SC 342 → L3B1C3 806 and
L3B1C1 154 → L4B1C3 1010 → L4B3C2 107.

21

Under review as a conference paper at ICLR 2021

L1B1 Combine ALLInput image Conv1 L2B1 L4B3L3B1 L4B1 L4B2

L4B3C3_1726

L4B3C2_487

L4B3C2_467

L4B2SC_570

L4B2SC_1747

L4B2SC_1796

L4B1C2_232

L4B1C2_323

L4B1C1_278L3B1C2_165

L3B1C3_488

L3B1C3_774

L2B1SC_145

L2B1SC_185

L2B1SC_396

L1B1C1_34

L1B1C2_6

L1B1C3_160

Conv1_0

Conv1_36

Conv1_45

ScoreCam[36] RAP[37]

Baselines

Figure 20: Inference chain by NeuroChains for ResNet-50 when applied to images of “chain” and ”volcano”.
Top: The sub-network retains only 18/67 layers and 114/26560 filters. Middle: In the SMOE featuremaps,
not only the main body of the volcano, but the crater is also highlighted as key features to identify volcanos.
Bottom: In the first several layers, L3B1C2 165, L3B1C3 774 and L3B1C3 488 extract basic patterns such as
curved steel bars and the arc of mountains, whilst deeper layers focus on more global patterns such as different
orientations of the folded strata (L4B1C1 278 and L4B2SC 570) and chains (L4B2SC 1796 and L4B3C2 467).
L4B3C2 487 captures the features when lava erupts from volcanos as in the penultimate image. It reveals an
inference chain for volcano: L2B1SC 145 → L3B1C3 488 → L4B1C1 278 → L4B2SC 570 → L4B3C2 487.

22

	Introduction
	Related Works
	NeuroChains
	Problem: Extract Local Inference Chains as Sub-networks
	Algorithm

	Experiments
	Implementation Details
	Quantitative Analyses
	Case Studies

	Appendix
	Quantitative Analysis
	More Details about Case Studies
	Case Studies

