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Abstract

Recent advancements in time-series forecasting have highlighted

the importance of frequency-domain modeling. However, deep

learning models primarily operate in the time domain, limiting their

ability to capture frequency-based patterns. Existing approaches

normally introduce novel neural network architectures tailored

to task-specific frequency properties, yet they often lack gener-

alization and require extensive domain-specific adaptations. In

this paper, we propose FAT, a novel pretraining framework that

learns generalizable Frequency-Aware Time-series representations

through self-supervised learning. The key idea of FAT is to pretrain

any backbone model to directly extract generalizable frequency

patterns from time-domain signals and encode them into robust

representations—eliminating the need for architectural modifica-

tions or additional modules during inference. This is achieved via a

frequency reformer that amplifies critical frequency components

learned through self-supervision and enforces similarity between

the original and frequency-reformed time-series representations
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produced by the encoder. In addition, recognizing that semanti-

cally equivalent time-series can exhibit different frequency expres-

sions—analogous to how the same phrase is pronounced differ-

ently by different speakers—FAT introduces a Knowledge-Guided

Frequency Reformer that unifies the expression of frequency pat-

terns with the same underlying semantics and extends similarity

constraints to frequency-invariant augmented samples to enhance

robustness of learned representation. Experiments on 14 bench-

mark datasets across regression and classification tasks show that

FAT consistently achieves state-of-the-art performance while main-

taining robustness across diverse backbone models, significantly

outperforming existing pretraining methods. Our code is available

at https://github.com/JiaXiangfei/FAT.

CCS Concepts

• Computing methodologies→ Learning latent representa-

tions; • Computer systems organization → Neural networks;

• Mathematics of computing→ Time series analysis.

Keywords

Time Series, Representation Learning, Self-supervised Pretraining,

Frequency-domain Modeling

ACM Reference Format:

Rui Cheng, Xiangfei Jia, Qing Li, Rong Xing, Jiwen Huang, Yu Zheng,

and Zhilong Xie. 2025. FAT: Frequency-Aware Pretraining for Enhanced

Time-Series Representation Learning. In Proceedings of the 31st ACMSIGKDD

Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25), Au-

gust 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3711896.3736952

https://orcid.org/0000-0002-0698-9302
https://orcid.org/0009-0004-9817-0178
https://orcid.org/0000-0002-3209-0149
https://orcid.org/0000-0003-4553-8464
https://orcid.org/0009-0003-2382-1522
https://orcid.org/0000-0001-9046-5511
https://orcid.org/0000-0002-3990-8214
https://doi.org/10.1145/3711896.3736952
https://doi.org/10.1145/3711896.3736952


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Rui Cheng et al.

1 Introduction

Frequency-domain information is fundamental to time-series analy-

sis across various domains, including finance [2] and healthcare [14].

In these fields, key patterns emerge at different frequency ranges,

carrying essential predictive signals. For instance, low-frequency

trends dominate long-term economic behaviors in financial markets,

whereas high-frequency components capture short-term fluctua-

tions. Similarly, in physiological signals such as ECG, different fre-

quency bands correspond to distinct diagnostic markers [26]. These

variations highlight the necessity of frequency-aware modeling for

improving forecasting accuracy and robustness.

Despite the success of Transformer-based architectures [19, 27,

30] in time-series forecasting, they struggle to capture frequency

patterns due to their reliance on time-domain operations. To address

this, recent works have incorporated frequency-related modules

into backbone models (e.g., Transformer architectures) to learn

frequency patterns based on supervised signal [31, 44]. While the

adaptions on backbone models improve their accuracy in down-

stream tasks, they suffer from limited generalization, as the modules

are typically designed to emphasize either high- or low-frequency

components based on specific task requirements [31, 37]. Since

different tasks rely on frequency information at varying spectral

ranges, these task-specific designs prevent the models from gener-

alizing across diverse datasets [18].

Recently, self-supervised pretraining has emerged as a promising

approach for time-series modeling. These methods design a set of

pretraining tasks that enable any given backbone model to learn

generalizable representations, which can be effectively adapted to

diverse downstream tasks through fine-tuning [1, 27, 40]. A widely

adopted strategy in time-series pretraining is masked sequence

modeling, where randomly masked segments are reconstructed

to enforce temporal dependencies [6, 27]. However, recent studies

have identified a fundamental limitation: masked modeling makes

models highly sensitive to local fluctuations and ineffective at cap-

turing periodic information [6, 21]. A natural solution is to attach

frequency-aware modules before the encoder. However, these mod-

ules often lack generalization, tending to prioritize either high- or

low-frequency components, and they introduce additional compu-

tational complexity during inference [38].

To address these challenges, we propose FAT, a novel self-supervi-

sed pretraining framework that integrates Frequency-Aware Time-

series learning into the existing pretraining paradigm. FAT enables

widely used backbone models to generate frequency-aware rep-

resentations directly from time-domain signals during inference,

eliminating the need for architectural modifications or additional

modules. This is accomplished by incorporating three key compo-

nents into the pretraining phase:

Frequency Reformers: Instead of manually defining frequency

properties for downstream tasks, FAT employs a self-supervised ap-

proach to identify key frequency components that generalize across

diverse tasks. Specifically, the frequency reformer learns to adjust

the amplitude and phase of frequency components to reconstruct

the original sequence, enabling the model to capture structured fre-

quency representations without relying on predefined task priors.

Furthermore, recognizing that semantically similar sequences may

exhibit different frequency compositions—analogous to how the

same phrase can be pronounced with varying tones by different

speakers—FAT introduces a Knowledge-guided Frequency Re-

former that unifies the expression of frequency patterns with the

same underlying semantics and adaptively maps time-series to this

shared representation, enhancing the consistency and generaliza-

tion of learned representations.

Frequency-similarity Constraints: To ensure that the encoder

learns the frequency reforming process and generates equivalent

representations during inference without the Frequency Reformer,

FAT imposes similarity constraints between the original time-series

and its frequency-reformed counterparts. This encourages the en-

coder to extract frequency features directly through time-domain

operations, bridging the gap between time- and frequency-domain

information and eliminating the need for Frequency Reformers

during the inference.

Frequency-invariantAugmentations: Existing backbonemod-

els primarily operate in the time domain and are highly sensitive to

local fluctuations, leading to inconsistencies in the learned repre-

sentations. To address this, FAT applies Frequency-invariant Aug-

mentations that introduce controlled variations in the time domain

while preserving key frequency properties. This prevents the en-

coder from overfitting to random fluctuations, generating consis-

tent representations across both time and frequency domains for

downstream tasks.

Experiments on 14 benchmark datasets across regression and

classification tasks show that FAT consistently achieves state-of-

the-art performance, surpassing existing pretraining methods. Ad-

ditionally, FAT demonstrates strong generalization across various

backbone architectures, establishing it as a robust framework for

self-supervised time-series representation learning.

2 Related Work

Self-supervised pretraining has gained increasing attention in time-

series learning [5, 6, 13, 27], inspired by its success in language

models [3, 29]. A key technique in this domain is masked model-

ing [5, 20, 40, 41], where segments or individual points are randomly

masked, and the model is trained to reconstruct the missing val-

ues. Variants of this approach include tokenizing time-series data

for discrete modeling [27, 38] and refining reconstruction tasks to

better capture local temporal variations [20, 40].

To address the issue of temporal semanticmisalignment inmaske-

d modeling, where small local temporal variations lead to diver-

gent representations, researchers have introduced manifold learn-

ing [6, 24] and contrastive learning [1, 33, 35, 41]. Manifold learning

enforces sequence-wise similarity constraints, whereas contrastive

learning explicitly defines positive and negative sample pairs to

enhance structural consistency. Despite their success, these efforts

have focused solely on modeling variations in the time domain,

overlooking the importance of frequency patterns for downstream

tasks. In addition, encoders operating in the time domain inher-

ently struggle to capture frequency characteristics effectively. The

most relevant work that considers frequency-domain feature is

TF-C [41], which attempts to align frequency- and time-domain

representations of the same instance. However, it fails to identify

key frequency patterns and generate consistent representations for
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Figure 1: Overview of the FAT pretraining framework, which integrates frequency-aware learning into the conventional masked

modeling paradigm. Bottom: Standard masked modeling process. Top: Frequency-aware learning process.

semantically similar time-series with different frequency expres-

sions, as achieved by FAT.

Other studies have proposed new backbone architectures tai-

lored to learning frequency-aware representations [9, 36–38, 43, 44].

Notably, these frequency-aware models can outperform existing

pretraining approaches under certain conditions—even without

pretraining—highlighting the limitations of current pretraining

methods in capturing frequency-domain patterns in time-series

representation learning [31, 38, 41]. However, beyond the added

computational complexity introduced during inference, these archi-

tectures often exhibit specific frequency biases tailored to particular

datasets. Some are designed to emphasize high-frequency compo-

nents [28], while others prefer low-frequency signals [37], resulting

in limited generalization across diverse datasets and tasks.

Motivated by advances in both self-supervised learning and

frequency-domain feature learning architectures, we propose FAT—a

pretraining framework that enables any encoder to explicitly gen-

erate frequency-aware time-series representations, free from fre-

quency bias across the entire spectrum and without introducing

additional computational complexity during inference.

3 Methods

3.1 Overall Architecture

FAT learns consistent and generalizable frequency patterns from

time-domain signals and encodes them into representations, elimi-

nating the need for architectural adaptations or additional modules

during inference. This is achieved through three key components:

the Knowledge-guided Frequency Reformer, Frequency-invariant

Augmentations, and frequency-similarity constraints. An overview

of the FAT framework is presented in Figure 1 and introduced as

follows.

3.1.1 Frequency Reformer. The Frequency Reformer in previous

study is applied to select important frequency components of the

input time-series that facilitated downstream tasks. Specifically,

given a time-series of length 𝑇 , denoted as x𝑖 ∈ R𝑇 , Frequency
Reformer first transforms inputs into the frequency domain by

applying Discrete Fourier Transform [7], denoted as F (·):

xF
𝑖

= F (𝑥𝑖 ) (1)

where 𝑥F
𝑖

∈ C𝑇 is the frequency representation of 𝑥𝑖 . Then a

frequency reformer operator, denoted as MF (·), is applied to alter

the amplitude and phase of frequency components in its spectrum:

x̃F
𝑖

= MF (F (x𝑖 )), (2)

An inverted Discrete Fourier Transform F −1 (·) is then applied to

map the reformed frequency signal x̃F
𝑖
back into the time domain,

obtaining the reshaped output signal x̃𝑖 :

x̃𝑖 = F −1 (x̃F
𝑖
) (3)

Conventional frequency filters that are predefined for specific

purposes are typically employed as the frequency reformer operator

MF (·). These include denoising methods that retain only the top-𝑘

frequency components with the highest magnitudes and selective

filtering approaches that preserve only specific spectral regions,

such as high-pass or low-pass filters [37].

Instead of relying on predefined filters, the frequency reformer

should be capable of learning a robust frequency representation that

adaptively transforms input frequency components to generalize

across various tasks. To achieve this, we propose the Knowledge-

guided Frequency Reformer, a data-dependent frequency re-

former that identifies important frequency components and stan-

dardizes the expression of frequency patterns with the same un-

derlying meaning by adaptively transforming them into a unified

representation. The details of this approach are provided in Sec-

tion 3.2.

3.1.2 Augmentation. Given a time-series 𝑥𝑖 , the augmentation pro-

cess aims to generate a set of candidate variants of 𝑥𝑖 , containing

both relevant and irrelevant information from the original input:

{x̃+𝑖 }
𝐾
𝑗=1, {x̃

-

𝑖 }
𝐾
𝑗=1 = Aug(x̃𝑖 ), (4)

where {x̃+
𝑖
}𝐾
𝑗=1

and {x̃-
𝑖
}𝐾
𝑗=1

represent 𝐾 positive (relevant) and

negative (irrelevant) augmented samples, respectively.

A common approach in previous studies for generating posi-

tive samples is to apply a random masking strategy to the original

time-series 𝑥𝑖 , encouraging the encoder to learn temporal depen-

dencies through sequence reconstruction. Instead of applying aug-

mentation strategies directly to x𝑖 , FAT applies a set of Frequency-

invariant Augmentations to the reformed input x̃𝑖 , introducing
controlled variations in the time domain while preserving key fre-

quency properties, as detailed in Section 3.3. These augmented

samples serve two purposes: (1) guiding the encoder to generate

similar embeddings for the original and its frequency-reformed
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counterpart through frequency-similarity constraints, and (2) bridg-

ing the gap between time- and frequency-domain information via

reconstruction.

3.1.3 Encoder. The encoder(·) projects the input time-series into

deep representations. Specifically, given an input time-series x𝑖 ∈
R𝑇 , the encoder transforms the signal into a latent representation

h𝑖 ∈ R𝐷 :
h𝑖 = Encoder(x𝑖 ), (5)

where 𝐷 represents the dimension of the latent space.

Existing time-series forecastingmodels often employ task-specific

architectures tailored to capture specific frequency characteristics.

However, these approaches tend to be highly complex and are not

inherently designed to support a general representation learning

framework. To improve training and inference efficiency while

ensuring fair comparisons with existing methods, FAT adopts the

vanilla Transformer [30] encoder with patched input[27], for regres-

sion, and the 1D-ResNet [10] for classification [12]. Experimental

results demonstrate that FAT consistently achieves state-of-the-art

(SOTA) performance across various backbone models.

3.1.4 Frequency-Similar Constraints. As previously discussed, a

key property of FAT is to to directly extract consistent and gener-

alizable frequency patterns from time-domain signals and encode

them into representations, eliminating the need for architectural

adaptations or additional modules for capturing frequency-domain

feature during inference.

To achieve this, we impose a similarity constraint between the

deep representations of the original time-series and its frequency-

reformed counterpart. Specifically, we first project their representa-

tions into a space for similarity comparison using a projector and

compute their similarity as::

z𝑖 = Projector𝑧 (h𝑖 ), 𝑠𝑖 = sim(z𝑖 , z̃𝑖 ), (6)

where Projector(·) is a simple MLP layer [11], and similarity is

measured using the cosine similarity.

To ensure that the frequency similarity measure remains in-

variant to random distortions in the time domain, we extend the

similarity constraint to all augmented samples of x̃𝑖 , i.e., Aug(x̃𝑖 ):

Positive pairs : (z𝑖 , z̃+𝑖 ), z̃+𝑖 ∈ {z̃+𝑖 }
𝐾
𝑗=1,

Negative pairs : (z𝑖 , z̃−𝑖 ), z̃−𝑖 ∈ {z̃-𝑖 }
𝐾
𝑗=1 .

(7)

The softmax function is applied to their similarity scores to obtain

the normalized similarity distribution:

𝑎T𝑖, 𝑗 =
exp(sim(z𝑖 , z𝑗 )/𝜏)∑
2𝐾
𝑘=1

exp(sim(z𝑖 , z𝑘 )/𝜏)
, (8)

where 𝜏 is the temperature parameter controlling the sharpness of

the similarity distribution.

The frequency-similarity constraints is defined as the contrastive

loss between the representations of the original time-series and its

augmented samples:

Lcontrastive = −
∑︁
𝑘∈𝐾+

log𝑎T
𝑖,𝑘
. (9)

By enforcing frequency-similarity constraints, the encoder is di-

rectly trained to capture frequency-aware representations from

Figure 2: Overview of the Knowledge-guided Frequency Re-

former, where frequency components are transformed into

a unified frequency representation by retrieving reforming

patterns stored in the knowledge memory.

time-domain signals, thereby eliminating the need for frequency-

specific architectures (e.g., explicit frequency reforming processes

in Section 3.1.1) during inference.

3.1.5 Reconstruction. Beyond learning temporal dependencies, FAT

encourages the encoder to extract key features from time-series

with similar frequency components and transfer this knowledge

for reconstruction. Furthermore, it aims to help the encoder bridge

the frequency and time domains by leveraging frequency-domain

information to reconstruct time-domain signals.

Therefore, similar to previous studies, we also include a recon-

struction task. However, instead of using the unmasked parts of

the original sequence, we rely on augmented samples that retain

key frequency components while introducing random distortions

in the time domain.

Specifically, FAT first aggregates information from multiple aug-

mented time-series derived from its frequency-reformed counter-

parts, where subsequences of varying lengths have been distorted:

ˆh𝑖 = Agg(H𝑖 , a𝑖 ) =
2𝐾∑︁
𝑘=1

𝑎T
𝑖,𝑘
h̃𝑘 . (10)

It then reconstructs the original time-series using the aggregated

information:

x̂𝑖 = Decoder( ˆh𝑖 ) . (11)

Following masked modeling paradigm, the reconstruction loss that

supervises the pretraining process is defined as:

Lreconstruction = | |x𝑖 − x̂𝑖 | |22 . (12)

The overall optimization objective of FAT is formulated as:

min

Θ
Lreconstruction + 𝜆Lcontrastive, (13)

where the hyperparameter 𝜆 controls the relative weight of the

contrastive loss. To dynamically balance the loss terms, we adopt

the adaptive weighting strategy proposed in [15].

3.2 Knowledge-guided Frequency Reformer

As mentioned earlier, the Frequency Reformer is designed to ex-

tract key frequency components that facilitate downstream tasks.

Instead of using predefined filters such as high-pass or low-pass

filters, FAT applies a learnable parameterwF ∈ C𝑇 , which element-

wise multiplies the frequency representation of x𝑖 (F (x𝑖 )) to select
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relevant frequency components based on supervised signals:

x̃F
𝑖

= MF (F (x𝑖 )) = wF ⊙ F (x𝑖 ) . (14)

However, time-series with similar semantics can be expressed in

different frequency forms, analogous to how the same phrase is pro-

nounced differently by different speakers. The inconsistency among

semantically similar time-series prevents frequency reformers from

effectively identifying robust frequency features.

Inspired by how humans recognize and map different pronun-

ciations of the same word—despite variations in tone, speed, or

accent—to a consistent phonetic structure, speech recognition sys-

tems do not treat every variation as entirely distinct but instead

align them based on shared phonetic patterns. Similarly, time-series

variations are not arbitrary but follow structured and predictable

variations. Therefore, we propose Knowledge-guided Frequency

Reformer, a data-dependent approach that unifies the expression

of frequency patterns with the same underlying semantics.

Specifically, as in Figure 2, FAT adaptively reforms time-series

of various frequency expressions to this shared representation via

mapping patterns stored in a parameterized knowledge memory,

ΘF
𝑘𝑚

∈ C𝑃×𝑇 , where 𝑃 represents the number of patterns. Given the

frequency-domain representation of the input time-series, F (x𝑖 ) ∈
C𝑇 , we implement the Complex-Valued AttentionMechanism [8] to

retrieve reweighting coefficients from the parameterized knowledge

memory, ΘF
𝑘𝑚

. The matching score between the input time series 𝑖

and the reweighting knowledge entry 𝑗 is computed as:

𝑠F
𝑖, 𝑗

= ⟨q𝑖 , k𝑗 ⟩ = |q𝑖 | |k𝑗 | exp(𝑖 (𝜙q𝑖 − 𝜙k𝑗 )), (15)

where the query vector q𝑖 = MLP𝑞 (F (x𝑖 )) is obtained by ap-

plying an MLP to the input frequency representation, while the

keys k𝑗 ∈ C𝑇 and values v𝑗 ∈ C𝑇 are derived from the param-

eterized knowledge memory ΘF
𝑘𝑚

via two additional MLPs, de-

noted as MLP𝑘 (·) and MLP𝑣 (·). The terms 𝜙q𝑖 , 𝜙k𝑗 ∈ R𝑇 represent

the phase components of q𝑖 and k𝑗 , respectively. The real part

R(⟨q𝑖 , k𝑗 ⟩) = |q𝑖 | |k𝑗 | cos(𝜙q𝑖 −𝜙k𝑗 ) is taken to ensure a real-valued
similarity measure that maintains symmetry and rotational invari-

ance. The attention weights (𝑎F
𝑗
) are computed by applying a soft-

max over all 𝑃 knowledge entries. The frequency-domain reweight-

ing vector (wF,𝑖 ) is then obtained by aggregating the reweighted

knowledge representations based on these attention weights.:

𝑎F
𝑗
= softmax(

R(𝑠F
𝑖, 𝑗
)∑𝑃

𝑘=1
𝑠F
𝑖,𝑘

), wF,𝑖 =
𝑃∑︁
𝑗=1

𝑎F
𝑗
v𝑗 . (16)

The vector wF,𝑖 then replaces wF in Eq. 14 to adaptively reform

the frequency components of x𝑖 .

3.3 Frequency-invariant Augmentations

These augmented samples serve two purposes: (1) guiding the

encoder to generate similar embeddings for the original and its

frequency-reformed counterpart through frequency-similarity con-

straints, and (2) bridging the gap between time- and frequency-

domain information via reconstruction.

Therefore, instead of applying a random masking strategy to

the original time-series, we distort variable-length continuous seg-

ments in the frequency-reformed time-series. The augmentation

process consists of two steps: (1) Generate continuous indexes. (2)

Apply frequency-invariant augmentation strategies.

3.3.1 Generate Continuous Indexes. Recent studies have shown
that short masked sequences can often be trivially reconstructed

by replicating or averaging adjacent values, making the learned

representation overly sensitive to local variations. To mitigate this,

we generate continuous index sets of variant lengths.

Unlike conventional Bernoulli-based masking, which generates

discrete indexes, we apply a Markov process-based structured mask-

ing strategy: we apply a Markov process-based structured masking

strategy:

MT ∼ Markov(𝑝𝑚, 𝑝𝑢𝑚, 𝑟 ), (17)

whereMT ∈ {0, 1}𝑇 is a binarymasking vector with amasking ratio

𝑟 , 𝑝𝑚 = 1

𝑙𝑚
and 𝑝𝑢𝑚 = 1

𝑙𝑢
are transition probabilities for masked

and unmasked states, ensuring that masked (𝑙𝑚) and unmasked

(𝑙𝑢 ) segment lengths satisfy, 𝑙𝑢 = 1−𝑟
𝑟 𝑙𝑚 . This approach enforces

a geometric distribution for masked segments with an expected

length of 𝑙𝑚 , compelling the model to capture both long- and short-

term dependencies [40].

3.3.2 Apply Augmentation Strategy. Given an input sequence x̃𝑖 ,
we define operators T+ (·) and T- (·) to generate𝐾 positive ({x̃+

𝑖
}𝐾
𝑘=1

)

and negative ({x̃-
𝑖
}𝐾
𝑘=1

) augmented samples, respectively:

T+ (x̃𝑖 ) → {x̃+𝑖 }
𝐾
𝑘=1

, T- (x̃𝑖 ) → {x̃-𝑖 }
𝐾
𝑘=1

. (18)

Positive Sample Augmentation. Following prior work, we

adopt the masking operation (TM
+

(·)), where a fraction 𝑟 of the
time-series is randomly masked to simulate missing data:

TM
+

(x𝑖 ,MT ) = x𝑖 ⊙ MT . (19)

While reconstructing long sequences captures both short- and long-

term dependencies, masking excessively long segments can make

the task overly difficult, degrading downstream performance (Sec-

tion 4.3.4). Tomitigate this, we propose two augmentation strategies

that generate time-series with preserved frequency patterns but

distorted in the time domain to guide long-sequence reconstruction:

• Amplitude Scaling (TA
+

(·)): This augmentation scales the

masked regions of the time-series to simulate variations in signal

strength:

TA
+

(x𝑖 ,MT , a) = x𝑖 ⊙ (1 + (a − 1) ⊙ MT ), (20)

where a ∈ R𝑇 ∼ Uniform(0.5, 2) is the amplitude scaling factor.

•Noise Injection (TN
+

(·)): This augmentation injects t-distributed

noise into the masked regions of the time-series to simulate real-

world fluctuations:

TN
+

(x𝑖 ,MT , u) = x𝑖 + u ⊙ MT , (21)

where u ∈ R𝑇 ∼ 𝑇 (𝑣) represents noise sampled from a standard

Student’s t-distribution with degrees of freedom 𝑣 = 5.

These augmentation strategies not only help encode consistent

frequency representations under time-domain distortions but also

encourage the encoder to leverage and align information from both

the frequency and time domains.

Negative Sample Augmentation. To prevent over-fitting to

easy negatives and reduce computational cost, we select hard nega-

tives for each input time-series. Specifically, the negative sample for

an input sequence is chosen as the most similar sequence within the
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reformed time-series in the training batch {x𝑖 }𝑁𝑖=1. The similarity

is measured in the frequency domain and is defined in Eq. 15.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets. We use 14 well-established datasets, covering two

primary tasks in time-series analysis: regression and classification.

For regression, we evaluate our framework on 8 widely used bench-

mark datasets: Weather, Traffic, Electricity [34], Exchange [17], and

the ETT datasets (ETTH1, ETTH2, ETTM1, ETTM2) [42]. For clas-

sification, we pretrain our model on the SleepEEG dataset [41], a

widely used benchmark for transfer learning with abundant sam-

ples [6, 41]. The downstream evaluation is conducted on 6 classi-

fication datasets, including Gesture, FD-B, EMG, EPI, HAR, and a

collection of 128 datasets from the UCR archive [41]. All datasets

are preprocessed following the methods outlined in [23]. Detailed

descriptions are provided in Appendix A.

4.1.2 Baseline Settings. We compare our framework with 9 most

advanced time-series pre-training frameworks. These includemasked

modeling methods: SimMTM [6], Timesiam [4], and TST [40]. Ad-

ditionally, we evaluate contrastive learning methods, including

TF-C [41], LaST [32], PatchTST [27], TS2Vec [39], TimesURL [22],

and InfoTS [25].

For a fair comparison, all baselines use the Transformer with

patched time-series input [27] as the backbone for regression and

1D-ResNet [10] for classification, following previous work. The

hyper-parameters in the backbones were either searched within

the same range as or set according to their original configurations.

The Adam optimizer [16] was employed with a learning rate

ranging from {0.01 to 0.0001}. During pretraining, the maximum

number of training steps was capped at 50, while in fine-tuning,

early stopping with a patience of 10 epochs was applied to ensure

optimal performance.

4.2 Main Results

We summarize the results for both regression and classification

tasks in Figure 3. Each experiment was repeated five times with

different random seeds, and the reported results are averaged. FAT’s

average improvement over all baselines is statistically significant

at the 95% confidence level. As demonstrated, FAT exhibits signifi-

cant improvement over the state-of-the-art (SOTA) across diverse

datasets and backbone models.

4.2.1 Regression. We first compares our framework to represen-

tative baselines across eight benchmarks with various prediction

lengths under in-domain settings, where encoders are pre-trained

and fine-tuned on the same dataset [6]. As illustrated in Table 2,

our model consistently outperforms the baseline models across all

tests, showing the effectiveness of the proposed method. Specifi-

cally, FAT improves the average performance by 6.9% over random

initialization and by 1.4% over the second-best baseline model in

terms of Mean Squared Error (MSE).

While pretraining frameworks for time-series representation

outperform training from scratch, their effectiveness remains lim-

ited as they operate purely in the time domain. Additionally, their

representations are overly sensitive to local variations, resulting in

Figure 3: Comparison of the performance of FAT and all

baselines on the regression and classification task.

inconsistent embeddings and failing to capture essential frequency

semantics.

In contrast, FAT overcomes the limitations of existing pretraining

frameworks by enabling the encoder to directly extract frequency

patterns from time-domain signals without requiring explicit fre-

quency transformations during inference. The Knowledge-guided

Frequency Reformer unifies representations of important frequency

components across semantically similar time-series, addressing in-

consistencies in prior methods. Meanwhile, frequency-similarity

constraints allow direct frequency pattern extraction in the time

domain, while Frequency-invariant Augmentations mitigate sensi-

tivity to local variations.

4.2.2 Classification. Following previous works in transfer learn-

ing [6], we conduct cross-domain experiments by pretraining the

model on the SleepEEG dataset and fine-tuning it on diverse classi-

fication tasks where in-domain data is scarce for effective training.

This cross-domain evaluation introduces significant challenges in

handling mismatched data distributions.

The results consistently demonstrate that FAT outperforms ran-

dom initialization across all regression benchmarks and surpasses

other baselines in both regression and classification tasks. Specifi-

cally, FAT improves the average performance by 117.4% over ran-

dom initialization and by 7.8% over the second-best baseline model

in terms of accuracy. This highlights FAT’s robustness across vari-

ous downstream tasks and different backbone models, particularly

in adapting to mismatched data distributions.

We attribute this to the unified frequency expressions and re-

forming patterns learned by the Knowledge-guided Frequency Re-

former, which captures multiple reforming rules to align data with

mismatched distributions by mapping them to a unified structure,

effectively enhancing generalization.

4.3 Model Analysis

4.3.1 Ablation Study. To further investigate the effectiveness of

each mechanism in FAT, we conduct an ablation analysis by sys-

tematically removing key components and evaluating their impact.

Specifically, we consider three ablation models:

•𝑤/𝑜 p-reform: The frequency reformer is removed during the

pretraining stage, and augmentations are applied directly to the

original inputs.
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Table 1: Full results for the in-domain setting of regression. Pre-training and fine-tuning are performed on the same datasets.

The standard deviations are within 0.005 for MSE and within 0.004 for MAE.

Methods Random init. PatchTST TST TS2Vec LaST TFC SimMTM InfoTS TimesURL Timesiam FAT

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

E
T
T
H
1

96 0.420 0.423 0.369 0.391 0.377 0.401 0.381 0.400 0.396 0.413 0.399 0.420 0.367 0.389 0.376 0.395 0.372 0.392 0.378 0.401 0.368 0.392

192 0.465 0.449 0.426 0.425 0.432 0.436 0.421 0.427 0.457 0.451 0.444 0.449 0.424 0.423 0.410 0.423 0.417 0.420 0.422 0.430 0.411 0.419

336 0.504 0.470 0.475 0.458 0.475 0.461 0.468 0.452 0.507 0.478 0.479 0.467 0.473 0.456 0.457 0.440 0.455 0.441 0.459 0.452 0.452 0.443

720 0.502 0.492 0.496 0.495 0.525 0.500 0.553 0.507 0.516 0.508 0.491 0.490 0.494 0.493 0.493 0.470 0.477 0.468 0.459 0.466 0.454 0.458

Avg 0.473 0.459 0.442 0.442 0.452 0.450 0.456 0.447 0.469 0.463 0.453 0.457 0.440 0.440 0.434 0.432 0.430 0.430 0.430 0.437 0.421 0.428

E
T
T
H
2

96 0.297 0.345 0.301 0.355 0.304 0.358 0.297 0.343 0.294 0.345 0.302 0.345 0.299 0.352 0.293 0.348 0.297 0.346 0.293 0.345 0.283 0.337

192 0.388 0.400 0.382 0.401 0.379 0.403 0.366 0.392 0.379 0.395 0.369 0.392 0.380 0.398 0.370 0.392 0.372 0.391 0.370 0.392 0.356 0.385

336 0.426 0.434 0.420 0.429 0.412 0.432 0.416 0.430 0.423 0.436 0.412 0.428 0.422 0.432 0.421 0.422 0.416 0.427 0.410 0.424 0.401 0.419

720 0.431 0.446 0.426 0.446 0.438 0.457 0.424 0.447 0.445 0.460 0.428 0.446 0.428 0.449 0.440 0.452 0.437 0.447 0.418 0.440 0.419 0.433

Avg 0.386 0.406 0.382 0.408 0.383 0.413 0.376 0.403 0.385 0.409 0.378 0.403 0.382 0.408 0.381 0.404 0.381 0.403 0.373 0.400 0.365 0.394

E
T
T
M
1

96 0.330 0.368 0.322 0.362 0.319 0.360 0.325 0.364 0.345 0.381 0.353 0.378 0.317 0.356 0.329 0.368 0.320 0.357 0.319 0.360 0.313 0.355

192 0.369 0.385 0.368 0.393 0.360 0.387 0.370 0.389 0.372 0.391 0.361 0.384 0.362 0.387 0.373 0.391 0.364 0.377 0.353 0.379 0.347 0.374

336 0.400 0.407 0.393 0.411 0.391 0.408 0.405 0.415 0.412 0.420 0.392 0.406 0.387 0.405 0.407 0.413 0.398 0.400 0.383 0.402 0.375 0.396

720 0.460 0.439 0.450 0.445 0.449 0.445 0.471 0.452 0.462 0.448 0.448 0.440 0.443 0.438 0.466 0.448 0.455 0.434 0.440 0.436 0.432 0.430

Avg 0.390 0.400 0.383 0.403 0.380 0.400 0.393 0.405 0.398 0.410 0.389 0.402 0.377 0.397 0.394 0.405 0.384 0.392 0.374 0.394 0.367 0.389

E
T
T
M
2

96 0.175 0.258 0.177 0.265 0.181 0.265 0.174 0.261 0.177 0.258 0.281 0.327 0.175 0.262 0.198 0.277 0.200 0.287 0.175 0.261 0.171 0.257

192 0.247 0.307 0.246 0.310 0.247 0.309 0.247 0.306 0.252 0.309 0.241 0.302 0.244 0.307 0.255 0.320 0.266 0.329 0.241 0.303 0.236 0.299

336 0.309 0.345 0.310 0.348 0.314 0.354 0.306 0.345 0.307 0.344 0.304 0.343 0.312 0.351 0.305 0.341 0.308 0.350 0.300 0.341 0.292 0.333

720 0.408 0.403 0.408 0.405 0.408 0.407 0.427 0.415 0.404 0.402 0.404 0.403 0.410 0.408 0.399 0.397 0.407 0.405 0.399 0.398 0.391 0.389

Avg 0.285 0.328 0.285 0.332 0.288 0.334 0.289 0.332 0.285 0.328 0.308 0.344 0.285 0.332 0.289 0.334 0.295 0.343 0.279 0.326 0.273 0.320

W
e
a
t
h
e
r

96 0.177 0.218 0.191 0.229 0.177 0.221 0.174 0.216 0.170 0.212 0.177 0.218 0.184 0.220 0.185 0.223 0.189 0.225 0.171 0.213 0.170 0.211

192 0.225 0.259 0.225 0.265 0.223 0.260 0.220 0.257 0.215 0.253 0.222 0.257 0.217 0.255 0.229 0.258 0.233 0.261 0.217 0.253 0.215 0.249

336 0.278 0.297 0.284 0.308 0.279 0.301 0.276 0.297 0.272 0.295 0.277 0.296 0.273 0.296 0.282 0.295 0.286 0.299 0.272 0.293 0.269 0.291

720 0.354 0.348 0.362 0.357 0.355 0.350 0.352 0.346 0.349 0.344 0.353 0.346 0.348 0.344 0.349 0.337 0.356 0.344 0.348 0.343 0.343 0.341

Avg 0.259 0.281 0.266 0.290 0.259 0.283 0.256 0.279 0.252 0.276 0.257 0.279 0.256 0.279 0.261 0.278 0.266 0.282 0.252 0.276 0.249 0.273

E
x
c
h
a
n
g
e 96 0.084 0.201 0.087 0.206 0.098 0.218 0.084 0.201 0.096 0.220 0.083 0.201 0.083 0.202 0.087 0.205 0.084 0.195 0.084 0.203 0.082 0.200

192 0.187 0.307 0.186 0.307 0.187 0.308 0.185 0.306 0.190 0.313 0.173 0.296 0.182 0.303 0.182 0.304 0.185 0.305 0.176 0.300 0.175 0.297

336 0.337 0.422 0.342 0.423 0.330 0.418 0.328 0.415 0.409 0.455 0.332 0.418 0.346 0.427 0.332 0.420 0.328 0.417 0.310 0.404 0.311 0.408

720 0.858 0.695 0.827 0.685 0.925 0.731 0.856 0.696 1.035 0.749 0.860 0.698 0.831 0.689 0.860 0.701 0.857 0.686 0.842 0.690 0.838 0.687

Avg 0.367 0.406 0.361 0.405 0.385 0.419 0.363 0.405 0.433 0.434 0.362 0.403 0.361 0.405 0.365 0.408 0.364 0.401 0.353 0.399 0.352 0.398

E
C
L

96 0.193 0.291 0.174 0.271 0.171 0.267 0.175 0.268 0.183 0.275 0.171 0.263 0.164 0.255 0.188 0.274 0.178 0.264 0.164 0.245 0.162 0.249

192 0.199 0.297 0.189 0.285 0.181 0.276 0.183 0.275 0.190 0.281 0.188 0.277 0.178 0.268 0.182 0.270 0.198 0.281 0.173 0.256 0.174 0.261

336 0.216 0.312 0.202 0.298 0.197 0.291 0.199 0.292 0.205 0.296 0.205 0.291 0.190 0.280 0.191 0.286 0.220 0.291 0.189 0.275 0.187 0.273

720 0.257 0.345 0.250 0.338 0.237 0.325 0.240 0.324 0.248 0.330 0.244 0.322 0.235 0.318 0.231 0.321 0.249 0.336 0.229 0.310 0.228 0.306

Avg 0.216 0.311 0.204 0.298 0.197 0.290 0.199 0.290 0.207 0.296 0.202 0.288 0.192 0.280 0.196 0.285 0.213 0.297 0.189 0.272 0.188 0.272

T
r
a
f
f
i
c

96 0.472 0.305 0.462 0.298 0.478 0.292 0.469 0.291 0.506 0.330 0.465 0.301 0.442 0.285 0.435 0.472 0.437 0.474 0.429 0.279 0.425 0.273

192 0.474 0.304 0.472 0.319 0.469 0.316 0.477 0.293 0.503 0.326 0.470 0.311 0.452 0.305 0.489 0.305 0.491 0.306 0.442 0.282 0.440 0.283

336 0.491 0.331 0.494 0.337 0.482 0.323 0.494 0.301 0.517 0.332 0.498 0.320 0.473 0.322 0.498 0.332 0.500 0.334 0.456 0.288 0.455 0.292

720 0.523 0.327 0.519 0.346 0.516 0.327 0.508 0.319 0.552 0.349 0.514 0.326 0.497 0.331 0.495 0.340 0.497 0.342 0.486 0.307 0.484 0.313

Avg 0.490 0.317 0.487 0.325 0.486 0.315 0.487 0.301 0.520 0.334 0.487 0.315 0.466 0.311 0.479 0.362 0.481 0.364 0.453 0.289 0.451 0.290

Table 2: Results of cross-domain classification, where encoders are pre-trained on the SleepEEG dataset and fine-tuned on other

datasets. Accuracy(%) is reported, and full metrics are presented in Appendix C.

Method Rand. init. PatchTST TST TS2Vec LaST TF-C SimMTM InfoTS TimesURL Timesiam FAT

Gesture 32.50 63.47 62.91 63.33 65.14 57.50 74.17 69.52 69.03 75.02 77.74

FD-B 31.39 46.19 45.62 43.59 42.64 45.53 60.74 61.14 59.93 64.47 69.98

EMG 46.34 82.88 81.86 89.68 76.50 78.05 85.37 84.87 83.51 84.71 90.61

EPI 39.79 77.59 76.64 78.91 71.63 67.56 95.13 91.33 90.49 94.03 96.07

UCR 49.03 60.85 60.10 72.50 56.17 61.88 75.34 84.11 84.53 76.56 86.97
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Table 3: Ablation studies were conducted on FAT.

Input-96 𝑅𝑎𝑛𝑑.𝑖𝑛𝑖𝑡 . 𝑤/𝑜 𝑝-𝑟𝑒 𝑓 𝑜𝑟𝑚 𝑤/𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑤/𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
+ 𝑓 -𝑟𝑒 𝑓 𝑜𝑟𝑚

𝑤/𝑜 𝑎𝑢𝑔 FAT

Predict-O MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1

96 0.420 0.423 0.367 0.389 0.377 0.396 0.382 0.405 0.408 0.371 0.368 0.392

192 0.465 0.449 0.424 0.423 0.438 0.424 0.427 0.435 0.431 0.442 0.411 0.419

336 0.504 0.470 0.473 0.456 0.478 0.443 0.464 0.457 0.461 0.480 0.452 0.443

720 0.502 0.492 0.494 0.493 0.474 0.471 0.468 0.471 0.479 0.495 0.454 0.458

Avg 0.473 0.459 0.440 0.440 0.442 0.434 0.435 0.442 0.445 0.447 0.421 0.428

ETTH2

96 0.297 0.345 0.299 0.352 0.294 0.345 0.286 0.340 0.299 0.349 0.283 0.337

192 0.388 0.400 0.380 0.398 0.369 0.395 0.360 0.375 0.382 0.404 0.356 0.385

336 0.426 0.434 0.422 0.432 0.420 0.432 0.405 0.413 0.425 0.436 0.401 0.419

720 0.431 0.446 0.428 0.449 0.430 0.446 0.424 0.440 0.436 0.457 0.419 0.433

Avg 0.386 0.406 0.382 0.408 0.378 0.405 0.369 0.392 0.386 0.412 0.365 0.394

ETTM1

96 0.330 0.368 0.317 0.356 0.322 0.361 0.323 0.364 0.325 0.371 0.313 0.355

192 0.369 0.385 0.362 0.387 0.364 0.383 0.357 0.383 0.366 0.393 0.347 0.374

336 0.400 0.407 0.387 0.405 0.396 0.406 0.387 0.406 0.391 0.407 0.375 0.396

720 0.460 0.439 0.443 0.438 0.456 0.444 0.445 0.441 0.459 0.451 0.432 0.430

Avg 0.390 0.400 0.377 0.397 0.385 0.399 0.378 0.399 0.385 0.406 0.367 0.389

ETTM2

96 0.175 0.258 0.175 0.262 0.179 0.262 0.177 0.264 0.183 0.266 0.171 0.257

192 0.247 0.307 0.244 0.307 0.244 0.304 0.244 0.306 0.249 0.310 0.236 0.299

336 0.309 0.345 0.312 0.351 0.303 0.345 0.303 0.345 0.321 0.355 0.292 0.333

720 0.408 0.403 0.410 0.408 0.402 0.403 0.403 0.402 0.413 0.411 0.391 0.389

Avg 0.285 0.328 0.285 0.332 0.282 0.329 0.282 0.329 0.292 0.336 0.273 0.320

• 𝑤/𝑜 contrast: The similarity constraint between the original

time-series and its frequency-reformed counterparts is removed.

•𝑤/𝑜 contrast + f-reform: The similarity constraint is removed,

and the learned Knowledge-guided frequency reformer is applied

before the encoder during fine-tuning stage.

•𝑤/𝑜 aug: The augmentation strategy is replaced with random

masking tokens, as in previous research.

Table 3 presents the results of our ablation study, highlighting

the distinct role of each component:

1. Frequency reformer is crucial for learning frequency-

domain features. Removing the frequency reformer from the pre-

training stage (𝑤/𝑜 p-reform) significantly degrades performance,

confirming that frequency modeling is essential for time-series rep-

resentation. Without it, the encoder relies solely on time-domain

features, limiting its ability to extract structured frequency patterns.

2. Frequency-similarity constraints are essential for ex-

tracting frequency patterns from the time domain. Removing

the frequency-similarity constraint (𝑤/𝑜 contrast) significantly de-

grades performance. However, when reintroducing the Knowledge-

guided Frequency Reformer during fine-tuning (𝑤/𝑜 contrast +

f-reform), the results become comparable to FAT. This indicates

that the frequency-similarity constraint effectively transfers the

frequency-domain knowledge and transformation process learned

by the Knowledge-guided Frequency Reformer to the encoder. As a

result, the encoder can directly operate in the time domain without

requiring additional modules for specialized frequency processing.

3. Frequency-invariant Augmentation Enhances Robust-

ness to Time-Domain Variations.Without augmentation (𝑤/𝑜
aug), the model becomes overly sensitive to local perturbations,

leading to unstable representations under small temporal distor-

tions. By mitigating overfitting to high-frequency noise, augmenta-

tion helps the model recognize frequency-similar sequences despite

local variations, ensuring robust and transferable representations.

These findings demonstrate that Knowledge-guided Frequency

Reformer, Frequency-similar Constraint, and Frequency-invariant

Table 4: Experiments on Variations of Frequency Reformer.

Input-96 𝐹𝐴𝑇𝑅𝑎𝑛𝑑𝑜𝑚−𝑘 𝐹𝐴𝑇𝑇𝑜𝑝−𝑘 𝐹𝐴𝑇𝑆ℎ𝑎𝑟𝑒𝑑 FAT

Predict-O MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1

96 0.393 0.417 0.396 0.421 0.387 0.409 0.368 0.392

192 0.436 0.444 0.440 0.450 0.429 0.439 0.411 0.419

336 0.474 0.468 0.478 0.474 0.468 0.463 0.452 0.443

720 0.473 0.484 0.481 0.485 0.469 0.473 0.454 0.458

Avg 0.444 0.453 0.449 0.457 0.438 0.446 0.421 0.428

ETTH2

96 0.293 0.346 0.295 0.351 0.290 0.343 0.283 0.337

192 0.369 0.383 0.372 0.388 0.364 0.380 0.356 0.385

336 0.415 0.422 0.418 0.426 0.407 0.417 0.401 0.419

720 0.433 0.452 0.439 0.454 0.429 0.443 0.419 0.433

Avg 0.378 0.401 0.381 0.405 0.373 0.396 0.365 0.394

ETTM1

96 0.331 0.374 0.335 0.376 0.325 0.368 0.313 0.355

192 0.365 0.392 0.370 0.394 0.361 0.385 0.347 0.374

336 0.396 0.414 0.400 0.420 0.392 0.408 0.375 0.396

720 0.456 0.451 0.460 0.457 0.448 0.445 0.432 0.430

Avg 0.387 0.408 0.391 0.412 0.381 0.402 0.367 0.389

ETTM2

96 0.181 0.271 0.183 0.273 0.178 0.267 0.171 0.257

192 0.249 0.313 0.252 0.317 0.246 0.308 0.236 0.299

336 0.310 0.352 0.313 0.357 0.305 0.348 0.292 0.333

720 0.412 0.413 0.416 0.415 0.406 0.405 0.391 0.389

Avg 0.288 0.337 0.291 0.340 0.284 0.332 0.273 0.320

Augmentation are all indispensable for improving the representa-

tion power and generalization ability of FAT.

4.3.2 Sensitivity to the Choice of Frequency Reformers. We now

evaluate the design choices of the Knowledge-guided Frequency

Reformer, which adaptively transforms time-series with diverse

frequency expressions into a unified frequency space by mapping

patterns stored in a parameterized knowledge memory. Specifically,

we consider three variants:

• 𝐹𝐴𝑇𝑅𝑎𝑛𝑑𝑜𝑚−𝑘 : The frequency reformer retains 𝑘 random fre-

quency components as a baseline, where 𝑘 is set to 50% of the total

frequency components.

• 𝐹𝐴𝑇𝑇𝑜𝑝−𝑘 : The frequency reformer retains the top 𝑘 frequency

components with the highest amplitude.

• 𝐹𝐴𝑇𝑆ℎ𝑎𝑟𝑒𝑑 : The frequency reformer learns a shared transfor-

mation parameter across all samples, as in Eq. 14.

As shown in Table 4, FAT consistently achieves the best per-

formance, followed by 𝐹𝐴𝑇𝑆ℎ𝑎𝑟𝑒𝑑 , with 𝐹𝐴𝑇𝑅𝑎𝑛𝑑𝑜𝑚−𝑘 performing

better than 𝐹𝐴𝑇𝑇𝑜𝑝−𝑘 . This result underscores the necessity of

learning an adaptive frequency transformation rather than relying

on fixed selection rules.

Furthermore, the performance gap between FAT and 𝐹𝐴𝑇𝑆ℎ𝑎𝑟𝑒𝑑
highlights the importance of learning a data-dependent frequency

reforming process. Since time-series sequences with similar seman-

tics can exhibit diverse frequency representations, a static trans-

formation fails to align them effectively, limiting generalization.

By contrast, FAT adaptively aligns these variations into a unified

frequency expression, ensuring representation consistency while

preserving meaningful frequency information.

4.3.3 Sensitivity to the Capacity of Knowledge-guided Frequency
Reformers. Results in previous section demonstrate that capturing

frequency information requires an adaptive, data-driven approach

rather than relying on fixed selection rules. However, the optimal

number of Frequency Reforming Patterns (𝑃 ) in the Knowledge-

guided Frequency Reformer remains uncertain.



FAT: Frequency-Aware Pretraining for Enhanced Time-Series Representation Learning KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Figure 4: Left: Ablation results (MSE) on the number of rules

(𝑃 ) inΘF
𝑘𝑚

, evaluated in the in-domain setting (ETTH2). Right:

Ablation results (Accuracy, Precision, Recall, and F1 Score)

on the number of rules (𝑃) in ΘF
𝑘𝑚

, evaluated in the cross-

domain setting (SleepEEG→ GESTURE).

Figure 5: Impact of augmentation hyper-parameters, includ-

ingmasked segment length (𝑙𝑚) and distortion ratio (𝑟 ), under

settings with and without augmented samples in reconstruc-

tion. The experiment was conducted on ETTH2.

To investigate this, we vary the number of stored patterns (8

to 128) under in-domain (ETTH2) and cross-domain (SleepEEG →
GESTURE) settings, analyzing their impact on tasks with stable vs.

shifting frequency distributions.

As in Figure 4, results follows a peak-then-decline trend in both

settings, indicating that while frequency adaptation enhances align-

ment, excessive patterns introduce redundancy or noise. Notably,

the optimal number differs between settings—32 patterns perform

best in-domain, whereas 64 patterns yield the highest performance

in cross-domain adaptation.

The higher requirement in cross-domain settings suggests that

domain shifts introduce additional challenges beyond frequency

misalignment, necessitating broader adaptation capabilities. These

findings highlight the need for dynamically adjusting the number

of adaptation patterns based on task complexity to enhance both

robustness and generalization.

4.3.4 Sensitivity to Augmentation Strategy. Hyper-parameters in

Frequency-invariant Augmentation, including masked segment

length (𝑙𝑚) and distortion ratio (𝑟 ), control the difficulty of the

pretraining task. Excessive distortions can make the task overly

difficult, hindering the learning process, while insufficient distortion

leads to trivial replication of adjacent values, failing to capture

meaningful temporal patterns.

To examine this trade-off, we vary the difficulty of the pretrain-

ing task and analyze its impact. As shown in Figure 5, initially,

increasing the distortions ratio improves learning by encouraging

the encoder to capture essential patterns. However, when 𝑙𝑚 > 3 or

𝑟 > 50%, excessive distortions removes too much information, mak-

ing reconstruction overly difficult and degrading representation

quality.

One of the key motivations for proposing Frequency-invariant

Augmentation is to provide useful guidance for reconstructing long

sequences while preventing the model from exploiting trivial cues.

To further investigate whether augmentation aids pretraining, we

replace augmented samples with solely masked original sequences

(i.e.,𝑤/𝑜 aug in Section 4.3.1). We observe that under more challeng-

ing settings, the model struggles to effectively acquire knowledge

from the pretraining task.

These results highlight that a moderate reconstruction difficulty

optimally balances learning efficiency and generalization. Further-

more, Frequency-invariant Augmentation extends this threshold,

allowing the encoder to learn more complex patterns and better

adapt to real-world variations.

5 Conclusion

In this paper, we introduced FAT, a novel self-supervised pretraining

framework for time-series representation learning. FAT seamlessly

integrates conventional pretraining paradigms with frequency-

aware learning, comprising three key innovations: the Knowledge-

guided Frequency Reformer, the frequency-similarity constraint,

and Frequency-invariant Augmentations. By enabling the encoder

to directly extract consistent and generalizable frequency patterns

from time-domain signals, FAT eliminates the need for architectural

modifications or additional modules during inference, making it

adaptable to various backbone models.

Comprehensive experiments across 14 benchmark datasets demon-

strate that FAT consistently outperforms existing pretraining frame-

works in both classification and regression tasks, exhibiting strong

generalization across different architectures and experimental set-

tings. Ablation studies further validate the effectiveness of our

proposed modules in jointly capturing essential features across

both time and frequency domains. Beyond its empirical success,

FAT highlights the potential of learning a unified representation

for semantically similar time-series with diverse frequency expres-

sions, without requiring human labeling. This presents a promising

step toward a truly universal sequence representation learning

architecture.
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A Dataset Description

Table 5: Dataset descriptions. Samples are organized in (Train/Validation/Test).

Tasks Datasets Channels Series Length Samples Classes Information Freqency

F
o
r
e
c
a
s
t
i
n
g

ETTH1,ETTH2 7 {96,192,336,720} 8,545/2,881/2,881 - Electricity Hourly

ETTM1,ETTM2 7 {96,192,336,720} 34,465/11,521/11,521 - Electricity 15 Mins

Weather 21 {96,192,336,720} 36,792/5,271/10,540 - Weather 10 Mins

Exchange 8 {96,192,336,720} 5,120/665/1,422 - Exchange rate Daily

Electricity 321 {96,192,336,720} 18,317/2,633/5261 - Electricity Hourly

Traffic 862 {96,192,336,720} 12,185/1,757/3,509 - Transportation Hourly

C
l
a
s
s
i
fi
c
a
t
i
o
n

SleepEEG - 200 371055 5 EEG 100 Hz

Gesture - 178 320 8 Gesture 100 Hz

FD-B - 5120 60 3 FD 64K Hz

EMG - 1500 122 3 EMG 4K Hz

EPI - 178 60 2 EPI 178 Hz

128 UCR - 15∼2,844 16∼8,926 2∼60 - -

B Hyperparamter Setting

We have followed and compared the official implementations of all baseline models with our approach. To ensure a fair comparison, we have

maintained the original configurations outlined in these papers. Unless otherwise specified, the key hyperparameters are shown as follows:

Table 6: The main hyperparameter settings.

Hyperparameter Value

Backbone

Hidden Size [16,32,64,128,256]

Number of Transformer Layers [2,3,4]

Feed-Forward Layer Dimension [64,128,256]

Number of Attention Heads [4,8,16,32]

Pretrain and Finetune

Optimizer Adam

Dropout Rate {0.1,0.5}

Batch Size [8,16,32,64]

Learning Rate 0.0001,0.01

Number of Rules (P) [8,16,32,64,128]

Mean Masking Length [3,5,7,11,15,20]

Temperature 0.2

Number of Positive Samples 3

Masking Ratio {0.1,0.5}
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C Full Results of Classification

Table 7: The full results of baseline models on 5 classification datasets.

Datasets Methods Accuracy(%) Precision(%) Recall(%) F1 Score(%) Mean(%)

Gesture

Rand. Init. 32.50 32.50 21.56 25.92 28.12

PatchTST 63.47 63.47 60.53 61.97 62.36

TST 62.91 62.91 60.00 61.42 61.81

TS2Vec 63.33 63.33 60.40 61.83 62.22

LAST 65.14 65.14 62.12 63.59 64.00

TF-C 57.50 57.50 54.75 56.09 56.46

SimMTM 74.17 74.17 71.68 72.90 73.23

InfoTS 69.52 69.52 66.31 67.88 68.31

TimesURL 69.03 69.03 65.86 67.41 67.83

Timesiam 75.02 75.02 71.56 73.25 73.71

FAT 77.74 77.74 77.16 77.45 77.52

FD-B

Rand. Init. 31.39 45.10 30.68 36.52 39.95

PatchTST 46.19 53.85 44.22 48.56 48.21

TST 45.62 53.43 43.61 48.02 47.67

TS2Vec 43.59 51.91 38.79 44.40 44.67

LAST 42.64 51.24 40.43 45.20 44.88

TF-C 45.53 53.36 43.51 47.93 47.58

SimMTM 60.74 69.98 57.96 63.41 63.02

InfoTS 61.14 64.79 55.11 59.56 60.15

TimesURL 59.93 63.90 56.84 60.16 60.21

Timesiam 64.47 67.22 60.67 63.78 64.03

FAT 69.98 77.98 70.32 73.95 73.06

EMG

Rand. Init. 46.34 33.33 55.45 41.63 44.19

PatchTST 82.88 71.96 88.18 79.25 80.57

TST 81.86 71.07 87.09 78.27 79.57

TS2Vec 89.68 84.71 95.45 89.76 89.9

LAST 76.50 66.42 81.40 73.15 74.37

TF-C 78.05 68.44 74.49 71.34 73.08

SimMTM 85.37 74.12 90.83 81.63 82.99

InfoTS 84.87 73.70 90.31 81.16 82.51

TimesURL 83.51 72.50 88.85 79.85 81.18

Timesiam 84.71 73.53 90.11 80.98 82.33

FAT 90.61 89.34 89.74 89.54 89.81

EPI

Rand. Init. 39.79 47.72 29.89 36.76 38.54

PatchTST 77.59 77.09 80.08 78.56 78.33

TST 76.64 76.14 79.09 77.59 77.36

TS2Vec 78.91 78.40 81.44 79.89 79.66

LAST 71.63 71.16 73.92 72.51 72.31

TF-C 67.56 66.14 80.49 72.61 71.70

SimMTM 95.13 94.33 95.05 94.69 94.80

InfoTS 91.33 90.77 94.30 92.50 92.23

TimesURL 90.49 89.87 93.35 91.58 91.32

Timesiam 94.03 93.39 97.02 95.17 94.90

FAT 96.07 93.60 93.77 93.69 94.28

128 UCR

Rand. Init. 49.03 45.07 36.93 40.60 42.91

PatchTST 60.85 57.70 62.50 60.00 60.26

TST 60.10 56.99 61.73 59.27 59.52

TS2Vec 72.50 69.31 71.15 70.22 70.79

LAST 56.17 53.26 57.69 55.39 55.63

TF-C 61.88 58.68 63.56 61.02 61.29

SimMTM 75.34 73.37 74.96 74.16 74.46

InfoTS 84.11 79.77 86.41 82.96 83.31

TimesURL 84.53 80.17 86.84 83.37 83.73

Timesiam 76.56 72.61 78.65 75.51 75.83

FAT 86.97 85.21 87.44 86.31 86.48
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