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ABSTRACT
Risk prediction and pricemovement classification are essential tasks
in financial markets. Monetary policy calls (MPC) provide impor-
tant insights into the actions taken by a country’s central bank on
economic goals related to inflation, employment, prices, and inter-
est rates. Analyzing visual, vocal, and textual cues from MPC calls
can help analysts and policymakers evaluate the economic risks and
make sound investment decisions. To aid the analysis of MPC calls,
we curate the Monopoly dataset, a collection of public conference
call videos alongwith their corresponding audio recordings and text
transcripts released by six international banks between 2009 and
2022. Our dataset is the first attempt to explore the benefits of visual
cues in addition to audio and textual signals for financial prediction
tasks. We introduce MPCNet, a competitive baseline architecture
that takes advantage of the cross-modal transformer blocks and
modality-specific attention fusion to forecast the financial risk and
price movement associated with the MPC calls. Empirical results
prove that the task is challenging, with the proposed architecture
performing 5-18% better than strong Transformer-based baselines.
We release the MPC dataset and benchmark models to motivate
future research in this new challenging domain.

CCS CONCEPTS
• Computing methodologies → Visual inspection.
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1 INTRODUCTION
Predicting how the prices of a financial asset will vary over a cer-
tain period is an important financial analysis task for investors
and policymakers [29]. Understanding the sentiment of the econ-
omy and it’s associated risk perceptions can help analysts make
better decisions about investment returns, while policymakers can
implement cautionary monetary measures in order to maintain a
healthy economy [10, 51]. With unparalleled advances in multi-
modal learning, a massive amount of unstructured data is accessible
to investors for financial forecasting [25]. One such rich source of
information is the Monetary Policy Conference (MPC’s) call. These
hour-long, public video conferences are held periodically where
the governors of a country’s central bank1 (eg., the Federal Reserve
Bank in the United States) meet to discuss the actions undertaken to
improve the financial conditions of the country, explain their stance
on the monetary policy, and assess the risks to economic growth.
The MPC calls are a combination of a prepared press speech by the
governor followed by a spontaneous question-answering session
with the journalists [33]. The public presentation sheds light on the
announcements regarding policy decisions and gives indications
about the future path of the economy. The question-answer ses-
sion involves the call participants like media reporters and market
analysts engaging in a dialogue with the governors to analyze a
range of economic factors such as inflation, employment, value of
currency, stock market growth and interest rates on loans.

Prior works [9, 43] have highlighted the impact of MPC calls
on financial stock markets as evident from a “higher than normal”
trading across different financial assets. For instance, [20] gives an
example of how the volatility of S&P 500 index can be observed to
be roughly three times larger on days when the Federal Reserve
Bank conducts its MPC calls in the US compared to other times.

∗∗Opinions expressed here are the author’s own, and do not represent the
views of Fidelity Investments. A standard disclaimer applies.
1https://www.investopedia.com/terms/c/centralbank.asp
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Inflation is expected to remain elevated in the near term, but should ease in the
course of next year. Overall, financing conditions for the economy remain favourable.
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Figure 1:A sample from aMonetary Policy Call held by the Europen
Central Bank. The Governor first presents a prepared press speech,
followed by a spontaneous question and answer (Q&A) session with
journalists. The meeting ended with an adverse market reaction that
led to declining currency value and a high volatility in stock prices.

Hence, shareholders critically analyze the multimodal MPC calls
to forecast stock market indices, treasury bonds, prices of gold,
and currency exchange rates post the conference call [53]. Prior
findings [21] suggest that the minutes of the MPC calls can provide
important market-relevant information for several financial assets
as mentioned in Table 1 and need to be assessed systematically.

There is anecdotal evidence that non-verbal cues such as com-
plexity of language, vocal tone and facial expressions of the speakers
can be indicative and correlated with trading activities in the finan-
cial markets [11, 30]. Although existing research has used text and
audio for financial predictions [41, 42, 47, 48], use of visual cues as
part of multimodal input has been largely limited. Existing NLP
literature has focused on what is being said during the press confer-
ences while there is a need to focus on how it is being said. This can
accomplished by exploiting the visual aspects of the conferences
for scrutinizing the human behavior such as eye-movements, facial
expressions, postures, and gaits [33]. According to [57], behav-
ioral clues may reflect emotions that subjects might want to hide.
Variability across different speakers makes it extremely difficult to
detect these expressions in real time. For instance, Figure 1 depicts
an MPC call held by European Central bank where the tone of the
conference takes a more negative turn when the governor tries to
evade questions on future inflation. The textual content indicates
an optimistic outlook on long-term inflation despite an overall pes-
simistic vocal tone. The followup discussion depicts the speaker
hesitancy in indulging more details to the reporters, accompanied
with facial expressions that could indicate stress. Consequently, the
meeting ended with an adverse market reaction that led to declining
currency value and a high volatility in stock prices. Motivated by
prior works, we explore multimodal deep learning approaches that
can extract complementary information from multiple modalities
to improve financial modeling. Our work takes the first step in
multimodal financial modeling on MPC calls by utilizing the visual,
vocal, and verbal modalities simultaneously.

Our contributions in this work can be summarized as:
• We curate a public dataset2, Monopoly: Monetary Policy Call
Dataset, consisting of 340 video conference calls spanning

2https://github.com/monopoly-monitory-policy-calls/MONOPOLY

Financial assets Impact of MPC announcements
Stock Prices Indications of healthy, steadily growing economy increases stock prices
(Large/ Small) Size of stock market - large vs. small, indicates set of all stocks vs. top performing stocks
Gold Price Rise in inflation expectations raises prices of precious metals
Treasury bond yields Higher perceived risk of recession and rising interest rates leads to price increase
(Short/Long-term) Duration of bond term (short vs. long) indicates time expectation of interest rates hike
Currency Exchange Rate Increase in employment and regulated inflation leads to appreciation in value

Table 1: Importance of MPC call analysis for financial forecasting.

over 350 hours between 2009 to 2022 extracted from 6 ma-
jor English-speaking economies - USA, Canada, European
Union, United Kingdom, New Zealand, and South Africa.

• We accompany the dataset with several strong neural base-
lines. Our proposed methodology, MPCNet utilizes video
frames, audio recordings, and utterance-aligned transcripts,
learnt through a cross-modal transformer architecture and
modality-specific attention fusion for volatility and price
movement prediction of stock market indices, gold price,
currency exchange rates, and bond prices. We provide a
cumulative of 24K data points for experimentation.

• MPCNet empirically outperforms other competitive deep
learning approaches by 5-18% in this new task domain.

2 RELATEDWORK
AI in Finance Traditional financial forecasting techniques have
been applied in areas such as stock markets [3, 44], currency ex-
change markets [26, 56], and energy economics [6, 18]. Conven-
tional financial models previously relied only on numerical features
[36], which include discrete (ARIMA [3], GARCH [8], rolling regres-
sion [38]), continuous (Markov chain [24] and stochastic volatility
[2]), and neural approaches [27, 32]. Efforts have since shifted to-
wards utilizing textual data such as social media posts, news reports,
web searches, etc. [49, 58]. These approaches limit their analyses
to stock markets. [48] explored a multi-task setting for financial
risk forecasting in stock markets using earnings calls. However, the
multi-task setting is limited to simultaneous prediction of move-
ment and volatility of a single target variable, and simultaneous
prediction of multiple economic variables presents a new avenue
for research in financial forecasting.
Monetary Policy Calls Previous research has shown that MPC
calls provide key economic indicators that determine how the policy
impacts the financial markets, and can improve financial predictions
[9, 43]. Studies have also been carried out exclusively for MPC calls
[17, 53], which show that monetary policy meeting minutes affect
policy expectations, often exerting an even larger effect on financial
markets than the release of the policy decisions. Furthermore, the
Q&A portion of the press conference serves as a clarifier of the
economic outlook, particularly during times of highmacroeconomic
uncertainty [17]. There is, however, a gap in leveraging neural
predictive modeling using visual, verbal and vocal cues pertaining
to MPC calls for financial forecasting.
Multimodality in Financial Forecasting Existing work in the
financial realm utilize vocal and textual cues from earnings con-
ference calls [41, 48], and mergers and acquisitions calls [47] for
stock volatility prediction. Multimodal architectures that use these
cues for financial predictions have seen significant improvements
in their performances [48, 60]. However, the vision modality, which
may offer important cues that correlate with the performance of
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(a) MPC call frequency
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(b) Video duration
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(c) Mean # utterances.
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(d) Mean # words.

Figure 2: Year-wise statistics for each bank (FRB: Federal Reserve Bank of USA, BOC: Bank Of Canada, BoE: Bank of England,
BNZ: Reserve Bank of New Zealand, ECB: European Central Bank, SARB: South African Reserve Bank).

financial markets [11] remains underexplored, which we seek to
address with this work.

3 PROBLEM FORMULATION
We consider a monetary policy meeting 𝜒 which consists of three
components: 𝜒 = [𝑣 ;𝑎; 𝑡]. The sequence of textual utterances3
𝑡 = [𝑡1, 𝑡2, · · · , 𝑡𝑁 ] is extracted from the meeting transcript where
𝑡𝑖 is the 𝑖𝑡ℎ utterance of the call and𝑁 is themaximum number of ut-
terances in any call. Similarly, 𝑎 is the sequence of corresponding au-
dios for the textual utterances and is represented as [𝑎1, 𝑎2, · · · , 𝑎𝑁 ].
Finally, 𝑣 corresponds to the sequence of the video frames corre-
sponding to each audio segment, given by [𝑣1, 𝑣2, · · · , 𝑣𝑁 ]. Each ut-
terance in a given call belongs to speaker 𝑠 ∈ {𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟, 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟 }.
Our goal is to forecast predictions for the set of six principle finan-
cial targets: U = {Stock Index (Small), Stock Index (Large), Gold Price,
Currency Exchange Rate, Long-term bond yield (10-years), Short-term
bond yield (3-months)}. We experiment simultaneously predicting
all target variables using shared model parameters. For volatility
prediction, we stack all computed volatility values 𝑣𝑢[𝑑,𝑑+𝜏 ] ,∀𝑢 ∈ U
into an |U|-dimensional target vector v[𝑑,𝑑+𝜏 ] . For the movement
prediction task, we similarly stack all computed movement labels
𝑦𝑢[𝑑,𝑑+𝜏 ] ,∀𝑢 ∈ U into an |U|-dimensional target vector y[𝑑,𝑑+𝜏 ] . We
will now describe the two kinds of prediction tasks that we explore
in this work i.e volatility and movement prediction.
Volatility: Following [28], we define volatility prediction as a re-
gression problem. For a given target variable 𝑢 ∈ U with price 𝑝𝑖
on day 𝑖 , the volatility is the natural log of the standard deviation
of return prices 𝑟 in a window of 𝜏 days, given as,

𝑣𝑢[𝑑,𝑑+𝜏 ] = ln
©«
√︄∑𝑑+𝜏

𝑖=𝑑
(𝑟𝑖 − 𝑟 )2

𝜏

ª®®¬ , 𝑣 ∈ R (1)

where 𝑟𝑖 =
𝑝𝑖−𝑝𝑖−1
𝑝𝑖−1

is the return price on day 𝑖 of the target𝑚, and
𝑟 is the average of these returns over a period of 𝜏 days.
Price movement Following [59], we define price movement
𝑦 [𝑑,𝑑+𝜏 ] over a period of 𝜏 days as a binary classification task. For
a given target, whose price 𝑝 can either rise or fall on a day 𝑑 + 𝜏

3Due to higher complexity and noise of processing long length of videos, we segment
at sentence level as opposed to the word level.

Bank Year Range # of Data Samples
Federal Reserve 2011-22 3804
European Central Bank 2011-22 7416
Bank of England 2015-22 1728
Bank of Canada 2012-22 2808
Reserve Bank of New Zealand 2009-22 5040
South African Reserve Bank 2016-22 3384

Table 2: Data distribution of conference video files for each bank.
Number of data samples corresponds to total data points in the
Monopoly dataset corresponding to each bank.

compared to a previous day 𝑑 , we formulate the classification task,

𝑦𝑢[𝑑,𝑑+𝜏 ] =

{
1, 𝑝𝑑+𝜏 ≥ 𝑝𝑑

0, 𝑝𝑑 ≥ 𝑝𝑑+𝜏
(2)

4 MONOPOLY DATASET
Conference call transcripts and audios have been extensively stud-
ied in the past [41, 47]. However, there is no existing financial
conference dataset that captures the visual modality. Therefore, we
present the Monopoly dataset with videos, audio recordings and
text transcripts corresponding to the monetary policy committee
meetings conducted by the central banks of six major economies
- United States, United Kingdom, European Union, Canada, New
Zealand, and South Africa. To limit the scope, we ensured all au-
dios and transcripts were in English, and had "Monetary Policy"
mentioned in their titles.

4.1 Dataset Acquisition
We extract the conference call videos from the official websites of
the respective central banks as mentioned in Table 5 in Appendix.
We used BeautifulSoup4 Python package to web scrape the dates,
video links, and transcripts of the monetary policy calls, and down-
load the MP4 videos and PDF transcripts using Urllib5. Textual
components of the PDF were extracted using PDFPlumber6 python
library. Table 7 in Appendix points to the reference ticker names
used in different financial markets to indicate the market prices
for stock indices (large and small), gold price, currency exchange
rate, long-term and short-term bond yields. We use the Bloomberg
Terminal7 to extract the time series of daily prices between Jan

4https://www.crummy.com/software/BeautifulSoup/
5https://pypi.org/project/urllib3/
6https://pypi.org/project/pdfplumber/
7https://bba.bloomberg.net/
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2000 to Mar 2022 corresponding to the six financial target for each
conference call.

4.2 Dataset Statistics
Since conference calls started being reliably released post 2009, we
filter and list all MPC calls between January 2009 and March 2022.
These meetings are held 8 times in a year. A total of 464 MPC con-
ference calls were downloaded. However, we discarded conference
calls where text-audio-video alignment was not possible due to
missing media or transcription files. The final dataset comprises of
340 conference calls of a combined duration of 15, 729 minutes with
the average duration of the calls around 53 minutes. The scripted
opening statement during the press conference is on average just
shy of 10 minutes long, while the Q&A session usually lasts for
about 44 minutes, with the governor answering an average of 22
questions and follow-ups. Table 2 shows the data distribution for
conference calls originating from different banks. The mean num-
ber of audio utterances across the calls is 587.54 ± 38.32, with a
maximum of 2462 utterances. Similarly, we observe varying lengths
of conference calls with mean and maximum number of words
as 6280 and 17,258 words, respectively. Table 8 in Appendix gives
further descriptive dataset statistics. Looking at year-wise trends in
Figure 2, we see that the availability of calls gets more consistent
every year as more and more countries mandate public release of
conference recordings. We also see a positive trend of progressively
increase in all three modalities of the conference calls - total dura-
tion (visual), number of utterances (vocal), as well as the number of
words (textual) each year. The dataset is split chronologically into a
train, validation, and test set in the ratio of 70 : 10 : 20, respectively,
to ensures that future data is not used for forecasting past data.

5 METHODOLOGY
5.1 Multi-Modal Segmentation and Alignment
Given the three modalities 𝑣, 𝑎 and 𝑡 , it is essential to segment them
into sequences such that they align and correspond with each other.
To perform segmentation, we follow existing work [47] and use
utterance-level embeddings, where we consider each sentence or
phrase as an utterance. We perform forced alignment using the
library Aeneas8 to align the audio segments with textual utterance.
Aeneas uses the Sakoe-Chiba Band Dynamic Time Warping (DTW)
[46] forced alignment algorithm, which shows high discrimination
between words. The Forced Alignment algorithm takes as input a
text file divided into segments 𝑡 = [𝑡1, 𝑡2, · · · , 𝑡𝑁 ], an unfragmented
audio file 𝑎, and returns a mapping which associates each text
fragment 𝑡 𝑗 ∈ 𝑡 with a corresponding time-interval in the audio
file, given as 𝑎 = [𝑎(𝜏1

𝑠 , 𝜏
1
𝑒 ), 𝑎(𝜏2

𝑠 , 𝜏
2
𝑒 ), · · · , 𝑎(𝜏𝑁𝑠 , 𝜏𝑁𝑒 )], where 𝑎 𝑗 =

𝑎(𝜏 𝑗𝑠 , 𝜏
𝑗
𝑒 ) is the 𝑗-th audio segment between timestamps 𝜏 𝑗𝑠 and 𝜏 𝑗𝑒 .

Video frames are already aligned to the audio, i.e for a given audio
segment 𝑎 𝑗 with start and end times of 𝜏 𝑗𝑠 and 𝜏 𝑗𝑒 respectively, we
obtain the corresponding video segment 𝑣 𝑗 = [𝑣1

𝑗
, 𝑣2

𝑗
, · · · , 𝑣𝑁

𝑗
] as a

sequence of frames, given as 𝑣 𝑗 = [𝑣 (𝜂𝜏 𝑗𝑠 ), 𝑣 (𝜂𝜏
𝑗
𝑠 + 1), · · · , 𝑣 (𝜂𝜏 𝑗𝑒 )],

where 𝑣 (𝑘) denotes the 𝑘-th frame of the full video, 𝜂 is the frame
rate (in fps), and 𝑠 < 𝑒 . We use audio sampling rate of 44kHz and
video frame rate of 12 fps for audio and video time series.
8https://github.com/readbeyond/aeneas

5.2 Multi-Modal Feature Extraction
Textual Features: We compute the feature representation of each
utterance using BERT [14], which has shown to be an effective
pre-trained language-based model for extracting word-embeddings.
We embed each text utterance 𝑡 𝑗 ∈ [𝑡1, 𝑡2, · · · , 𝑡𝑀 ] as the arithmetic
mean of all its word representations from BERT, and obtain a text
encoding 𝑘 𝑗 ∈ R768, given as 𝑥 𝑗

𝑇
= BERT(𝑡 𝑗 ), ∀𝑗 ∈ [1, 𝑁 ]. We thus

obtain a sequence of text embeddings 𝑋𝑇 = [𝑥1
𝑇
, 𝑥2

𝑇
, · · · , 𝑥𝑁

𝑇
].

Audio Features: To encode audio segments, we use wav2vec2
[4], which has shown shown significant potential for extracting
audio features for speech language understanding tasks. We embed
each audio utterance 𝑎 𝑗 as the arithmetic mean of the output repre-
sentation from wav2vec2, to obtain an audio encoding 𝑙 𝑗 ∈ R768,
given as 𝑥 𝑗

𝐴
= wav2vec2(𝑎 𝑗 ), ∀𝑗 ∈ [1, 𝑁 ]. The sequence of audio

embeddings is represented as 𝑋𝐴 = [𝑥1
𝐴
, 𝑥2

𝐴
, · · · , 𝑥𝑁

𝐴
].

Video Features: We encode the video frames using BEiT [5], which
is a pre-trained bidirectional transformer based encoder for extract-
ing image representations. BEiT has shown great promise for obtain-
ing pre-trained representations for downstream vision tasks [23].
We embed each frame 𝑣𝑘

𝑗
in the video fragment 𝑣 𝑗 as the arithmetic

mean of visual tokens representations of that frame. We then aver-
age over all the frames to obtain the aggregated encoding 𝑥 𝑗

𝑉
∈ R768

of the segment 𝑣 𝑗 , given as 𝑥 𝑗
𝑉

= 1
𝐿

∑𝐿
𝑘=1 BEiT(𝑣

𝑘
𝑗
), ∀𝑗 ∈ [1, 𝑁 ],

where 𝐿 is the number of frames in the segment 𝑣 𝑗 . The sequence
of video embeddings is represented as 𝑋𝑉 = [𝑥1

𝑉
, 𝑥2

𝑉
, · · · , 𝑥𝑁

𝑉
].

5.3 MPCNet: MPC Crossmodal Transformer
Due to the multimodal nature of the data, the model must learn
the correlations and inter-dependencies between modalities. The
model needs to accurately contrast visual, auditory, and textual
information in order to characterize the speaker’s affective state
[13, 34, 52]. Hence, we leverage and build upon crossmodal trans-
formers [54, 63], which have shown to be effective for learning fused
multimodal representations through latent crossmodal adaptation.
Let the set of available modalities be represented asM = {𝑉 ,𝐴,𝑇 },
namely Video, Audio and Text respectively. The basic building block
of the crossmodal transformer is the crossmodal attention module,
which reinforces source modality 𝛼 with target modality 𝛽 using
their respective locally-enriched feature sequences.
Locally-Aware Positional Encoding[47]: Given input sequence
𝑋𝛼 ∈ R𝐿×768, where 𝛼 ∈ M, we first pass this representation
through a 1D temporal convolutional layer to capture the local
sequence structure [54, 61]. This step produces a locally-aware
sequence of features 𝑋𝛼 , given as 𝑋𝛼 = Conv1D(𝑋𝛼 ), ∀𝛼 ∈ M. To
enable the sequences to carry temporal information [54, 55], we
augment positional embedding 𝑝𝑜𝑠 to locally-aware features 𝑋𝛼 to
yield position enriched features 𝑋𝛼 = 𝑋𝛼 + 𝑝𝑜𝑠 , where 𝑝𝑜𝑠 is,

𝑝𝑜𝑠 𝑗,2𝑙 , 𝑝𝑜𝑠 𝑗,2𝑙+1 = sin
(

𝑗

10
8𝑙
𝑑

)
, cos

(
𝑗

10
8𝑙
𝑑

)
(3)

(4)

Crossmodal Attention[54]: For two modalities 𝛼, 𝛽 ∈ M where
𝛼 ≠ 𝛽 , the crossmodal attention layer fuses crossmodal information

2279



MONOPOLY: Financial Prediction from MONetary POLicY Conference Videos Using Multimodal Cues MM ’22, October 10–14, 2022, Lisboa, Portugal

M
ovem

ent/Volatility

Audio
Attention 
Fusion

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Stock Index
(L)

3M
Bond

Tr
an

sf
or

m
er

Stock Index
(S)

10Y
Bond

Currency

Gold

Attention 
Fusion

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Stock Index
(L)

3M
Bond

Tr
an

sf
or

m
er

Stock Index
(S)

10Y
Bond

Currency

Gold

Nick Timiraos (Wall Street Journal): "...Would the lack of fiscal support compel the 
Fed to provide additional accommodation...".
Chair Powell: "...We’ll take into account all external factors and, and do what we think we
need to do with the tools that we have..." 
Steve Liesman (CNBC): "...why haven’t you reduced QE that you’re doing if the market is
functioning better already?" 
Chair Powell: I think in the very beginning of the crisis, the main focus was, obviously,
financial, financial market function, in, you know, some of the major markets. 
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Figure 3: We illustrate each building block in the architectural pipeline of MPCNet, starting with i) feature extraction ii) locally-
aware position encoding iii) crossmodal transformer blocks iv) sentence-level transformers v) feature-fusion, and finally vi)
target-specific MLPs for prediction.

through latent adaptation between 𝛼 and 𝛽 [54]. Given position-
aware features 𝑍 𝑖−1

𝛼→𝛽
and 𝑍 𝑖−1

𝛼 at the (𝑖 − 1)th transformer block,

the intermediate latent adaption 𝑍 𝑖
𝛼→𝛽

is computed as,

𝑍 𝑖−1
𝛼→𝛽

= LN(𝑍 𝑖−1
𝛼→𝛽

), 𝑍 𝑖−1
𝛼 = LN(𝑍 𝑖−1

𝛼 ) (5)

𝑍 𝑖
𝛼→𝛽

= softmax ©«
𝑍 𝑖−1
𝛼→𝛽

𝑊𝑞𝑊
⊤
𝑘
(𝑍 𝑖−1

𝛼 )⊤
√
𝑑

ª®¬𝑍 𝑖−1
𝛼 𝑊𝑣 + 𝑍 𝑖−1

𝛼→𝛽
(6)

𝑊( ·) are learnable weight matrices, and 𝑑 is the feature dimension,
LN means layer-norm, and 𝑍 0

𝛼→𝛽
= 𝑋𝛽 . The intermediate latent

adaption 𝑍 𝑖
𝛼→𝛽

is then passed through a feedforward (FF) layer to

yield 𝑍 𝑖
𝛼→𝛽

as 𝑍 𝑖
𝛼→𝛽

= FF(LN(𝑍 𝑖
𝛼→𝛽

)) + LN(𝑍 𝑖
𝛼→𝛽

).
Sentence-Level Transformer[54]: We concatenate 𝑍𝛼→𝛽 from
the crossmodal transformers sharing the same target modality
𝛽 ∈ M to yield modality specific representations 𝑍𝛼 ,∀𝛼 ∈ M,
given as 𝑍𝑉 = [𝑍𝑇→𝑉 ;𝑍𝐴→𝑉 ], 𝑍𝐴 = [𝑍𝑇→𝐴;𝑍𝑉→𝐴], 𝑍𝑇 =

[𝑍𝑉→𝑇 ;𝑍𝐴→𝑇 ].
Next, these hidden states are passed through self-attention trans-
formers [54, 55] to collect temporal information. The temporal en-
codings are then concatenated and passed through a feed forward
layer to yield the ensembled temporal representation 𝑍 .
Modality Specific Attention-FusionWe propose an additional
attention fusion mechanism to capture the importance of a specific
target modality representation 𝑍𝛼 with respect to sibling represen-
tations 𝑍𝛽 (𝛼 ≠ 𝛽). We first compute attention weights𝑊𝛼 ,∀𝛼 ∈ M
for video, audio and textual representations respectively, given as,

𝑊𝛼 =
𝑊𝛼∑

𝛼′∈M𝑊 ′
𝛼

, where𝑊𝛼 = softmax(�̂�𝛼𝑍𝛼 + 𝑏𝛼 ) (7)

where�̂�𝛼 and𝑏𝛼 are learnable parameters, and𝛼 ∈ M.We then fuse
the attention video, audio and textual features by multiplying the
computed weights with their corresponded feature representations
to yield the fused temporal representation 𝑍fused =

∑
𝛼 ∈M𝑊𝛼𝑍𝛼

Final Network and Prediction: Finally, we combine the ensem-
bled temporal representation 𝑍 with the fused temporal represen-
tation 𝑍fused by using a feed forward layer with a residual block to
yield the final hidden representation ℎ, given as ℎ = 𝐹𝐹 (𝑍fused) +𝑍 .
The final hidden representation is then passed through |U| multi-
layer perceptrons (MLPs) to yield the prediction 𝑦𝑢 ,∀𝑢 ∈ U as
𝑦𝑢 = 𝜎 (MLP𝑢 (ℎ)), where 𝜎 represents the final activation function.
We use a linear activation for volatility prediction and sigmoid for
price movement, respectively. We use Mean Squared Error (MSE)
and Binary Cross-Entropy (BCE) for these tasks, respectively.

6 EXPERIMENTS
Baselines: We compare MPCNet against several modern and tradi-
tional baselines across varied domains and modalities as follows:

6.0.1 Price-based Baselines. : Utilizing historical price exclusively.

• HistPrice: Following [16], we use ARIMA model to perform
regression/classification on past 30-days time series.

• P-SVM [12]: We apply Support Vector Regression (SVR) and
Classifiers (SVC) on 30-days historical price data for volatility
and price movement prediction, respectively.

• P-LSTM [62]: We use LSTM model to extract predictive
patterns from 30-days historical price time-series.

6.0.2 Multimodal Baselines. : We present contemporary multi-
modal methods that utilize visual, vocal, and verbal cues.

• MLP: A simple multi-layer perceptron where multimodal
features are averaged out along the time series and concate-
nated before the final prediction layer.

• LSTM [40]: Multimodal time series are input to individual
LSTMs and averaged before final prediction.

• MMIM [22]: Uses LSTMs to encode the video and audio
sequence, and BERT for text. The encoded features are passed
through a fusion layer for maximizing mutual information
between unimodal sequences before prediction.
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Model Stock Index (Small) Stock Index (Large) Currency Exchange Rate

MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓

B
as
el
in
es

HistPrice 2.486 2.234 1.880 1.664 3.397 3.316 2.934 2.972 2.709 3.187 3.127 3.291
P-SVM [12] 2.489 2.220 1.915 1.753 2.568 2.921 1.971 2.012 2.104 2.534 1.921 2.231
P-LSTM [62] 2.421 2.217 1.845 1.731 2.128 2.194 2.108 1.456 1.424 1.867 1.015 1.569
MLP 2.524 2.214 1.899 1.680 1.469 1.597 0.937 0.981 1.060 1.441 0.802 1.159
LSTM [40] 2.290 2.210 1.750 1.680 1.346 1.304 0.724 0.779 1.219 1.296 0.762 0.558
MMIM [22] 2.290 2.092 1.779 1.598 1.287 1.133 0.718 0.622 0.975* 1.081 0.500 0.510
MDRM [41] 2.065 2.511 1.748 1.597 1.281 1.578 0.683 0.612 1.183 1.627 0.769 0.512
HTML [60] 2.296 2.133 1.771 1.611 1.302 1.127 0.766 0.609 0.988 1.118 0.588 0.498
MULT [54] 2.073 2.179 1.768 1.605 1.288 1.133 0.672* 0.742 1.022 1.018 0.549 0.497

A
bl
at
io
n

MPCNet (T) 2.599 2.390 1.931 2.278 1.906 1.613 1.122 1.262 1.666 1.943 1.140 1.801
MPCNet (A) 2.345 2.457 1.770 2.151 1.732 1.614 1.221 0.724 1.507 1.963 1.289 1.791
MPCNet (V) 2.532 2.285 2.108 2.023 1.904 1.617 1.223 1.247 2.273 1.964 1.746 1.511

MPCNet (T+A) 2.423 2.221 2.135 1.956 1.564 1.637 1.456 1.111 1.234 2.144 1.967 1.578
MPCNet (A+V) 2.280 2.413 2.026 1.680 1.857 1.572 1.697 0.864 1.621 1.904 1.419 1.463
MPCNet (V+T) 2.257 2.321 2.002 2.108 1.477 1.596 1.195 1.398 1.087 2.017 1.819 1.407

MPCNet (V+A+T) (Ours) 2.233 2.089* 1.732* 1.594* 1.269* 1.046* 0.806 0.607 1.176 1.001 0.469* 0.470*

(a) Stock Indices and Currency Exchange Rate

Model Gold Price 10-Year Bond Yield 3-Month Bond Yield

MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓

B
as
el
in
es

HistPrice 3.193 3.039 2.675 2.683 4.132 4.020 3.472 3.334 3.899 3.665 3.063 2.913
P-SVM [12] 2.568 2.543 1.967 2.104 3.212 3.589 2.986 3.141 3.235 3.143 2.922 2.874
P-LSTM [62] 1.965 1.998 1.043 1.764 2.212 1.699 2.340 1.453 3.433 2.909 2.678 2.477
MLP 1.431 1.654 0.904 0.955 1.811 1.743 1.288 1.382 2.582 2.523 2.239 2.231
LSTM [40] 1.472 1.484 0.703 0.508 1.735 1.801 1.169 1.235 2.421 2.439 2.044 2.013
MMIM [22] 1.292 1.292 0.565 0.486 1.698 1.604 1.080 1.053 2.345 2.392 1.977 1.902
MDRM [41] 1.436 1.843 0.710 0.483 1.729 1.699 1.126 1.223 2.406 2.622 2.096 1.993
HTML [60] 1.277* 1.291 0.589 0.524 1.685 1.612 1.103 1.149 2.342 2.356 1.962 1.998
MULT [54] 1.314 1.335 0.579 0.503 2.122 1.837 1.104 1.037* 1.174* 2.515 1.973 1.903

A
bl
at
io
n

MPCNet (T) 1.967 1.859 1.122 1.750 1.977 1.928 2.067 1.614 2.774 2.723 2.654 2.602
MPCNet (A) 1.573 1.484 1.617 1.803 2.279 1.940 1.965 1.513 2.754 3.242 2.726 2.536
MPCNet (V) 2.136 2.028 1.586 1.158 2.318 1.969 1.576 1.674 2.857 2.740 2.630 2.616

MPCNet (T+A) 1.798 1.567 0.985 1.678 2.067 1.956 1.944 1.865 2.759 2.699 2.345 2.613
MPCNet (A+V) 1.752 1.403 1.245 0.959 1.996 1.903 1.897 1.700 2.750 2.632 2.538 2.527
MPCNet (V+T) 1.681 1.959 0.864 1.428 1.756 1.874 1.511 1.366 3.135 2.678 2.457 2.564

MPCNet (V+A+T) (Ours) 1.342 1.275* 0.562* 0.477* 1.767 1.602* 0.979* 1.142 2.431 2.319* 1.948* 1.901*

(b) Gold Prices, Long-term (10-Years) and Short-term (3-Months) Bonds

Table 3: Performance comparison with baselines and ablations for volatility prediction in terms of MSE 𝜏-days after the call
(𝜏 ∈ {1, 3, 7, 15}). (T: Text, V: Video, A: Audio). Bold denotes best performance performance. Light cyan shows second-best
performance. Results are averaged over 5 independent runs. * indicates that the result is statistically significant with respect to
state-of-the-art based on the Wilcoxon’s signed rank test with 𝑝 < 0.001. Our proposed approach outperforms price-based and
multimodal baselines.

• MDRM [41]: BiLSTM layers encode unimodal sequences,
which are then fused together using another layer of BiLSTM
to extract multimodal inter-dependencies.

• HTML [60]: HTML is a transformer based architecture that
takes fuses multimodal feature representations before pass-
ing through Transformer layers for prediction.

• MulT [54]: Uses transformer encoders to align language, fa-
cial gestures, and acoustic sequences with variable sampling
rates and long-range dependencies.

Experiment Settings: MPCNet uses a hidden dimension 𝐻 = 512,
dropout 𝛿 = 0.1, number of attention heads 𝑛ℎ = 2, and number
of transformer blocks 𝑛𝑏 = 2. We use a learning rate (𝑙𝑟 ) of 1𝑒−3

for regression, and 1𝑒−4 for classification. We use PyTorch for all
models, and optimize MPCNet using AdamWoptimizer for 30 epochs
and apply early stopping with a patience of 10 on a Tesla K80 GPU.
We summarize the range of hyperparameters in Sec-E of Appendix.
EvaluationMetrics: Similar to prior work [41, 60], we evaluate pre-
dicted volatility using the mean squared error (MSE) and the price
movement classification task using F1 score, for 𝜏 ∈ {1, 3, 7, 15}.

7 RESULTS
Performance Comparison: Tables 3 and 4 show the comparative
results for the volatility and price prediction tasks, respectively.
We observe that baselines that use historical price alone signifi-
cantly under perform across all settings. Simple models like MLP
and LSTM are disadvantaged as they require feature aggregation
through averaging over long sequences of time series. Sophisticated
LSTM models such as MMIM and MDRM struggle on both tasks
due to their inability to capture long-range dependencies in hour
long video calls with multiple dialogues. Combining multimodal
context from the visual, vocal and verbal cues using a transformer
encoder (as done in HTML and MuLT) helps improve performance
across different settings. Our proposed model achieves significantly
better performance across both tasks for multiple financial targets.
MPCNet’s ability to model the inter-dependencies between the pairs
of modalities using cross-model attention and modality-specific
attention fusion contributes towards its outperformance compared
to contemporary multimodal methods. Moreover, MPCNet performs

attention fusion using weights for pairs of the modalities to de-
termine the mutual importance of each modality which helps it
improve over MuLT baseline. However, it can also be observed
that there is ample room for improvement for both volatility and
price movement prediction. We attribute this to the inherent diffi-
culty of task and motivate further research by discussing current
shortcomings through error analysis in Sec-8.
Ablation: Impact of Multimodality: The ablation results of the
proposed MPCNet model in Tables 3 and 4 strongly suggest the po-
tency of multimodal features over unimodal counterparts, for both
tasks, across all financial targets.We observe significant gains due to
addition of aligned video features in the MPCNetmodel. We attribute
this to the presence of additional behavioral cues such as facial ex-
pressions and body language, aligned with the call transcripts and
audio signals through attention mechanisms in the temporal do-
main. In order to validate the importance of combining visual, vocal
and verbal cues, we conduct additional ablation experiments for
MDRM, HTML, and MuLT baselines with varying input modalities.
Figure 4 shows that blending video features (V) with text(T) and
audio(A) leads to improvements over the best bimodal model (T+A),
evaluated in terms of time-averaged MSE and F1 scores for MPCNet.
We see a similar trend for HTML, MDRM, and MuLT as depicted
by figures 9, 10, and 11 in the Appendix, respectively. Moreover,
we see that the addition of video (V) modality to each of A, T, A+T
settings shows favourable gains. This provides strong empirical
evidence in support of multimodal fusion of visual, vocal and verbal
modalities for financial prediction tasks on MPC calls.
Impact of Call Length: We probe MPCNet’s sensitivity with re-
spect to the input call length by feeding only the first 𝑛 utterances
of the call to the model. As shown in Figure 5, we see major per-
formance improvements with increasing call length, and achieve
best performance on incorporating the full conference call. These
observations suggest that the Q&A session is substantially ben-
eficial than just the initial speech by the governor, as the Q&A
provides an opportunity to analyze non-verbal cues and answers to
questions are not rehearsed beforehand. Our observations reinforce
prior studies which have shown the importance of Q&A sessions,
which serve as a clarifier of the overall economic outlook [17].

2281



MONOPOLY: Financial Prediction from MONetary POLicY Conference Videos Using Multimodal Cues MM ’22, October 10–14, 2022, Lisboa, Portugal

Model Stock Index (Small) Stock Index (Large) Currency Exchange Rate

F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑

B
as
el
in
es

HistPrice 0.390 0.470 0.400 0.420 0.430 0.430 0.410 0.420 0.190 0.260 0.210 0.230
P-SVM [12] 0.400 0.480 0.340 0.530 0.433 0.490 0.338 0.500 0.190 0.270 0.190 0.370
P-LSTM [62] 0.410 0.473 0.291 0.546 0.399 0.391 0.421 0.442 0.123 0.232 0.165 0.341
MLP 0.349 0.435 0.209 0.539 0.267 0.319 0.331 0.351 0.101 0.201 0.124 0.311
LSTM [40] 0.449 0.435 0.269 0.527 0.414 0.596 0.371 0.432 0.137 0.229 0.199 0.369
MMIM [22] 0.435 0.653* 0.302 0.605 0.392 0.631 0.329 0.601 0.296 0.217 0.142 0.385
MDRM [41] 0.449 0.419 0.462 0.355 0.409 0.392 0.494 0.324 0.177 0.161 0.379 0.152
HTML [60] 0.490 0.645 0.458 0.541 0.431 0.504 0.557 0.482 0.484 0.531 0.298 0.626*
MULT [54] 0.491 0.630 0.536 0.629 0.443 0.625 0.572 0.612 0.499 0.547 0.473* 0.521

A
bl
at
io
n

MPCNet (T) 0.393 0.423 0.241 0.263 0.361 0.304 0.419 0.396 0.332 0.215 0.252 0.378
MPCNet (A) 0.288 0.233 0.182 0.365 0.211 0.315 0.397 0.435 0.410 0.283 0.111 0.331
MPCNet (V) 0.437 0.522 0.340 0.497 0.335 0.304 0.464 0.443 0.438 0.148 0.254 0.412

MPCNet (T+A) 0.437 0.569 0.289 0.489 0.367 0.312 0.422 0.471 0.404 0.245 0.392 0.466
MPCNet (A+V) 0.415 0.565 0.290 0.465 0.388 0.321 0.455 0.463 0.434 0.186 0.374 0.511
MPCNet (V+T) 0.406 0.573 0.342 0.469 0.359 0.326 0.458 0.405 0.450 0.295 0.350 0.336

MPCNet (V+A+T) (Ours) 0.501* 0.590 0.565* 0.638* 0.460* 0.590 0.559* 0.620* 0.520* 0.570* 0.329 0.450

(a) Stock Indices and Currency Exchange Rate

Model Gold 10-Year Bond Yield 3-Month Bond Yield

F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑

B
as
el
in
es

HistPrice 0.360 0.390 0.350 0.400 0.31 0.290 0.220 0.390 0.220 0.160 0.340 0.330
P-SVM [12] 0.390 0.420 0.370 0.380 0.34 0.310 0.33 0.33 0.370 0.220 0.310 0.390
P-LSTM [62] 0.365 0.352 0.371 0.346 0.32 0.291 0.342 0.258 0.377 0.234 0.332 0.314
MLP 0.243 0.215 0.288 0.315 0.244 0.299 0.234 0.174 0.332 0.157 0.248 0.394
LSTM [40] 0.361 0.337 0.304 0.345 0.364 0.311 0.255 0.394 0.381 0.168 0.382 0.444
MMIM [22] 0.209 0.508 0.412 0.318 0.411 0.318 0.345 0.138 0.417 0.306 0.417 0.379
MDRM [41] 0.434 0.383 0.214 0.317 0.287 0.242 0.314 0.149 0.346 0.198 0.478* 0.505
HTML [60] 0.441 0.654 0.379 0.526 0.529 0.278 0.466 0.389 0.424 0.314 0.397 0.450
MULT [54] 0.329 0.590 0.454 0.533 0.534 0.364* 0.485 0.400 0.428 0.171 0.466 0.493

A
bl
at
io
n

MPCNet (T) 0.341 0.317 0.423 0.492 0.242 0.343 0.155 0.592 0.117 0.437 0.310 0.293
MPCNet (A) 0.292 0.121 0.119 0.589 0.088 0.157 0.186 0.489 0.252 0.386 0.317 0.314
MPCNet (V) 0.239 0.414 0.519 0.595 0.373 0.436 0.542 0.610 0.503 0.520 0.314 0.375

MPCNet (T+A) 0.414 0.483 0.503 0.616 0.322 0.434 0.529 0.593 0.476 0.545 0.323 0.312
MPCNet (A+V) 0.423 0.445 0.414 0.607 0.372 0.416 0.449 0.617 0.503 0.510 0.309 0.369
MPCNet (V+T) 0.420 0.472 0.517 0.565 0.471 0.454 0.500 0.585 0.485 0.542 0.315 0.347

MPCNet (V+A+T) (Ours) 0.444* 0.668* 0.413 0.637* 0.386 0.327 0.560* 0.625* 0.493* 0.556* 0.374 0.537*

(b) Gold Prices, Long-term (10-Years) and Short-term (3-Months) Bonds

Table 4: Performance comparison with baselines and ablations for price prediction in terms of F1 score 𝜏-days after the call
(𝜏 ∈ {1, 3, 7, 15}). (T: Text, V: Video, A: Audio) Bold denotes best performance performance. Light cyan shows second-best
performance. Results are averaged over 5 independent runs. * indicates that the result is statistically significant with respect to
state-of-the-art based on the Wilcoxon’s signed rank test with 𝑝 < 0.001. Our proposed approach outperforms price-based and
multimodal baselines.
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Figure 4: Ablation analysis of modalities in MPCNet for (a)
Volatility and (b) Price Movement prediction, averaged over
𝜏 = {1, 3, 7, 15}. SI(s): Stock Index (Small), SI(l): Stock Index
(large), CUR: Currency Exchange Rate, GP: Gold Price, 3MB:
3-Month Bond Yield, 10YB: 10-Year Bond Yield. Addition
of video (V) modality to each of A, T, A+T settings shows
favourable gains (increase in F1 and decrease in MSE).
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Figure 5: Performance variation with increasing input call
lengths (#utterances) on (a) Volatility and (b) Movement pre-
diction. The results are averaged over 𝜏 = {1, 3, 7, 15}. Perfor-
mance improves with increasing call length (reduced MSE
and increase in F1), with best results on full conference call.

Performance Drift over Time: Results in Table 3 and Figure 6
show that multimodal models exhibit greater uncertainty in the
short term after the MPC call. However, there is a gradual decay
in gains of multimodal models for volatility prediction as we move
ahead in time after the conference call. This trend is not pronounced
for price movement prediction which remains consistent through-
out as observed from Table 4. Short-term stock volatility prediction
is more complex due to the erratic price fluctuations after a MPC
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Figure 6: Drift in predicted stock volatility over time. The line
graph represents the mean MSE of MPCNet SI(s): Stock Index
(Small), SI(l): Stock Index (large), CUR: Currency Exchange
Rate, GP: Gold Price. As time increases, the MSE decreases
due to the PEAD phenomenon[7].

call. We attribute the saturation in the volatility prediction perfor-
mance to the dilution of the market reaction to the MPC calls as
we "drift" away from them. These price fluctuations settle as more
time elapses, similar to the phenomenon of PEAD (Post Earnings
Announcement Drift) [7, 45].

8 QUALITATIVE ANALYSIS
Video 1: Federal Reserve Meeting (2020): Following the MPC
call, the SP500 suffered a significant drop within the next 20 days.
Studying the call’s video frames aligned with text transcripts, we
notice in Figure 7a that when asked about their plans on interest
rate during the Q&A session, the governor’s speech had sudden
fillers words along with animated hand gestures. Past research [39]
suggests that increased use of filler words, rapid hand movements,
and a closed body posture with hands crossed interlocked tightly
may indicate a lack of confidence in the speaker. It was later ascer-
tained that the Federal Reserve convened an emergency meeting a
week later to announce interest rate cut of 0.50%. We observe how
MPCNet successfully predicts the decrease in price of stock index
and increase in gold prices for all choices of 𝜏 while it’s unimodal
(A,T,V) and bimodal (text-audio) counterparts fail to do the same
each time. Though the text reveals no lack of confidence, the combi-
nation of aligned audio-visual cues likely allows the model to make
a successful prediction.

2282



MM ’22, October 10–14, 2022, Lisboa, Portugal Puneet Mathur et al.

(a) Video-1: Chair of the federal reserve ex-
hibits closed body language, frequent inter-
locking of hands and enhanced use of filler
words during Q&A sessionwhen asked about
rising interest rates. Past research [1, 50] sug-
gests these non-verbal cues indicate of lack
of confidence.
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(b) Video-2: Flesch–Kincaid Readability
score of the utterances. The governor’s ut-
terances becomes more elongated and diffi-
cult to passage when questioned regarding
employment reduction. Reporter’s sentences
are simple and easy to comprehend.
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(c) Video-3: Erratic mean pitch of the gover-
nor’s audio clips (—-) and rapid changes in
horizontal gaze position (—-). Randomness
in non-verbal cues adds noise, affecting pre-
dictions.

Figure 7: Qualitative Analysis

Video 2: European Central Bank (2016): Ten days post mon-
etary policy conference, long-term and short-term bond saw an
increase in volatility by 15-25%, respectively. However, the prices of
long-term bond yield saw a downward trend contrary to the short-
term bond yields. The meeting involved the governor mentioning
concerns about trade disruptions and employment reduction due to
’Brexit’. We notice that this call in specific was longer than previous
others. Anecdotally, longer conferences are linked with turbulent
economic conditions as more time is spent clarifying journalist
questions. We also observe enhanced complexity of text readability
due to dense technical discussion in Q&A dialogues (Figure 7b).
Transformer based models such as HTML, MuLT, andMPCNet were
able to capture linguistic complexity and long-range dependencies.
Here, we observe that the above three strategies correctly make
correct predictions.
Video 3: South African Reserve Bank (2022): We now analyze
this MPC call as an error analysis where MPCNet predicts incor-
rectly. Here, the price-based LSTMmodel gains a profit by correctly
predicting a 9-12% increase in the currency exchange (ZAR USD
rate) for 𝜏 = 3, 7, 15. On carefully analyzing the contents of the
conference call, we notice (Figure 7c) that the governor took a
sudden hawkish stance on inflation due to oil crisis propelled by
the Ukraine war and economic sanctions. Moreover, observing the
visual and vocal cues, we find a great deal of variance in the mean
audio pitch and speaker’s erratic eye gaze. We attribute the erro-
neous performance to the potential overfitting of the model as well
as unique information about world knowledge present at test time
not seen before in the training set. We believe that future research
in combining knowledge from alternate sources such as news and
social media can benefit prediction performance.

9 ETHICAL CONSIDERATIONS AND
LIMITATIONS

Examining a speaker’s tone and speech in conference calls is a well-
studied task in past literature [41, 60]. Our work focuses on video
conference calls for which government institutions and financial
regulatory bodies publicly release call videos, transcripts and audio

recordings. The conference call and price data used in our study
is open source. We do not collect any personalized data or violate
any privacy laws in using, storing or releasing the MPC conference
calls data for financial analysis.
Limitations: We acknowledge the presence of gender bias in our
study, given the imbalance in the gender ratio of speakers of the
calls. We also acknowledge the demographic bias in our study
as the central banks studied in our work are restricted to certain
geographies and may not directly generalize for other countries.
We also limit our study to English-only calls, motivating further
studies on other multilingual conference calls.
Potential risks: Our contributions are meant as an exploratory
research in the financial domain and no part of the work should be
treated as financial advice. All financial investments decisions are
subject to market risk and should be made after extensive testing.
Practitioners should check for various biases (demographic, gen-
der, modeling, randomness) before attempting to use the provided
code/data/methods for real-world purposes.

10 CONCLUSION AND FUTUREWORK
We present a dataset of Monetary Policy Conference video calls to
predict financial risk and price movement. We also present MPCNet,
a strong benchmarkmodel that uses cross-modal transformer blocks
and modality-specific attention fusion on input time series for fi-
nancial forecasting on MPC calls. We further analyze the benefits
of each modality, evaluate the effect of multi-task setting for joint
prediction of financial assets, examine biases due to dataset dis-
tribution, and effect of non-verbal behavioral cues extracted from
spontaneous Q&A session. We motivate future work to explore sev-
eral interesting direction including but not limited to conversational
dialogue modeling of Q&A sessions, fine-grained multimodal emo-
tion recognition, gaits and posture analysis to identify non-verbal
behavioural cues, augmenting video data with external knowledge
graphs, etc.
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