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Abstract

Detecting rumors on social media is critical due
to their rapid spread and harmful effects, yet
existing models often overlook integrating spa-
tial and temporal neighboring information of
message propagation, as well as the dynamics
of background knowledge in user comments.
To address this gap, we present a principled
Dynamic Neighbor-enhanced Knowledge
Graph Attention Network (DNKGAT), which
unifies the dynamics of message propagation
and evolving background knowledge from
knowledge graphs. Specifically, the proposed
method employs a multi-hop knowledge graph
attention mechanism to incorporate extensive
neighboring information from knowledge
graphs, a feature previously underexplored.
The framework includes a post-enhancement
unit and a rumor classification module, enhanc-
ing detection capabilities by learning dynamic
event representations and aggregating them
progressively to capture cascading effects for
more effective rumor identification. Extensive
experiments on two real-world datasets demon-
strate significant improvements over strong
baselines, particularly in early-stage rumor
detection. Our implementation available at
https://anonymous.4open.science/r/DNKGAT-
FC6C.

1 Introduction

The Internet and social media platforms like Twitter
and Facebook have become essential ways for peo-
ple to access news in their daily lives. These plat-
forms enable the rapid and free dissemination of
news, allowing the public to express opinions and
communicate freely. However, the lack of effective
censorship results in lower-quality news compared
to traditional methods, leading to a noisy informa-
tion ecosystem plagued with disinformation and
rumors. Therefore, it is of prominent importance
to detect rumors on social media. Currently, three
prominent methods are utilized for rumor detection:
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Figure 1: The introduction of the proposed method.

those based on spatial structure, temporal structure,
and knowledge graph.

Rumor detection aims to identify rumors au-
tomatically. Recent studies focus on the dissem-
ination process of news articles, where users en-
gage by posting, reposting, or responding to spe-
cific articles. These interactions create tree-based
(Ma et al., 2018a; Ma and Gao, 2020; Bian et al.,
2020) or graph-based (Huang et al., 2019; He et al.,
2021; Sun et al., 2022b) structures. By analyzing
the structure of news propagation and assessing
user trustworthiness, it is possible to deduce the
likely veracity of the news. Some studies empha-
size the importance of temporal structure, enabling
the modeling of fine-grained dynamic features and
enhancing early detection performance (Ma et al.,
2015; Choi et al., 2021; Song et al., 2021b). Con-
sidering both spatial and temporal structures in
message propagation is crucial. Several studies
incorporate external knowledge to improve rumor
detection (Zhang et al., 2019; Wang et al., 2020;
Hu et al., 2021), with their effectiveness analyzed
in (Hinkelmann et al., 2022). However, such exten-
sive spatial and temporal neighboring information
of message propagation from knowledge graph is
not exploited by existing models.

This paper aims to model the spatial-temporal
structure of messages and associated background



knowledge within a unified framework for timely
rumor detection. Traditional methods, relying on
graph neural networks (GNNs) and graph convo-
Iutional networks (GCNs) with a message-passing
framework, learn spatial features of rumors but
struggle to aggregate high-order neighboring node
information without stacking multiple layers when
dealing with deeper node relationships. To this
end, we introduce the Dynamic Neighbor-enhanced
Knowledge Graph Attention Network (DNKGAT),
featuring a dynamic multi-hop knowledge graph at-
tention mechanism that captures spatial, temporal,
and knowledge information through evolving mes-
sages and knowledge graphs. In Figure 1, source
post and comments (blue nodes) are linked to en-
tities (yellow nodes) and concepts (green nodes)
via entity linking and knowledge conceptualization.
One entity (c2) can be involved in multiple triplets,
serving as the contributor enriching entities’ feature
and propagation information. This mechanism en-
ables source posts to aggregate high-order neighbor
information, like ¢4’s entity and concept. We also
propose a fusing method to enhance these represen-
tations with the message, using post-enhancement
to concatenate dynamic neighbor-enhanced knowl-
edge graph attention network representations with
initial message representations, allowing for incre-
mental learning of better event representations prior
to rumor classification. The main contributions are
summarized as follows:

* We propose DNKGAT, a pioneering approach
that captures spatial-temporal rumor character-
istics through an incremental learning process
and a post-enhancement unit for improved de-
tection accuracy.

* Leveraging a multi-hop knowledge graph at-
tention mechanism, DNKGAT aggregates ex-
tensive neighboring information to capture
message propagation dynamics and integrate
background knowledge for comprehensive
contextual understanding in rumor detection.

* DNKGAT introduces the first post-
enhancement unit, which learns feature
interactions between posts and knowledge
through a cross-information sharing layer to
enrich information and improve detection.

* Experiment results show that the proposed
method outperforms the strong baselines on
two real-world datasets and can effectively
detect rumors at an early stage.

2 Related Work

2.1 Spatial Structure Based Rumor Detection

Spatial structure-based methods in rumor detection
model news propagation paths to differentiate real
and fake news dissemination patterns on social net-
works. Ma et al. (2018a) uses a tree-based recursive
neural network for content semantics and propaga-
tion cues, while Huang et al. (2019) employs GCNs
for spatial structure capture. Bian et al. (2020) en-
hances rumor dissemination understanding with Bi-
GCNs, and Guo et al. (2023) integrates GNNs with
convolutional and recurrent neural networks for se-
mantic capture. Liu et al. (2024) combines GCN
and attention mechanisms for influence and prop-
agation structure relations. Despite effectiveness,
these methods often overlook temporal dynamics
of message propagation, missing critical patterns
for rumor identification.

2.2 Temporal Structure Based Rumor
Detection

Temporal structure-based methods in rumor de-
tection model the temporal information of news
propagation to differentiate real and fake news dis-
semination patterns. Ma et al. (2016) uses a re-
current neural network-based model for semantic
variations, while Liu and fang Brook Wu (2018)
combines recurrent and convolutional networks for
temporal structure. Song et al. (2021a) models
real-world news evolution under continuous-time
dynamic diffusion networks, and Sun et al. (2022a)
unifies message propagation dynamics with back-
ground knowledge from knowledge graphs. Gong
et al. (2023) integrates a neural Hawkes process for
self-exciting patterns of true and fake news. De-
spite their effectiveness, most methods overlook
integrating external knowledge, which could sig-
nificantly improve rumor detection.

2.3 Knowledge Based Rumor Detection

Knowledge-based methods in rumor detection ex-
ploit external knowledge to supplement post con-
tent for identification. Zhang et al. (2019) com-
plements short texts with external knowledge for
improved rumor detection, while Cui et al. (2020)
uses an article-entity bipartite graph and a medi-
cal knowledge graph for better news embeddings.
KMGCN (Wang et al., 2020) models global struc-
tures among texts, images, and knowledge concepts
for comprehensive semantic representations. KAN
(Dun et al., 2021) validates knowledge attention



effectiveness for rumor detection. Despite their
benefits, these methods often overlook the contra-
diction between rumor content and external knowl-
edge, and the importance of high-order neighbor-
ing knowledge, which this study addresses. Com-
pareNet (Hu et al., 2021) compares news articles
to a knowledge base through entities for detection.
However, these methods overlook the importance
of high-order neighboring knowledge, which this
study fully leverages to improve its effectiveness.

3 Methodology

3.1 Problem Definition

The task of rumor detection can be defined as
a binary classification problem aimed at detect-
ing rumor items, e.g. Twitter posts. Let O =
{o1,...,0,} be a set of events, where each event
o0; consists of a sequence of posts and comments.
We denote the set of post and comment contents for
each event as of = {cio,¢i1, .- ., Cim;—1}, Where
cip 1s the source post s;, and ¢;; is the j-th comment.
m,; represents the number of posts and comments in
0;. Additionally, we define the relative release time
sequence of = {to, i1, .-, tim;—1}, Where tig =
0 and ¢;; denotes the release time of the j-th com-
ment. The combined representation of each event is
0; = {(cio: tio), (cits ti1)s - - s (Cimi—15 tim;—1) }-

Each event o; is segmented into  stages based
on its duration, where -y is a hyperparameter. Each
stage r has an equal time interval At; = bim; -1
The r-th sub-event of o; is defined as o, =
{(Cimtm) | tm S ’I“Ati}.

The goal is to learn a model f : O — Y to
classify each event o; into predefined categories
Y = {0,1}, where 0 denotes non-rumor and 1
denotes rumor.

For ease of understanding, the important math-
ematical notations used throughout the paper are
listed in Table 1.

Notations \ Descriptions

0; the ¢-th event
0§ post sequence of the i-th event
ol relase time sequence of the ¢-th event
0% the number of time stages
At; equal time interval of event o;
Oir the r-th stage subset of 0;
Et; the entity set of o;
Ct; the concept set of 0;

Gt = (V¥ EE) knowledge graph at stage r

Table 1: Important notations and descriptions

3.2 Overview

The overall architecture of our rumor detection
approach is presented in Figure 2. It consists of
four modules: (1) dynamic knowledge graph
construction: constructs a dynamic post-entity-
concept tripartite knowledge graph by integrat-
ing post-related external knowledge; (2) dynamic
neighbor-enhanced knowledge graph attention
network: generates node representations that in-
tegrate spatial, temporal, and knowledge infor-
mation through a multi-hop attention mechanism,
capturing the evolving relationships and context
essential for accurate rumor detection; (3) post-
enhancement unit: enriches the knowledge infor-
mation by learning the feature interactions between
the post and knowledge; (4) rumor classifier: ag-
gregates the final knowledge and source post tex-
tual information to determine whether the event is
a rumor or not.

3.3 Dynamic Knowledge Graph Construction
Module

This module constructs a dynamic post-entity-
concept tripartite knowledge graph to capture the
evolving relationships between posts, entities, and
concepts, thereby enriching the semantic under-
standing necessary for accurate rumor detection.

Posts often contain condensed content with nu-
merous entity mentions, which can be ambigu-
ous due to aliases, abbreviations, and alternative
spellings. For example, in the post "Exciting up-
dates from @Tesla about their new Model S en-
hancements. Can’t wait for the test drive!", it is
crucial to discern that "Tesla" refers to an "electric
vehicle manufacturer" and "Model S" is a "specific
model of electric car". To address this, we inte-
grate external knowledge from both source posts
and their comments, which evolves as the event
progresses.

Entity linking and conceptualization extract
rich semantic information from the posts. Using
the NLTK for entity linking, we connect entity
mentions to corresponding entities in a knowledge
graph like YAGO. We drive conceptual information
from YAGO based on the "isA" relationship, which
defines the connection between entities and their
concepts. For instance, for the entities identified
in the example post, we obtain Concepty,, =
{Vehicle Manufacturer, Technology Company }
Conceptypg.1 s = {Electric Car, Automobile}.

For each time stage o,, we construct a dynamic
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Figure 2: The framework of the proposed method. It consists of four components: (1) the leftest block: the input
of the model; (2) the lefter block: dynamic neighbor-enhanced knowledge graph attention network; (3)the righter
block: the post-enhancement module to enrich representations with initial feature; (4) the rightest block: a rumor

classification module after post enhancement.

knowledge graph {G%, ... ,G’%}, where GE. =
<V;’,ﬁ, Ek * ) includes vertices from posts, comments,
entities, and concepts. Edges are established based

on:

* Post-entity edges: These are formed between
a post and an entity if the post contains a men-
tion of the entity. The edge weight is deter-
mined by the term frequency-inverse docu-
ment frequency(TF-IDF) of the entity within
the post.

Entity and concept edges: The relationships
between entities, and between entities and con-
cepts, are quantified using Pointwise Mutual
Information(PMI), calculated over a fixed-size
sliding window from a global corpus.

The adjacency matrix A%, of the dynamic knowl-
edge graph Gfr retains only those edges with sig-
nificant TF-IDF or positive PMI scores. Each node
v in the graph is initialized with its word embed-
ding vector k € RY', facilitating the propagation of
semantic information through the graph.

3.4 Dynamic Neighbor-enhanced Knowledge
Graph Attention Network

This module generates node representations incor-
porating spatial, temporal, and knowledge infor-
mation. By exploiting the idea of graph attention
network (Velickovic et al., 2017), we generate at-
tentive weights of cascaded propagations to reveal
the importance of connectivity. Here we start by
describing a single layer, which consists of informa-
tion propagation and aggregation, and then discuss
how to generalize it to multiple layers.

Information Propagation: One entity can be
involved in multiple triplets, serving as the con-
tributor enriching entities’ feature and propagation
information. Taking p; —e; —c1 and p; —ej; —c3 as
an example, entity e; can take attributes ¢; and co
to enrich its features and then contribute post p;’s
features, which can be simulated by propagating
information from c; and ¢ to p;. To character-
ize nodes’ hierarchically extended propagation in
terms of KG, in our methods, we recursively define
the set of k-hop relevant entities for r-th time stage
knowledge graph as follows:

Definition 1 (Relevant Entity) Given the knowl-
edge graph G; in i-th time stage, the set of k-hop
relevant entities for graph G; is defined as:

E¥={t|(h,rt)€G; and hec &'}

k=1,2,3,....,H. )
where E) =V is the set of vertex at the beginning
of i-th stage, which can be seen as the seed set of
the knowledge graph.

Relevant entities can be regarded as natural ex-
tensions of the knowledge graph. Given the defini-
tion of relevant entities, we then define the k-hop
neighbor set of knowledge graph as follows:

Definition 2 (Neighbor Set) The k-hop neighbor
set of knowledge graph G; is defined as the set of
knowledge triples starting from 5;“_1.'

NF={(h,r,t)| (h,rt) €Gi and he &Y
k=1,2,3,.. H.

(@)



One concern about neighbor sets is their sizes
may get too large with the increase of hop num-
ber k. The number of maximal hop H is usually
not too large in practice, since nodes that are too
distant from i-th KG may bring more noise than
positive signals. We will discuss the size of neigh-
bor set S in the experiments part. In our method,
we can sample a fixed-size set of neighbors instead
of using a full neighbor set to further reduce the
computation overhead.

Given the ¢-th time stage node embedding /; and
the 1-hop neighbor set N}, each triple (hi,r;,t;)
is assigned a relevance probability by comparing
1-th KG node embedding k; to the ¢-th stage node
h; in /\/’i1 and the corresponding relation r; in this
triple:

i = softmax(kiTri hl)
exp(k:,-Trihi) (3)
S (hrpyen; exp(ki’rh)

where 7; € R% and h; € R? are the embeddings
of the relation r; and head h;, respectively. The
relevance probability p; controls the decay factor
on each propagation on edge (h;, 7, t;), indicating
how much information being propagated from ¢;
to h; conditioned to relation r;, regarded as the
similarity of node k; and the entity h; measured
in the space of relation r;. Furthermore, when
performing propagation forward, the p; suggests
parts of the data to focus on, which can be treated
as explanations behind the propagation.

After obtaining the relevance probabilities, we
take the sum of tails in A}' weighted by the cor-
responding relevance probabilities, and the vector
k AL is returned:

ke = }:

(hi,risti) EN

Diti, “4)

where t; € R? is the embedding of tail ¢;.

Distinct from the information propagation in
GCN (Kipf and Welling, 2016) and GraphSage
(Hamilton et al., 2017) which set the discount fac-
tor between two nodes as a fixed number, our model
not only exploits the proximity structure graph
but also specifies varying importance of neighbors.
Moreover, distinct from the graph attention net-
work which only takes node representations as in-
puts, we model the relation r between h and ¢,
encoding more information during propagation.

Information Aggregation: This phase is to ag-
gregate the node representation k; and its 1-hop
neighbor set representations k1 - more formally,

k:gl) = f(ki, kp1). We implement f(-) using the
Bi-Interaction Aggregator (Wang et al., 2019b) to
consider two kinds of feature interactions between

k; and k1, as follows:

fBi—Interaction :LeakyReLU ( WI (kz + kNil ) ) +

LeakyReLU(Wa(k; ® ki ),

5
where Wy, W5 € R¥ > are trainable weight matri-
ces, and ® denotes the element-wise product. Dis-
tinct from GCN and GraphSage aggregators, we
additionally encode the feature interaction between
k; and k1. This term makes the information be-
ing propaéated sensitive to the affinity between k;
and k1, e.g., passing more messages from similar
entities.

We further stack more propagation layers to ex-
plore the high-order connectivity information, gath-
ering the information propagated from the high-hop
neighbors. More formally, in the [-th steps, we re-
cursively formulate the representation of KG as:

B = F Y k) (6)

3.5 Post-Enhancement Unit

Enlightened by the idea of root feature enhance-
ment in (Bian et al., 2020), the source post of an
event is pivotal in rumor detection. Inspired by
the (Wang et al., 2019a) and (Guo et al., 2020)
methods, we have designed the cross-information
sharing layer, aiming to combine the strengths of
both approaches, which can concatenate the latent
feature vector of each node learned from the last
dynamic neighbor-enhanced knowledge graph at-
tention network with the initial feature vector of
each post p in of learned from the word embedding.
For a knowledge node k and its corresponding
post node p, we first construct d x d pairwise inter-
actions of their latent feature £ € R? and p € R%:

(EDp) kD p()]

Cy = kp' = : : . (D
k(@) p(1) (@) p(d)
W) PO @]

Co=pk"=| + -~ i |, ®
@) p D@



where C), € R%*? represents the cross feature ma-
trix from knowledge to post, C;, € R4 represents
the cross feature matrix from post to knowledge
and d is the dimension of hidden layers.

We then output the feature vectors of knowledge
and post for the classification by projecting the
cross feature matrix into their latent representation
spaces:

k=Crwy + b

i ©)
:kp w1+b17
= Chwy +b
p pT2 2 (10)
= pk” wa + bo,

where w and b are trainable weight and bias vectors.
The weight vectors project the cross feature matrix
from R?*? space back to the feature spaces R
Through post-enhancement units, our method can
enhance the post feature after dynamic knowledge
graph operation.

3.6 Rumor Classification Module

In this module, we introduce the rumor classifica-
tion module. It deploys a series of fully connected
layers followed by sigmoid activation to predict
whether the posts are fake or real. The module
is built on top of the post-enhancement unit, thus
taking the node feature representation as input. We
leverage mean pooling to distill node representa-
tions H;, from the post-enhancement module into
a single vector H; for each post:

H; = MEAN(H,,) (11)

Then, we merge this with the BERT-extracted fea-
tures (Devlin et al., 2019)~0f the source post s; into
a unified representation S

S = LeakyReLU(linear(H;||BERT(s;)))
(12)
A series of fully connected layers, followed by a
sigmoid activation, is applied to S to predict the
rumor label gj;:

i = o(wpS + by) (13)

where w; and by are the weight and bias parame-
ters. We then use cross entropy loss as the rumor
classification loss:

Le==Y yilogg; (14)

where y; is the ground truth label of the i-th in-
stance.

4 Experiments

4.1 Datasets

We experiment with two public Twitter datasets,
Pheme5 and Pheme9, where each event is labeled
as rumor or non-rumor. Pheme5 includes rumor
tweets from five major events: Charliehebdo, Fer-
guson, Germanwings-crash, Otawashooting, and
Sydney-siege, each with numerous sub-events con-
taining source posts, responsive posts, propagation
structures, and posting times. Pheme9 adds four
events maintaining the same structure. Dataset
statistics are detailed in Table 2.

Statistics | Pheme5 Pheme9
# of Posts 103,212 105,354
# of events 5,802 6,425
# of Non-rumors 3,830 4,023
# of Rumor 1,972 2,402
# of classes 2 2
Avg. # of words/ post 13.6 13.6
Avg. # of posts/ event 17.8 16.3
Max # of posts/ event 346 246
Min # of posts/ event 1 1

Table 2: Statistics of Datasets

4.2 Comparison Methods

We compare with the following baselines:

SVM-BOW (Ma et al., 2018b): employs a bag-
of-words model for feature representation and uti-
lizes a Support Vector Machine (SVM) as the clas-
sification algorithm.

CNN (Chen et al., 2017): employs a convolu-
tional neural network for feature extraction from
posts and applies a softmax function as the classifi-
cation layer.

BiLSTM (Augenstein et al., 2016): leverages a
bidirectional long short-term memory (Bi-LSTM)
network to capture the contextual information
within posts.

BERT (Devlin et al., 2019): is a pre-trained lan-
guage model that utilizes bidirectional transform-
ers. We use it to obtain the representation of the
source post for classification.

CSI (Ruchansky et al., 2017): is composed of
three modules: Capture, Score, and Integrate, and
incorporates the behavior of both parties, users
and articles, and the group behavior of users who
propagate fake news.

DEFEND (Shu et al., 2019): uses a sentence-
comment co-attention sub-network to exploit both
news contents and user comments to jointly capture



Pheme5 Pheme9

Method Acc Prec Rec F1 Acc Prec Rec F1

SVM-BOW | 0.669 0.535 0.524 0.529 | 0.688 0.518 0.512 0.515
CNN 0.787 0.737 0.702 0.719 | 0.795 0.731 0.673 0.701
BIiLSTM 0.795 0.763 0.691 0.725 | 0.794 0.727 0.677 0.701
BERT 0.865 0.859 0.851 0.855 | 0.844 0.834 0.835 0.835
CSI 0.857 0.843 0.859 0.851 | 0.851 0.836 0.855 0.845
DEFEND 0.868 0.867 0.859 0.863 | 0.863 0.857 0.859 0.858
RDM 0.873 0.817 0.823 0.820 | 0.858 0.847 0.859 0.852
DDGCN 0.846 0.844 0.817 0.823 | 0.855 0.846 0.841 0.843
DNKGAT 0.892 0.882 0.877 0.879 | 0.894 0.889 0.887 0.888

Table 3: Results of comparison among different models on Pheme5 and Pheme9 Datasets. We run the models five

times, and report average results here.

explainable top-k check-worthy sentences and user
comments for fake news detection.

RDM (Zhou et al., 2019): uses reinforcement
learning to detect rumors early, determining the
minimum posts needed for classification.

DDGCN (Sun et al., 2022a): is a dual dynamic
graph convolutional network. It can learn the dy-
namics of messages in propagation and the dy-
namics of background knowledge from Knowledge
graphs simultaneously.

4.3 Experiment Setup

We adopt the default optimization settings reported
in corresponding papers for all comparison meth-
ods. We implement our method with Pytorch frame-
work (Paszke et al., 2019). We set the number of
time stages v = 3. The number of epochs is 5.
The parameters are optimized using the Adam al-
gorithm. BERT-base (Devlin et al., 2019) is used
as the encoder for the source post and pre-trained
on the datasets. We split the Pheme5 dataset and
Pheme9 dataset into training, validation, and test-
ing sets with a split ratio of 7:1:2 without overlap-
ping. We select the best parameter settings based
on the performance of the validation set. We em-
ploy Accuracy, Precision, Recall, and F1 as evalu-
ation metrics. We randomly split the datasets into
five parts, and conduct 5-fold cross-validation to
obtain the final results.

4.4 Performance Analysis

Table 3 shows the performance of the compared
models. On both datasets, our model significantly
outperforms all the other approaches in all the met-
rics, which confirms that considering the dynamic
neighboring information would benefit the rumor
detection task.

SVM-BOW underperforms due to its reliance
on coarse, handcrafted features, lacking the nu-

Pheme5 Pheme9
Method Acc  Fl | Acc  FI
-w/o Neighbor | 0.864 0.853 | 0.848 0.841
-w/o Attention | 0.869 0.851 | 0.837 0.825
-w/o PE 0.851 0.833 | 0.848 0.841
-w/o Dynamic | 0.858 0.845 | 0.853 0.850
DNKGAT \ 0.892 0.879 \ 0.894 0.888

Table 4: Results of comparison among different variants
on Pheme5 and Pheme9 Datasets.

anced capture required for broad generalization.
In contrast, deep learning models, such as CNN,
BiLSTM, and BERT, excel in automatically ex-
tracting effective features, with BERT particularly
demonstrating superior semantic capture for rumor
detection. DDGCN further outperforms most text
and spatial models, suggesting that knowledge fea-
tures offer complementary benefits. Our approach,
compared to baselines, integrates temporal and spa-
tial structures with external knowledge from source
posts and comments, adaptively adjusting node in-
fluence in propagation structures to focus on key
information, and emphasizing the importance of
initial embeddings in the post-enhancement unit
for optimal performance in rumor detection.

4.5 Ablation Study

We investigate the effects of our proposed compo-
nents by defining the following variations: (1)w/o
neighbor: removing neighbor set between adjacent
graphs; (2)w/o attention: removing adaptively ad-
just the weights of information with fixed weights;
(3)w/o PE: replacing the post-enhancement unit
with the concatenate operation; (4)w/o dynamic:
utilizing static KGATsS instead of dynamic KGATs.
Specifically, we only use the knowledge graph rep-
resentations in the final time stage as input, and the
model only contains one DNKGAT unit.
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Figure 3: Early rumor detection accuracy with the increase of observation time or percentage of the number of

comments.

From Table 4, it is evident that all ablation
variants underperform compared to the complete
model, with accuracy drops of 2.8% on Pheme5
and 4.6% on Pheme9 when the neighbor relevant
set is removed, indicating the importance of neigh-
boring information. Removing attention results in
a 2.3% decrease on Pheme5 and a 5.7% decrease
on Pheme9. Replacing the post-enhancement unit
degrades accuracy by 4.1% on Pheme5 and 4.6%
on Pheme9, while replacing the dynamic graph
leads to a 3.4% decrease on Pheme5 and a 4.1%
decrease on Pheme9. These results demonstrate
the necessity of temporal neighboring information
for better performance.

4.6 Early Rumor Detection Performance

Early rumor detection prevents widespread dissem-
ination. We evaluate our method using two delay
types: time since source post release and comment
count. We compare against DDGCN and BiGCN, a
Graph Convolutional Network (GCN) approach for
rumor detection leveraging bidirectional propaga-
tion mechanisms—both propagation and diffusion
structures—along with the textual content of posts.
Figure 3 reveals that models struggle with few re-
sponsive posts due to lacking spatial and temporal
structure. Our method, however, achieves high ac-
curacy early on and consistently outperforms oth-
ers, demonstrating the effectiveness of aggregating
neighboring and knowledge information for early
detection.

4.7 Case Study

To intuitively demonstrate the propagation in
DNKGAT, we randomly sample source news and
its comments, offering explanations. Figure 4
shows the visualization of adjacent nodes’ connec-
tivity. The propagation paths can be viewed as the
evidence why the news is fake. As we can see, the
connectivity s — ¢2 — TheScene(miniseries) has

Source news: No survivors are expected from the Airbus
A320 crash, the French President says.

Comments:

1.@cnn Prayers to all the families from Kentucky.

2.@CNN how can Euro News say expect no survivors if they

3.@CNN now someone seems to be found alive? Via t24
4...

00072 0.0080

S 00069 c1 c2 c3

0.0073 0.0064

0.0071
The Scene

(miniseries) T-24 tank

Airbus A320 France CNN  Family Kentucky Euro

0.0070 0.0069 0.0071

<wikicat_Countries> <wikicat_Organizations> 0.0070

0.0068 <wikicat_Engineeri

<wikicat Companies> "
= ng_vehicles>

e A <wikicat_Souther
<wikicat_Airlines> T

n_United_States>

Figure 4: Real Example from Pheme9 dataset.

a higher attention score, labeled with the orange
line. Hence, we can generate the explanation as
Euro News haven’t reached the Scene, so they can’t
say "no survivors" which means the news is fake.
And the connectivity s — ¢3 — T24Tank shows
via t24, someone seems to be found alive which
contradicts to "no survivors" in the source news.
Based on the above analysis, we can conclude that
the source news is fake.

5 Conclusion

In this paper, we propose a dynamic neighbor-
enhanced knowledge graph attention network
(DNKGAT) to model the neighboring spatial struc-
ture, neighboring temporal structure, external
knowledge and text information in one unified
framework. DNKGAT concludes dynamic KGATs
to capture dynamic neighboring knowledge infor-
mation in propagation. Furthermore, we propose
the post-enhancement unit to enhance the knowl-
edge information in the end, in order to aggregate
the source post information for classification incre-
mentally. Experiments on two public datasets show
that DNKGAT performs better than a set of strong
baselines and supports rumor early detection.



6 Limitations

In this study, although the proposed DNKGAT
method shows good performance in rumor detec-
tion, it still has some limitations. Firstly, the con-
struction of the dynamic knowledge graph depends
on external knowledge sources such as YAGO. The
quality and comprehensiveness of these knowledge
sources may affect the performance of the model.
If there are errors or omissions in the knowledge
graph, it may lead to inaccurate rumor detection
results. Secondly, when dealing with the neigh-
bor set in the dynamic neighbor-enhanced knowl-
edge graph attention network, although sampling
a fixed-size set of neighbors can reduce the com-
putation overhead, it may also lose some useful in-
formation. In addition, the current model does not
fully consider the potential influence of the interac-
tion between different events on rumor detection.
Each event is processed relatively independently,
and the possible connections and mutual influences
between events are not deeply explored. Finally,
similar to some other studies, the evaluation of
our method is mainly based on the existing public
datasets Pheme5 and Pheme9. These datasets may
have certain limitations in representing the real and
complex social media environment, which may af-
fect the generalization ability of the model to some
extent.

References

Isabelle Augenstein, Tim Rocktdschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016. Stance detec-
tion with bidirectional conditional encoding. arXiv:
Computation and Language,arXiv: Computation and
Language.

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing
Huang, Yu Rong, and Junzhou Huang. 2020. Rumor
detection on social media with bi-directional graph
convolutional networks. ArXiv, abs/2001.06362.

Yi-Chin Chen, Zhao-Yang Liu, and Hung-Yu Kao. 2017.
Ikm at semeval-2017 task 8: Convolutional neural
networks for stance detection and rumor verification.
In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017).

Jiho Choi, Taewook Ko, Younhyuk Choi, HyungHo
Byun, and Chong kwon Kim. 2021. Dynamic graph
convolutional networks with attention mechanism for
rumor detection on social media. PLoS ONE, 16.

Limeng Cui, Haeseung Seo, Maryam Tabar, Fenglong
Ma, Suhang Wang, and Dongwon Lee. 2020. Deter-
rent: Knowledge guided graph attention network for
detecting healthcare misinformation. Proceedings of

the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (SIGKDD).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics (NAACL).

Yaqgian Dun, Kefei Tu, Chen Chen, Chunyan Hou, and
Xiaojie Yuan. 2021. Kan: Knowledge-aware atten-
tion network for fake news detection. In AAAI Con-
ference on Artificial Intelligence (AAAI).

Shuzhi Gong, Richard O. Sinnott, Jianzhong Qi, and
Cécile Paris. 2023. Fake news detection through
temporally evolving user interactions. In Pacific-
Asia Conference on Knowledge Discovery and Data
Mining (PAKDD).

Xiaobo Guo, Wenfang Lin, Youru Li, Zhongyi Liu,
Lin Yang, Shuliang Zhao, and Zhenfeng Zhu. 2020.
Dken: Deep knowledge-enhanced network for rec-
ommender systems. Information Sciences.

Zhiwei Guo, K. Yu, Alireza Jolfaei, Gang Li, Feng
Ding, and Amin Beheshti. 2023. Mixed graph neural
network-based fake news detection for sustainable
vehicular social networks. IEEE Transactions on
Intelligent Transportation Systems, 24:15486—15498.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Neural Information Processing Systems
(NeurlPS).

Zhenyu He, Ce Li, Fan Zhou, and Yi Yang. 2021. Ru-
mor detection on social media with event augmen-
tations. Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR).

Knut Hinkelmann, Sajjad Ahmed, and Fldvio Corradini.
2022. Combining machine learning with knowledge
engineering to detect fake news in social networks -
a survey. ArXiv, abs/2201.08032.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural
fake news detection with external knowledge. In
Annual Meeting of the Association for Computational
Linguistics (ACL).

Qi Huang, Chuan Zhou, Jia Wu, Mingwen Wang, and
Bin Wang. 2019. Deep structure learning for rumor
detection on twitter. 2019 International Joint Con-
ference on Neural Networks (IJCNN), pages 1-8.

Thomas Kipf and Max Welling. 2016. Semi-supervised
classification with graph convolutional networks.
ArXiv, abs/1609.02907.

Xiao-Yang Liu, Chenxiang Miao, Giacomo Fiumara,
and Pasquale De Meo. 2024. Information propa-
gation prediction based on spatial-temporal atten-
tion and heterogeneous graph convolutional networks.


https://api.semanticscholar.org/CorpusID:210713805
https://api.semanticscholar.org/CorpusID:210713805
https://api.semanticscholar.org/CorpusID:210713805
https://api.semanticscholar.org/CorpusID:210713805
https://api.semanticscholar.org/CorpusID:210713805
https://doi.org/10.18653/v1/s17-2081
https://doi.org/10.18653/v1/s17-2081
https://doi.org/10.18653/v1/s17-2081
https://api.semanticscholar.org/CorpusID:237213918
https://api.semanticscholar.org/CorpusID:237213918
https://api.semanticscholar.org/CorpusID:237213918
https://api.semanticscholar.org/CorpusID:237213918
https://api.semanticscholar.org/CorpusID:237213918
https://api.semanticscholar.org/CorpusID:219178347
https://api.semanticscholar.org/CorpusID:219178347
https://api.semanticscholar.org/CorpusID:219178347
https://api.semanticscholar.org/CorpusID:219178347
https://api.semanticscholar.org/CorpusID:219178347
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:235306349
https://api.semanticscholar.org/CorpusID:235306349
https://api.semanticscholar.org/CorpusID:235306349
https://api.semanticscholar.org/CorpusID:259026061
https://api.semanticscholar.org/CorpusID:259026061
https://api.semanticscholar.org/CorpusID:259026061
https://api.semanticscholar.org/CorpusID:250362476
https://api.semanticscholar.org/CorpusID:250362476
https://api.semanticscholar.org/CorpusID:250362476
https://api.semanticscholar.org/CorpusID:250362476
https://api.semanticscholar.org/CorpusID:250362476
https://api.semanticscholar.org/CorpusID:4755450
https://api.semanticscholar.org/CorpusID:4755450
https://api.semanticscholar.org/CorpusID:4755450
https://api.semanticscholar.org/CorpusID:235792538
https://api.semanticscholar.org/CorpusID:235792538
https://api.semanticscholar.org/CorpusID:235792538
https://api.semanticscholar.org/CorpusID:235792538
https://api.semanticscholar.org/CorpusID:235792538
https://api.semanticscholar.org/CorpusID:135469288
https://api.semanticscholar.org/CorpusID:135469288
https://api.semanticscholar.org/CorpusID:135469288
https://api.semanticscholar.org/CorpusID:135469288
https://api.semanticscholar.org/CorpusID:135469288
https://api.semanticscholar.org/CorpusID:236460257
https://api.semanticscholar.org/CorpusID:236460257
https://api.semanticscholar.org/CorpusID:236460257
https://api.semanticscholar.org/CorpusID:203605985
https://api.semanticscholar.org/CorpusID:203605985
https://api.semanticscholar.org/CorpusID:203605985
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:257456870
https://api.semanticscholar.org/CorpusID:257456870
https://api.semanticscholar.org/CorpusID:257456870
https://api.semanticscholar.org/CorpusID:257456870
https://api.semanticscholar.org/CorpusID:257456870

IEEE Transactions on Computational Social Systems,

11:945-958.

Yang Liu and Yi fang Brook Wu. 2018. Early detection
of fake news on social media through propagation
path classification with recurrent and convolutional
networks. In AAAI Conference on Artificial Intelli-
gence (AAAI).

Jing Ma and Wei Gao. 2020. Debunking rumors on
twitter with tree transformer. In International Con-
ference on Computational Linguistics (Coling).

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard Jim Jansen, Kam-Fai Wong, and M. Cha.
2016. Detecting rumors from microblogs with recur-
rent neural networks. In International Joint Confer-
ence on Artificial Intelligence (1JCAI).

Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and
Kam-Fai Wong. 2015. Detect rumors using time se-
ries of social context information on microblogging
websites. Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement (CIKM).

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018a. Rumor
detection on twitter with tree-structured recursive
neural networks. In Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018b. Rumor
detection on Twitter with tree-structured recursive
neural networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1980-1989,
Melbourne, Australia. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. ArXiv, abs/1912.01703.

Natali Ruchansky, Sungyong Seo, and Yan Liu. 2017.
Csi: A hybrid deep model for fake news detection.
Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management (CIKM).

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. defend. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery amp; Data Mining.

Chenguang Song, Kai Shu, and Bin Wu. 2021a. Tem-
porally evolving graph neural network for fake news
detection. Inf. Process. Manag., 58:102712.

Chenguang Song, Yiyang Teng, and Bin Wu. 2021b.
Dynamic graph neural network for fake news detec-
tion. 2021 IEEE 7th International Conference on

10

Cloud Computing and Intelligent Systems (CCIS),
pages 27-31.

Mengzhu Sun, Xi Zhang, Jiaqi Zheng, and Guixiang Ma.
2022a. Ddgen: Dual dynamic graph convolutional
networks for rumor detection on social media. In
AAAI Conference on Artificial Intelligence (AAAI).

Tiening Sun, Zhong Qian, Sujun Dong, Peifeng Li,
and Qiaoming Zhu. 2022b. Rumor detection on so-
cial media with graph adversarial contrastive learn-
ing. Proceedings of the ACM Web Conference 2022
(WWW).

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio’, and Yoshua Ben-
gio. 2017. Graph attention networks. ArXiv,
abs/1710.10903.

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li,
Xing Xie, and Minyi Guo. 2019a. Multi-task feature
learning for knowledge graph enhanced recommen-
dation. The World Wide Web Conference (WWW).

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019b. Kgat: Knowledge graph at-
tention network for recommendation. Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (SIGKDD).

Youze Wang, Shengsheng Qian, Jun Hu, Quan Fang,
and Changsheng Xu. 2020. Fake news detection via
knowledge-driven multimodal graph convolutional
networks. Proceedings of the 2020 International
Conference on Multimedia Retrieval (ICMR).

Huaiwen Zhang, Quan Fang, Shengsheng Qian, and
Changsheng Xu. 2019. Multi-modal knowledge-
aware event memory network for social media rumor
detection. Proceedings of the 27th ACM Interna-
tional Conference on Multimedia (MM).

Kaimin Zhou, Chang Shu, Binyang Li, and Jey Han Lau.
2019. Early rumour detection. In Proceedings of the
2019 Conference of the North.


https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:22615903
https://api.semanticscholar.org/CorpusID:227230663
https://api.semanticscholar.org/CorpusID:227230663
https://api.semanticscholar.org/CorpusID:227230663
https://api.semanticscholar.org/CorpusID:16985095
https://api.semanticscholar.org/CorpusID:16985095
https://api.semanticscholar.org/CorpusID:16985095
https://api.semanticscholar.org/CorpusID:17025981
https://api.semanticscholar.org/CorpusID:17025981
https://api.semanticscholar.org/CorpusID:17025981
https://api.semanticscholar.org/CorpusID:17025981
https://api.semanticscholar.org/CorpusID:17025981
https://api.semanticscholar.org/CorpusID:51878172
https://api.semanticscholar.org/CorpusID:51878172
https://api.semanticscholar.org/CorpusID:51878172
https://api.semanticscholar.org/CorpusID:51878172
https://api.semanticscholar.org/CorpusID:51878172
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:5156607
https://doi.org/10.1145/3292500.3330935
https://api.semanticscholar.org/CorpusID:237157252
https://api.semanticscholar.org/CorpusID:237157252
https://api.semanticscholar.org/CorpusID:237157252
https://api.semanticscholar.org/CorpusID:237157252
https://api.semanticscholar.org/CorpusID:237157252
https://api.semanticscholar.org/CorpusID:248183459
https://api.semanticscholar.org/CorpusID:248183459
https://api.semanticscholar.org/CorpusID:248183459
https://api.semanticscholar.org/CorpusID:248425870
https://api.semanticscholar.org/CorpusID:248425870
https://api.semanticscholar.org/CorpusID:248425870
https://api.semanticscholar.org/CorpusID:248367406
https://api.semanticscholar.org/CorpusID:248367406
https://api.semanticscholar.org/CorpusID:248367406
https://api.semanticscholar.org/CorpusID:248367406
https://api.semanticscholar.org/CorpusID:248367406
https://api.semanticscholar.org/CorpusID:3292002
https://api.semanticscholar.org/CorpusID:59291937
https://api.semanticscholar.org/CorpusID:59291937
https://api.semanticscholar.org/CorpusID:59291937
https://api.semanticscholar.org/CorpusID:59291937
https://api.semanticscholar.org/CorpusID:59291937
https://api.semanticscholar.org/CorpusID:159042183
https://api.semanticscholar.org/CorpusID:159042183
https://api.semanticscholar.org/CorpusID:159042183
https://api.semanticscholar.org/CorpusID:219167652
https://api.semanticscholar.org/CorpusID:219167652
https://api.semanticscholar.org/CorpusID:219167652
https://api.semanticscholar.org/CorpusID:219167652
https://api.semanticscholar.org/CorpusID:219167652
https://api.semanticscholar.org/CorpusID:204837179
https://api.semanticscholar.org/CorpusID:204837179
https://api.semanticscholar.org/CorpusID:204837179
https://api.semanticscholar.org/CorpusID:204837179
https://api.semanticscholar.org/CorpusID:204837179
https://doi.org/10.18653/v1/n19-1163

	Introduction
	Related Work
	Spatial Structure Based Rumor Detection
	Temporal Structure Based Rumor Detection
	Knowledge Based Rumor Detection

	Methodology
	Problem Definition
	Overview
	Dynamic Knowledge Graph Construction Module
	Dynamic Neighbor-enhanced Knowledge Graph Attention Network
	Post-Enhancement Unit
	Rumor Classification Module

	Experiments
	Datasets
	Comparison Methods
	Experiment Setup
	Performance Analysis
	Ablation Study
	Early Rumor Detection Performance
	Case Study

	Conclusion
	Limitations

