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ABSTRACT

Improving antibody binding to an antigen without antibody-antigen structure infor-
mation or antigen-specific data remains a critical challenge in therapeutic protein
design. In this work, we propose AFFINITYENHANCER, a framework to im-
prove the affinity of an antibody in a one-shot setting. In the one-shot setting, we
start from a single lead sequence—never fine-tuning on it or using its structure in
complex with the antigen or epitope/paratope information—and seek variants that
reliably boost affinity. During training, AFFINITYENHANCER utilizes pairs of re-
lated sequences with higher versus lower measured binding in a pan-antigen dataset
comprising diverse “environments” (antigens) and a shared structure-aware module
that learns to transform low-affinity sequences into high-affinity ones, effectively
distilling consistent, causal features that drive binding. By incorporating pretrained
sequence-structure embeddings and a sequence decoder, our method enables robust
generalization to entirely new antibody seeds. Across multiple unseen internal and
public seeds, AFFINITYENHANCER identifies key affinity enhancing mutations on
the paratope, outperforms existing structure-conditioned and inpainting approaches,
achieving substantial (in silico) affinity gains in true, one-shot experiments without
ever seeing antigen data.

1 INTRODUCTION

Antibodies are proteins produced by the immune system in response to foreign antigens. In therapeutic
settings, antibodies have been developed as drugs against various cancer and autoimmune targets.
Antibodies detect harmful antigens (such as bacteria and viruses) by the mechanism of binding,
attaching to a specific patch on the antigen’s surface, called an epitope, using six hypervariable loops
known as complementarity-determining regions (CDRs). A subset of the residues on these CDRs
form the antigen binding surface is known as the paratope.

This ability to form highly specific paratopes which are complementary in shape and chemical
composition to a extensive repertoire of antigens confers antibodies their unique therapeutic potential,
making high-affinity antibodies prime drug candidates. Having the therapeutic potential being driven
by the binding mechanism, renders structure information as essential in developing solutions for
this tasks. In the typical drug discovery pipeline, a lead antibody with reasonably high affinity and
specificity to the antigen of interest, is identified from immunized libraries extracted from animals,
followed by optimizing the lead for potency and drug-like properties. Optimizing the potency of
the lead routinely involves improving its binding or affinity to the antigen. This is called affinity
maturation. Experimentally, affinity maturation involves random or directed mutagenesis to generate
large diversified libraries (known as diversification or hit-expansion) followed by screening for
stronger binding antibodies against the target. Such techniques are common in drug discovery
pipelines and have been fairly successful over the last few decades. However, such diversification
explores only a miniscule sequence space (∼ order of ∼ 106-109) of the entire sequence space (order
of 25020; 20 amino acid residues at every position of the variable domain which consists roughly of
250 residues). As a consequence, the resulting sets of designs can be suboptimal and fail to identify
sufficient number of antibodies with the desired potency and drug-like properties.

Computational affinity maturation, powered by machine learning models (ML), offers an accelerated
alternative to random or directed mutagenesis. However, affinity maturation with ML models becomes
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Figure 1: One-shot affinity maturation of antibodies with AFFINITYENHANCER. A) The goal is to
implicitly learn modes of affinity maturation by pairing a lower affinity antibody with a higher affinity
one. B) Matched datasets are obtained by pairing antibodies against the same target/antigen from
the SKEMPI 2.0 database. C) Architecture for AFFINITYENHANCER. D) Inference and validation
pipeline for held-out-seed to determine whether sampled sequences are binders or not.

challenging in the one-shot scenario where the lead antibody is far away from the training data,
especially in sequence representation. We call this problem the one-shot affinity maturation, where
the ML model must infer relevant (often, structure-related) modes of affinity enhancement from a
single example at inference time. While several ML models have been proposed for both protein and
antibody-design, very few are explicitly trained for the objective of improving binding to an antigen
in the one-shot scenario. This problem is compounded by the sparsity of antibody-antigen structure
and affinity datasets thereby impeding generalization to unseen cases (Hummer et al., 2023).

To bypass the challenges associated with explicitly modeling affinity, Tagasovska et al. (2024)
proposed Property Enhancer (PropEn), a property-agnostic model which utilizes data matching to
implicitly learn the direction of the gradient for a property of interest with the goal of proposing
new optimized designs. It was previously demonstrated that this approach works for a range of
tasks, including affinity maturation of antibodies. However, its effectiveness was only demonstrated
(i) in sequence-based models and (ii) in cases where a few hundred antibody sequences related to
the lead molecule we wish to optimize are available in the training data. In this work, we propose
AFFINITYENHANCER, a model that goes beyond the PropEn framework to the one-shot affinity
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maturation setup by leveraging structure information and introducing a novel, diversified matching
procedure which allows for generalization and transferability. Our main contributions are as follows:

• We propose a one-shot model for affinity maturation without antigen information (section 3)
• We leverage matching in heterogeneous datasets to bolster data-sparse regimes (antibody-

antigen interactions)
• We provide theoretical analysis supporting OOD transfer (subsection 3.1)
• In empirical results on held-out datasets, we confirm that AFFINITYENHANCER outperforms

SOTA structure-conditioned and inverse-folding baselines, producing variants that improve
lead-antibody binding (section 5).”

2 BACKGROUND & RELATED WORK

Structure-based design. Most ML models targeted at antibody design, including the design of
target-specific antibody libraries rely on structure-conditioned sequence generation, templated on
the structure of the lead antibody or, when available, the structure of the antibody-antigen complex
(Dreyer et al., 2023; Mahajan et al., 2022; ?). Such structure-conditioning is necessary in order to
restrain the designed sequences to adhere to the shape of the lead antibody. The sequence space can
be further controlled when the structure of the antibody-antigen complex is known. For antibody
design, in particular, structure-conditioning models such as AbMPNN (Dreyer et al., 2023), AntiFold
(Høie et al., 2024), FvHallucinator (Mahajan et al., 2022) and MaskedProtEnT Mahajan et al. (2025)
have demonstrated impressive performance on in silico benchmarks. On the other hand, de novo
models such as RFDiffusion (Watson et al., 2023), follow a two-step process. First, they design
the backbone of the antibody given the context of the antigen, then follow by sequence design with
ProteinMPNN conditioned on that backbone in complex with the antigen.

Sequence-based design. Alternatively, sequence-only models have been proposed to generate
protein or antibody sequences from a learned distribution or near the seed. Examples of such models
include discrete Walk Jump Sampler Frey et al. (2023), latent Walk Jump Sampler, ProGen2(Nijkamp
et al., 2022), as well as language-model– and latent-space–guided directed evolution methods such
as Hie et al. (2024); Tran & Hy (2024) and Tran et al. (2025). The latter demonstrate that large
protein language models or latent generative models can effectively prioritize mutations during
iterative directed evolution campaigns, improving protein function given repeated rounds of target-
specific screening. However, there are no approaches addressing affinity enhancement in a one-shot
setting, and in the absence of the antibody-antigen complex structure. Even de novo models such as
RFDiffusion only guarantee binders (not improved binders) given a binding partner or antigen.

Training with matched datasets. We adopt a matching-based supervision scheme in which training
pairs are formed by selecting, for each anchor the nearest neighbor such that (i) it lies within an
input-space radius (ii) achieves a strictly higher measured affinity. This construction follows the spirit
of PropEn which demonstrated that matching, implicitly recovers the ascent directions for a property
of interest. Here we extend the matching to the one-shot antibody setting by including structure-
aware embeddings and explicit environment control. In other words, to the PropEn requirements for
matching, we add: (iii) pairing antibodies targeting the same antigen, i.e. same environment. Unlike
PropEn, which uses sequence representation only, the AFFINITYENHANCERs matching operates
in a geometry induced by pretrained encoders and a residual graph transformer to map low-affinity
embeddings to higher-affinity counterparts.

Conceptually, this pairing induces pairwise preferences (x′ ≻ x), connecting our approach to
preference learning (Zhang & Ranganath, 2025) methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023) from the LLM literature, where models are updated toward preference
winners under KL regularization. Preference Learning has recently inspired a new direction in protein
design. For backbone generation, Huguet et al. (2024) introduce Reinforced Fine-Tuning (ReFT): a
supervised fine-tuning pass on a dataset filtered by auxiliary rewards to create a preferential subset,
effectively supervised fine tuning on matched positives. In antibody co-design, Zhou et al. (2024)
learn over paired samples by defining residue-level energy preferences and optimize a conditional
diffusion model with a direct preference objective showing gains via energy decomposition and
gradient-surgery to resolve conflicts. For peptide/protein binder design, (Mistani & Mysore, 2024)
explicitly formulate multi-objective alignment with DPO on curated chosen/rejected receptor-binder
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pairs, demonstrating that preference learning on matched datasets steers a protein LM toward binders
satisfying specificity and developability (e.g., pI) constraints.

Despite the common points, two major differences should be noted. First in preference learning the
sampled data consist of pairs going from lower to higher property, without any limitation on the
closeness of the datapoints or their measured values. Second, preference learning focuses on taking
an existing generator that inputs receptors and outputs binders and improving that generator so the
outputted binders have a higher score given a receptor. In contrast, AFFINITYENHANCER seeks to
produce an improved binder given an existing (lead) binder.

3 METHOD - AFFINITY ENHANCER

We formalize AFFINITYENHANCER as learning from matched improvements under fixed environ-
ments. In what follows, we state the data-generative model from which training pairs are drawn.
Then, we derive the constraints that make the signal dominantly causal.

Problem setup & method summary. Let X denote the space of antibody sequences and let Y ⊂ R
denote measured binding affinities. We assume access to E environments indexed by e = 1, . . . , E,
where each environment corresponds to a distinct lead antibody (we use the terms leads or “seeds”
interchangeably). In environment e we observe a small subset of sequences (order of 10) with
measured affinities

{
(xej , y

e
j )
}

. Our goal is, for a held-out environment e∗ (the “one-shot” seed
corresponding to an antigen not seen in the training set), to propose a set of new designs that reliably
improve on the lead affinity ye

∗

lead, despite never fine-tuning on e∗ or using its antigen structure. To do
so, we propose AFFINITYENHANCER, summarized in Figure 1:

1. Form matched pairs. M = (xi, x
′
i|e = e′) in every environment e by finding, for each

low-affinity sequence xi, the nearest neighbors xi whose measured affinity is y′i > yi, under
a capped distance threshold δx.

2. Extract embeddings. For each antibody in the matched pairs, extract sequence-structure
embeddings form a foundational model ψ : X → RL×d.

3. Learn a worse embedding→ better embedding map. Given matched embeddings, learn a
Graph Transformer Gθ acting per residue and used in residual form

f(z) := z +Gθ

(
z;A,P

)
, z = ψ(x) ∈ RL×d,

where A is a residue–residue adjacency (from predicted structure) and P positional/edge
features.

4. Embeddings→sequence decoder. Train a light-weight decoder ρ : RL×d → X that maps
per-residue embeddings to amino-acid distributions.

5. Sampling for an unseen lead. At test time, compute zlead = ψ(xe
∗

lead) and apply the residual
map

z̃ = f(zlead) = zlead +Gθ

(
zlead;A,P

)
, x̃ = ρ(z̃).

3.1 FROM MATCHED DATA TO CAUSAL SIGNALS

Data-generative process. We posit that x factors into latent components:

x = f(s, c) y = h(c, e)

where c collects the causal factors that determine affinity and s collects spurious factors (such as
batch effects, library or lead/antigen idiosyncrasies, etc.) that influence x but not y once e are fixed. c
causally affects y for fixed e. In an idealized world, we would sample independently

c ∼ q(c), s ∼ q(s), e ∼ q(e), x = f(s, c), y = h(c, e).

In practice, selection (Pearl, 2009) induces dependencies: only some (c, s) are assayed, and not every
x is tested in every e. The observable joint is therefore summarized as

(c, s) ∼ p(c, s), x = f(s, c), e ∼ p(e | x), y = h(c, e),

In particular, y depends on the target i.e. environment e, hence s and e may spuriously correlate with
y through selection rather than causation.
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Matched pair selection as targeted conditional. For each anchor x assayed in environment e with
outcome y, we seek a nearby variant x′ that improves the outcome, in the same environment:

p(x′|x, d(x, x′) < ε, y′ − y > ∆y, e′ = e) (1)

with distance d on X, a small neighborhood radius ε > 0, and an improvement margin ∆y >
0. Conditioning on e′ = e removes environment-driven gains; only changes in x can explain
improvements. This conditional represents the data-matching rule that defines our train set. For
simplicity we include a deterministic analysis free of measurement noise.

We impose two standard smoothness assumptions which align with biophysical/representational
assumptions as well.

Assumption 1 (Property smoothness). For fixed e, the property function is Ky-Lipschitz in the causal
latent:

|h(c1, e)− h(c2, e)| ≤ Kyd(c1, c2).

Assumption 2 (Responsive observation/bi-Lipschitz renderer). There exists Kx such that for all
(c, s), (c′, s′),

1

Kx
d([c, s], [c′, s′]) ≤ d(f(s, c), f(s′, c′)) ≤ Kxd([c, s], [c

′, s′]),

and the latent metric decomposes additively,

d([c, s], [c′, s′]) = d(c, c′) + d(s, s′).

Intuitively, small moves in x, imply small moves in the underlying factors; no large cancellation can
hide a big change in c by counter-moving s.

Theorem 1 (Improvement Bounds). Consider a matched pair (x, x′) measured in the same environ-
ment with

d(x, x′) < ε and y′ − y = h(c′, e)− h(c, e) > ∆y > 0. (2)

Then:

1. (Minimum causal movement)
d(c′, c) > ∆y/Ky. (3)

2. (Spurious-movement cap) If, in addition, Kxε−∆y/Ky ≥ 0, then

d(s′, s) < Kx ε − ∆y/Ky. (4)

Proof. From equation 2 and A1,

∆y < h(c′, e)− h(c, e) ≤ Ky d(c
′, c) ⇒ d(c′, c) > ∆y/Ky,

which proves equation 3. Next, by equation 2 and A2,

d(c′, c) + d(s′, s) ≤ Kx d
(
f(s, c), f(s′, c′)

)
≤ Kx ε.

Subtracting the lower bound on d(c′, c) from the left-hand side yields

d(s′, s) < Kx ε− d(c′, c) ≤ Kx ε−∆y/Ky,

establishing equation 4 whenever the right-hand side is nonnegative.

The matching rule is feasible only if Kxε − ∆y
Ky

≥ 0; otherwise no pair can simultaneously be
close in x and improve y. From equation 3 and equation 4, each pair enforces a minimal step along
causal directions and leaves a strictly bounded budget for spurious drift. Hence, the supervision from
matched improvements is dominated by causal variation.
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Training AFFINITYENHANCER Let z = ψ(x) be a sequence-structure embeddings (frozen).
The embedding-to-embedding module learns a residual map fθ(z) = z + Gθ(z;A,P ), trained to
reconstruct matched targets in embedding space, by minimizing

L(θ) =
1

|M |
Σ(x,x′)∈M||ψ(x′)− fθ(ψ(x))||22.

At test time, for a held-out seed xlead in unseen environment e∗ we compute zlead = ψ(xlead), apply
the residual map z̃ = f(zlead), and decode x∗ = ρ(z̃).

Why this objective isolates causal signals? By equation 1 and equation 2, each training pair constrains
the model with a guaranteed minimum shift in the causal coordinates and a tight upper bound
on spurious motion. Averaged over many environments, spurious directions fluctuate and cancel,
while causal directions align across pairs; minimizing L therefore compels Gθ to model the shared
environment-invariant components that consistently explain affinity gains.

Given the selection rule equation 1 and the assumptions, every matched pair obeys
d(c′, c) > ∆y/Ky and d(s′, s) < kxε−∆y/Ky,

so the training signal is necessarily a causal movement plus a bounded spurious residue. AFFINITYEN-
HANCER exploits this by learning a residual embedding-space operator that reconstructs matched
targets and, at inference steps in the same causal direction on held-out seeds. This “invariance-by-
matching” view will underlie all experiments that follow.

4 AFFINITYENHANCER IMPLEMENTATION

Our theoretical formulation proposed above lends a direct implementation in our AFFINITYEN-
HANCER which consists of three main modules ( Figure 1A). The structure and sequence embedder
(Embedder), the reconstruction module and the embeddings to sequence decoder (Decoder) module.
The Embedder embeds the antibody sequence and structure to a semantically meaningful embedded
space. To this end, we utilize GearNet Zhang et al. (2023), a representation learning model trained on
600k sequences and structures from the AlphaFold2 database. To map the embeddings to antibody
sequence, we trained a sequence decoder which maps GearNet (frozen) embeddings to antibody
sequences on the paired Observed Antibody Space (pOAS), (Olsen et al., 2022). Once the sequence
decoder is trained, it is also frozen. The reconstruction module, a Graph Transformer (GT), learns
to reconstruct the embedding of the lower affinity antibody to the embedding of the higher affinity
antibody. The reconstruction module is trained on the matched datasets prepared from SKEMPI
2.0. These modules allow us to embed sequences to a general embedding space that is trained on a
massively large database of protein and antibody sequence and residue environments. Utilizing these
pretrained modules allows us to leverage learned representations from all proteins and antibodies and
generalize to blind or unseen test seeds.

5 EXPERIMENTS

The main challenge we address is whether it is possible to propose sequences of affinity enhanced
designs starting from a single lead antibody sequence without any context or structure related to
the antigen. Our validation pipeline is included in Figure 1B. We train AFFINITYENHANCER on
a matched dataset that excludes any sequences in the vicinity of held-out seeds. Additionally, we
utilize a predicitve model, Coretx, (Gruver et al., 2023) (Appendix E) trained and validated on labeled
expression and high-quality affinity data in vicinity of the held-out seeds. We then propose designs
with AFFINITYENHANCER and predict the binding and affinity for the proposed designs with the
oracle.

Metrics. We evaluate sampled designs by reporting edit distances from the seed sequence, the
number of designs that are predicted to be binders, and number of improved binders over the seed.
Additionally we include the binding and improved rates as well as the average performance across
seeds to ease summarizing the performance per baseline.

Baselines. We compare AFFINITYENHANCER to three baselines – PropEn, trained on the same
matched dataset as AFFINITYENHANCER, AntiFold, an antibody-specific, structure-conditioned
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inverse folding model and IgCraft (Greenig et al., 2025), an antibody-specific generative inpainting
model.

Ablations. We systematically explore the effect of each component in AFFINITYENHANCER, dataset
matching, embeddings, adjacency information and model architecture (local sequential kernels -
convolutional neural networks, versus adjacency-informed graph transformers).

5.1 RESULTS

We demonstrate the application of AFFINITYENHANCER on four held-out seeds – 3 internal seeds
and one public (Trastuzumab) antibody, all of them with edit distance between 64 and 87 (60-70%
sequence similarity 1). The edit distances of the held-out seeds to the train set are reported in Table 7.
Additionally, in Table 8 we report whether any samples in the trainset have matching germlines to the
test seeds.

Figure 2: AFFINITYENHANCER identifies distinct and structurally important positions for each
antibody. Each residue on the surface representation of the seed antibody is colored on a spectrum
ranging from positions modified by the model in 0.0 (white) percent of designs to 20 percent (red)
of designs. For Trastuzumab, we also show the antigen in gray. All antibody structure models
were obtained with ESMFold. For Trastuzumab where the crystal structure of the antibody-antigen
complex structure is available, we aligned the ESMFold structure to the crystal structure to map the
position of the antigen.

AFFINITYENHANCER targets edits that retain and improve binding We asked how each model
prior localizes affinity-enhancing edits across the antibody and, when known, at the antibody–antigen
interface. In Figure 2A–D and Figure 5 we compare edit distance (leftmost panels) with the positions
of edited residues on the binding surface (top-view CDRs). The model without matching (“No
matching”) serves as the baseline: it proposes few, nearly uniform edits across CDRs and frameworks,
with no clear positional preferences (aside from Seed 2). In contrast, models trained with the matching
intervention show distinct spatial patterns. The CNN variant makes more edits overall, spanning both

1For reference, antibody design experts consider edit distance of 8 to be a different molecule.
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Figure 3: One-shot guided sampling with AFFINITYENHANCER. A) Comparison of AFFINITYEN-
HANCER with the antibody-specific structure-conditioned inverse folding model, AntiFold and
inpainting model IgCraft. Distribution of predicted pKD (negative log10 of dissociation constant
KD for unique designs with edit distance between [5,12] for 3 internal seeds and the Trastuzumab
antibody. We report difference of the predicted pKD from the pKD of the seed. IgCraft designs were
sampled for all-CDRs (IgCraft) or heavy chain CDRs only (IgCraft (heavy-only)). B) Distribution
of affinity improvement for AFFINITYENHANCER, AntiFold and IgCraft for designs with improved
affinities (∆ pKD> 0.05).

Table 1: Ablation study for AFFINITYENHANCER. We sample 5,000 sequences for Trastuzumab
and for three internal seeds per model. ED = minimum edit distance to the parent; “ED window”
counts designs with ED ∈ [5, 12]. “Binders” and “Improved binders” are wet-lab positives and
affinity-improved positives, respectively. AFFINITYENHANCER uses GearNet embeddings, pOAS
decoder, an adjacency-informed Graph Transformer, and data matching. PropEn is the sequence-only
baseline from Tagasovska et al. (2024). For each model, sampling settings were chosen to maximize
the number of designs sampled in the ED ∈ [5, 12] range.

Model Set ED ED window Binders Improved Binder rate Improved rate

AFFINITYENHANCER Trastuzumab 7.9± 1.8 4,815 3,970 1,575 79.4 % 31.50 %
Seed 1 6.5± 1.6 4,382 1,105 2 22.1 % 0.04 %
Seed 2 7.4± 1.8 4,672 3,612 113 72.2 % 2.26 %
Seed 3 6.5± 1.7 4,352 1,334 3 26.7 % 0.06 %
Mean over seeds 7.08 4,555 2,505 423 50.10 % 8.46 %

Seeds improved (Trastuzumab + Seeds 1–3) 4 /4

PropEn (– Structure)

Trastuzumab 28.6 0 0 0 0.0 % 0.00 %
Seed 1 68.0 0 0 0 0.0 % 0.00 %
Seed 2 30.9 0 0 0 0.0 % 0.00 %
Seed 3 68.4 0 0 0 0.0 % 0.00 %
Mean over seeds 55.8 0 0 0 0.0 % 0.00 %

Seeds improved (Trastuzumab + Seeds 1–3) 0 /4

AFFINITYENHANCER (– Matching)

Trastuzumab 2.8 447 392 162 7.8 % 3.24 %
Seed 1 2.6 253 45 0 0.9 % 0.00 %
Seed 2 3.4 954 838 696 16.8 % 13.92 %
Seed 3 2.3 98 47 0 0.9 % 0.00 %
Mean over seeds 2.78 438 331 215 6.61 % 4.29 %

Seeds improved (Trastuzumab + Seeds 1–3) 2 /4

AFFINITYENHANCER (– Embedding)

Trastuzumab 3.1 161 39 14 0.8 % 0.28 %
Seed 1 7.1 2,366 171 134 3.4 % 2.68 %
Seed 2 7.6 3,486 3,457 112 69.1 % 2.24 %
Seed 3 7.3 1,992 1,737 4 34.7 % 0.08 %
Mean over seeds 6.27 2,001 1,351 66 27.02 % 1.32 %

Seeds improved (Trastuzumab + Seeds 1–3) 4 /4

AFFINITYENHANCER (– Graph Transformer)

Trastuzumab 8.0 4,570 2,027 124 40.5 % 2.48 %
Seed 1 11.2 3,812 1,085 0 21.7 % 0.00 %
Seed 2 17.0 13 13 0 0.3 % 0.00 %
Seed 3 9.4 4,719 89 2 1.8 % 0.04 %
Mean over seeds 11.40 3,279 804 32 16.07 % 0.63 %

Seeds improved (Trastuzumab + Seeds 1–3) 2 /4

AFFINITYENHANCER (– Adjacency Matrix)

Trastuzumab 6.8 4,196 3,297 1,951 65.9 % 39.02 %
Seed 1 10.7 3,939 179 8 3.6 % 0.16 %
Seed 2 9.1 4,769 2,873 38 57.5 % 0.76 %
Seed 3 7.2 4,423 659 0 13.2 % 0.00 %
Mean over seeds 8.45 4,332 1,752 499 35.04 % 9.98 %

Seeds improved (Trastuzumab + Seeds 1–3) 3 /4

CDRs and frameworks; Graph-Transformer (GT) variants concentrate edits in CDRs; and the “No
Embedding” ablation makes the fewest framework edits. Across seeds, matched models repeatedly
target protruding CDR motifs. For Trastuzumab, where the interface is known, many edited positions
fall in direct contact with the antigen (Figure 2D).
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Outperforming inverse folding and inpainting baselines. Across all seeds, AFFINITYENHANCER
shifts the predicted-affinity distribution decisively upward relative to AntiFold (Figure 3A). Whereas
AntiFold—by conforming to the seed antibody’s structure—mostly proposes variants that retain
binding with similar or lower affinity, AFFINITYENHANCER consistently produces affinity-improving
designs for nearly every seed. The inpainting sequence based model IgCraft fails to propose CDR
sequences (all CDrs or heavy-only CDRs) which retain or improve binding given the context of the
framework residues. This further strengthens our claim that models which learn antibody sequence
distributions are insufficient to generate CDR sequences that retain binding. The magnitude of these
gains also exceeds those from both AntiFold and the inpainting model IgCraft (Figure 3B).

Ablations: Which components of AFFINITYENHANCER matter and why.

Sequence-Only Baseline We first compare AFFINITYENHANCER to PropEn (sequence-only) across
Seed 1–3 and Trastuzumab (Table 1). PropEn proposes designs more than 25 edits from the seed
in every case, i.e., it fails to generate variants in the seed’s neighborhood; none of its designs are
predicted binders.

Across all seeds, AFFINITYENHANCER generates designs close to the seed (Tables 1), with 26–78%
predicted binders and non-zero counts of improved binders for each seed. Edit distance is controllable
via sampling (iterations/temperature), enabling small-to-moderate edits at low settings and larger
edits at higher settings (Tables 2–5, Figure 4).

(– Matching) Autoencoder Without Guidance Removing the matching intervention reduces the
model to an embedding-space autoencoder. This yields low-diversity proposals clustered near the
seed and few binders or improved binders (notable exception: Seed 2). Matching is therefore critical
for shifting probability mass toward functional, higher-affinity regions.

(– Embedding) Generalization Without the Embedder Without GearNet embeddings and the pOAS
decoder, the model still produces some improved binders across all seeds and, for Seeds 1 and 3,
the most improved binders among ablations. This suggests that structural priors plus matching
capture useful causal signal even without the embedder. However, sequence diversity and binder
counts—especially for Trastuzumab—lag the full model. Furthermore, edit distances are less
controllable and limited to a single iteration (Tables 2–5, Figure 4).

(CNN) Weaker Structural Prior, Weaker Binders Replacing the Graph Transformer with a CNN
(PropEn-style) increases edit distances and weakens edit-distance control (Tables 2–5, Figure 4).
Binder and improved-binder yields drop substantially, indicating that the GT’s relational bias is
important for localized, functional edits.

(– Adjacency) Losing Contacts, Losing Control Using a fully connected Graph Transformer (no adja-
cency) similarly inflates edits and reduces controllability with sampling knobs (Tables 2–5, Figure 4).
This highlights the role of explicit adjacency in guiding compact, physics-aware modifications.

Comparison to experimental data and biological insights: What is AFFINITYENHANCER (AE)
able to learn and where is it still lacking.

• AE identifies positions at the rim of the antibody-antigen interface without the knowledge of
the structure of the complex: For three seeds (Seed 1, Trastuzumab and Seed 4 - additional
internal seed with known complex structure and an edit distance of 73 from the trainset
Table 7), we were able to find experimentally solved crystal structures for the antibody-
antigen complex. We mapped the most edited positions by AE to the antibody-antigen
interface (Figure 6). Strikingly, the majority of the highest edit incidence, lies along the rim
of the interface, while the core exhibits very low edit rates (Figure 6). This is a biologically
meaningful pattern since more often than not, affinity enhancement, especially starting with
high affinity seeds, involves augmenting the existing core-binding interface with additional
affinity enhancing mutations at the rim. This is a difficult task since the antibody-antigen
interface is rarely known and it’s prediction is still an open problem Goudeau & Georges
(2023); Polonsky et al. (2024); Svensson & others (2025). Thus, in the absence of known
antibody-antigen complex structures, our implicit matching framework enables AE to infer
biologically relevant positions for affinity enhancement.

• Top 25 percentile AE mutations capture highest affinity enhancing positions for two out of
three seeds For Seeds 1, 5 and 6 (additional seeds with high edit distance from the trainset

9
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Table 7), we were able to find high quality experimental data of single mutations to the seed.
In Figure 7, we show the distribution of the maximum experimentally measured affinity
improvement per position as a function of whether this position was preferentially edited
by AE. For Seeds 5 and 6, the top 25 percentile of positions edited by AE includes the
position that yields the maximum affinity improvement in experiments Figure 7A. For Seed
1, AE is able to identify two positions which were found to improve affinity by 0.7 pKD in
experiments but it misses two positions which lead to the largest affinity gains Figure 7A.
While, for each seed, the positions with the largest affinity gains from experiments are
identified by AE in the top 50 percentile of edit positions Figure 7B, it is unable to propose
these positions with the highest incidence Figure 7C. This indicates an area of improvement
for the current model. We speculate that greater granularity in the model, including explicit
structure reconstruction and including epitope context may mitigate this issue. However,
given the error in prediction in both the precise structure of the CDR loops and the antibody-
antigen interface with current SOTA models and the difficulty of acquiring experimentally
resolved structures of antibody-antigen complexes, the inaccuracy in capturing affinity
enhancing mutations will remain challenging.

• AE identifies semantically meaningful amino acid substitutions that enhance affinity: For
Seed 1, a noticeable number of experimentally identified affinity enhancing single-point
mutations were substitutions to a negatively charged residues (D or E). We found this amino
acid substitution to be prominent in the designs as well. In Figure 8A, we compare the
electrostatic surfaces of the Seed, the top design with a D mutation in CDR H3 and one
of the top mutations from experiments with a D substitution in CDR H3 (∆pKD=1.3).
The electrostatic surface comparison reveals that both the top experimentally identified
substitution and the designed variant result in more negatively charged electrostatic surface.

• AE fails to identify a key affinity enhancing amino acid substitution for one seed: For Seed
5, while the most potent single-point mutations in experiments are hydrophobic (L, Y, W
etc.), atleast a handful of top experimental mutations are substitutions to a positively charged
residues (K). We found this amino acid substitution to be absent from designs. In Figure 8B,
we compare the electrostatic surfaces of the Seed, the top design and one of the top mutations
from experiments with a K substitution in CDR H3 (∆pKD=0.65).

6 CONCLUSION

In this work, we tackle the one-shot task of affinity maturing a lead antibody for blind or unseen seeds.
AFFINITYENHANCER combines dataset matching with pretrained sequence–structure representations,
an antibody-specific decoder, and lightweight structural priors to propose targeted edits directly from
the lead sequence. Empirically, we show it recovers binding-relevant features from sequence alone
and generates affinity-enhancing mutations. Across held-out evaluations, it outperforms sequence-
only PropEn, a structure-conditioned inverse-folding baseline, and a sequence-inpainting model,
sampling variants with consistently higher affinity. Unlike reconstruction-driven approaches, AFFINI-
TYENHANCER is designed to discover causal, affinity-improving mutations—yielding practical gains
for directed evolution.

Beyond accuracy, AFFINITYENHANCER offers practical advantages for directed evolution: it general-
izes to new seeds in a one-shot regime, provides controllable edit distances for risk-aware exploration,
and remains data-efficient by leveraging pretrained biomolecular priors. These properties make
it a useful drop-in companion for antibody lead optimization when structural complexes or large
labeled datasets are unavailable. Looking ahead, AFFINITYENHANCER creates a clear path for
further gains. Incorporating epitope or antigen context could disambiguate multiple plausible routes
to improvement, while expanding labeled affinity resources will broaden coverage of binding modes.
We view these as opportunities to extend a framework that already delivers strong, sequence-only
affinity maturation with minimal assumptions and maximal practical impact.

10
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7 REPRODUCIBILITY STATEMENT

We will release (i) the exact SKEMPI-derived matched pairs (IDs and thresholds), (ii) code to
recompute matches from raw SKEMPI/pOAS, (iv) all hyperparameters, (v) pre-trained weights
for and Gθ, and (vi) scripts to reproduce all figures/tables from a single make entrypoint. We
report complete sampling settings and will upload an anonymous artifact with code and models at
submission time.
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A APPENDIX

B PROBABILISTIC BOUNDS FOR THEOREM 1

We now allow only affinity measurements to be noisy, with noise independent of the environment.
The sequence/embedding path is noise-free. Specifically,

z = ψ(x), yobs = h(c, e) + ξy,
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where ξy is zero-mean sub-Gaussian with proxy σ2
y , i.i.d. across samples, and independent of (e, c, s).

(The sub-Gaussian assumption yields tight, environment-agnostic high-probability margins; weaker
moment assumptions are possible with looser bounds.)

Observed matching rule. We form matches using observed improvements in the same environment
and exact embedding proximity:

d
(
ψ(x), ψ(x′)

)
< ε, y′obs − yobs > ∆y, e = e′. (5)

High-probability causal movement. Since y′obs − yobs =
(
h(c′, e) − h(c, e)

)
+ (ξ′y − ξy), sub-

Gaussianity implies that for any δ ∈ (0, 1) there exists

Γy(δ) = 2σy
√
2 log(1/δ) s.t. P(h(c′, e)− h(c, e) > ∆y − Γy(δ)) ≥ 1− δ.

By A1, with the same probability,

d(c′, c) >
∆y − Γy(δ)

Ky
. (6)

High-probability spurious cap (no x-noise). Assume A2 and denote z = ψ(x). From equation 5,
d(c′, c) + d(s′, s) ≤ Kx ε. Combining with equation 6 yields, with probability ≥ 1− δ,

d(s′, s) < Kx ε − ∆y − Γy(δ)

Ky
. (7)

Feasibility and interpretation. Non-vacuous guarantees require ∆y > Γy(δ) and Kxε− (∆y −
Γy(δ))/Ky ≥ 0. Because ξy is independent of the environment, the margin Γy(δ) is uniform across
all e. Equations equation 6–equation 7 are the noise-robust analogues of the deterministic bounds
equation 3–equation 4 when y is noisy.

C MODEL AND TRAINING

Dataset: The matched dataset was prepared with an edit distance threshold of 5 and a pKD threshold
of 1.5. Inputs and embeddings: All structures are predicted with ESMFold. Per-residue GearNet
embeddings concatenated over all 6 layers (dimension=3072) are obtained for the full fv (heavy
and light chains), followed by padding to a fixed heavy and light chain length of 151 and 150
respectively. Sequence decoder: The sequence decoder is a 2-layer multi-layer perceptron with a
hidden dimension of 32 and ReLU activation. The decoder is trained with the GearNet embeddings
(frozen) on the paired Observed Antibody Space (pOAS) Table2. Model: AFFINITYENHANCER has
4.2M parameters 3. The GraphTransformer was adapted from lucidrains implementation on Github
(https://github.com/lucidrains/graph-transformer-pytorch). It has 4 blocks. Each block consists of
normalization layer, an attention layer, a gated residual connection with 4 attention heads and a
hidden dimension of 256. The model was trained for 200 epochs. Training times as a function of
dataset size are reported in Table 4. Seeds 1, 2 and 3 were trained on trainset of size 2200 whereas
Trastuzumab was trained on trainset of size 1300 (after removing all sequences in the vicinity of the
seed). At inference, it takes 3-3.5 mins to generate 5000 samples (batched inference with batch size
of 64) on a single A100 or a G5 GPU.

Table 2: Parameter count for the "GearNet_MLP" autoencoder, composed of a frozen GearNet
embedder and an MLP decoder (embeddings to sequence). This model required 3 hours and 30
minutes of training time on a single A100 GPU.

Name Type Params Mode
0 encoder GearNet 20.1 M eval
1 decoder MLP 99.0 K train
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Table 3: Model Architecture and Training Details
Name Type Params Mode

0 autoencoder Gearnet_MLP 20.2 M eval
1 model GraphTransformer 4.2 M train

Table 4: Typical training configuration on A100 GPU and wall-clock time as a function of matched
dataset size.

Matched dataset size Training time (hours) # of GPUs
1300 ∼ 2.5 1
2200 ∼ 5 1
5100 ∼ 14 1
7640 ∼ 48 2

D AFFINITY ORACLE

For our in silico validation, we use Cortex (Gruver et al., 2023), a multi-task fine-tuning framework
that uses pre-trained Language models for Biological Sequence Transformation and Evolutionary
Representation (LBSTER) (Frey et al., 2024) to simultaneously model multiple properties of interest
(binding affinity, expression). Cortex has been trained on diverse set of targets, including the leads
and their surrounding data included in our manuscript. This oracle has been recently suggested in an
extensive lab-in-the-loop study for affinity maturation of antibodes (Frey et al., 2025).

Table 5: Overall performance for CORTEX (in-distribution affinity prediction).
Model Mean Binder Accuracy (%) Standard Error (%) Spearman ρ (pKD)

Cortex 82.9 0.4 0.90

Table 6: CORTEX Per-target accuracies.
Seed Accuracy (%)

Seed 1 72.4
Seed 2 62.0
Seed 3 70.0
Trastuzumab 78.4

E ANTIFOLD AND IGCRAFT

For AntiFold, for each seed, we sampled 5000 sequences at temperatures 0.2 and 0.5. For IgCraft, we
sampled sequences with default parameters and for additional setting (lower sampling temperature of
0.05 and number of steps set to 10).

F ADDITIONAL RESULTS FROM EXPERIMENTS

G POSITIONING OF AFFINITYENHANCER WITH RESPECT TO SOTA METHODS.

H COMPARISON OF AFFINITYENHANCER WITH ORACLE-GUIDED LATENT
MODELS

A common class of protein optimization algorithms relies on generative models guided by ora-
cles/predictors in latent space, with directed evolution approaches such as Tran & Hy (2024) and
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Table 7: Edit Distance and Sequence identity (SI) to trainset for test set seeds. Seeds 1-3 and
Trastuzumab are used for affinity enhancement experiments.Internal Seeds 4-6 were used for com-
parison with experimental data and biological insights. For reference, a typical heavy chain is 115
residues whereas a typical light chain is 106 residues in length. A sequence identity of 90-95%
( 10-30 residues) is commonly used to demarcate out-of-distribution samples for antibody sequences
in prior works.

Seed SI heavy light full L1 L2 L3 H1 H2 H3
Seed1 63 42 37 84 4 2 5 5 6 8
Seed2 69 28 35 69 3 3 3 2 4 6
Seed3 71 30 18 64 4 2 4 4 5 4
Trastuzumab 72 28 33 64 6 3 5 3 5 6
Seed 4 (structure comparison) 68 44 19 73 3 3 2 6 5 5
Seed 5 (experimental comparison) 66 32 35 75 3 1 4 3 4 6
Seed 6 (experimental comparison) 78 30 22 52 10 3 4 4 5 7

Table 8: Overlap between train set and test set germlines. Seeds 1-3 and Trastuzumab are used
for affinity enhancement experiments. Additional internal Seeds 4-6 are used for comparison with
experimental data and biological insights.

Matching gene in train set
Seed # heavy V-gene # heavy J-gene # light V-gene # light J-gene
Seed 1 0 193 0 0
Seed 2 0 0 0 1785
Seed 3 0 85 0 179
Trastuzumab 0 72 0 813
Seed 4 (Structure comparison) 371 85 0 279
Seed 5 (experimental comparison) 0 98 0 279
Seed 6 (experimental comparison) 941 85 0 179

Figure 4: Edit distance distribution as a function of number of iterations at sampling for different
model ablations A) Full length antibody B) CDRs only C) Framework regions only.
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Table 9: Selecting sampling parameters for Trastuzumab with the maximum number of designs within
an edit distance of [5,12] from the seed sequence. We sampled 5000 designs for 3 internal seeds
and Trastuzumab. AFFINITYENHANCER is the base model with a GearNet embedder and pOAS
sequence decoder, an adjacency-informed Graph Transformer and with data matching. PropEn is the
sequence-only model from Tagasovska et al. (2024)

.

model iterations temperature edit_distance N edit_distance [5,12]

AFFINITYENHANCER

1 0.7 1.1± 0.3 0
1 1.0 2.0± 0.9 20
5 0.7 3.4± 0.9 118
5 1.0 4.8± 1.5 2544
7 0.7 5.7± 1.1 2427
7 1.0 7.9± 1.8 4815

10 0.7 11.3± 1.3 3543
10 1.0 14.6± 2.2 805

AFFINITYENHANCER (No Matching)

1 0.7 1.3± 0.5 0
1 1.0 2.8± 1.3 393
5 0.7 1.4± 0.6 0
5 1.0 2.7± 1.3 361
7 0.7 1.4± 0.6 0
7 1.0 2.8± 1.3 407

10 0.7 1.4± 0.6 0
10 1.0 2.8± 1.3 447

AFFINITYENHANCER (No Embed)

1 0.7 2.5± 0.9 2
1 1.0 3.1± 1.1 161
2 0.7 37.2± 2.9 0
2 1.0 41.0± 3.5 0

AFFINITYENHANCER (CNN)

1 0.5 7.3± 1.3 2319
1 0.7 8.0± 1.5 4570
1 1.0 10.8± 2.1 3988
2 0.5 20.0± 1.7 0
2 0.7 21.4± 2.1 0
2 1.0 25.4± 2.7 0
3 0.5 35.3± 1.9 0
3 0.7 36.7± 2.3 0
3 1.0 40.1± 2.8 0

AFFINITYENHANCER (No Adj)

1 0.7 1.2± 0.4 0
1 1.0 2.5± 1.2 266
5 0.7 1.6± 0.7 0
5 1.0 3.5± 1.6 1049
7 0.7 2.1± 0.8 6
7 1.0 4.5± 1.9 2269

10 0.7 3.2± 1.0 238
10 1.0 6.8± 2.2 4196

Tran et al. (2025) being representative examples. To compare AffinityEnhancer to this framework,
we focus on Tran & Hy (2024) and use the authors’ implementation as shared in the public repository.
To adapt the method for binding affinity, we first train the ESM2-based decoder on the SKEMPI v2
dataset (after removing sequences close to Seed 1 and Trastuzumab for the one-shot setup). We use
the default parameters dec hidden dim = 1280, batch size=256, lr=5e-5 , and num epochs=50. The
validation MAE for the decoder is 0.451 for Seed 1 and 1.167 for Trastuzumab. We then sample
new sequences with n steps=10, population=5000, num proposes per var=4 , population ratio per
mask=0.6. We choose a lower number of steps than the default (60), since this yields designs closer
to the seed, for which we have greater confidence in the oracle predictions.

We were unable to generate a sufficiently large number of designs for MLDETran & Hy (2024) with
reasonable edit distances from the seed. For example, default settings yielded edit distances of >30
edits in the seed (Seed 1). We selected a lower number of iterations to obtain MLDE designs in the
vicinity of the seed. To match this setting, we also generated AffinityEnhancer designs with lower
temperatures and iterations. We also compared predicted affinity values between MLDE and AE and
found later to give better affinities. AE also primarily identified edits in the CDRs versus MLDE

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Selecting sampling parameters for Seed 1 with the maximum number of designs within
an edit distance of [5,12] from the seed sequence. We sampled 5000 designs for 3 internal seeds
and Trastuzumab. AFFINITYENHANCER is the base model with a GearNet embedder and pOAS
sequence decoder, an adjacency-informed Graph Transformer and with data matching. PropEn is the
sequence-only model from Tagasovska et al. (2024)

.

model iterations temperature edit_distance N edit_distance [5,12]

AFFINITYENHANCER

1 0.7 1.1± 0.3 0
1 1.0 2.2± 1.0 83
5 0.7 3.3± 0.7 33
5 1.0 4.6± 1.3 1985
7 0.7 4.8± 0.9 1148
7 1.0 6.5± 1.6 4382

10 0.7 6.9± 1.2 4178
10 1.0 10.4± 2.1 4182

AFFINITYENHANCER (No Matching)

1 0.7 1.2± 0.4 0
1 1.0 2.3± 1.1 123
5 0.7 1.1± 0.4 0
5 1.0 2.4± 1.1 154
7 0.7 1.2± 0.5 1
7 1.0 2.4± 1.2 210

10 0.7 1.2± 0.5 0
10 1.0 2.6± 1.2 253

AFFINITYENHANCER (No Embed)

1 0.7 6.7± 1.1 703
1 1.0 7.1± 1.2 2366
2 0.7 26.2± 2.1 0
2 1.0 28.4± 2.6 0

AFFINITYENHANCER (CNN)

1 0.5 10.1± 1.5 3645
1 0.7 11.2± 1.8 3812
1 1.0 14.7± 2.3 871
2 0.5 32.6± 1.7 0
2 0.7 32.9± 2.0 0
2 1.0 34.8± 2.5 0
3 0.5 42.8± 1.6 0
3 0.7 43.6± 1.9 0
3 1.0 45.9± 2.4 0

AFFINITYENHANCER (No Adj)

1 0.7 1.1± 0.4 0
1 1.0 2.2± 1.1 109
5 0.7 2.0± 0.7 0
5 1.0 3.4± 1.3 754
7 0.7 3.1± 0.9 76
7 1.0 5.2± 1.8 2960

10 0.7 6.7± 1.4 3848
10 1.0 10.7± 2.3 3939

which made edits in both CDRs and frameworks regions to the same extent. In all settings tested,
AffinityEnhancer outperforms MLDE. (Table 14).
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Table 11: Selecting sampling parameters for Seed 2 with the maximum number of designs within
an edit distance of [5,12] from the seed sequence. We sampled 5000 designs for 3 internal seeds
and Trastuzumab. AFFINITYENHANCER is the base model with a GearNet embedder and pOAS
sequence decoder, an adjacency-informed Graph Transformer and with data matching. PropEn is the
sequence-only model from Tagasovska et al. (2024)

.

model iterations temperature edit_distance N edit_distance [5,12]

AFFINITYENHANCER

1 0.7 2.7± 0.7 3
1 1.0 3.9± 1.3 1194
5 0.7 5.4± 1.0 1293
5 1.0 7.4± 1.8 4672
7 0.7 7.5± 1.2 3515
7 1.0 10.6± 2.1 4130

10 0.7 13.3± 1.7 1619
10 1.0 17.6± 2.4 48

AFFINITYENHANCER (No Matching)

1 0.7 1.4± 0.6 0
1 1.0 2.8± 1.3 443
5 0.7 1.5± 0.6 0
5 1.0 3.0± 1.4 557
7 0.7 1.6± 0.6 0
7 1.0 3.1± 1.4 672

10 0.7 1.8± 0.7 1
10 1.0 3.4± 1.5 954

AFFINITYENHANCER (No Embed)

1 0.7 7.3± 1.2 1470
1 1.0 7.6± 1.3 3486
2 0.7 30.1± 2.1 0
2 1.0 32.1± 2.6 0

AFFINITYENHANCER (CNN)

1 0.5 16.3± 1.5 10
1 0.7 17.0± 1.7 13
1 1.0 19.5± 2.2 2
2 0.5 32.3± 1.3 0
2 0.7 33.4± 1.7 0
2 1.0 35.6± 2.1 0
3 0.5 41.6± 1.6 0
3 0.7 42.0± 1.8 0
3 1.0 43.1± 1.9 0

AFFINITYENHANCER (No Adj)

1 0.7 1.8± 0.5 0
1 1.0 3.0± 1.2 440
5 0.7 5.0± 0.9 840
5 1.0 6.6± 1.6 4353
7 0.7 7.0± 1.1 2089
7 1.0 9.1± 1.8 4769

10 0.7 10.1± 1.3 3918
10 1.0 13.6± 2.2 1547
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Table 12: Selecting sampling parameters for Seed 3 with the maximum number of designs within
an edit distance of [5,12] from the seed sequence. We sampled 5000 designs for 3 internal seeds
and Trastuzumab. AFFINITYENHANCER is the base model with a GearNet embedder and pOAS
sequence decoder, an adjacency-informed Graph Transformer and with data matching. PropEn is the
sequence-only model from Tagasovska et al. (2024)

.

model iterations temperature edit_distance N edit_distance [5,12]

AFFINITYENHANCER

1 0.7 1.1± 0.3 0
1 1.0 1.9± 0.9 19
5 0.7 3.3± 0.9 78
5 1.0 4.6± 1.4 2106
7 0.7 4.7± 1.0 1021
7 1.0 6.5± 1.7 4352

10 0.7 7.2± 1.4 4066
10 1.0 10.6± 2.2 4062

AFFINITYENHANCER (No Matching)

1 0.7 1.1± 0.3 0
1 1.0 1.9± 0.9 39
5 0.7 1.2± 0.4 0
5 1.0 2.1± 0.9 37
7 0.7 1.2± 0.4 0
7 1.0 2.1± 1.0 54

10 0.7 1.3± 0.5 0
10 1.0 2.3± 1.0 98

AFFINITYENHANCER (No Embed)
1 0.7 6.9± 1.1 434
1 1.0 7.3± 1.3 1992
2 0.7 23.7± 2.1 0

AFFINITYENHANCER (CNN)

1 0.5 7.1± 1.0 834
1 0.7 7.6± 1.2 2933
1 1.0 9.4± 1.8 4719
2 0.5 16.7± 1.4 3
2 0.7 17.4± 1.7 6
2 1.0 19.7± 2.1 1
3 0.5 26.3± 1.5 0
3 0.7 26.9± 1.8 0
3 1.0 29.0± 2.3 0

AFFINITYENHANCER (No Adj)

1 0.7 1.1± 0.4 0
1 1.0 2.0± 0.9 31
5 0.7 1.9± 0.8 0
5 1.0 3.3± 1.4 747
7 0.7 3.2± 1.1 199
7 1.0 5.4± 1.9 3274

10 0.7 7.2± 1.7 4423
10 1.0 11.3± 2.5 3466

Table 13: Positioning of AFFINITYENHANCER with respect to SOTA methods.
IID optimization OOD optimization single-shot improved binders with CDR edits

AFFINITYENHANCER (ours) ✓ ✓ ✓ ✓
Property Enhancer (Tagasovska et al. (2024)) ✓ ✗ ✗ ✓
AntiFold ((Høie et al., 2024)) ✓ ✓ ✗ ✗
Walk-Jump, diffusion (Frey et al. (2023)) ✓ ✗ ✓ ✗
EffEVO, LM-based (Hie et al. (2024)) ✓ ✓ ✗ ✗
IgCraft (Greenig et al. (2025)) ✓ ✓ ✓ ✗

✓ ✗ ✓ ✗
Directed Evolution (Tran et al. (2025); Tran & Hy (2024)) ✓ ✗ ✓ ✗

Table 14: Comparison of AffinityEnhancer (AE) for Seeds 1 and Trastuzumab with MLDETran &
Hy (2024)

Method seed ED ED window Binders Improved Binder rate Improved rate
MLDE (low ED) Seed 1 5.9± 0.8 98/128 32/98 0 34.7% 0%
AE (low ED) Seed 1 5.2± 0.46 283/497 103/283 0 36.4% 0.0%
MLDE Seed 1 16.2± 1.0 5/5000 0/5 0 0% 0%
MLDE Trastuzumab 13.6± 1.1 816/5000 0/816 0 0% 0%
AE Seed 1 6.5± 1.6 4382/5000 1,105 2 22.1% 0.04%
AE Trastuzumab 7.9± 1.8 4815/5000 3970 1575 79.4% 31.5%
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Figure 5: Distribution of fraction of designs with edits per-residue for each model and seed. Black
and red dashed lines mark the 50th and 90th percentile respectively.
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Figure 6: AffinityEnhancer identifies positions relevant to the antibody-antigen interface. (Top) Seed
1 in complex with its antigen. (Middle) Trastuzumab in complex with it’s antigen HER2. (Bottom)
Internal Seed 4 in complex with its antigen. Most edited positions by the AFFINITYENHANCER are
colored red. Proposed affinity-enhancing positions are concentrated in the rim as opposed to the core
of the binding surface.

Figure 7: Comparison of AFFINITYENHANCER edits to experiments. Distribution of maximum
measured improvement in pKD over seed for a position edited by AFFINITYENHANCER. A) "True"
refers to a position in the top 25 percentile of the edited positions for that seed. B) "True" refers to
a position in the top 10 percentile of the edited positions for that seed. Positions with the highest
experimentally measured improvements in affinity are highlighted with a black box.
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Figure 8: Comparison of amino acid substitutions with experiments. Comparison of the electrostatic
surface of the Seed, top design and a top experimental single-point mutant for A) Seed 1 and B) Seed
5. Regions with the amino acid substitution in question is circled.
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