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ABSTRACT

Convolutional neural networks typically contain several downsampling operators,
such as strided convolutions or pooling layers, that progressively reduce the reso-
lution of intermediate representations. This provides some shift-invariance while
reducing the computational complexity of the whole architecture. A critical hy-
perparameter of such layers is their stride: the integer factor of downsampling. As
strides are not differentiable, finding the best configuration either requires cross-
validation or discrete optimization (e.g. architecture search), which rapidly be-
come prohibitive as the search space grows exponentially with the number of
downsampling layers. Hence, exploring this search space by gradient descent
would allow finding better configurations at a lower computational cost. This
work introduces DiffStride, the first downsampling layer with learnable strides.
Our layer learns the size of a cropping mask in the Fourier domain, that effectively
performs resizing in a differentiable way. Experiments on audio and image clas-
sification show the generality and effectiveness of our solution: we use DiffStride
as a drop-in replacement to standard downsampling layers and outperform them.
In particular, we show that introducing our layer into a ResNet-18 architecture al-
lows keeping consistent high performance on CIFAR10, CIFAR100 and ImageNet
even when training starts from poor random stride configurations. Moreover, for-
mulating strides as learnable variables allows us to introduce a regularization term
that controls the computational complexity of the architecture. We show how this
regularization allows trading off accuracy for efficiency on ImageNet.

1 INTRODUCTION

Convolutional neural networks (CNNs) (Fukushima, 1980; LeCun et al., 1989) have been the
most widely used neural architecture across a wide range of tasks, including image classification
(Krizhevsky et al., 2012; He et al., 2016a; Huang et al., 2017; Bello et al., 2021), audio pattern recog-
nition (Kong et al., 2020), text classification (Conneau et al., 2017), machine translation (Gehring
et al., 2017) and speech recognition (Amodei et al., 2016; Sercu et al., 2016; Zeghidour et al., 2018).
Convolution layers, which are the building block of CNNs, project input features to a higher-level
representation while preserving their resolution. When composed with non-linearities and normal-
ization layers, this allows for learning rich mappings at a constant resolution, e.g. autogressive image
synthesis (van den Oord et al., 2016). However, many tasks infer high-level low-resolution infor-
mation (identity of a speaker (Muckenhirn et al., 2018), presence of a face (Chopra et al., 2005))
by integrating over low-level, high-resolution measurements (waveform, pixels). This integration
requires extracting the right features, discarding irrelevant information over several downsampling
steps. To that end, pooling layers and strided convolutions aggressively reduce the resolution of their
inputs, providing several benefits. First, they act as a bottleneck that forces features to focus on in-
formation relevant to the task at hand. Second, pooling layers such as low-pass filters (Zhang, 2019)
improve shift-invariance. Third, a reduced resolution implies a reduced number of floating-point
operations and a higher receptive field in the subsequent layers.

∗This work was conducted while interning at Google.
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Pooling layers can usually be decomposed into two basic steps: (1) computing local statistics densely
over the whole input (2) sub-sampling these statistics by an integer striding factor. Past work has
mostly focused on improving (1), by proposing better alternatives to max and average pooling that
avoid aliasing (Zhang, 2019; Fonseca et al., 2021), preserve the important local details (Saeedan
et al., 2018), or adapt to the training data distribution (Gulcehre et al., 2014; Lee et al., 2016). Ob-
serving that integer strides reduce resolution too quickly (e.g. a (2, 2) striding reduces the output
size by 75%), Graham (2014) proposed fractional max-pooling, that allows for fractional (i.e. ra-
tional) strides, allowing for integration of more downsampling layers into a network. Similarly,
Rippel et al. (2015) introduce spectral pooling which, by cropping its inputs in the Fourier domain,
performs downsampling with fractional strides while emphasizing lower frequencies.

While fractional strides give more flexibility in designing downsampling layers, they increase the
size of an already gigantic search space. Indeed, as strides are hyperparameters, finding the best
combination requires cross-validation or architecture search (Zoph & Le, 2017; Baker et al., 2017;
Tan et al., 2019), which rapidly become infeasible as the number of configurations grows expo-
nentially with the number of downsampling layers. This led Zoph & Le (2017) not to search for
strides in most of their experiments. Talebi & Milanfar (2021) and Jin et al. (2021) proposed a
neural network that learns a resizing function for natural images, but the scaling factor (i.e. the
stride) still required cross-validation. Thus, the nature of strides as hyperparameters — rather than
trainable parameters — hinders the discovery of convolutional architectures and learning strides by
backpropagation would unlock a virtually infinite search space.

In this work, we introduce DiffStride, the first downsampling layer that learns its strides jointly with
the rest of the network. Inspired by Rippel et al. (2015), DiffStride casts downsampling in the spatial
domain as cropping in the frequency domain. However, and unlike Rippel et al. (2015), rather than
cropping with a fixed bounding box controlled by a striding hyperparameter, DiffStride learns the
size of its cropping box by backpropagation. To do so, we propose a 2D version of an attention
window with learnable size proposed by Sukhbaatar et al. (2019) for language modeling. On five
audio classification tasks, using DiffStride as a drop-in replacement to strided convolutions improves
performance overall while providing interpretability on the optimal per-task receptive field. By
integrating DiffStride into a ResNet-18 (He et al., 2016a), we show on CIFAR (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009) that even when initializing strides randomly, our model
converges to the best performance obtained with the properly cross-validated strides of He et al.
(2016a). Moreover, casting strides as learnable parameters allows us to propose a regularization that
directly minimizes computation and memory usage. We release our implementation of DiffStride1.

2 METHODS

We first provide background on spatial and spectral pooling, and propose DiffStride for learning
strides of downsampling layers. We focus on 2D CNNs since they are generic enough to be used
for image (LeCun et al., 1989; Krizhevsky et al., 2012; He et al., 2016a) and audio (Amodei et al.,
2016; Kong et al., 2020) processing (taking time-frequency representations as inputs). However,
these methods are equally applicable to the 1D (e.g. time-series) and 3D (e.g. video) cases.

2.1 NOTATIONS

Let x ∈ RH×W , its Discrete Fourier Transform (DFT) y = F(x) ∈ CH×W is obtained through the
decomposition on a fixed set of basis filters (Lyons, 2004):

F(x)mn =
1√
HW

H−1∑
h=0

W−1∑
w=0

xhwe
−2πi(mh

H +nw
W ),∀m ∈ {0, . . . ,H − 1},∀n ∈ {0, . . . ,W − 1}.

(1)

The DFT transformation is linear and its inverse is given by its conjugate F(.)−1 = F(.)∗. The
Fourier transform of a real-valued signal x ∈ RH×W being conjugate symmetric (Hermitian-
symmetry), we can reconstruct x from the positive half frequencies for the width dimension and
omit the negative frequencies (ymn = y∗(H−m)modH,(W−n)modW ). In addition, the DFT and its in-
verse are differentiable with regard to their inputs and the derivative of the DFT (resp. inverse DFT)

1https://github.com/google-research/diffstride
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is its conjugate linear operator, i.e. the inverse DFT (resp. DFT). More formally, if we consider
L : CH×W −→ R as a loss taking as input the Fourier representation y, we can compute the
gradient of L with regard to x, by using the inverse DFT:

x ∈ RH×W , y = F(x), ∂L
∂x

= F∗(∂L
∂y

) = F−1(∂L
∂y

). (2)

We denote by L the total number of convolution layers in a CNN architecture and each layer is
indexed by l. The ◦ symbol represents the element-wise product between two tensors, b.c is the
floor operation and ⊗ the outer product between two vectors. S represents the stride parameters,
and sg is the stop gradient operator (Bengio et al., 2013; Yin et al., 2019), defined has the identity
function during forward pass and with zero partial derivatives.

2.2 DOWNSAMPLING IN CONVOLUTIONAL NEURAL NETWORKS

A basic mechanism for downsampling representations in a CNN is strided convolutions which
jointly convolve inputs and finite impulse response filters and downsample the output. Alterna-
tively, one can disentangle both operations by first applying a non-strided convolution followed by a
pooling operation that computes local statistics (e.g. using an average, max (Boureau et al., 2010))
before downsampling. In both settings, downsampling does not benefit from the global structure of
its inputs and can discard important information (Hinton, 2014; Saeedan et al., 2018). Moreover,
and as observed by Graham (2014), the integer nature of strides only allows for drastic reductions
in resolution: a 2D-convolution with strides S = (2, 2) reduces the dimension of its inputs by 75%.
Furthermore, stride configurations are cumbersome to explore as the number of stride combinations
grows exponentially with the number of downsampling layers. This means that cross-validation can
only explore a limited subset of the stride hyperparameter configurations. This limitation is likely to
translate into lower performance, as Section 3.2 shows that an inappropriate choice of strides for a
ResNet-18 architecture can account for a drop of > 18% in accuracy on CIFAR-100.

2.3 SPECTRAL POOLING

Energy of natural signals is typically not uniformly distributed in the frequency domain, with sig-
nals such as sounds (Singh & Theunissen, 2003), images (Ruderman, 1994) and surfaces (Kuroki
et al., 2018) concentrating most of the information in the lower frequencies. Rippel et al. (2015)
build on this observation to introduce spectral pooling which alleviates the loss of information of
spatial pooling, while enabling fractional downsizing factors. Spectral pooling also preserves low
frequencies without aliasing, a known weakness of spatial/temporal convnets (Zhang, 2019; Ribeiro
& Schön, 2021).

We consider an input x ∈ RH×W and strides S = (Sh, Sw) ∈ [1, H) × [1,W ). First, the DFT is
computed y = F(x) ∈ CH×W and for simplicity we assume that the center of this matrix is the
DC component — the zero frequency. Then, a bounding box of size b HSh

c × bWSw
c crops this matrix

around its center to produce ỹ ∈ Cb
H
Sh
c×b W

Sw
c. Finally, this output is brought back to the spatial

domain with an inverse DFT: x̃ = F−1(ỹ) ∈ Rb
H
Sh
c×b W

Sw
c. In practice, x is typically a multi-

channel input (i.e. x ∈ RH×W×C) and the same cropping is applied to all channels. Moreover,
since x is real-valued and thanks to Hermitian symmetry (see Section 2.1 for more details), only the
positive half of the DFT coefficients are computed, which allows saving computation and memory
while ensuring that the output x̃ remains real-valued.

Unlike spatial pooling that requires integer strides, spectral pooling only requires integer output di-
mensions, which allows for much more fine-grained downsizing. Moreover, spectral pooling acts
as a low-pass filter over the entire input, only keeping the lower frequencies i.e. the most relevant
information in general and avoiding aliasing (Zhang, 2019). However, and similarly to spatial pool-
ing, spectral pooling is differentiable with respect to its inputs but not with respect to its strides.
Thus, one still needs to provide S as hyperparameters for each downsampling layer. In this case,
the search space is even bigger than with spatial pooling since strides are not constrained to integer
values anymore.

2.4 DIFFSTRIDE

To address the difficulty of searching stride parameters, we propose DiffStride, a novel downsam-
pling layer that allows spectral pooling to learn its strides through backpropagation. To downsample
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Figure 1: DiffStride forward and backward pass, using a single-channel image. We only compute the
positive half of DFT coefficients along the horizontal axis due to conjugate symmetry. The zoomed
frame shows the horizontal mask maskw(Sw,W,R)(n). Here S = (Sh, Sw) = (2.6, 3.1).

x ∈ RH×W , DiffStride performs cropping in the Fourier domain similarly to spectral pooling. How-
ever, instead of using a fixed bounding box, DiffStride learns the box size via backpropagation. The
learnable boxW is parametrized by the shape of the input, a smoothness factor R and the strides.
We design this maskW as the outer product between two differentiable 1D masking functions (de-
picted in the lower right corner of Figure 1), one along the horizontal axis and one along the vertical
axis. These 1D masks are directly derived from the adaptive attention span introduced by Sukhbaatar
et al. (2019) to learn the attention span of self-attention models for natural language processing. Ex-
ploiting the conjugate symmetry of the coefficients, we only consider positive frequencies along the
horizontal axis, while we mirror the vertical mask around frequency zero. Therefore, the two masks
are defined as follows:

maskh(Sh,H,R)(m) = min

[
max

[
1

R
(R+

H

2Sh
− |H

2
−m|), 0

]
, 1

]
,m ∈ [0, H] (3)

maskw(Sw,W,R)(n) = min

[
max

[
1

R
(R+

W

2Sw
+ 1− n), 0

]
, 1

]
, n ∈ [0,

W

2
+ 1] (4)

where S = (Sh, Sw) are the strides and R an hyperparameter that controls the smoothness of the
mask. We build the 2D differentiable maskW as the outer product between the two 1D masks:

W(Sh, Sw, H,W,R) = maskh(Sh,H,R) ⊗maskw(Sw,W,R) (5)

We useW in two ways: (1) we apply it to the Fourier representation of the inputs via an element-
wise product, which performs low-pass filtering (2) we crop the Fourier coefficients where the mask
is zero (i.e. the output has dimensions b HSh

+ 2×Rc × bWSw
+ 2×Rc).

The first step is differentiable with respect to strides S, however the cropping operation is not.
Therefore, we apply a stop gradient operator (Bengio et al., 2013) to the mask before cropping. This
way, gradients can flow to the strides through the differentiable low-pass filtering operation, but not
through the non-differentiable cropping. Finally, the cropped tensor is transformed back into the
spatial domain using an inverse DFT. All these steps are summarized by Algorithm 1 and illustrated
on a single channel image in the Figure 1.

During training we constrain strides S = (Sh, Sw) to remain in [1, H) × [1,W ). When x is a
multi-channel input (i.e. x ∈ RH×W×C), we learn the same strides S for all channels to ensure
uniform spatial dimensions across channels. In spatial and spectral pooling, strides are typically
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Algorithm 1: DiffStride layer

Inputs : Input x ∈ RH×W , strides S = (Sh, Sw) ∈ [1, H)× [1,W ), smoothness factor R.
Output: Downsampled output x̃ ∈ Rb

H
Sh

+2×Rc×b W
Sw

+2×Rc

1 y ←− F(x) . Project input to the Fourier domain.
2 mask←−W(Sh, Sw, H,W,R) . Construct the mask. See Equation 5.
3 ymasked ←− y ◦mask . Apply the mask as a low-pass filter.
4 ycropped ←− Crop(ymasked, sg(mask)) . Crop the tensor with the mask after stopping gradients.
5 x̃←− F−1(ycropped) . Return to the spatial domain.

3x3 Conv
Strides=(2,2)

3x3 Conv
Strides=(1,1)

3x3 Conv
Strides=(2,2)

(a) Residual block with a strided
convolution.

3x3 Conv
Strides=(1,1)

3x3 Conv
Strides=(1,1)

3x3 Conv
Strides=(1,1)

DiffStride with
Strides=

DiffStride with
Strides=

(b) Residual block with a shared
DiffStride layer.

Figure 2: Comparison side by side of the shortcut blocks in classic ResNet architectures with strided
convolutions, and with DiffStride that learns the strides of the block.

tied along the spatial axes (i.e. Sw = Sh), which we can also do in DiffStride by sharing a single
learnable stride on both dimensions. However, our experiments in Section 3 show that learning
specific strides for the vertical and horizontal axis is beneficial, not only when processing time-
frequency representations of audio, but also — more surprisingly— when classifying natural images.
Adding an hyperparameter R to each downsampling layer would conflict with the goal of removing
strides as hyperparameters. Thus, not only we use a single R value for all layers, but we found no
significant impact of this choice and all our experiments use R = 4. While we focus on the 2D case,
using a single 1D mask allows deriving DiffStride in 1D CNNs, while performing the outer product
between three 1D masks allows applying DiffStride to 3D inputs.

2.4.1 RESIDUAL BLOCK WITH DIFFSTRIDE

Unlike systems that only feed outputs of the lth layer to the (l + 1)th (Krizhevsky et al., 2012),
ResNets (He et al., 2016a;b) introduce skip-connections that operate in parallel to the main branch.
ResNets stack two types of blocks: (1) identity blocks that maintain the input channel dimension
and spatial resolution and (2) shortcut blocks that increase the output channel dimension while
reducing the spatial resolution with a strided convolution (see Figure 2a). We integrate DiffStride
into these shortcut blocks by replacing strided convolutions by convolutions without strides followed
by DiffStride. Besides, sharing DiffStride strides between the main and residual branches ensures
that their respective outputs have identical spatial dimensions and can be summed (See Figure 2b).

2.4.2 REGULARIZING COMPUTATION AND MEMORY COST WITH DIFFSTRIDE

The number of activations in a network depends on the strides and learning these parameters gives
control over the space and time complexity of an architecture in a differentiable manner. This con-
trasts with previous work, as measures of complexity such as the number of floating-point operations
(FLOPs) are typically not differentiable with respect to the parameters of a model and searching for
efficient architectures is done via high-level exploration (e.g. introducing separable convolutions
(Howard et al., 2017)), architecture search (Howard et al., 2019; Tan & Le, 2019) or using continu-
ous relaxations of complexity (Paria et al., 2020).

A standard 2D convolution with a square kernel of size k2 and C ′ output channels has a computa-
tional cost of k2×C×C ′×H×W when operating on x ∈ RH×W×C . Its memory usage— in terms
of the number of activations to store— is C ′ × H ×W . Considering a fixed number of channels
and kernel size, both the computational complexity and memory usage of a convolution layer are
thus linear functions of its input size H ×W . This illustrates our argument made in Section 1 that
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downsampling does not only improve performance by discarding irrelevant information, but also
reduces the complexity of the upper layers. More importantly, in the context of DiffStride the input
size H l ×W l of layer l is determined as follows: H l ×W l = bH

l−1

Sl−1
h

+2×Rc × bW
l−1

Sl−1
w

+2×Rc,
which is differentiable with respect to the strides at the previous layer Sl−1. Furthermore, it also
depends on spatial dimensions at the previous layer H l−1×W l−1, which themselves are a function
of Sl−2. By induction over layers, the total computational cost and memory usage are proportional
to
∑l=L
l=1

∏l
i=1

1
Si
h×Si

w
. Since in the context of DiffStride the kernel size and number of channels

remain constant during training, we can directly regularize our model towards time and space effi-
ciency by adding the following regularizer to our training loss:

λJ((Sl)l=Ll=1 ) = λ

l=L∑
l=1

l∏
i=1

1

Sih × Siw
, (6)

where λ is the regularization weight. In Section 3.2, we show that training on ImageNet with
different values for λ allows us to trade-off accuracy for efficiency in a smooth fashion.

3 EXPERIMENTS

We evaluate DiffStride on eight classification tasks, both on audio and images. For each compari-
son, we keep the same architecture and replace strided convolutions by convolutions with no stride
followed by DiffStride. To avoid the confounding factor of downsampling in the Fourier domain, we
also compare our approach to the spectral pooling of Rippel et al. (2015), which only differs from
DiffStride by the fact that its strides are not learnable.

3.1 AUDIO CLASSIFICATION

Experimental setup We perform single-task and multi-task audio classification on 5 tasks: acous-
tic scene classification (Heittola et al., 2018), birdsong detection (Stowell et al., 2018), musical in-
strumental classification and pitch estimation on the NSynth dataset (Engel et al., 2017) and speech
command classification (Warden, 2018). The statistics of the datasets are summarized in Table A.1.
The audio sampled at 16 kHz is decomposed into log-compressed mel-spectrograms with 64 chan-
nels, computed with a window of 25ms every 10ms.

A 2D-CNN, based on (Tagliasacchi et al., 2019) takes these spectrograms as inputs and alternates
blocks of strided convolutions along time ((3×1) kernel) and frequency ((1×3) kernel). Each strided
convolution is followed by a ReLU (Glorot et al., 2011) and batch normalization (Ioffe & Szegedy,
2015). The sequence of channels dimensions is defined as (64, 128, 256, 256, 512, 512) and the
strides are initialized as ((2, 2), (2, 2), (1, 1), (2, 2), (1, 1), (2, 2) for all downsampling methods. The
output of the CNN passes through a global max-pooling and feeds into a single linear classification
layer for single-task, and multiple classification layers for multi-task classification. As examples
vary in length, we train models on random 1 s windows with ADAM (Kingma & Ba, 2015) and
a learning rate of 10−4 for 1M batches, with batch size 256. Evaluation is run by splitting full
sequences into 1 s non-overlapping windows and averaging the logits over windows.

Results Table 1 summarizes the results for single-task and multi-task audio classification. In both
settings, DiffStride improves over strided convolutions and spectral pooling, with strided convolu-
tions only outperforming DiffStride for acoustic scene classification in the single task setting. Table
2 shows the strides learned by the first layer of DiffStride, which downsamples mel-spectrograms
along frequency and time axes. Learning allows the strides to deviate from their initialization ((2, 2))
and to adapt to the task at hand. Converting strides to cut-off frequencies shows that the learned
strides fall in a range showed by behavioral studies and direct neural recordings (Hullett et al., 2016;
Flinker et al., 2019) to be necessary for e.g. speech intelligibility at 25Hz (Elliott & Theunissen,
2009). Moreover, DiffStride learns different strides for the time and frequency axes. Table A.7
shows the benefits of learning a per-dimension value rather than sharing strides. Another notable
phenomenon is the per-task discrepancy on NSynth, with the pitch estimation requiring faster spec-
tral modulations (as represented by a higher cutt-off frequency along the frequency axis). Finally,
multi-task models do not converge to the mean of strides, but rather to a higher value that passes
more frequencies not to negatively impact individual tasks.
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Setting Single-task Multi-task

Task Strided Conv. Spectral DiffStride Strided Conv. Spectral DiffStride

Acoustic scenes 99.1 ± 0.2 98.6± 0.1 98.6± 0.2 97.7 ± 0.4 97.7 ± 0.7 97.7 ± 0.3
Birdsong detection 78.8± 0.3 79.7± 0.3 81.3 ± 0.1 77.3± 0.2 77.8± 0.3 78.6 ± 0.5
Music (instrument) 72.6± 0.3 72.9± 0.5 75.4 ± 0.0 69.8± 0.4 70.4± 0.4 73.0 ± 0.8
Music (pitch) 91.8± 0.1 90.1± 0.0 92.2 ± 0.1 89.4± 0.3 87.6± 0.7 89.9 ± 0.3
Speech commands 87.3± 0.1 88.5± 0.3 90.5 ± 0.3 83.5± 0.6 83.9± 0.4 86.2 ± 0.8

Mean Accuracy 85.0± 9.3 86.0± 9.2 88.3 ± 8.7 83.5± 10.0 83.5± 9.6 85.0 ± 8.9

Table 1: Test accuracy (% ± sd over 3 runs) for audio classification in the single (one model per
task) and multi-task (one model for all tasks) settings.

Learned Strides Equivalent cut-off frequencies

Time Frequency Time (Hz) Frequency (Cyc/Mel)

Acoustic scenes 1.89± 0.05 1.99± 0.03 26.25± 0.63 0.2448± 0.009
Birdsong detection 1.91± 0.02 1.96± 0.01 25.83± 0.36 0.2500± 0.000
Music (Instrument) 1.29± 0.06 2.12± 0.01 38.33± 1.57 0.2292± 0.009
Music (Pitch) 1.32± 0.10 1.61± 0.07 37.50± 2.72 0.3021± 0.018
Speech commands 1.97± 0.00 1.95± 0.01 25.00± 0.00 0.2500± 0.000

Multi-task model 1.46± 0.01 1.79± 0.03 34.17± 0.30 0.2708± 0.0074

Table 2: Learned strides (% ± sd over 3 runs) of the first layer for the single and multi-task models.
The sampling rate of the input spectrogram being known (10 ms), we can convert the strides to upper
cut-off frequencies (i.e. the maximum frequency kept by the lowpass-filter).

3.2 IMAGE CLASSIFICATION

Experimental setup We use the ResNet-18 (He et al., 2016a) architecture, comparing the original
strided convolutions (see Figure 2a) to spectral pooling and DiffStride (both as in Figure 2b). We
randomly sample 6 striding configurations for the three shortcut blocks of the ResNet-18, each
stride being sampled in [1, 3], with (2, 2, 2) being the configuration of the original ResNet of He
et al. (2016a). The horizontal and vertical strides are initialized equally at start. These random
configurations simulate cross-validation of stride configurations to: (1) showcase the sensitivity of
the architecture to these hyperparameters, (2) test our hypothesis that DiffStride can benefit from
learning its strides to recover from a poor initialization. On Imagenet, as inputs are bigger than
CIFAR we also allow the first ResNet-18 identity block to learn its strides which are 1 by default.

We first benchmark the three methods on the two CIFAR datasets (Krizhevsky, 2009). CIFAR10
consists of 32 × 32 images labeled in 10 classes with 6000 images per class. We use the official
split, with 50,000 images for training and 10,000 images for testing. CIFAR100 uses the same
images as CIFAR10, but with a more detailed labelling with 100 classes. We also compare the
ResNet-18 architectures on the ImageNet dataset (Deng et al., 2009), which contains 1,000 classes.
The models are trained on the official training split of the Imagenet dataset (1.28M images) and we
report our results on the validation set (50k images). Here, we evaluate performance in terms of
top-1 and top-5 accuracy. We train on all datasets with stochastic gradient descent (SGD) (Bottou
et al., 1998) with a learning rate of 0.1, a batch size of 256 and a momentum (Qian, 1999) of 0.9.
On CIFAR, we train models for 400 epochs dividing the learning rate by 10 at 200 epochs and again
by 10 at 300 epochs, with a weight decay of 5.10−3. For CIFAR, we apply random cropping on the
input images and left-right random flipping. On ImageNet, we train with a weight decay of 1.10−3
for 90 epochs, dividing the learning rate by 10 at epochs 30, 60 and 80. We apply random cropping
on the input images as in (Szegedy et al., 2015) and left-right random flipping.

Results We report the results on the CIFAR datasets and Imagenet in Tables 3 and 4 respectively,
with the accuracy of our baseline ResNet-18 (first row, Strided Conv.) being consistent with pre-
vious work (Bianco et al., 2018). First, we observe that strides are indeed critical hyperparameters
for the performance of a standard ResNet-18 on the three datasets, with the accuracy on CIFAR100
dropping from 66.8% average to 48.2% between the best and worst configurations. Remarkably,
spectral pooling is much more robust to bad initializations than strided convolutions, even though
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CIFAR10 CIFAR100

Init. Strides Strided Conv. Spectral DiffStride Strided Conv. Spectral DiffStride

(2, 2, 2) 91.4± 0.2 92.4± 0.1 92.5 ± 0.1 66.8± 0.2 73.7 ± 0.1 73.4± 0.5
(2, 2, 3) 90.5± 0.1 92.2± 0.2 92.8 ± 0.1 63.4± 0.5 73.7 ± 0.2 73.5± 0.0
(1, 3, 1) 90.0± 0.4 91.1± 0.1 92.4 ± 0.1 64.9± 0.5 70.3± 0.3 73.4 ± 0.2
(3, 1, 3) 85.7± 0.1 90.9± 0.2 92.4 ± 0.1 55.3± 0.8 69.4± 0.4 73.7 ± 0.4
(3, 1, 2) 86.4± 0.1 90.9± 0.2 92.3 ± 0.1 56.2± 0.3 69.9± 0.2 73.4 ± 0.3
(3, 2, 3) 82.0± 0.6 89.2± 0.2 92.3 ± 0.1 48.2± 0.2 66.6± 0.5 73.6 ± 0.4

Mean accuracy 87.7± 3.4 91.1± 1.1 92.4 ± 0.2 59.1± 6.7 70.6± 2.6 73.5 ± 0.3

Table 3: Accuracies (% ± sd over 3 runs) on CIFAR10 and CIFAR100. First column represents
strides at each shortcut block, (2, 2, 2) being the configuration of (He et al., 2016a). For reference,
the state-of-the-art on CIFAR10 (CIFAR100) is (Dosovitskiy et al., 2020) ((Foret et al., 2020)) with
an accuracy of 99.5% (96.1%).
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Figure 3: Learning dynamics of DiffStride on the CIFAR10 dataset.

its strides are also fixed. However, DiffStride is overall much more robust to poor choices of strides,
converging consistently to a high accuracy on the three datasets, with a variance over initializations
that is lower by an order of magnitude. This shows that backpropagation allows DiffStride to find
a better configuration during training avoiding a cross-validation which would require 6,561 experi-
ments for testing all combinations of strides in [1, 3] on Imagenet. Tables A.5 and A.6 confirm these
observations on the EfficientNet-B0 (Tan & Le, 2019) architecture.

Learning dynamics and equivalence classes Figure 3 illustrates the learning dynamics of Diff-
Stride on CIFAR10. Figure 3a plots the strides as a function of the epoch for a run with the baseline
(2,2,2) configuration as initialization. The strides all deviate from their initialization while con-
verging rapidly, with the lower layers keeping more information while higher layers downsample
more drastically. Interestingly, we discover equivalence classes: despite converging to the same
accuracy (as reported in Table 3) the various initializations yield very diverse strides configurations
at convergence, both in terms of total striding factor (defined as the product of strides, see Figure
3c) and of repartition of downsampling factors along the architecture (see Figure 3b). We obtain
similar conclusions on CIFAR100 and Imagenet (see Figures A.1 and A.2). In the non-regularized
case, it could seem counter-intuitive that minimizing the training loss yields positive stride updates,
i.e. dropping more information through cropping. It highlights that loss optimization is a trade-
off between preserving information (no striding, no cropping) and downscaling such that the next
convolution kernel accesses a wider spatial context.

Regularizing the complexity The existence of equivalence classes suggests that DiffStride can
find more computationally efficient configurations for a same accuracy. We thus train DiffStride
on ImageNet using the complexity regularizer defined in Equation 6, with λ varying between 0.1
and 10, always initializing strides with the baseline ((1, 1), (2, 2), (2, 2), (2, 2)). Figure 4 plots
accuracy versus computational complexity (as measured by the value of the regularization term at
convergence) of DiffStride. For comparison, we also plot the models with strided convolutions
with the random initializations of Table 4, showing that DiffStride finds configurations with a lower
computational cost for the same accuracy. Some of these are quite extreme, e.g. with λ = 10
a model converges to strides ((10.51, 32.23), (1.20, 2.68), (1.20, 2.04), (1.96, 4.53)) for a 58.57%
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Top-1 Top-5

Init. Strides Strided Conv. Spectral DiffStride Strided Conv. Spectral DiffStride

(1, 2, 2, 2) 68.65± 0.26 69.01± 0.19 69.66 ± 0.06 88.5± 0.15 88.48± 0.02 89.07 ± 0.03
(1, 1, 3, 1) 69.79± 0.15 69.88 ± 0.05 68.22± 0.07 89.43 ± 0.18 89.15± 0.07 88.10± 0.08
(1, 3, 1, 3) 68.86± 0.28 68.63± 0.08 69.41 ± 0.16 88.64± 0.15 88.42± 0.01 88.98 ± 0.04
(2, 2, 2, 3) 63.45± 0.09 67.16± 0.17 69.53 ± 0.08 85.09± 0.04 87.25± 0.06 89.05 ± 0.05
(2, 3, 1, 2) 65.35± 0.03 66.35± 0.24 69.42 ± 0.06 86.27± 0.05 86.67± 0.15 88.91 ± 0.05
(3, 3, 2, 3) 57.11± 0.11 64.44± 0.01 69.43 ± 0.11 80.42± 0.11 85.22± 0.09 89.03 ± 0.02

Mean accuracy 65.53± 4.49 67.58± 1.88 69.28 ± 0.50 86.39± 3.15 87.53± 1.36 88.85 ± 0.35

Table 4: Top-1 and top-5 accuracies (% ± sd over 3 runs) on Imagenet, (1, 2, 2, 2) being the config-
uration of (He et al., 2016a). For reference, state-of-the-art on Imagenet is (Dai et al., 2021) with a
top-1 accuracy of 90.88%.
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Figure 4: Top-1 accuracy (%) on the Imagenet validation set as a function of the regularization term
J((Sl)l=Ll=1 ) as defined in equation 6, after training with λ ∈ [0.1, 10].

top-1 accuracy. When training a ResNet-18 with strided convolutions using the closest integer strides
(i.e. ((11, 32), (1, 3), (1, 2), (2, 5))), the model converges to a 24.54% top-1 accuracy. This suggests
that performing pooling in the spectral domain is more robust to aggressive downsampling, which
corroborates the remarkable advantage of spectral pooling over strided convolutions when using
poor strides choices in Tables 3 and 4 despite both models having fixed strides.

Limitations Pooling in the spectral domain comes at higher computational cost than strided con-
volutions as it requires (1) computing a non-strided convolution and (2) a DFT and its inverse (see
Table A.2). This could be alleviated by computing the convolution in the Fourier domain as an
element-wise multiplication and summation over channels. Further improvements could be ob-
tained by replacing the DFT by a real-valued counterpart, such as the Hartley transform (Zhang
& Ma, 2018), which would remove the need for complex-valued operations that may be poorly
optimized in deep learning frameworks. We also observe no benefits of DiffStride when training
DenseNets (Huang et al., 2017), see Tables A.3 and A.4. We hypothesize that this is due to the
limited number of downsampling layers, which reduces the space of stride configurations to a few,
equivalent ones when sampling strides in [1; 3]. Finally, some hardware (e.g. TPUs) require a static
computation graph. As DiffStride changes the spatial dimensions of intermediate representations—
and thus the computation graph— between each gradient update, we currently only train on GPUs.

4 CONCLUSION AND FUTURE WORK

We introduce DiffStride the first downsampling layer with learnable strides. We show on audio and
image classification that DiffStride can be used as a drop-in replacement to strided convolutions,
removing the need for cross-validating strides. As we observe that our method discovers multiple
equally-accurate stride configurations, we introduce a regularization term to favor the most compu-
tationally advantageous. In future work, we will extend the scope of applications of DiffStride, to
e.g. 1D and 3D architectures. Moreover, learning strides by backpropagation opens new avenues in
designing adaptive convolutional architectures, such as multi-scale models that would learn to oper-
ate at various scales in parallel by using independent branches with separate instances of DiffStride,
or by predicting strides parameters of DiffStride on a per-example basis.
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We describe DiffStride in details in the text as well as with Algorithm 1 and Figure 1. We men-
tion all relevant hyperparameters to reproduce our experiments, as well as describe audio datasets
in A.1. Moreover, we release Tensorflow 2.0 code for training a Pre-Act ResNet-18 with strided
convolutions, spectral pooling or DiffStride on CIFAR10 and CIFAR100, with DiffStride being
implemented as a stand-alone, reusable Keras layer. This open-source code can be found at
https://github.com/google-research/diffstride.
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A APPENDIX

Table A.1: Datasets used for audio classification. Default train/test splits are always adopted.

Task Name Classes Train examples Test examples

Acoustic scenes TUT Urban 2018 10 7,829 810
Birdsong detection DCASE2018 2 32,129 3,561
Music (instrument) Nsynth 11 289,205 12,678
Music (pitch) Nsynth 128 289,205 12,678
Speech commands Speech commands 35 84,771 10,700
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Figure A.1: Learned strides by DiffStride on the CIFAR100 dataset.
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Figure A.2: Learned strides by DiffStride on the Imagenet dataset.

Analysis of strides learned on CIFAR100 and ImageNet In Figure A.1 (Figure A.2), we show
the distributions of learned strides and the global striding factor at convergence on CIFAR100 (Im-
agenet), starting from random stride initializations. On CIFAR100, we observe equivalence classes,
i.e. model that learns various stride configurations for a same accuracy. On Imagenet, even though
we also observe a significant variance of the global striding factor, models tend to downsample only
in the upper layers. Striding late in the architecture comes at a higher computational cost, which
furthermore justifies regularizing DiffStride to reduce complexity as shown in Section 3.2.
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Time and space complexity in practice While Figure 4 reports theoretical estimates of com-
putational complexity based on stride configurations, both spectral pooling and DiffStride require
computing a DFT and its inverse. Moreover, DiffStride requires accumulating gradients with respect
to the strides during training. Table A.2 reports the duration and peak memory usage of the multi-
task architecture described in 3.1, for a single batch. Replacing strided convolutions with spectral
pooling increases the wall time by 32% due to the DFT and inverse DFT, while the peak memory
usage is almost unaffected. DiffStride furthermore increases the wall time (by 43% w.r.t strided con-
volutions) as the backward pass is more expensive. Similarly, it almost doubles the peak memory
usage. However, in inference, DiffStride does not need to compute and store gradients w.r.t. the
strides, thus the time and space complexity become identical to that of spectral pooling.

Strided Conv. Spectral DiffStride

Training Time/step 1.0 1.32 1.43
Peak memory (GB) 1.0 1.02 1.98

Inference Time/step 1.0 1.32 1.32
Peak memory (GB) 1.0 1.02 1.02

Table A.2: Per-step time and peak memory usage of Spectral Pooling and DiffStride relative to
strided convolutions, on a V100 GPU. During training, a “step” is the forward and backward pass
for a single batch, while in inference it only involves a forward pass.

DenseNet experiments on CIFAR We also evaluate DiffStride in DenseNet (Huang et al., 2017),
especially the DenseNet-BC architecture with a depth of 121 and a growth rate of 32. The DenseNet
architecture halves spatial dimensions during transition blocks. We replace the 2D average pooling
in the transition blocks by spectral pooling or DiffStride. The considered architecture for DenseNet
has two downsampling steps. We run a similar experiment as in 3.2 with random strides between the
dense blocks on the two CIFAR datasets. We observe that initializing strides randomly does not af-
fect the performance of the standard Densenet-BC architecture with average pooling. Consequently,
DiffStride does not improve over alternatives.

Init. Strides Average Pooling Spectral DiffStride

(2, 2) 92.3± 0.2 91.5± 0.2 91.5± 0.1
(1, 2) 91.8± 0.2 90.5± 0.5 91.1± 0.3
(1, 3) 92.0± 0.2 91.0± 0.1 91.6± 0.4
(2, 3) 92.0± 0.3 92.1± 0.2 92.2± 0.1
(3, 1) 91.6± 0.2 91.5± 0.4 91.7± 0.2

Mean accuracy 91.9± 0.3 91.3± 0.6 91.6± 0.4

Table A.3: Accuracies (% ± sd over 3 runs) for CIFAR10 for each downsampling method with the
DenseNet-BC architecture. First column represents strides at each transition block, (2, 2) being the
configuration of (Huang et al., 2017).

Init. Strides Average Pooling Spectral DiffStride

(2, 2) 69.1± 0.6 68.6± 0.6 68.2± 0.2
(1, 2) 67.7± 0.3 67.2± 0.3 68.0± 0.1
(1, 3) 67.8± 0.4 67.3± 0.2 68.0± 0.7
(2, 3) 67.6± 0.3 69.0± 0.8 69.0 ± 0.2
(3, 1) 68.4± 0.6 69.1± 0.4 69.7± 0.6

Mean accuracy 68.1± 0.7 68.2± 1.0 68.6± 0.8

Table A.4: Accuracies (% ± sd over 3 runs) for CIFAR100 for each downsampling method with the
DenseNet-BC architecture. First column represents strides at each transition block, (2, 2) being the
configuration of (Huang et al., 2017).
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EfficientNet experiments on CIFAR We evaluate DiffStride in an EfficientNet-B0 architecture
(Tan & Le, 2019), a lightweight model discovered by architecture search. This architecture has
seven strided convolutions. Unlike Tan & Le (2019), we do not pre-train on ImageNet, but rather
train from scratch on CIFAR, which explains the lower accuracy of the baseline. As the model has
seven downsampling layers, we rescale the images from 32 × 32 to 128 × 128, and only sample
strides in [1; 2]. We run a similar experiment as in 3.2 with random strides on the two CIFAR
datasets. Consistently with the results obtained with a ResNet-18, spectral pooling is much more
robust to poor strides than strided convolutions, with DiffStride outperforming all alternatives.

Init. Strides Average Pooling Spectral DiffStride

(1, 2, 2, 2, 1, 2, 1) 87.2± 0.1 90.4± 0.2 91.1± 0.0
(1, 1, 2, 2, 2, 1, 1) 89.7± 0.1 90.9± 0.3 90.9± 0.1
(1, 2, 2, 2, 2, 2, 1) 83.7± 0.2 90.0± 1.0 90.8± 0.1
(2, 1, 2, 1, 2, 1, 1) 89.2± 0.2 90.4± 0.4 91.1± 0.1

Mean accuracy 87.5± 2.5 90.4± 0.6 90.9± 0.1

Table A.5: Accuracies (% ± sd over 3 runs) for CIFAR10 for each downsampling method with
the EfficientNet-B0 architecture. First column represents strides at each strided convolution, with
(1, 2, 2, 2, 1, 2, 1) being the configuration of (Tan & Le, 2019).

Init. Strides Average Pooling Spectral DiffStride

(1, 2, 2, 2, 1, 2, 1) 55.2± 0.3 66.0± 0.6 66.6± 0.5
(1, 1, 2, 2, 2, 1, 1) 62.0± 0.7 66.4± 0.6 66.6± 0.3
(1, 2, 2, 2, 2, 2, 1) 46.8± 2.0 65.9± 0.5 66.3± 0.7
(2, 1, 2, 1, 2, 1, 1) 60.4± 0.1 65.5± 0.1 67.0± 0.1

Mean accuracy 56.1± 6.3 65.9± 0.5 66.6± 0.5

Table A.6: Accuracies (% ± sd over 3 runs) for CIFAR100 for each downsampling method with
the EfficientNet-B0 architecture. First column represents strides at each strided convolution, with
(1, 2, 2, 2, 1, 2, 1) being the configuration of (Tan & Le, 2019).

Ablation study: learning a per-dimension stride or a shared one We perform multi-task audio
classification with either learning a single stride value for each DiffStride layer, or a different one
for the time and frequency axes. The overall performance across tasks is improved when learning a
different stride value for each dimension (See Table A.7).

Setting Multi-task

Task Shared stride Different strides

Acoustic scenes 97.4± 0.3 97.7 ± 0.3
Birdsong detection 79.7 ± 1.0 78.6± 0.5
Music (instrument) 70.7± 0.5 73.0 ± 0.8
Music (pitch) 86.7± 0.5 89.9 ± 0.3
Speech commands 86.8 ± 0.1 86.2± 0.8

Mean Accuracy 84.3± 9.2 85.0 ± 8.9

Table A.7: Test accuracy (% ± sd over 3 runs) for audio classification in the multi-task (one model
for all tasks) with DiffStride, when learning a single stride value (Shared stride) per layer, or a
different one for each dimension (Different strides).
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