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LiDAR SCENE GENERATION DYNAMICCITY: LARGE-SCALE OCCUPANCY
GENERATION FROM DYNAMIC SCENES

Anonymous authors
Paper under double-blind review
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Figure 1: Dynamic 4D occupancy generation from DynamicCity. We introduce a new generation
model that generates diverse 4D scenes of large spatial scales (80 × 80 × 6.4 meter3) and long
sequential modeling (up to 128 frames), enabling a diverse set of downstream applications. For more
detailed examples, kindly refer to our Anonymous Project Page: dynamic-city.github.io.

ABSTRACT

LiDAR scene generation has been developing rapidly recently. However, existing
methods primarily focus on generating static and single-frame scenes, overlooking
the inherently dynamic nature of real-world driving environments. In this work,
we introduce DynamicCity, a novel 4D occupancy generation framework capable
of generating large-scale, high-quality dynamic LiDAR scenes with semantics.
DynamicCity mainly consists of two key models. 1) A VAE model for learning
HexPlane as the compact 4D representation. Instead of using naive averaging
operations, DynamicCity employs a novel Projection Module to effectively com-
press 4D LiDAR features into six 2D feature maps for HexPlane construction,
which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain).
Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D
feature volumes in parallel, which improves both network training efficiency and
reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU
gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based
diffusion model for HexPlane generation. To make HexPlane feasible for DiT
generation, a Padded Rollout Operation is proposed to reorganize all six feature
planes of the HexPlane as a squared 2D feature map. In particular, various condi-
tions could be introduced in the diffusion or sampling process, supporting versatile
4D generation applications, such as trajectory- and command-driven generation,
inpainting, and layout-conditioned generation. Extensive experiments on the Car-
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laSC and Waymo datasets demonstrate that DynamicCity significantly outperforms
existing state-of-the-art 4D LiDAR generation methods across multiple metrics.
The code will be released to facilitate future research.

1 INTRODUCTION

LiDAR scene generation has garnered growing attention recently, which could benefit various related
applications, such as robotics and autonomous driving. Compared to its 3D object generation
counterpart, generating LiDAR scenes remains an under-explored field, with many new research
challenges such as the presence of numerous moving objects, large-scale scenes, and long temporal
sequences (Huang et al., 2021). For example, in autonomous driving scenarios, a LiDAR scene
typically comprises multiple objects from various categories, such as vehicles, pedestrians, and
vegetation, captured over a long sequence (e.g., 200 frames) spanning a large area (e.g., 80× 80×
6.4 meters3). Although in its early stage, LiDAR scene generation holds great potential to enhance
the understanding of the 3D world, with wide-reaching and profound implications.

Due to the complexity of LiDAR data, many efficient learning frameworks have been introduced for
large-scale 3D scene generation. X 3 (Ren et al., 2024b) utilizes a hierarchical voxel diffusion model
to generate outdoor 3D scenes based on VDB data structure. PDD (Liu et al., 2023a) introduces a
pyramid discrete diffusion model to progressively generate high-quality 3D scenes. SemCity (Lee
et al., 2024) resolves outdoor scene generation by leveraging a triplane diffusion model. Despite
achieving impressive LiDAR scene generation, they primarily focus on generating static and single-
frame 3D occupancy (i.e., dense LiDAR scenes), and hence fail to effectively capture the dynamic
nature of outdoor environments. Recently, a few works (Zheng et al., 2024b; Wang et al., 2024) have
explored 4D LiDAR generation. However, generating high-quality long-sequence 4D LiDAR scenes
is still a challenging and open problem (Nakashima & Kurazume, 2021; Nakashima et al., 2023).

In this work, we propose a novel 4D occupancy generation framework, DynamicCity, enabling
generating large-scale, high-quality dynamic LiDAR scenes, which mainly consists of two stages:
1) a VAE network for learning compact 4D representations, i.e., HexPlanes (Cao & Johnson, 2023;
Fridovich-Keil et al., 2023); 2) a HexPlane Generation model based on DiT (Peebles & Xie, 2023).

VAE for 4D LiDAR. Given a set of 4D LiDAR scenes, DynamicCity first encodes the scene as a 3D
feature volume sequence with a 3D backbone. Afterward, we propose a novel Projection Module
based on transformer operations to compress the feature volume sequence into six 2D feature maps.
In particular, the proposed projection module significantly enhances HexPlane fitting performance,
offering an improvement of up to 12.56% mIoU compared to conventional averaging operations.
After constructing the HexPlane based on the projected six feature planes, we employ an Expansion
& Squeeze Strategy (ESS) to decode the HexPlane into multiple 3D feature volumes in parallel.
Compared to individually querying each point, ESS further improves HexPlane fitting quality (with
up to 7.05% mIoU gain), significantly accelerates training speed (by up to 2.06x), and substantially
reduces memory usage (by up to a relative 70.84% memory reduction).

DiT for HexPlane. Using the encoded HexPlane, we use a DiT-based framework for generating
HexPlane, enabling 4D LiDAR generation. Training a DiT with token sequences naively generated
from HexPlane may not achieve optimal quality, as it could overlook spatial and temporal relationships
among tokens. Therefore, we introduce the Padded Rollout Operation (PRO), which reorganizes
the six feature planes into a square feature map, providing an efficient way to model both spatial
and temporal relationships within the token sequence. Leveraging the DiT framework, DynamicCity
seamlessly incorporates various conditions to guide the 4D generation process, enabling a wide
range of applications including hexplane-conditional generation, trajectory-guided generation,
command-driven scene generation, layout-conditioned generation, and dynamic scene inpainting.

Our contributions can be summarized as follows:

• We propose DynamicCity, a high-quality, large-scale 4D LiDAR scene generation frame-
work consisting of a tailored VAE for HexPlane fitting and a DiT-based network for HexPlane
generation, which supports various downstream applications.

• In the VAE architecture, DynamicCity employs a novel Projection Module to benefit in
encoding 4D LiDAR scenes into compact HexPlanes, significantly improving HexPlane
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fitting quality. Following, an Expansion & Squeeze Strategy is introduced to decode the
HexPlanes for reconstruction, which improves both fitting efficiency and accuracy.

• Building on fitted HexPlanes, we design a Padded Rollout Operation to reorganize HexPlane
features into a masked 2D square feature map, enabling compatibility with DiT training.

• Extensive experimental results demonstrate that DynamicCity achieves significantly better
4D reconstruction and generation performance than previous SoTA methods across all
evaluation metrics, including generation quality, training speed, and memory usage.

2 RELATED WORK

3D Object Generation has been a central focus in machine learning, with diffusion models playing a
significant role in generating realistic 3D structures. Many techniques utilize 2D diffusion mechanisms
to synthesize 3D outputs, covering tasks like text-to-3D object generation (Ma et al., 2024), image-to-
3D transformations (Wu et al., 2024a), and 3D editing (Rojas et al., 2024). Meanwhile, recent methods
bypass the reliance on 2D intermediaries by generating 3D outputs directly in three-dimensional
space, utilizing explicit (Alliegro et al., 2023), implicit (Liu et al., 2023b), triplane (Wu et al., 2024b),
and latent representations (Ren et al., 2024b). Although these methods demonstrate impressive
3D object generation, they primarily focus on small-scale, isolated objects rather than large-scale,
scene-level generation (Hong et al., 2024; Lee et al., 2024). This limitation underscores the need for
methods capable of generating complete 3D scenes with complex spatial relationships.

LiDAR Scene Generation extends the scope to larger, more complex environments. Earlier works
used VQ-VAE (Zyrianov et al., 2022) and GAN-based models (Caccia et al., 2019; Nakashima et al.,
2023) to generate LiDAR scenes. However, recent advancements have shifted towards diffusion
models (Xiong et al., 2023; Ran et al., 2024; Nakashima & Kurazume, 2024; Zyrianov et al., 2022;
Hu et al., 2024; Nunes et al., 2024), which better handle the complexities of expansive outdoor scenes.
For example, (Lee et al., 2024) utilize voxel grids to represent large-scale scenes but often face
challenges with empty spaces like skies and fields. While some recent works incorporate temporal
dynamics to extend single-frame generation to sequences (Zheng et al., 2024b; Wang et al., 2024),
they often lack the ability to fully capture the dynamic nature of 4D environments. Thus, these
methods typically remain limited to short temporal horizons or struggle with realistic dynamic object
modeling, highlighting the gap in generating high-fidelity 4D LiDAR scenes.

4D Generation represents a leap forward, aiming to capture the temporal evolution of scenes.
Prior works often leverage video diffusion models (Singer et al., 2022; Blattmann et al., 2023) to
generate dynamic sequences (Singer et al., 2023), with some extending to multi-view (Shi et al.,
2023) and single-image settings (Rombach et al., 2022) to enhance 3D consistency. In the context
of video-conditional generation, approaches such as (Jiang et al., 2023; Ren et al., 2023; 2024a)
incorporate image priors for guiding generation processes. While these methods capture certain
dynamic aspects, they lack the ability to generate long-term, high-resolution 4D LiDAR scenes
with versatile applications. Our method, DynamicCity, fills this gap by introducing a novel 4D
generation framework that efficiently captures large-scale dynamic environments, supports diverse
generation tasks (e.g., trajectory-guided (Bahmani et al., 2024), command-driven generation), and
offers substantial improvements in scene fidelity and temporal modeling.

3 PRELIMINARIES

HexPlane (Cao & Johnson, 2023; Fridovich-Keil et al., 2023) is an explicit and structured rep-
resentation designed for efficient modeling of dynamic 3D scenes, leveraging feature planes to
encode spacetime data. A dynamic 3D scene is represented as six 2D feature planes, each
aligned with one of the major planes in the 4D spacetime grid. These planes are represented
as H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], comprising a Spatial TriPlane (Chan et al., 2022) with Pxy,
Pxz , and Pyz , and a Spatial-Time TriPlane with Ptx, Pty , and Ptz . To query the HexPlane at a point
p = (t, x, y, z), features are extracted from the corresponding coordinates on each of the six planes
and fused into a comprehensive representation. This fused feature vector is then passed through a
lightweight network to predict scene attributes for p.

3
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Figure 2: Pipeline of dynamic LiDAR scene generation. Our DynamicCity framework consists
of two key procedures: (a) Encoding HexPlane with an VAE architecture (cf. Sec. 4.1), and (b) 4D
Scene Generation with HexPlane DiT (cf. Sec. 4.2).

Diffusion Transformers (DiT) (Peebles & Xie, 2023) are diffusion-based generative models using
transformers to gradually convert Gaussian noise into data samples through denoising steps. The
forward diffusion adds Gaussian noise over time, with a noised sample at step t given by xt =√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), where αt controls the noise schedule. The reverse diffusion,

using a neural network ϵθ, aims to denoise xt to recover x0, expressed as: xt−1 = 1√
αt
(xt −√

1− αtϵθ(xt, t)). New samples are generated by repeating this reverse process.

4 OUR APPROACH

DynamicCity strives to generate dynamic 3D LiDAR scenes with semantic information, which mainly
consists of a VAE for 4D LiDAR encoding using HexPlane (Cao & Johnson, 2023; Fridovich-Keil
et al., 2023) (Sec. 4.1), and a DiT for HexPlane generation (Sec. 4.2). Given a 4D LiDAR scene,
i.e., a dynamic 3D LiDAR sequence Q ∈ RT×X×Y×Z×C , where T , X , Y , Z, and C denote the
sequence length, height, width, depth, and channel size, respectively, the VAE first aims to encode
an efficient 4D representation, HexPlane H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], which is then decoded
for reconstructing 4D scenes with semantics. After obtaining HexPlane embeddings, DynamicCity
leverages a DiT-based framework for 4D LiDAR generation. Diverse conditions could be introduced
into the generation process, facilitating a range of downstream applications (Sec. 4.3). The overview
of the proposed DynamicCity pipeline is illustrated in Fig. 2.

4.1 VAE FOR 4D LIDAR SCENES

Encoding HexPlane. As shown in Fig. 3, the VAE could encode a 4D LiDAR scene Q as a HexPlane
H. It first utilizes a shared 3D convolutional feature extractor fθ(·) to extract and downsample
features from each LiDAR frame, resulting in a feature volume sequence Xtxyz ∈ RT×X×Y×Z×C .

To encode and compress Xtxyz into compact 2D feature maps of H, we propose a novel Pro-
jection Module with multiple projection networks h(·). To project a high-dimensional feature
input Xin ∈ RD1

k ×D2
k ×···×Dn

k ×D1
r ×D2

r ×···×Dm
r ×C as a lower-dimensional feature output Xout ∈

RD1
k ×D2

k ×···×Dn
k ×C , the projection network hSr(·) first reshapes Xin into a 3-dimensional feature

X ′
SkSr

∈ RSk×Sr×C by grouping the dimensions into the two new dimensions, i.e., Sk the dimension
that will be kept, and Sr the dimension that will be reduced, where Sk = D1

k ×D2
k × · · · ×Dn

k , and
Sr = D1

r ×D2
r × · · · ×Dm

r . Afterward, hSr(·) utilizes a transformer-based operation to project the

4
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Figure 3: VAE for Encoding 4D LiDAR Scenes. We use HexPlane H as the 4D representation. fθ
and gϕ are convolution-based networks with downsampling and upsampling operations, respectively.
h(·) denotes the projection network based on transformer modules.

reshaped feature X ′
SkSr

to X ′′
Sk

∈ RSk×C , which is then reshaped to the expected lower-dimensional
feature output Xout. Formally, the projection network is formulated as:

X {D1
k ×D2

k ×···×Dn
k }×C

out = hSr(X
{D1

k ×D2
k ×···×Dn

k }×{D1
r ×D2

r ×···×Dm
r }×C

in ) , (1)

where their feature dimensions are added as the upscript for X in and X out, respectively.

To construct the spatial feature planes Pxy, Pxz , and Pyz , the Projection Module first generates the
XYZ Feature Volume Xxyz = ht(Xtxyz). Rather than directly access the heavy feature volume
sequence Xtxyz , hz(·), hy(·), and hx(·) are applied to Xxyz for reducing the spatial dimensions
of Xxyz along the z-axis, y-axis, and x-axis, respectively. The temporal feature planes Ptx,Pty,
and Ptz are directly obtained from Xtxyz by simultaneously removing two spatial dimensions with
hzy(·),hxz(·), and hxy(·), respectively. Consequently, we could construct the HexPlane H based on
the encoded six feature planes, including Pxy,Pxz,Pyz,Ptx,Pty, and Ptz .

Decoding HexPlane. Based on the HexPlane H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], we employ an
Expansion & Squeeze Strategy (ESS), which could efficiently recover the feature volume sequence by
decoding the feature planes in parallel for 4D LiDAR scene reconstruction. ESS first duplicates and
expands each feature plane P to match the shape of Xtxyz , resulting in the list of six feature volume
sequences: {XPxy

txyz,X
Pxz
txyz,X

Pyz

txyz,X
Ptx
txyz,X

Pty

txyz,X
Ptz
txyz} . Afterward, ESS squeezes the corresponding

six expanded feature volumes with Hadamard Product:

X ′
txyz =

∏
Hadamard

{XPxy

txyz,X
Pxz
txyz,X

Pyz

txyz,X
Ptx
txyz,X

Pty

txyz,X
Ptz
txyz} . (2)

Subsequently, the convolutional network gϕ(·) is employed to upsample the volumes for generating
dense semantic predictions Q′:

Q′ = gϕ(Concat(X ′
txyz,PE(Pos(X ′

txyz)))) , (3)

where Concat(·) and PE(·) denote the concatenation and sinusoidal positional encoding, respec-
tively. Pos(·) returns the 4D position p of each voxel within the 4D feature volume X ′

txyz .

Optimization. The VAE is trained with a combined loss LVAE, including a cross-entropy loss, a
Lovász-softmax loss (Berman et al., 2018), and a Kullback-Leibler (KL) divergence loss:

LVAE = LCE(Q,Q′) + αLLov(Q,Q′) + βLKL(H,N (0, I)) , (4)
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where LCE is the cross-entropy loss between the input Q and prediction Q′, LLov is the Lovász-
softmax loss, and LKL represents the KL divergence between the latent representation H and the
prior Gaussian distribution N (0, I). Note that the KL divergence is computed for each feature plane
of H individually, and the term LKL refers to the combined divergence over all six planes.

4.2 DIFFUSION TRANSFORMER FOR HEXPLANE

After training the VAE, 4D semantic scenes can be embedded as HexPlane H =
[Pxy,Pxz,Pyz,Ptx,Pty,Ptz]. Building upon H, we aim to leverage a DiT (Peebles & Xie, 2023)
model Dτ to generate novel HexPlane, which could be further decoded as novel 4D scenes (see
Fig. 2(b)). However, training a DiT using token sequences naively generated from each feature plane
of HexPlane could not guarantee high generation quality, mainly due to the absence of modeling
spatial and temporal relations among the tokens.

Padded Rollout Operation. Given that the feature planes of HexPlane may share spatial or temporal
dimensions, we employ the Padded Rollout Operation (PRO) to systematically arrange all six planes
into a unified square feature map, incorporating zero paddings in the uncovered corner areas. As
shown in Fig. 4, the dimension of the 2D square feature map is ( X

dX
+ Z

dZ
+ T

dT
), which minimizes

the area for padding, where dX , dZ , and dT represent the downsampling rates along the X, Z, and T
axes, respectively. Subsequently, we follow DiT to first “patchify” the constructed 2D feature map,
converting it into a sequence of N = (( X

dX
+ Z

dZ
+ T

dT
)/p)2 tokens, where p is the patch size, chosen

so each token holds information from one feature plane. Following patchification, we apply the
frequency-based positional embeddings to all tokens similar to DiT. Note that tokens corresponding
to padding areas are excluded from the diffusion process. Consequently, the proposed PRO offers an
efficient method for modeling spatial and temporal relationships within the token sequence.

Conditional Generation. DiT enables conditional generation through the use of Classifier-Free
Guidance (CFG) (Ho & Salimans, 2022). To incorporate conditions into the generation process,
we designed two branches for condition insertion (see Fig. 5). For any condition c, we use the
adaLN-Zero technique from DiT, generating scale and shift parameters from c and injecting them
before and after the attention and feed-forward layers. To handle the complexity of image-based
conditions, we add a cross-attention block to better integrate the image condition into the DiT block.

4.3 DOWNSTREAM APPLICATIONS

Beyond unconditional 4D scene generation, we explore novel applications of DynamicCity through
conditional generation and HexPlane manipulation.

6
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Table 1: Comparisons of 4D Scene Reconstruction. We report the mIoU scores of OccSora (Wang
et al., 2024) and our DynamicCity framework on the CarlaSC, Occ3D-Waymo, and Occ3D-nuScenes
datasets, respectively, under different resolutions and sequence lengths. Symbol † denotes score
reported in the OccSora paper. Other scores are reproduced using the official code.

Dataset #Classes Resolution #Frames OccSora Ours
(Wang et al., 2024) (DynamicCity)

CarlaSC
(Wilson et al., 2022)

10 128×128×8 4 41.01% 79.61% (+38.6%)
10 128×128×8 8 39.91% 76.18% (+36.3%)
10 128×128×8 16 33.40% 74.22% (+40.8%)
10 128×128×8 32 28.91% 59.31% (+30.4%)

Occ3D-Waymo
(Tian et al., 2023) 9 200×200×16 16 36.38% 68.18% (+31.8%)

Occ3D-nuScenes
(Tian et al., 2023)

11 200×200×16 16 13.70% 56.93% (+43.2%)
11 200×200×16 32 13.51% 42.60% (+29.1%)
17 200×200×16 32 13.41% 40.79% (+27.3%)
17 200×200×16 32 27.40%† 40.79% (+13.4%)

Table 2: Comparisons of 4D Scene Generation. We report the Inception Score (IS), Fréchet
Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and Recall (R) rates
of OccSora (Wang et al., 2024) and our DynamicCity framework on the CarlaSC and Occ3D-Waymo
datasets, respectively, in both the 2D and 3D spaces.

Dataset Method #Frames Metric2D Metric3D

IS2D↑ FID2D↓ KID2D ↓ P2D↑ R2D↑ IS3D↑ FID3D↓ KID3D↓ P3D↑ R3D↑

CarlaSC
(Wilson et al., 2022)

OccSora 16 1.030 28.55 0.008 0.224 0.010 2.257 1559 52.72 0.380 0.151
Ours 1.040 12.94 0.002 0.307 0.018 2.331 354.2 19.10 0.460 0.170

Occ3D-Waymo
(Tian et al., 2023)

OccSora 16 1.005 42.53 0.049 0.654 0.004 3.129 3140 12.20 0.384 0.001
Ours 1.010 36.73 0.001 0.705 0.015 3.206 1806 77.71 0.494 0.026

First, we showcase versatile uses of image conditions in the conditional generation pipeline: 1)
HexPlane: By autoregressively generating the HexPlane, we extend scene duration beyond temporal
constraints. 2) Layout: We control vehicle placement and dynamics in 4D scenes using conditions
learned from bird’s-eye view sketches.

To manage ego vehicle motion, we introduce two numerical conditioning methods: 3) Command:
Controls general ego vehicle motion via instructions. 4) Trajectory: Enables fine-grained control
through specific trajectory inputs.

Inspired by SemCity (Lee et al., 2024), we also manipulate the HexPlane during sampling to: 5)
Inpaint: Edit 4D scenes by masking HexPlane regions and guiding sampling with the masked areas.
For more applications and implementation details, kindly refer to Sec. A.5 in the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Datasets. We train the proposed model on the 1Occ3D-Waymo, 2Occ3D-nuScenes, and 3CarlaSC
datasets. The former two from Occ3D (Tian et al., 2023) are derived from Waymo (Sun et al., 2020)
and nuScenes (Caesar et al., 2020), where LiDAR point clouds have been completed and voxelized to
form occupancy data. Each occupancy scene has a resolution of 200× 200× 16, covering a region
centered on the ego vehicle, extending 40 meters in all directions and 6.4 meters vertically. The
CarlaSC dataset (Wilson et al., 2022) is a synthetic occupancy dataset, with a scene resolution of
128× 128× 8, covering a region 25.6 meters around the ego vehicle, with a height of 3 meters.

Implementation Details. Our experiments are conducted using eight NVIDIA A100-80G GPUs.
The global batch size used for training the VAE is 8, while the global batch size for training the DiT
is 128. Our latent HexPlane H is compressed to half the size of the input Q in each dimension, with
the latent channels C = 16. The weight for the Lovász-softmax and KL terms are set to 1 and 0.005,
respectively. The learning rate for the VAE is 10−3, while the learning rate for the DiT is 10−4.
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Figure 6: Dynamic Scene Generation Results. We provide unconditional generation scenes from
the 1st, 8th, and 16th frames on Occ3D-Waymo (Left) and CarlaSC (Right), respectively. Kindly
refer to the Appendix for complete sequential scenes and longer temporal modeling examples.

Evaluation Metrics. The mean intersection over union (mIoU) metric is used to evaluate the
reconstruction results of VAE. For DiT, Inception Score, FID, KID, Precision, and Recall are
calculated for evaluation. Specifically, we follow prior work (Lee et al., 2024; Wang et al., 2024) by
rendering 3D scenes into 2D images and utilizing conventional 2D evaluation pipelines for assessment.
Additionally, we train the 3D Encoder to directly extract features from the 3D data and calculate the
metrics. For more details, kindly refer to Sec. A.2 in the Appendix.

5.2 4D SCENE RECONSTRUCTION & GENERATION

Reconstruction. To evaluate the effectiveness of the proposed VAE in encoding the 4D LiDAR
sequence, we compare it with OccSora (Wang et al., 2024) using the CarlaSC, Occ3D-Waymo, and
Occ3D-nuScenes datasets. As shown in Tab. 1, DynamicCity outperforms OccSora on these datasets,
achieving mIoU improvements of 38.6%, 31.8%, and 43.2% respectively, when the input number of
frames is 16. These results highlight the superior performance of the proposed VAE.

Generation. To demonstrate the effectiveness of DynamicCity in 4D scene generation, we compare
the generation results with OccSora (Wang et al., 2024) on the Occ3D-Waymo and CarlaSC datasets.
As shown in Tab. 2, the proposed method outperforms OccSora in terms of perceptual metrics in both
2D and 3D spaces. These results show that our model excels in both generation quality and diversity.
Fig. 6 and Fig. 16 show the 4D scene generation results, demonstrating that our model is capable
of generating large dynamic scenes in both real-world and synthetic datasets. Our model not only
exhibits the ability to generate moving scenes with static semantics shifting as a whole, but it is also
capable of generating dynamic elements such as vehicles and pedestrians.

Applications. Fig. 7 presents the results of our downstream applications. In tasks that involve
inserting conditions into the DiT, such as command-conditional generation, trajectory-conditional
generation, and layout-conditional generation, our model demonstrates the ability to generate reason-
able scenes and dynamic elements while following the prompt to a certain extent. Additionally, the
inpainting method proves that our HexPlane has explicit spatial meaning, enabling direct modifica-
tions within the scene by editing the HexPlane during inference.
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Layout-Conditioned Scene Generation
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Figure 7: Dynamic Scene Generation Applications. We demonstrate the capability of our model on
a diverse set of downstream tasks. We show the 1st, 8th, and 16th frames for simplicity. Kindly refer
to the Appendix for complete sequential scenes and longer temporal modeling examples.

5.3 ABLATION STUDIES

We conduct ablation studies to demonstrate the effectiveness of the components of DynamicCity.

VAE. The effectiveness of the VAE is driven by two key innovations: Projection Module and Expan-
sion & Squeeze Strategy (ESS). As shown in Tab. 3, the proposed Projection Module substantially
improves HexPlane fitting performance, delivering up to a 12.56% increase in mIoU compared
to traditional averaging operations. Additionally, compared to querying each point individually,
ESS enhances HexPlane fitting quality with up to a 7.05% mIoU improvement, significantly boosts
training speed by up to 2.06x, and reduces memory usage by a substantial 70.84%.

HexPlane Dimensions. The dimensions of HexPlane have a direct impact on both training efficiency
and reconstruction quality. Table 4 provides a comparison of various downsample rates applied to
the original HexPlane dimensions, which are 16 × 128 × 128 × 8 for CarlaSC and 16 × 200 ×
200 × 16 for Occ3D-Waymo. As the downsampling rates increase, both the compression rate and
training efficiency improve significantly, but the reconstruction quality, measured by mIoU, decreases.
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Table 3: Ablation Study on VAE Network Structures. We report the mIoU scores, training time
(second-per-iteration), and training-time memory consumption (VRAM) of different Encoder and
Decoder configurations on CarlaSC and Occ3D-Waymo, respectively. Note that “ESS” denotes
“Expansion & Squeeze”. The best and second-best values are in bold and underlined.

Encoder Decoder CarlaSC Occ3D-Waymo
mIoU↑ Time (s)↓ VRAM (G)↓ mIoU↑ Time (s)↓ VRAM (G)↓

Average Pooling Query 60.97% 0.236 12.46 49.37% 1.563 69.66
Average Pooling ESS 68.02% 0.143 4.27 55.72% 0.758 20.31

Projection Query 68.73% 0.292 13.59 61.93% 2.128 73.15
Projection ESS 74.22% 0.205 5.92 62.57% 1.316 25.92

Table 4: Ablation Study on HexPlane Downsampling (D.S.) Rates. We report the compression
ratios (C.R.), mIoU scores, training speed (seconds per iteration), and training-time memory consump-
tion on CarlaSC and Occ3D-Waymo. The best and second-best values are in bold and underlined.

D.S. Rates CarlaSC Occ3D-Waymo
dT dX dY dZ C.R.↑ mIoU↑ Time (s)↓ VRAM (G)↓ C.R.↑ mIoU↑ Time (s)↓ VRAM (G)↓

1 1 1 1 5.78% 84.67% 1.149 21.63 Out-of-Memory >80
1 2 2 1 17.96% 76.05% 0.289 8.49 38.42% 63.30% 1.852 32.82
2 2 2 2 23.14% 74.22% 0.205 5.92 48.25% 62.37% 0.935 24.9
2 4 4 2 71.86% 65.15% 0.199 4.00 153.69% 58.13% 0.877 22.30

Table 5: Ablation Study on Organizing HexPlane as Image Tokens. We report the Inception Score
(IS), Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and
Recall (R) rates on CarlaSC. The best values are highlighted in bold.

Method Metric2D Metric3D

IS2D↑ FID2D↓ KID2D ↓ P2D↑ R2D↑ IS3D↑ FID3D↓ KID3D↓ P3D↑ R3D↑

Direct Unfold 2.496 205.0 0.248 0.000 0.000 2.269 9110 723.7 0.173 0.043

Vertical Concatenation 2.476 12.79 0.003 0.191 0.042 2.305 623.2 26.67 0.424 0.159

Padded Rollout 2.498 10.96 0.002 0.238 0.066 2.331 354.2 19.10 0.460 0.170

To achieve the optimal balance between training efficiency and reconstruction quality, we select a
downsampling rate of dT = dX = dY = dZ = 2.

Padded Rollout Operation. We compare the Padded Rollout Operation with different strategies
for obtaining image tokens: 1) Direct Unfold: directly unfolding the six planes into patches and
concatenating them; 2) Vertical Concat: vertically concatenating the six planes without aligning
dimensions during the rollout process. As shown in Tab. 5, Padded Rollout Operation (PRO) efficiently
models spatial and temporal relationships in the token sequence, achieving optimal generation quality.

6 CONCLUSION

We present DynamicCity, a framework for high-quality 4D LiDAR scene generation that captures
the temporal dynamics of real-world environments. Our method introduces HexPlane, a compact
4D representation generated using a VAE with a Projection Module, alongside an Expansion &
Squeeze Strategy to enhance reconstruction efficiency and accuracy. Additionally, our Masked
Rollout Operation reorganizes HexPlane features for DiT-based diffusion, enabling versatile 4D scene
generation. Extensive experiments demonstrate that DynamicCity surpasses state-of-the-art methods
in both reconstruction and generation, offering significant improvements in quality, training speed,
and memory efficiency. DynamicCity paves the way for future research in dynamic scene generation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. Polydiff: Generating 3d
polygonal meshes with diffusion models. arXiv preprint arXiv:2312.11417, 2023. 3

Sherwin Bahmani, Xian Liu, Yifan Wang, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu,
Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, Andrea Tagliasacchi, and David B. Lindell.
Tc4d: Trajectory-conditioned text-to-4d generation. arXiv preprint arXiv:2403.17920, 2024. 3

Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: A tractable
surrogate for the optimization of the intersection-over-union measure in neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4413–4421, 2018. 5

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563–22575, 2023. 3

Lucas Caccia, Herke van Hoof, Aaron Courville, and Joelle Pineau. Deep generative modeling of lidar
data. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5034–5040,
2019. 3

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11621–11631, 2020. 7, 15

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023. 2, 3, 4

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware
3d generative adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16123–16133, 2022. 3

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3075–3084, 2019. 16

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Processing
Systems, volume 35, pp. 16344–16359, 2022. 17

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023. 2, 3, 4

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022. 6, 17

Fangzhou Hong, Lingdong Kong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Ziwei Liu. Unified
3d and 4d panoptic segmentation via dynamic shifting networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(5):3480–3495, 2024. 3

Qianjiang Hu, Zhimin Zhang, and Wei Hu. Rangeldm: Fast realistic lidar point cloud generation. In
European Conference on Computer Vision, pp. 115–135, 2024. 3

Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu. Spatio-temporal self-supervised
representation learning for 3d point clouds. In IEEE/CVF International Conference on Computer
Vision, pp. 6535–6545, 2021. 2

Yanqin Jiang, Li Zhang, Jin Gao, Weimin Hu, and Yao Yao. Consistent4d: Consistent 360° dynamic
object generation from monocular video. arXiv preprint arXiv:2311.02848, 2023. 3

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Juhyeong Seon, and Sung-Eui Yoon. Semcity:
Semantic scene generation with triplane diffusion. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 28337–28347, 2024. 2, 3, 7, 8, 18, 21, 22

Yuheng Liu, Xinke Li, Xueting Li, Lu Qi, Chongshou Li, and Ming-Hsuan Yang. Pyramid diffusion
for fine 3d large scene generation. arXiv preprint arXiv:2311.12085, 2023a. 2

Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. In International Conference on
Learning Representations, 2023b. 3

Zhiyuan Ma, Yuxiang Wei, Yabin Zhang, Xiangyu Zhu, Zhen Lei, and Lei Zhang. Scaledreamer:
Scalable text-to-3d synthesis with asynchronous score distillation. In European Conference on
Computer Vision, pp. 1–19, 2024. 3

Kazuto Nakashima and Ryo Kurazume. Learning to drop points for lidar scan synthesis. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 222–229, 2021. 2

Kazuto Nakashima and Ryo Kurazume. Lidar data synthesis with denoising diffusion probabilistic
models. In IEEE International Conference on Robotics and Automation, pp. 14724–14731, 2024.
3

Kazuto Nakashima, Yumi Iwashita, and Ryo Kurazume. Generative range imaging for learning scene
priors of 3d lidar data. In IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
1256–1266, 2023. 2, 3

Lucas Nunes, Rodrigo Marcuzzi, Benedikt Mersch, Jens Behley, and Cyrill Stachniss. Scaling
diffusion models to real-world 3d lidar scene completion. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14770–14780, 2024. 3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019. 17

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Vision, pp. 4195–4205, 2023. 2, 4, 6

Haoxi Ran, Vitor Guizilini, and Yue Wang. Towards realistic scene generation with lidar diffusion
models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14738–14748,
2024. 3

Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dreamgaus-
sian4d: Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142, 2023. 3

Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xiaohui Zeng, Karsten Kreis, Ziwei Liu,
Antonio Torralba, Sanja Fidler, Seung Wook Kim, and Huan Ling. L4gm: Large 4d gaussian
reconstruction model. arXiv preprint arXiv:2406.10324, 2024a. 3

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. Xcube:
Large-scale 3d generative modeling using sparse voxel hierarchies. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4209–4219, 2024b. 2, 3, 17

Sara Rojas, Julien Philip, Kai Zhang, Sai Bi, Fujun Luan, Bernard Ghanem, and Kalyan Sunkavall.
Datenerf: Depth-aware text-based editing of nerfs. arXiv preprint arXiv:2404.04526, 2024. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022. 3

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. arXiv preprint arXiv:2308.16512, 2023. 3

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2015. 16

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-
video generation without text-video data. In International Conference on Learning Representations,
2022. 3

Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman
Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, and Yaniv Taigman. Text-to-4d dynamic
scene generation. arXiv preprint arXiv:2301.11280, 2023. 3

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam,
Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous
driving: Waymo open dataset. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2446–2454, 2020. 7, 15

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, 2015. 16

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. Search-
ing efficient 3d architectures with sparse point-voxel convolution. In European Conference on
Computer Vision, pp. 685–702, 2020. 16

Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, and
Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving. In
Advances in Neural Information Processing Systems, volume 36, pp. 64318–64330, 2023. 7, 15,
20, 21, 22, 23, 25, 26

Lening Wang, Wenzhao Zheng, Yilong Ren, Han Jiang, Zhiyong Cui, Haiyang Yu, and Jiwen Lu.
Occsora: 4d occupancy generation models as world simulators for autonomous driving. arXiv
preprint arXiv:2405.20337, 2024. 2, 3, 7, 8, 20, 21, 22, 30

Joey Wilson, Jingyu Song, Yuewei Fu, Arthur Zhang, Andrew Capodieci, Paramsothy Jayakumar,
Kira Barton, and Maani Ghaffari. Motionsc: Data set and network for real-time semantic mapping
in dynamic environments. IEEE Robotics and Automation Letters, 7(3):8439–8446, 2022. 7, 15,
20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32

Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang Wang, Yating Hu, Yueqi Duan, and
Kaisheng Ma. Unique3d: High-quality and efficient 3d mesh generation from a single image.
arXiv preprint arXiv:2405.20343, 2024a. 3

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. arXiv preprint
arXiv:2405.14832, 2024b. 3

Yuwen Xiong, Wei-Chiu Ma, Jingkang Wang, and Raquel Urtasun. Ultralidar: Learning compact
representations for lidar completion and generation. arXiv preprint arXiv:2311.01448, 2023. 3

Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Borui Zhang, Yueqi Duan, and Jiwen Lu. Occworld:
Learning a 3d occupancy world model for autonomous driving. In European Conference on
Computer Vision, pp. 55–72. Springer, 2024a. 20

Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, and Changjun Jiang. Lidar4d: Dynamic neural
fields for novel space-time view lidar synthesis. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5145–5154, 2024b. 2, 3

Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang. Learning to generate realistic lidar point clouds. In
European Conference on Computer Vision, pp. 17–35, 2022. 3

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

In this appendix, we supplement the following materials to support the findings and conclusions
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A ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details to assist in reproducing this work.
Specifically, we elaborate on the details of the datasets, DiT evaluation metrics, the specifics of our
generation models, and discussions on the downstream applications.

A.1 DATASETS

Our experiments primarily utilize two datasets: Occ3D-Waymo (Tian et al., 2023) and CarlaSC (Wil-
son et al., 2022). Additionally, we also evaluate our VAE on Occ3D-nuScenes (Tian et al., 2023).

The Occ3D-Waymo dataset is derived from real-world Waymo Open Dataset (Sun et al., 2020) data,
where occupancy sequences are obtained through multi-frame fusion and voxelization processes.
Similarly, Occ3D-nuScenes is generated from the real-world nuScenes (Caesar et al., 2020) dataset
using the same fusion and voxelization operations. On the other hand, the CarlaSC dataset is
generated from simulated scenes and sensor data, yielding occupancy sequences.

Using these different datasets demonstrates the effectiveness of our method on both real-world
and synthetic data. To ensure consistency in the experimental setup, we select 11 commonly used
semantic categories and map the original categories from both datasets to these 11 categories. The
detailed semantic label mappings are provided in Tab. 6.

Table 6: Summary of Semantic Label Mappings. We unify the semantic classes between Car-
laSC (Wilson et al., 2022), Occ3D-Waymo (Tian et al., 2023), and Occ3D-nuScenes (Tian et al., 2023)
datasets for semantic scene generation.

Class CarlaSC Occ3D-Waymo Occ3D-nuScenes

■ Building Building Building Manmade

■ Barrier Barrier, Wall, Guardrail - Barrier

■ Other Other, Sky, Bridge, Rail
track, Static, Dynamic,

Water

General Object General Object

■ Pedestrian Pedestrian Pedestrian Pedestrian

■ Pole Pole, Traffic sign, Traffic
light

Sign, Traffic light, Pole,
Construction Cone

Traffic cone

■ Road Road, Roadlines Road Drivable surface

■ Ground Ground, Terrain - Other flat, Terrain

■ Sidewalk Sidewalk Sidewalk Sidewalk

■ Vegetation Vegetation Vegetation, Tree trunk Vegetation

■ Vehicle Vehicle Vehicle Bus, Car, Construction
vehicle, Trailer, Truck

■ Bicycle - Bicyclist, Bicycle,
Motorcycle

Bicycle, Motorcycle

• Occ3D-Waymo. This dataset contains 798 training scenes, with each scene lasting approxi-
mately 20 seconds and sampled at a frequency of 10 Hz. This dataset includes 15 semantic
categories. We use volumes with a resolution of 200× 200× 16 from this dataset.

• CarlaSC. This dataset contains 6 training scenes, each duplicated into Light, Medium,
and Heavy based on traffic density. Each scene lasts approximately 180 seconds and is
sampled at a frequency of 10 Hz. This dataset contains 22 semantic categories, and the
scene resolution is 128× 128× 8.

• Occ3D-nuScenes. This dataset contains 600 scenes, with each scene lasting approximately
20 seconds and sampled at a frequency of 2 Hz. Compared to Occ3D-Waymo and CarlaSC,
Occ3D-nuScenes has fewer total frames and more variation between scenes. This dataset
includes 17 semantic categories, with a resolution of 200× 200× 16.
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A.2 DIT EVALUATION METRICS

Inception Score (IS). This metric evaluates the quality and diversity of generated samples using a
pre-trained Inception model as follows:

IS = exp
(
EQ∼pg

[DKL(p(y|Q) ∥ p(y))]
)
, (5)

where pg represents the distribution of generated samples. p(y|Q) is the conditional label distribution
given by the Inception model for a generated sample Q. p(y) =

∫
p(y|Q)pg(Q) dQ is the marginal

distribution over all generated samples. DKL(p(y|Q) ∥ p(y)) is the Kullback-Leibler divergence,
defined as follows:

DKL(p(y|Q) ∥ p(y)) =
∑
i

p(yi|Q) log
p(yi|Q)

p(yi)
. (6)

Fréchet Inception Distance (FID). This metric measures the distance between the feature distribu-
tions of real and generated samples:

FID = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

, (7)

where µr and Σr are the mean and covariance matrix of features from real samples. µg and Σg are
the mean and covariance matrix of features from generated samples. Tr denotes the trace of a matrix.

Kernel Inception Distance (KID). This metric uses the squared Maximum Mean Discrepancy
(MMD) with a polynomial kernel as follows:

KID = MMD2(ϕ(Qr), ϕ(Qg)) , (8)
where ϕ(Qr) and ϕ(Qg) represent the features of real and generated samples extracted from the
Inception model.

MMD with a polynomial kernel k(x, y) = (x⊤y + c)d is calculated as follows:

MMD2(X,Y ) =
1

m(m− 1)

∑
i ̸=j

k(xi, xj) +
1

n(n− 1)

∑
i̸=j

k(yi, yj)−
2

mn

∑
i,j

k(xi, yj) , (9)

where X = {Q1, . . . ,Qm} and Y = {y1, . . . ,yn} are sets of features from real and generated
samples.

Precision. This metric measures the fraction of generated samples that lie within the real data
distribution as follows:

Precision =
1

N

N∑
i=1

I
(
(fg − µr)

⊤Σ−1
r (fg − µr) ≤ χ2

)
, (10)

where fg is a generated sample in the feature space. µr and Σr are the mean and covariance of the real
data distribution. I(·) is the indicator function. χ2 is a threshold based on the chi-squared distribution.

Recall. This metric measures the fraction of real samples that lie within the generated data distribution
as follows:

Recall =
1

M

M∑
j=1

I
(
(fr − µg)

⊤Σ−1
g (fr − µg) ≤ χ2

)
, (11)

where: fr is a real sample in the feature space. µg and Σg are the mean and covariance of the
generated data distribution. I(·) is the indicator function. χ2 is a threshold based on the chi-squared
distribution.

2D Evaluations. We render 3D scenes as 2D images for 2D evaluations. To ensure fair comparisons,
we use the same semantic colormap and camera settings across all experiments. Fig. 8 shows an
example of a rendered 2D semantic colormap. We use an InceptionV3 (Szegedy et al., 2015) model
to compute the Inception Score (IS), Fréchet Inception Distance (FID), and Kernel Inception Distance
(KID) scores, while Precision and Recall are computed using a VGG-16 (Simonyan & Zisserman,
2015) model. We train both 2D backbones using semantic colormap data.

3D Evaluations. For 3D data, we train a MinkowskiUNet (Choy et al., 2019) as an autoencoder. We
adopt the latest implementation from SPVNAS (Tang et al., 2020), which supports optimized sparse
convolution operations. The features were extracted by applying average pooling to the output of the
final downsampling block.
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Figure 8: Example of 2D Evaluation Rendering.

A.3 MODEL DETAILS

General Training Details. We implement both the VAE and DiT models using PyTorch (Paszke
et al., 2019). We utilize PyTorch’s mixed precision and replace all attention mechanisms with
FlashAttention (Dao et al., 2022) to accelerate training and reduce memory usage. AdamW is used as
the optimizer for all models.

We train the VAE with a learning rate of 10−3, running for 20 epochs on Occ3D-Waymo and 100
epochs on CarlaSC. The DiT is trained with a learning rate of 10−4, and the EMA rate for DiT is set
to 0.9999.

VAE. Our encoder projects the 4D input Q into a HexPlane, where each dimension is a compressed
version of the original 4D input. First, a 3D CNN is applied to each frame for feature extraction
and downsampling, with dimensionality reduction applied only to the spatial dimensions (X , Y , Z).
Next, the Projection Module projects the 4D features into the HexPlane. Each small transformer
within the Projection Module consists of two layers, and the attention mechanism has two heads.
Each head has a dimensionality of 16, with a dropout rate of 0.1. Afterward, we further downsample
the T dimension to half of its original size.

During decoding, we first use three small transpose CNNs to restore the T dimension, then use an
ESS module to restore the 4D features. Finally, we apply a 3D CNN to recover the spatial dimensions
and generate point-wise predictions.

Diffusion. We set the patch size p to 2 for our DiT models. The Waymo DiT model has a hidden size
of 768, 18 DiT blocks, and 12 attention heads. The CarlaSC DiT model has a hidden size of 384, 16
DiT blocks, and 8 attention heads.

Discussion on VAE Structure Improvements. Some prior work utilizes sparse 3D structures to
enhance the efficiency of their backbones. For example, XCube (Ren et al., 2024b) employs a fully
sparse 3D encoder, significantly improving model efficiency. Similarly, our VAE could potentially
improve the 3D convolutional feature extractor fθ(·) by adopting sparse convolution. However, using
sparse convolution offers only limited efficiency gains, as convolution accounts for only a small
portion of our VAE. Moreover, like XCube, we cannot apply sparse convolution in our decoder. In
the future, we plan to explore more efficient operations to further optimize our 3D backbone.

A.4 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) could improve the performance of conditional
generative models without relying on an external classifier. Specifically, during training, the model
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simultaneously learns both conditional generation p(x|c) and unconditional generation p(x), and
guidance during sampling is provided by the following equation:

x̂t = (1 + w) · x̂t(c)− w · x̂t(∅) , (12)

where x̂t(c) is the result conditioned on c, x̂t(∅) is the unconditioned result, and w is a weight
parameter controlling the strength of the conditional guidance. By adjusting w, an appropriate
balance between the accuracy and diversity of the generated scenes can be achieved.

A.5 DOWNSTREAM APPLICATIONS

This section provides a comprehensive explanation of five tasks to demonstrate the capability of our
4D scene generation model across various scenarios.

HexPlane. Since our model is based on Latent Diffusion Models, it is inherently constrained to
generate results that match the latent space dimensions, limiting the temporal length of unconditionally
generated sequences. We argue that a robust 4D generation model should not be restricted to producing
only short sequences. Instead of increasing latent space size, we leverage CFG to generate sequences
in an auto-regressive manner. By conditioning each new 4D sequence on the previous one, we
sequentially extend the temporal dimension. This iterative process significantly extends sequence
length, enabling long-term generation, and allows conditioning on any real-world 4D scene to predict
the next sequence using the DiT model. Theoretically, our HexPlane conditional generation can
model sequence of arbitrary length, but less stable generation may occur when generating very long
sequences.

We condition our DiT by using the HexPlane from T frames earlier. For any condition HexPlane,
we apply patch embedding and positional encoding operations to obtain condition tokens. These
tokens, combined with other conditions, are fed into the adaLN-Zero and Cross-Attention branches
to influence the main branch.

Layout. To control object placement in the scene, we train a model capable of generating vehicle
dynamics based on a bird’s-eye view sketch. We apply semantic filtering to the bird’s-eye view of
the input scene, marking regions with vehicles as 1 and regions without vehicles as 0. Pooling this
binary image provides layout information as a T ×H ×W tensor from the bird’s-eye perspective.
The layout is padded to match the size of the HexPlane, ensuring that the positional encoding of the
bird’s-eye layout aligns with the XY plane. DiT learns the correspondence between the layout and
vehicle semantics using the same conditional injection method applied to the HexPlane.

Command. While we have developed effective methods to control the HexPlane in both temporal
and spatial dimensions, a critical aspect of 4D autonomous driving scenarios is the motion of the ego
vehicle. To address this, we define four commands: STATIC, FORWARD, TURN LEFT, and TURN
RIGHT, and annotate our training data by analyzing ego vehicle poses. During training, we follow
the traditional DiT approach of injecting class labels, where the commands are embedded and fed
into the model via adaLN-Zero.

Trajectory. For more fine-grained control of the ego vehicle’s motion, we extend the command-
based conditioning into a trajectory condition branch. For any 4D scene, the XY coordinates of the
trajectory traj ∈ RT×2 are passed through an MLP and injected into the adaLN-Zero branch.

Inpaint. We demonstrate that our model can handle versatile applications by training a conditional
DiT for the previous tasks. Extending our exploration of downstream applications, and inspired
by (Lee et al., 2024), we leverage the 2D structure of our latent space and the explicit modeling
of each dimension to highlight our model’s ability to perform inpainting on 4D scenes. During
DiT sampling, we define a 2D mask m ∈ RX×Y on the XY plane, which is extended across all
dimensions to mask specific regions of the HexPlane.

At each step of the diffusion process, we apply noise to the input Hin and update the HexPlane using
the following formula:

Ht = m⊙Ht + (1−m)⊙Hin
t , (13)

where ⊙ denotes the element-wise product. This process inpaints the masked regions while preserving
the unmasked areas of the scene, enabling partial scene modification, such as turning an empty street
into one with heavy traffic.
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Outpaint. Outpainting extends the spatial dimensions of a given occupancy sequence. We use the
same procedure for outpainting as we do for inpainting. Specifically, we mask half of the scene, shift
the latent representation, and apply the inpainting process. Consequently, we could obtain a larger
scene with consistent dynamics.

Single frame occupancy. We apply the same procedure for single-frame occupancy conditional
generation as for HexPlane conditional generation. Specifically, we preprocess the data, encode the
first frame of each training sequence as a HexPlane, and fine-tune our HexPlane generation model for
single-frame conditional generation.
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B ADDITIONAL QUANTITATIVE RESULTS

In this section, we present additional quantitative results to demonstrate the effectiveness of our VAE
in accurately reconstructing 4D scenes.

B.1 PER-CLASS GENERATION RESULTS

We include the class-wise IoU scores of OccSora (Wang et al., 2024) and our proposed DynamicCity
framework on CarlaSC (Wilson et al., 2022). As shown in Tab. 7, our results demonstrate higher
IoU across all classes, indicating that our VAE reconstruction achieves minimal information loss.
Additionally, our model does not exhibit significantly low IoU for any specific class, proving its
ability to effectively handle class imbalance.

Table 7: Comparisons of Per-Class IoU Scores. We compared the performance of OccSora (Wang
et al., 2024), and our DynamicCity framework on CarlaSC (Wilson et al., 2022) across 10 semantic
classes. The scene resolution is 128×128×8. The sequence lengths are 4, 8, 16, and 32, respectively.
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Resolution: 128× 128× 8 Sequence Length: 4
OccSora 41.009 38.861 10.616 6.637 19.191 21.825 93.910 61.357 86.671 15.685 55.340

Ours 79.604 76.364 31.354 68.898 93.436 87.962 98.617 87.014 95.129 68.700 88.569

Improv. 38.595 37.503 20.738 62.261 74.245 66.137 4.707 25.657 8.458 53.015 33.229

Resolution: 128× 128× 8 Sequence Length: 8
OccSora 39.910 33.001 3.260 5.659 19.224 19.357 93.038 57.335 85.551 30.899 51.776

Ours 76.181 70.874 50.025 52.433 87.958 85.866 97.513 83.074 93.944 58.626 81.498

Improv. 36.271 37.873 46.765 46.774 68.734 66.509 4.475 25.739 8.393 27.727 29.722

Resolution: 128× 128× 8 Sequence Length: 16
OccSora 33.404 19.264 2.205 3.454 11.781 9.165 92.054 50.077 82.594 18.078 45.363

Ours 74.223 66.852 51.901 49.844 79.410 82.369 96.937 84.484 94.082 58.217 78.134

Improv. 40.819 47.588 49.696 46.390 67.629 73.204 4.883 34.407 11.488 40.139 32.771

Resolution: 128× 128× 8 Sequence Length: 32
OccSora 28.911 16.565 1.413 0.944 6.200 4.150 91.466 43.399 78.614 11.007 35.353

Ours 59.308 52.036 25.521 29.382 56.811 57.876 94.792 78.390 89.955 46.080 62.234

Improv. 30.397 35.471 24.108 28.438 50.611 53.726 3.326 34.991 11.341 35.073 26.881

B.2 OCCUPANCY FORECASTING RESULTS

We train our HexPlane conditional generation pipeline on Occ3D-nuScenes (Tian et al., 2023) as an
occupancy forecasting model. We set T = 4 to ensure the model receives a HexPlane with a context
length of 2 seconds, aligning with OccWorld (Zheng et al., 2024a), and generates the next 2 seconds
for evaluation. As shown in Tab. 8, our model outperforms OccWorld on most metrics.

Table 8: 4D Occupancy Forecasting Performance. We compare the performance of Occ-
World (Zheng et al., 2024a) and our proposed DynamicCity framework on Occ3D-nuScenes (Tian
et al., 2023).

Method mIoU IoU
T = 0 T = 1 T = 2 T = 0 T = 1 T = 2

OccWorld-O 66.38 25.78 15.14 62.29 34.63 25.07
Ours 80.52 26.18 16.94 67.64 34.12 25.82
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B.3 USER STUDY

We conduct a user study comparing OccSora (Wang et al., 2024) with our proposed DynamicCity.
The study includes 20 samples, with 10 from each method. Participants rate each sample on four
metrics: 1) overall quality, 2) time consistency, 3) background quality, and 4) foreground quality.
Ratings range from 1 to 5, with 5 being the highest. We collect results from 42 volunteers and get 840
valid scores in total, as shown in Tab. 9. Our method receives better user feedback across all metrics.

Table 9: User Study Results. We conduct user study comparing OccSora (Wang et al., 2024) and
DynamicCity. The rating is of scale 1-5, the higher the better.

Method Overall Quality Time Consistency Background Quality Foreground Quality
OccSora 2.21 2.05 2.17 2.11

Ours 4.03 4.02 3.95 4.04

B.4 MODEL STATS

We compare the training speed, inference speed, training VRAM, and inference VRAM of Occ-
Sora (Wang et al., 2024) and DynamicCity. The results are presented in Tab. 10, Tab. 11, Tab. 12,
and Tab. 13. While some of our models may be slightly slower and consume more memory compared
to OccSora, they achieve significantly better performance. We also compare the total model size of
OccSora and our model in Tab. 14. Our model is significantly smaller than OccSora while achieving
superior performance.

Table 10: VAE Model Statistics on CarlaSC Dataset (Wilson et al., 2022). We compare the training
time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and our
DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.36 0.21 4.86 3.25

Ours 0.21 0.41 5.92 1.43

Table 11: VAE Model Statistics on Occ3D-Waymo Dataset (Tian et al., 2023). We compare the
training time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and
our DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.63 0.21 10.05 3.93

Ours 0.94 0.54 24.90 4.62

B.5 COMPARISONS WITH SEMCITY

We compare the generation quality of SemCity (Lee et al., 2024) and our DynamicCity in Tab. 15.
Despite using a more compact latent representation and generating dynamic scenes, our model
outperforms SemCity on most metrics.
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Table 12: DiT Model Statistics on CarlaSC Dataset (Wilson et al., 2022). We compare the training
time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and our
DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.19 6.10 1.50 1.15

Ours 0.19 3.91 10.22 1.28

Table 13: DiT Model Statistics on Occ3D-Waymo Dataset (Tian et al., 2023). We compare the
training time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and
our DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.35 6.09 15.16 1.15

Ours 0.45 4.41 22.33 1.29

Table 14: Model Size. We compare the total model size of OccSora (Wang et al., 2024) and our
DynamicCity.

Dataset Method Model Size (M)

CarlaSC OccSora 169.1
Ours 44.7

Occ3D-Waymo OccSora 174.2
Ours 45.6

Table 15: Comparisons of 2D and 3D Evaluation Metrics. We report the Inception Score (IS),
Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and Recall
(R) rates for SemCity (Lee et al., 2024) and our method in both the 2D and 3D spaces.

Method Metric2D Metric3D

IS↑ FID↓ KID↓ P↑ R↑ IS↑ FID↓ KID↓ P↑ R↑

SemCity 1.039 35.40 0.010 0.213 0.058 2.288 1113 53.948 0.253 0.787
Ours 1.040 12.94 0.002 0.307 0.018 2.331 427.5 27.869 0.460 0.170
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C ADDITIONAL QUALITATIVE RESULTS

In this section, we provide additional qualitative results on the Occ3D-Waymo (Tian et al., 2023) and
CarlaSC (Wilson et al., 2022) datasets to demonstrate the effectiveness of our approach.

C.1 UNCONDITIONAL DYNAMIC SCENE GENERATION

First, we present full unconditional generation results in Fig. 9 and 10. These results demonstrate that
our generated scenes are of high quality, realistic, and contain significant detail, capturing both the
overall scene dynamics and the movement of objects within the scenes.

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

T=1

Waymo unconditional1 scene 18

T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Figure 9: Unconditional Dynamic Scene Generation Results. We provide qualitative examples of a
total of 16 consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023)
dataset. Best viewed in colors and zoomed-in for additional details.
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Figure 10: Unconditional Dynamic Scene Generation Results. We provide qualitative examples of
a total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022)
dataset. Best viewed in colors and zoomed-in for additional details.
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C.2 HEXPLANE-GUIDED GENERATION

We show results for our HexPlane conditional generation in Fig. 11. Although the sequences are
generated in groups of 16 due to the settings of our VAE, we successfully generate a long sequence
by conditioning on the previous one. The result contains 64 frames, comprising four sequences, and
depicts a T-intersection with many cars parked along the roadside. This result demonstrates strong
temporal consistency across sequences, proving that our framework can effectively predict the next
sequence based on the current one.

64
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Figure 11: HexPlane-Guided Generation Results. We provide qualitative examples of a total of 64
consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023) dataset.
Best viewed in colors and zoomed-in for additional details.
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C.3 LAYOUT-GUIDED GENERATION

The layout conditional generation result is presented in Fig. 12. First, we observe that the layout
closely matches the semantic positions in the generated result. Additionally, as the layout changes,
the positions of the vehicles in the scene also change accordingly, demonstrating that our model
effectively captures the condition and influences both the overall scene layout and vehicle placement.
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Figure 12: Layout-Guided Generation Results. We provide qualitative examples of a total of 16
consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023) dataset.
Best viewed in colors and zoomed-in for additional details.
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C.4 COMMAND- & TRAJECTORY-GUIDED GENERATION

We present command conditional generation in Fig. 13 and trajectory conditional generation in
Fig. 14. These results show that when we input a command, such as "right turn," or a sequence of
XY-plane coordinates, our model can effectively control the motion of the ego vehicle and the relative
motion of the entire scene based on these movement trends.
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Figure 13: Command-Guided Scene Generation Results. We provide qualitative examples of
a total of 16 consectutive frames generated under the command RIGHT by DynamicCity on the
CarlaSC (Wilson et al., 2022) dataset. Best viewed in colors and zoomed-in for additional details.
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Figure 14: Trajectory-Guided Scene Generation Results. We provide qualitative examples of a
total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022)
dataset. Best viewed in colors and zoomed-in for additional details.
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C.5 DYNAMIC INPAINTING

We present the full inpainting results in Fig. 15. The results show that our model successfully
regenerates the inpainted regions while ensuring that the areas outside the inpainted regions remain
consistent with the original scene. Furthermore, the inpainted areas seamlessly blend into the original
scene, exhibiting realistic placement and dynamics.
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Figure 15: Dynamic Inpainting Results. We provide qualitative examples of a total of 16 consectu-
tive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022) dataset. Best viewed in
colors and zoomed-in for additional details.
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C.6 COMPARISONS WITH OCCSORA

We compare our qualitative results with OccSora (Wang et al., 2024) in Fig. 16, using a similar
scene. It is evident that our result presents a realistic dynamic scene, with straight roads and complete
objects and environments. In contrast, OccSora’s result displays unreasonable semantics, such as
a pedestrian in the middle of the road, broken vehicles, and a lack of dynamic elements. This
comparison highlights the effectiveness of our method.

T=2T=1 T=3

T=5T=6 T=4

T=8T=7 T=9

T=11T=12 T=10

T=14T=13 T=15

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

OccSora Ours OccSora Ours OccSora Ours

OccSora OursOccSora OursOccSora Ours
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Figure 16: Comparisons of Dynamic Scene Generation. We provide qualitative examples of a total
of 16 consectutive frames generated by OccSora (Wang et al., 2024) and our proposed DynamicCity
framework on the CarlaSC (Wilson et al., 2022) dataset. Best viewed in colors and zoomed-in for
additional details.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.7 DYNAMIC OUTPAINTING

We present the full outpainting results in Fig. 17. The results demonstrate that our model can extend
a scene into a larger dynamic scene.
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Figure 17: Dynamic Outpainting Results. We provide qualitative examples of a total of 16
consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022) dataset. Best
viewed in colors and zoomed-in for additional details.
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C.8 SINGLE FRAME OCCUPANCY CONDITIONAL GENERATION

We present the results of generating frames based on a single-frame occupancy condition in Fig. 18.
The results demonstrate good temporal consistency with the condition frame, highlighting our model’s
ability to condition on easily accessible data.

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole
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Figure 18: Single Frame Occupancy Conditional Generation Results. We provide qualitative
examples of a total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson
et al., 2022) dataset. Best viewed in colors and zoomed-in for additional details.
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D POTENTIAL SOCIETAL IMPACT & LIMITATIONS

In this section, we elaborate on the potential positive and negative societal impact of this work, as
well as the broader impact and some potential limitations.

D.1 SOCIETAL IMPACT

Our approach’s ability to generate high-quality 4D LiDAR scenes holds the potential to significantly
impact various domains, particularly autonomous driving, robotics, urban planning, and smart city
development. By creating realistic, large-scale dynamic scenes, our model can aid in developing
more robust and safe autonomous systems. These systems can be better trained and evaluated against
diverse scenarios, including rare but critical edge cases like unexpected pedestrian movements or
complex traffic patterns, which are difficult to capture in real-world datasets. This contribution
can lead to safer autonomous vehicles, reducing traffic accidents, and improving traffic efficiency,
ultimately benefiting society by enhancing transportation systems.

In addition to autonomous driving, DynamicCity can be valuable for developing virtual reality (VR)
environments and augmented reality (AR) applications, enabling more realistic 3D simulations
that could be used in various industries, including entertainment, training, and education. These
advancements could help improve skill development in driving schools, emergency response training,
and urban planning scenarios, fostering a safer and more informed society.

Despite these positive outcomes, the technology could be misused. The ability to generate realistic
dynamic scenes might be exploited to create misleading or fake data, potentially undermining trust
in autonomous systems or spreading misinformation about the capabilities of such technologies.
However, we do not foresee any direct harmful impact from the intended use of this work, and ethical
guidelines and responsible practices can mitigate potential risks.

D.2 BROADER IMPACT

Our approach’s contribution to 4D LiDAR scene generation stands to advance the fields of autonomous
driving, robotics, and even urban planning. By providing a scalable solution for generating diverse
and dynamic LiDAR scenes, it enables researchers and engineers to develop more sophisticated
models capable of handling real-world complexity. This has the potential to accelerate progress in
autonomous systems, making them safer, more reliable, and adaptable to a wide range of environments.
For example, researchers can use DynamicCity to generate synthetic training data, supplementing
real-world data, which is often expensive and time-consuming to collect, especially in dynamic and
high-risk scenarios.

The broader impact also extends to lowering entry barriers for smaller research institutions and
startups that may not have access to vast amounts of real-world LiDAR data. By offering a means to
generate realistic and dynamic scenes, DynamicCity democratizes access to high-quality data for
training and validating machine learning models, thereby fostering innovation across the autonomous
driving and robotics communities.

However, it is crucial to emphasize that synthetic data should be used responsibly. As our model
generates highly realistic scenes, there is a risk that reliance on synthetic data could lead to models
that fail to generalize effectively in real-world settings, especially if the generated scenes do not
capture the full diversity or rare conditions found in real environments. Hence, it’s important to
complement synthetic data with real-world data and ensure transparency when using synthetic data in
model training and evaluation.

D.3 KNOWN LIMITATIONS

Despite the strengths of DynamicCity, several limitations should be acknowledged. First, our model’s
ability to generate extremely long sequences is still constrained by computational resources, leading
to potential challenges in accurately modeling scenarios that span extensive periods. While we
employ techniques to extend temporal modeling, there may be degradation in scene quality or
consistency when attempting to generate sequences beyond a certain length, particularly in complex
traffic scenarios.
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Second, the generalization capability of DynamicCity depends on the diversity and representativeness
of the training datasets. If the training data does not cover certain environmental conditions, object
categories, or dynamic behaviors, the generated scenes might lack these aspects, resulting in incom-
plete or less realistic dynamic LiDAR data. This could limit the model’s effectiveness in handling
unseen or rare scenarios, which are critical for validating the robustness of autonomous systems.

Third, while our model demonstrates strong performance in generating dynamic scenes, it may face
challenges in highly congested or intricate traffic environments, where multiple objects interact
closely with rapid, unpredictable movements. In such cases, DynamicCity might struggle to capture
the fine-grained details and interactions accurately, leading to less realistic scene generation.

Lastly, the reliance on pre-defined semantic categories means that any variations or new object
types not included in the training set might be inadequately represented in the generated scenes.
Addressing these limitations would require integrating more diverse training data, improving the
model’s adaptability, and refining techniques for longer sequence generation.

E PUBLIC RESOURCES USED

In this section, we acknowledge the public resources used, during the course of this work.

E.1 PUBLIC DATASETS USED

• nuScenes1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Waymo Open Dataset3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Waymo Dataset License
• CarlaSC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Occ3D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

E.2 PUBLIC IMPLEMENTATIONS USED

• SemCity6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• OccSora7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MinkowskiEngine8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• TorchSparse9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SPVNAS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• spconv11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

1https://www.nuscenes.org/nuscenes
2https://github.com/nutonomy/nuscenes-devkit
3https://waymo.com/open
4https://umich-curly.github.io/CarlaSC.github.io.
5https://tsinghua-mars-lab.github.io/Occ3D.
6https://github.com/zoomin-lee/SemCity.
7https://github.com/wzzheng/OccSora.
8https://github.com/NVIDIA/MinkowskiEngine.
9https://github.com/mit-han-lab/torchsparse.

10https://github.com/mit-han-lab/spvnas.
11https://github.com/traveller59/spconv.
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