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Abstract001

Detecting rumors on social media is critical due002
to their rapid spread and harmful effects, yet003
existing models often overlook integrating spa-004
tial and temporal neighboring information of005
message propagation, as well as the dynamics006
of background knowledge in user comments.007
To address this gap, we present a principled008
Dynamic Neighbor-enhanced Knowledge009
Graph Attention Network (DNKGAT), which010
unifies the dynamics of message propagation011
and evolving background knowledge from012
knowledge graphs. Specifically, the proposed013
method employs a multi-hop knowledge graph014
attention mechanism to incorporate extensive015
neighboring information from knowledge016
graphs, a feature previously underexplored.017
The framework includes a post-enhancement018
unit and a rumor classification module, enhanc-019
ing detection capabilities by learning dynamic020
event representations and aggregating them021
progressively to capture cascading effects for022
more effective rumor identification. Extensive023
experiments on two real-world datasets demon-024
strate significant improvements over strong025
baselines, particularly in early-stage rumor026
detection. Our implementation available at027
https://anonymous.4open.science/r/DNKGAT-028
FC6C.029

1 Introduction030

The Internet and social media platforms like Twitter031

and Facebook have become essential ways for peo-032

ple to access news in their daily lives. These plat-033

forms enable the rapid and free dissemination of034

news, allowing the public to express opinions and035

communicate freely. However, the lack of effective036

censorship results in lower-quality news compared037

to traditional methods, leading to a noisy informa-038

tion ecosystem plagued with disinformation and039

rumors. Therefore, it is of prominent importance040

to detect rumors on social media. Currently, three041

prominent methods are utilized for rumor detection:042

Figure 1: The introduction of the proposed method.

those based on spatial structure, temporal structure, 043

and knowledge graph. 044

Rumor detection aims to identify rumors au- 045

tomatically. Recent studies focus on the dissem- 046

ination process of news articles, where users en- 047

gage by posting, reposting, or responding to spe- 048

cific articles. These interactions create tree-based 049

(Ma et al., 2018a; Ma and Gao, 2020; Bian et al., 050

2020) or graph-based (Huang et al., 2019; He et al., 051

2021; Sun et al., 2022b) structures. By analyzing 052

the structure of news propagation and assessing 053

user trustworthiness, it is possible to deduce the 054

likely veracity of the news. Some studies empha- 055

size the importance of temporal structure, enabling 056

the modeling of fine-grained dynamic features and 057

enhancing early detection performance (Ma et al., 058

2015; Choi et al., 2021; Song et al., 2021b). Con- 059

sidering both spatial and temporal structures in 060

message propagation is crucial. Several studies 061

incorporate external knowledge to improve rumor 062

detection (Zhang et al., 2019; Wang et al., 2020; 063

Hu et al., 2021), with their effectiveness analyzed 064

in (Hinkelmann et al., 2022). However, such exten- 065

sive spatial and temporal neighboring information 066

of message propagation from knowledge graph is 067

not exploited by existing models. 068

This paper aims to model the spatial-temporal 069

structure of messages and associated background 070
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knowledge within a unified framework for timely071

rumor detection. Traditional methods, relying on072

graph neural networks (GNNs) and graph convo-073

lutional networks (GCNs) with a message-passing074

framework, learn spatial features of rumors but075

struggle to aggregate high-order neighboring node076

information without stacking multiple layers when077

dealing with deeper node relationships. To this078

end, we introduce the Dynamic Neighbor-enhanced079

Knowledge Graph Attention Network (DNKGAT),080

featuring a dynamic multi-hop knowledge graph at-081

tention mechanism that captures spatial, temporal,082

and knowledge information through evolving mes-083

sages and knowledge graphs. In Figure 1, source084

post and comments (blue nodes) are linked to en-085

tities (yellow nodes) and concepts (green nodes)086

via entity linking and knowledge conceptualization.087

One entity (c2) can be involved in multiple triplets,088

serving as the contributor enriching entities’ feature089

and propagation information. This mechanism en-090

ables source posts to aggregate high-order neighbor091

information, like c4’s entity and concept. We also092

propose a fusing method to enhance these represen-093

tations with the message, using post-enhancement094

to concatenate dynamic neighbor-enhanced knowl-095

edge graph attention network representations with096

initial message representations, allowing for incre-097

mental learning of better event representations prior098

to rumor classification. The main contributions are099

summarized as follows:100

• We propose DNKGAT, a pioneering approach101

that captures spatial-temporal rumor character-102

istics through an incremental learning process103

and a post-enhancement unit for improved de-104

tection accuracy.105

• Leveraging a multi-hop knowledge graph at-106

tention mechanism, DNKGAT aggregates ex-107

tensive neighboring information to capture108

message propagation dynamics and integrate109

background knowledge for comprehensive110

contextual understanding in rumor detection.111

• DNKGAT introduces the first post-112

enhancement unit, which learns feature113

interactions between posts and knowledge114

through a cross-information sharing layer to115

enrich information and improve detection.116

• Experiment results show that the proposed117

method outperforms the strong baselines on118

two real-world datasets and can effectively119

detect rumors at an early stage.120

2 Related Work 121

2.1 Spatial Structure Based Rumor Detection 122

Spatial structure-based methods in rumor detection 123

model news propagation paths to differentiate real 124

and fake news dissemination patterns on social net- 125

works. Ma et al. (2018a) uses a tree-based recursive 126

neural network for content semantics and propaga- 127

tion cues, while Huang et al. (2019) employs GCNs 128

for spatial structure capture. Bian et al. (2020) en- 129

hances rumor dissemination understanding with Bi- 130

GCNs, and Guo et al. (2023) integrates GNNs with 131

convolutional and recurrent neural networks for se- 132

mantic capture. Liu et al. (2024) combines GCN 133

and attention mechanisms for influence and prop- 134

agation structure relations. Despite effectiveness, 135

these methods often overlook temporal dynamics 136

of message propagation, missing critical patterns 137

for rumor identification. 138

2.2 Temporal Structure Based Rumor 139

Detection 140

Temporal structure-based methods in rumor de- 141

tection model the temporal information of news 142

propagation to differentiate real and fake news dis- 143

semination patterns. Ma et al. (2016) uses a re- 144

current neural network-based model for semantic 145

variations, while Liu and fang Brook Wu (2018) 146

combines recurrent and convolutional networks for 147

temporal structure. Song et al. (2021a) models 148

real-world news evolution under continuous-time 149

dynamic diffusion networks, and Sun et al. (2022a) 150

unifies message propagation dynamics with back- 151

ground knowledge from knowledge graphs. Gong 152

et al. (2023) integrates a neural Hawkes process for 153

self-exciting patterns of true and fake news. De- 154

spite their effectiveness, most methods overlook 155

integrating external knowledge, which could sig- 156

nificantly improve rumor detection. 157

2.3 Knowledge Based Rumor Detection 158

Knowledge-based methods in rumor detection ex- 159

ploit external knowledge to supplement post con- 160

tent for identification. Zhang et al. (2019) com- 161

plements short texts with external knowledge for 162

improved rumor detection, while Cui et al. (2020) 163

uses an article-entity bipartite graph and a medi- 164

cal knowledge graph for better news embeddings. 165

KMGCN (Wang et al., 2020) models global struc- 166

tures among texts, images, and knowledge concepts 167

for comprehensive semantic representations. KAN 168

(Dun et al., 2021) validates knowledge attention 169
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effectiveness for rumor detection. Despite their170

benefits, these methods often overlook the contra-171

diction between rumor content and external knowl-172

edge, and the importance of high-order neighbor-173

ing knowledge, which this study addresses. Com-174

pareNet (Hu et al., 2021) compares news articles175

to a knowledge base through entities for detection.176

However, these methods overlook the importance177

of high-order neighboring knowledge, which this178

study fully leverages to improve its effectiveness.179

3 Methodology180

3.1 Problem Definition181

The task of rumor detection can be defined as182

a binary classification problem aimed at detect-183

ing rumor items, e.g. Twitter posts. Let O =184

{o1, . . . , on} be a set of events, where each event185

oi consists of a sequence of posts and comments.186

We denote the set of post and comment contents for187

each event as oci = {ci0, ci1, . . . , cimi−1}, where188

ci0 is the source post si, and cij is the j-th comment.189

mi represents the number of posts and comments in190

oi. Additionally, we define the relative release time191

sequence oti = {ti0, ti1, . . . , timi−1}, where ti0 =192

0 and tij denotes the release time of the j-th com-193

ment. The combined representation of each event is194

oi = {(ci0, ti0), (ci1, ti1), . . . , (cimi−1, timi−1)}.195

Each event oi is segmented into γ stages based196

on its duration, where γ is a hyperparameter. Each197

stage r has an equal time interval ∆ti =
timi−1

γ .198

The r-th sub-event of oi is defined as oir =199

{(ciπ, tiπ) | tiπ ≤ r∆ti}.200

The goal is to learn a model f : O → Y to201

classify each event oi into predefined categories202

Y = {0, 1}, where 0 denotes non-rumor and 1203

denotes rumor.204

For ease of understanding, the important math-205

ematical notations used throughout the paper are206

listed in Table 1.207

Notations Descriptions

oi the i-th event
oci post sequence of the i-th event
oti relase time sequence of the i-th event
γ the number of time stages
∆ti equal time interval of event oi
oir the r-th stage subset of oi
Eti the entity set of oi
Cti the concept set of oi

Gk
ir = ⟨V k

ir, E
k
ir⟩ knowledge graph at stage r

Table 1: Important notations and descriptions

3.2 Overview 208

The overall architecture of our rumor detection 209

approach is presented in Figure 2. It consists of 210

four modules: (1) dynamic knowledge graph 211

construction: constructs a dynamic post-entity- 212

concept tripartite knowledge graph by integrat- 213

ing post-related external knowledge; (2) dynamic 214

neighbor-enhanced knowledge graph attention 215

network: generates node representations that in- 216

tegrate spatial, temporal, and knowledge infor- 217

mation through a multi-hop attention mechanism, 218

capturing the evolving relationships and context 219

essential for accurate rumor detection; (3) post- 220

enhancement unit: enriches the knowledge infor- 221

mation by learning the feature interactions between 222

the post and knowledge; (4) rumor classifier: ag- 223

gregates the final knowledge and source post tex- 224

tual information to determine whether the event is 225

a rumor or not. 226

3.3 Dynamic Knowledge Graph Construction 227

Module 228

This module constructs a dynamic post-entity- 229

concept tripartite knowledge graph to capture the 230

evolving relationships between posts, entities, and 231

concepts, thereby enriching the semantic under- 232

standing necessary for accurate rumor detection. 233

Posts often contain condensed content with nu- 234

merous entity mentions, which can be ambigu- 235

ous due to aliases, abbreviations, and alternative 236

spellings. For example, in the post "Exciting up- 237

dates from @Tesla about their new Model S en- 238

hancements. Can’t wait for the test drive!", it is 239

crucial to discern that "Tesla" refers to an "electric 240

vehicle manufacturer" and "Model S" is a "specific 241

model of electric car". To address this, we inte- 242

grate external knowledge from both source posts 243

and their comments, which evolves as the event 244

progresses. 245

Entity linking and conceptualization extract 246

rich semantic information from the posts. Using 247

the NLTK for entity linking, we connect entity 248

mentions to corresponding entities in a knowledge 249

graph like YAGO. We drive conceptual information 250

from YAGO based on the "isA" relationship, which 251

defines the connection between entities and their 252

concepts. For instance, for the entities identified 253

in the example post, we obtain ConceptTesla = 254

{Vehicle Manufacturer, Technology Company} 255

ConceptModel S = {Electric Car, Automobile}. 256

For each time stage or, we construct a dynamic 257
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Figure 2: The framework of the proposed method. It consists of four components: (1) the leftest block: the input
of the model; (2) the lefter block: dynamic neighbor-enhanced knowledge graph attention network; (3)the righter
block: the post-enhancement module to enrich representations with initial feature; (4) the rightest block: a rumor
classification module after post enhancement.

knowledge graph {Gk
i1, . . . , G

k
iγ}, where Gk

ir =258

⟨V k
ir, E

k
ir⟩ includes vertices from posts, comments,259

entities, and concepts. Edges are established based260

on:261

• Post-entity edges: These are formed between262

a post and an entity if the post contains a men-263

tion of the entity. The edge weight is deter-264

mined by the term frequency-inverse docu-265

ment frequency(TF-IDF) of the entity within266

the post.267

• Entity and concept edges: The relationships268

between entities, and between entities and con-269

cepts, are quantified using Pointwise Mutual270

Information(PMI), calculated over a fixed-size271

sliding window from a global corpus.272

The adjacency matrix Ak
ir of the dynamic knowl-273

edge graph Gk
ir retains only those edges with sig-274

nificant TF-IDF or positive PMI scores. Each node275

v in the graph is initialized with its word embed-276

ding vector k ∈ RF , facilitating the propagation of277

semantic information through the graph.278

3.4 Dynamic Neighbor-enhanced Knowledge279

Graph Attention Network280

This module generates node representations incor-281

porating spatial, temporal, and knowledge infor-282

mation. By exploiting the idea of graph attention283

network (Velickovic et al., 2017), we generate at-284

tentive weights of cascaded propagations to reveal285

the importance of connectivity. Here we start by286

describing a single layer, which consists of informa-287

tion propagation and aggregation, and then discuss288

how to generalize it to multiple layers.289

Information Propagation: One entity can be 290

involved in multiple triplets, serving as the con- 291

tributor enriching entities’ feature and propagation 292

information. Taking p1−e1−c1 and p1−e1−c2 as 293

an example, entity e1 can take attributes c1 and c2 294

to enrich its features and then contribute post p1’s 295

features, which can be simulated by propagating 296

information from c1 and c2 to p1. To character- 297

ize nodes’ hierarchically extended propagation in 298

terms of KG, in our methods, we recursively define 299

the set of k-hop relevant entities for r-th time stage 300

knowledge graph as follows: 301

Definition 1 (Relevant Entity) Given the knowl- 302

edge graph Gi in i-th time stage, the set of k-hop 303

relevant entities for graph Gi is defined as: 304

Ek
i = {t | (h, r, t) ∈ Gi and h ∈ Ek−1

i }
k = 1, 2, 3, ...,H.

(1) 305

where E0
i = Vi is the set of vertex at the beginning 306

of i-th stage, which can be seen as the seed set of 307

the knowledge graph. 308

Relevant entities can be regarded as natural ex- 309

tensions of the knowledge graph. Given the defini- 310

tion of relevant entities, we then define the k-hop 311

neighbor set of knowledge graph as follows: 312

Definition 2 (Neighbor Set) The k-hop neighbor 313

set of knowledge graph Gi is defined as the set of 314

knowledge triples starting from Ek−1
i : 315

N k
i = {(h, r, t) | (h, r, t) ∈ Gi and h ∈ Ek−1

i }
k = 1, 2, 3, ...,H.

(2) 316

4



One concern about neighbor sets is their sizes317

may get too large with the increase of hop num-318

ber k. The number of maximal hop H is usually319

not too large in practice, since nodes that are too320

distant from i-th KG may bring more noise than321

positive signals. We will discuss the size of neigh-322

bor set S in the experiments part. In our method,323

we can sample a fixed-size set of neighbors instead324

of using a full neighbor set to further reduce the325

computation overhead.326

Given the i-th time stage node embedding hi and327

the 1-hop neighbor set N 1
i , each triple (hi, ri, ti)328

is assigned a relevance probability by comparing329

i-th KG node embedding ki to the i-th stage node330

hi in N 1
i and the corresponding relation ri in this331

triple:332

pi = softmax(kiT rihi)

=
exp(ki

T rihi)∑
(h,r,t)∈Ni

exp(ki
T rh)

(3)333

where ri ∈ Rd and hi ∈ Rd are the embeddings334

of the relation ri and head hi, respectively. The335

relevance probability pi controls the decay factor336

on each propagation on edge (hi, ri, ti), indicating337

how much information being propagated from ti338

to hi conditioned to relation ri, regarded as the339

similarity of node ki and the entity hi measured340

in the space of relation ri. Furthermore, when341

performing propagation forward, the pi suggests342

parts of the data to focus on, which can be treated343

as explanations behind the propagation.344

After obtaining the relevance probabilities, we345

take the sum of tails in N 1
i weighted by the cor-346

responding relevance probabilities, and the vector347

kN 1
i

is returned:348

kN 1
i
=

∑
(hi,ri,ti)∈N 1

i

piti, (4)349

where ti ∈ Rd is the embedding of tail ti.350

Distinct from the information propagation in351

GCN (Kipf and Welling, 2016) and GraphSage352

(Hamilton et al., 2017) which set the discount fac-353

tor between two nodes as a fixed number, our model354

not only exploits the proximity structure graph355

but also specifies varying importance of neighbors.356

Moreover, distinct from the graph attention net-357

work which only takes node representations as in-358

puts, we model the relation r between h and t,359

encoding more information during propagation.360

Information Aggregation: This phase is to ag- 361

gregate the node representation ki and its 1-hop 362

neighbor set representations kN 1
i

- more formally, 363

k
(1)
i = f(ki, kN 1

i
). We implement f(·) using the 364

Bi-Interaction Aggregator (Wang et al., 2019b) to 365

consider two kinds of feature interactions between 366

ki and kN 1
i

, as follows: 367

fBi-Interaction =LeakyReLU(W1(ki + kN1
i
))+

LeakyReLU(W2(ki ⊙ kN1
i
)),

(5) 368

where W1,W2 ∈ Rd′×d are trainable weight matri- 369

ces, and ⊙ denotes the element-wise product. Dis- 370

tinct from GCN and GraphSage aggregators, we 371

additionally encode the feature interaction between 372

ki and kN 1
i

. This term makes the information be- 373

ing propagated sensitive to the affinity between ki 374

and kN 1
i

, e.g., passing more messages from similar 375

entities. 376

We further stack more propagation layers to ex- 377

plore the high-order connectivity information, gath- 378

ering the information propagated from the high-hop 379

neighbors. More formally, in the l-th steps, we re- 380

cursively formulate the representation of KG as: 381

k
(l)
i = f(k

(l−1)
i , kN (l−1)

i

) (6) 382

3.5 Post-Enhancement Unit 383

Enlightened by the idea of root feature enhance- 384

ment in (Bian et al., 2020), the source post of an 385

event is pivotal in rumor detection. Inspired by 386

the (Wang et al., 2019a) and (Guo et al., 2020) 387

methods, we have designed the cross-information 388

sharing layer, aiming to combine the strengths of 389

both approaches, which can concatenate the latent 390

feature vector of each node learned from the last 391

dynamic neighbor-enhanced knowledge graph at- 392

tention network with the initial feature vector of 393

each post p in oci learned from the word embedding. 394

For a knowledge node k and its corresponding 395

post node p, we first construct d× d pairwise inter- 396

actions of their latent feature k ∈ Rd and p ∈ Rd: 397

Ck = kpT =

k
(1)p(1) · · · k(1)p(d)

...
. . .

...
k(d)p(1) · · · k(d)p(d)

 , (7) 398

Cp = pkT =

p
(1)k(1) · · · p(1)k(d)

...
. . .

...
p(d)k(1) · · · p(d)k(d)

 , (8) 399
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where Ck ∈ Rd×d represents the cross feature ma-400

trix from knowledge to post, Cp ∈ Rd×d represents401

the cross feature matrix from post to knowledge402

and d is the dimension of hidden layers.403

We then output the feature vectors of knowledge404

and post for the classification by projecting the405

cross feature matrix into their latent representation406

spaces:407

k = Ckw1 + b1

= kpTw1 + b1,
(9)408

p = Cpw2 + b2

= pkTw2 + b2,
(10)409

where w and b are trainable weight and bias vectors.410

The weight vectors project the cross feature matrix411

from Rd×d space back to the feature spaces Rd.412

Through post-enhancement units, our method can413

enhance the post feature after dynamic knowledge414

graph operation.415

3.6 Rumor Classification Module416

In this module, we introduce the rumor classifica-417

tion module. It deploys a series of fully connected418

layers followed by sigmoid activation to predict419

whether the posts are fake or real. The module420

is built on top of the post-enhancement unit, thus421

taking the node feature representation as input. We422

leverage mean pooling to distill node representa-423

tions Hiγ from the post-enhancement module into424

a single vector Hi for each post:425

Hi = MEAN(Hiγ) (11)426

Then, we merge this with the BERT-extracted fea-427

tures (Devlin et al., 2019) of the source post si into428

a unified representation S̃:429

S̃ = LeakyReLU(linear(Hi||BERT (si)))
(12)430

A series of fully connected layers, followed by a431

sigmoid activation, is applied to S̃ to predict the432

rumor label ŷi:433

ŷi = σ(wf S̃ + bf ) (13)434

where wf and bf are the weight and bias parame-435

ters. We then use cross entropy loss as the rumor436

classification loss:437

Lc = −
∑
i

yi log ŷi (14)438

where yi is the ground truth label of the i-th in-439

stance.440

4 Experiments 441

4.1 Datasets 442

We experiment with two public Twitter datasets, 443

Pheme5 and Pheme9, where each event is labeled 444

as rumor or non-rumor. Pheme5 includes rumor 445

tweets from five major events: Charliehebdo, Fer- 446

guson, Germanwings-crash, Otawashooting, and 447

Sydney-siege, each with numerous sub-events con- 448

taining source posts, responsive posts, propagation 449

structures, and posting times. Pheme9 adds four 450

events maintaining the same structure. Dataset 451

statistics are detailed in Table 2.

Statistics Pheme5 Pheme9

# of Posts 103,212 105,354
# of events 5,802 6,425

# of Non-rumors 3,830 4,023
# of Rumor 1,972 2,402
# of classes 2 2

Avg. # of words/ post 13.6 13.6
Avg. # of posts/ event 17.8 16.3
Max # of posts/ event 346 246
Min # of posts/ event 1 1

Table 2: Statistics of Datasets
452

4.2 Comparison Methods 453

We compare with the following baselines: 454

SVM-BOW (Ma et al., 2018b): employs a bag- 455

of-words model for feature representation and uti- 456

lizes a Support Vector Machine (SVM) as the clas- 457

sification algorithm. 458

CNN (Chen et al., 2017): employs a convolu- 459

tional neural network for feature extraction from 460

posts and applies a softmax function as the classifi- 461

cation layer. 462

BiLSTM (Augenstein et al., 2016): leverages a 463

bidirectional long short-term memory (Bi-LSTM) 464

network to capture the contextual information 465

within posts. 466

BERT (Devlin et al., 2019): is a pre-trained lan- 467

guage model that utilizes bidirectional transform- 468

ers. We use it to obtain the representation of the 469

source post for classification. 470

CSI (Ruchansky et al., 2017): is composed of 471

three modules: Capture, Score, and Integrate, and 472

incorporates the behavior of both parties, users 473

and articles, and the group behavior of users who 474

propagate fake news. 475

DEFEND (Shu et al., 2019): uses a sentence- 476

comment co-attention sub-network to exploit both 477

news contents and user comments to jointly capture 478
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Method Pheme5 Pheme9
Acc Prec Rec F1 Acc Prec Rec F1

SVM-BOW 0.669 0.535 0.524 0.529 0.688 0.518 0.512 0.515
CNN 0.787 0.737 0.702 0.719 0.795 0.731 0.673 0.701
BiLSTM 0.795 0.763 0.691 0.725 0.794 0.727 0.677 0.701
BERT 0.865 0.859 0.851 0.855 0.844 0.834 0.835 0.835
CSI 0.857 0.843 0.859 0.851 0.851 0.836 0.855 0.845
DEFEND 0.868 0.867 0.859 0.863 0.863 0.857 0.859 0.858
RDM 0.873 0.817 0.823 0.820 0.858 0.847 0.859 0.852
DDGCN 0.846 0.844 0.817 0.823 0.855 0.846 0.841 0.843
DNKGAT 0.892 0.882 0.877 0.879 0.894 0.889 0.887 0.888

Table 3: Results of comparison among different models on Pheme5 and Pheme9 Datasets. We run the models five
times, and report average results here.

explainable top-k check-worthy sentences and user479

comments for fake news detection.480

RDM (Zhou et al., 2019): uses reinforcement481

learning to detect rumors early, determining the482

minimum posts needed for classification.483

DDGCN (Sun et al., 2022a): is a dual dynamic484

graph convolutional network. It can learn the dy-485

namics of messages in propagation and the dy-486

namics of background knowledge from Knowledge487

graphs simultaneously.488

4.3 Experiment Setup489

We adopt the default optimization settings reported490

in corresponding papers for all comparison meth-491

ods. We implement our method with Pytorch frame-492

work (Paszke et al., 2019). We set the number of493

time stages γ = 3. The number of epochs is 5.494

The parameters are optimized using the Adam al-495

gorithm. BERT-base (Devlin et al., 2019) is used496

as the encoder for the source post and pre-trained497

on the datasets. We split the Pheme5 dataset and498

Pheme9 dataset into training, validation, and test-499

ing sets with a split ratio of 7:1:2 without overlap-500

ping. We select the best parameter settings based501

on the performance of the validation set. We em-502

ploy Accuracy, Precision, Recall, and F1 as evalu-503

ation metrics. We randomly split the datasets into504

five parts, and conduct 5-fold cross-validation to505

obtain the final results.506

4.4 Performance Analysis507

Table 3 shows the performance of the compared508

models. On both datasets, our model significantly509

outperforms all the other approaches in all the met-510

rics, which confirms that considering the dynamic511

neighboring information would benefit the rumor512

detection task.513

SVM-BOW underperforms due to its reliance514

on coarse, handcrafted features, lacking the nu-515

Method Pheme5 Pheme9
Acc F1 Acc F1

-w/o Neighbor 0.864 0.853 0.848 0.841
-w/o Attention 0.869 0.851 0.837 0.825
-w/o PE 0.851 0.833 0.848 0.841
-w/o Dynamic 0.858 0.845 0.853 0.850

DNKGAT 0.892 0.879 0.894 0.888

Table 4: Results of comparison among different variants
on Pheme5 and Pheme9 Datasets.

anced capture required for broad generalization. 516

In contrast, deep learning models, such as CNN, 517

BiLSTM, and BERT, excel in automatically ex- 518

tracting effective features, with BERT particularly 519

demonstrating superior semantic capture for rumor 520

detection. DDGCN further outperforms most text 521

and spatial models, suggesting that knowledge fea- 522

tures offer complementary benefits. Our approach, 523

compared to baselines, integrates temporal and spa- 524

tial structures with external knowledge from source 525

posts and comments, adaptively adjusting node in- 526

fluence in propagation structures to focus on key 527

information, and emphasizing the importance of 528

initial embeddings in the post-enhancement unit 529

for optimal performance in rumor detection. 530

4.5 Ablation Study 531

We investigate the effects of our proposed compo- 532

nents by defining the following variations: (1)w/o 533

neighbor: removing neighbor set between adjacent 534

graphs; (2)w/o attention: removing adaptively ad- 535

just the weights of information with fixed weights; 536

(3)w/o PE: replacing the post-enhancement unit 537

with the concatenate operation; (4)w/o dynamic: 538

utilizing static KGATs instead of dynamic KGATs. 539

Specifically, we only use the knowledge graph rep- 540

resentations in the final time stage as input, and the 541

model only contains one DNKGAT unit. 542
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Figure 3: Early rumor detection accuracy with the increase of observation time or percentage of the number of
comments.

From Table 4, it is evident that all ablation543

variants underperform compared to the complete544

model, with accuracy drops of 2.8% on Pheme5545

and 4.6% on Pheme9 when the neighbor relevant546

set is removed, indicating the importance of neigh-547

boring information. Removing attention results in548

a 2.3% decrease on Pheme5 and a 5.7% decrease549

on Pheme9. Replacing the post-enhancement unit550

degrades accuracy by 4.1% on Pheme5 and 4.6%551

on Pheme9, while replacing the dynamic graph552

leads to a 3.4% decrease on Pheme5 and a 4.1%553

decrease on Pheme9. These results demonstrate554

the necessity of temporal neighboring information555

for better performance.556

4.6 Early Rumor Detection Performance557

Early rumor detection prevents widespread dissem-558

ination. We evaluate our method using two delay559

types: time since source post release and comment560

count. We compare against DDGCN and BiGCN, a561

Graph Convolutional Network (GCN) approach for562

rumor detection leveraging bidirectional propaga-563

tion mechanisms—both propagation and diffusion564

structures—along with the textual content of posts.565

Figure 3 reveals that models struggle with few re-566

sponsive posts due to lacking spatial and temporal567

structure. Our method, however, achieves high ac-568

curacy early on and consistently outperforms oth-569

ers, demonstrating the effectiveness of aggregating570

neighboring and knowledge information for early571

detection.572

4.7 Case Study573

To intuitively demonstrate the propagation in574

DNKGAT, we randomly sample source news and575

its comments, offering explanations. Figure 4576

shows the visualization of adjacent nodes’ connec-577

tivity. The propagation paths can be viewed as the578

evidence why the news is fake. As we can see, the579

connectivity s−c2−TheScene(miniseries) has580

Figure 4: Real Example from Pheme9 dataset.

a higher attention score, labeled with the orange 581

line. Hence, we can generate the explanation as 582

Euro News haven’t reached the Scene, so they can’t 583

say "no survivors" which means the news is fake. 584

And the connectivity s − c3 − T24Tank shows 585

via t24, someone seems to be found alive which 586

contradicts to "no survivors" in the source news. 587

Based on the above analysis, we can conclude that 588

the source news is fake. 589

5 Conclusion 590

In this paper, we propose a dynamic neighbor- 591

enhanced knowledge graph attention network 592

(DNKGAT) to model the neighboring spatial struc- 593

ture, neighboring temporal structure, external 594

knowledge and text information in one unified 595

framework. DNKGAT concludes dynamic KGATs 596

to capture dynamic neighboring knowledge infor- 597

mation in propagation. Furthermore, we propose 598

the post-enhancement unit to enhance the knowl- 599

edge information in the end, in order to aggregate 600

the source post information for classification incre- 601

mentally. Experiments on two public datasets show 602

that DNKGAT performs better than a set of strong 603

baselines and supports rumor early detection. 604
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6 Limitations605

In this study, although the proposed DNKGAT606

method shows good performance in rumor detec-607

tion, it still has some limitations. Firstly, the con-608

struction of the dynamic knowledge graph depends609

on external knowledge sources such as YAGO. The610

quality and comprehensiveness of these knowledge611

sources may affect the performance of the model.612

If there are errors or omissions in the knowledge613

graph, it may lead to inaccurate rumor detection614

results. Secondly, when dealing with the neigh-615

bor set in the dynamic neighbor-enhanced knowl-616

edge graph attention network, although sampling617

a fixed-size set of neighbors can reduce the com-618

putation overhead, it may also lose some useful in-619

formation. In addition, the current model does not620

fully consider the potential influence of the interac-621

tion between different events on rumor detection.622

Each event is processed relatively independently,623

and the possible connections and mutual influences624

between events are not deeply explored. Finally,625

similar to some other studies, the evaluation of626

our method is mainly based on the existing public627

datasets Pheme5 and Pheme9. These datasets may628

have certain limitations in representing the real and629

complex social media environment, which may af-630

fect the generalization ability of the model to some631

extent.632
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