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Abstract

Evaluation of large language models for code has primarily relied on static bench-1

marks, including HumanEval [10], or more recently using human preferences of2

LLM responses. As LLMs are increasingly used as programmer assistants, we3

study whether gains on existing benchmarks or more preferred LLM responses4

translate to programmer productivity when coding with LLMs, including time spent5

coding. We introduce RealHumanEval, a web interface to measure the ability of6

LLMs to assist programmers, through either autocomplete or chat support. We7

conducted a user study (N=213) using RealHumanEval in which users interacted8

with six LLMs of varying base model performance. Despite static benchmarks9

not incorporating humans-in-the-loop, we find that improvements in benchmark10

performance lead to increased programmer productivity; however gaps in bench-11

mark versus human performance are not proportional—a trend that holds across12

both forms of LLM support. In contrast, we find that programmer preferences do13

not correlate with their actual performance, motivating the need for better proxy14

signals. We open-source RealHumanEval to enable human-centric evaluation of15

new models and the study data to facilitate efforts to improve code models.16

1 Introduction17

Coding benchmarks such as HumanEval [10] and MBPP [3] play a key role in evaluating the18

capabilities of large language models (LLMs) as programming becomes a valuable application19

through products such as GitHub Copilot [19] and ChatGPT [41]. These benchmarks quantify LLM20

abilities by measuring how well a model can complete entire coding tasks. As LLMs are increasingly21

adopted as programmer assistants—providing chat responses or autocomplete suggestions, rather22

than full code generations—prior works have argued for bringing humans-in-the-loop to evaluate23

LLMs [31, 11]. A predominant human-centric approach collects human preference judgments of24

intermediate LLM outputs, whether between pairs of LLM responses (e.g., Chatbot Arena [11]) or,25

for coding in particular, using programmer acceptance rates of LLM suggestions (e.g., in products26
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Figure 1: We introduce RealHumanEval, an end-to-end online evaluation platform of LLM-assisted
coding through autocomplete suggestions and chat support. The goal of RealHumanEval is to
facilitate human-centric evaluation of code LLMs, simplifying the workflow for researchers to
conduct user studies to measure the effect of LLM assistance on downstream human productivity
and preferences. We selected 3 families of LLMs of varying sizes (GPT-3.5, CodeLlama-34b,
CodeLlama-7b) use RealHumanEval to study whether static benchmark performance or programmer
preference judgments are aligned with programmer productivity.

such as Github Copilot [5]). However, such evaluation may not capture the LLM’s downstream27

impact on programmer productivity.28

Evaluating the utility of LLMs on downstream productivity requires conducting user studies where29

programmers code with LLM assistance. While a set of small-scale user studies have been conducted30

to primarily build a qualitative understanding of how programmers use LLM assistance, they are31

typically restricted to evaluations on one model and one form of LLM support, primarily relying32

on commercial tools like Github Copilot or ChatGPT [4, 36, 51, 47, 32, 43]. To enable evaluations33

of a broader set of LLMs and lower the barrier to conducting these studies, we introduce an online34

evaluation platform, RealHumanEval (Figure 1). The platform consists of a code editor where35

programmers can solve coding tasks with two common forms of LLM assistance: programmers36

can either ask questions to the LLM through a chat window or receive code completion suggestions37

through an autocomplete system inside the editor. The interface also supports executing and testing38

code and logging telemetry which can be used to compute productivity metrics, including time to39

complete a task or number of tasks completed, and preference metrics, including average acceptance40

rates of suggestions and the likelihood of copying code from chat responses.41

Using RealHumanEval, we conduct a user study with 213 participants to understand the effect of a42

model’s benchmark performance and the form of LLM assistance on downstream productivity metrics.43

Each participant was assigned to one of seven conditions: a control condition with no LLM support,44

three conditions with autocomplete support from either CodeLlama-7b [48], CodeLlama-34b [48],45

or GPT-3.5-turbo-instruct[7], and finally three conditions where the editor is equipped with46
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a chat window powered by the chat variants of the previous models. We deliberately select three47

model families with increasingly higher benchmark performance and consider model pairs within48

each family with similar benchmark performance to understand the effect of autocomplete versus49

chat assistance. Through the study, we collected a dataset of interactions on 771 coding total tasks,50

where 5204 autocomplete suggestions were shown and 775 chat messages were sent.51

Overall, we find that improving a model’s base performance on existing coding benchmarks leads52

to gains in human productivity, particularly in the time spent completing tasks. These trends were53

present across both chat and autocomplete interactions, validating the potential “generalizability” of54

benchmarks to more realistic contexts. However, we observe that gaps in benchmark versus human55

performance are not necessarily proportional, suggesting that further gains in benchmark performance56

do not necessarily translate into equivalent gains in human productivity. We also investigated whether57

human preference metrics, such as the average acceptance rate of suggestions and the likelihood of58

copying code from chat responses, are aligned with productivity metrics. While these preference59

metrics are readily available in real deployments of LLM systems compared to task completion time60

and thus can be attractive proxy metrics [60], we find that they are only correlated with programmer61

perceptions of LLM helpfulness but not necessarily with actual programmer performance. The62

dissimilar findings between benchmarking and human preference metrics highlight the importance of63

careful evaluation to disentangle which metrics are indicative of downstream performance.64

In summary, our contributions are as follows: (1) an open-source platform RealHumanEval to65

encourage more human-centric evaluations of code LLMs, (2) an evaluation of 6 code LLMs of66

varying performance using RealHumanEval to provide insights into the alignment and discrepancies67

between benchmark performance and human preferences with downstream user productivity. Our68

findings emphasize the importance of studying how programmers interact with code LLMs through69

user studies to identify nuances in programmer-LLM interactions. Finally, (3) we release the dataset70

of interactions collected from this study to guide the development of better coding assistants.271

2 Related Work72

Coding Benchmarks. Benchmarks are essential for tracking the progress of LLMs, and coding73

benchmarks are a key piece [1, 29, 57, 21]. Moreover, the coding ability of an LLM can be informative74

of its reasoning abilities [35]; thus, performance on coding benchmark is of broader interest. While75

HumanEval [10] and MBPP [3] are the most commonly used coding benchmarks, many extensions76

and further benchmarks have been proposed [34, 40, 59, 33, 23, 26, 56, 55], we highlight a few:77

EvalPlus extends HumanEval’s test cases [33], MultiPL-E [9] to other languages, ReCode with78

robustness checks [53], HUMANEVALPACK [38] with code repair and explanation tasks, and79

buggy-HumanEval [17] with bugs in the reference code. Relatedly, the DS-1000 [28] benchmark80

evaluates models’ abilities on data science problems that require using external libraries. More81

involved evaluations include the multi-turn program evaluation benchmark [40] and SWE-bench [23],82

which requires the LLM to resolve GitHub issues. While existing benchmarks evaluate a diverse set of83

LLM behaviors across models, these benchmarks do not, however, include a programmer-in-the-loop,84

as there would be in a real-world setup. Our evaluation complements this existing line of work by85

conducting a user study, where programmers put these behaviors to the test in realistic scenarios.86

Preference Metrics. Instead of relying solely on coding benchmarks’ pass@k metrics, which consider87

only the functional correctness of LLM-generated code, recent work has advocated for incorporating88

human preferences, which may better reflect how LLM code could be useful to a programmer without89

necessarily being functionally correct [16]. Preferences are generally collected after a single turn90

(e.g., after a single LLM response or suggestion) and thus can be collected at scale [5, 11] or even91

simulated with LLMs [18, 58]. Given that preferences are only a form of intermediate feedback, in92

this study, we evaluate whether human preferences provide a signal for downstream productivity93

gains when coding with LLMs.94

2The code for the interface, data, and our analyses can be found at: https://github.com/clinicalml/
realhumaneval.

3

https://github.com/clinicalml/realhumaneval
https://github.com/clinicalml/realhumaneval


Your goal is to
implement the 
build_vocabulary method in the 
provided Tokenizer class. 

A tokenizer is an object that 
converts words to numerical IDs.
The objective of the 
build_vocabulary method is as 
follows:
• The method's primary goal is 

to create two dictionaries: 
self.word_to_id and 
self.id_to_word.

• self.word_to_id should map 
each unique word in your 
corpus to a unique numerical 
identifier (ID).

•  self.id_to_word is the reverse 
mapping, where each unique ID 
corresponds to a word.

The method should only consider 
the most frequent words in the 
corpus, up to a limit specified by 
max_vocab_size.

class Tokenizer:
  def __init__(self, max_vocab_size=200):
    self.max_vocab_size = max_vocab_size
    self.word_to_id = {}    
    self.id_to_word = {}  
  def tokenize(self, text): 
    eturn text.lower().split()
  def build_vocabulary(self, corpus):
   word_freq = Counter()

for sentence in corpus:
word_freq.update(sentence)

Type your message….

User
How do I count occurrence of each 
word in a list of strings

Chabot

You can use the ngram function in the nltk 
library to count the occurrence of each word 
in a list of strings. Here's an example:

import nltk
# List of strings
texts = ["This is an example sentence", 
"Another example sentence"]
ngrams = nltk.ngrams(texts, 1)
for ng in ngrams:
   # print(ng[0], ng[1])
  print(ng[0], ng[1].count())

Output: Run
Output and errors will appear here

Submit

Copy

Clear Chat

2/7 tasks completed

Reset Code Change Theme Show Instructions Time left: 15:02

(a) (b) (c)

Autocomplete suggestion

Figure 2: We introduce RealHumanEval, an online evaluation platform for LLM-assisted coding. The
platform consists of (a) a customizable task description, (b) the code editor which shows autocomplete
suggestions in grey, and (c) the chat assistant. Above the editor, users can check their task progress
and the amount of time left, reset the editor, change the editor theme, and view study instructions.
Below the editor, they can run and submit their code.

Programmer-LLM Interaction. Prior work conducting user studies where programmers code with95

LLM assistance has primarily focused on two forms of LLM support, autocomplete suggestions [51,96

43, 4, 45, 36, 52, 14] and chat dialogue [47, 12, 25, 20, 39]. While these studies have made97

progress in understanding programmer-LLM interactions, all studies only consider one LLM—98

often Copilot or ChatGPT—and one form of LLM support—either autocomplete or chat, making99

it difficult to compare outcomes and metrics across models and across forms of support. We100

contribute a web platform RealHumanEval to enable ease of human-centric evaluation of more101

models and forms of support (see Appendix A for a more in-depth comparison). Beyond applications102

of coding assistance, our study contributes to the broader literature studying human interactions with103

LLMs [31, 13, 30, 15, 22, 27, 24, 8].104

3 RealHumanEval105

We introduce RealHumanEval, a web-based platform to conduct human-centric evaluation of LLMs106

for programming through the workflow shown in Figure 1. We created RealHumanEval to facilitate107

large-scale studies of programmers coding with LLMs, eliminating the need for participants to108

perform any additional installation of a bespoke IDE or study-specific extension or to have access to109

special hardware to serve study-specific models.110

Interface. As shown in Figure 2, RealHumanEval incorporates many basic features of common code111

editors and the functionality of programming interview sites such as LeetCode. Given a coding task112

that consists of a natural language description, partial code (e.g., a function signature), and unit tests113

that evaluate the task, RealHumanEval allows the programmer to write code with assistance from an114

LLM to complete the task. The platform has a panel that displays the natural language description of115

a task, as shown in Figure 2(a), alongside partial code to solve the task. Participants then write their116

code for the task in the code editor and can test their code with a button that checks the code against117

test cases and runs their code directly. The editor displays any errors, if available, and whether the118

code passes the unit test. Once the programmer completes the task, a new task can be loaded into the119
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interface. For our user study, we only use a single code editor file, however, RealHumanEval can120

support multiple-file projects.121

Forms of LLM Assistance. RealHumanEval supports two forms of LLM assistance: autocomplete-122

based and chat-based. Examples of autocomplete and chat assistants include GitHub’s Copilot [19],123

Replit’s Ghostwriter [46], Amazon CodeWhisperer [2], and ChatGPT [41]. In autocomplete-based124

assistance, the programmer writes code in an editor, and the LLM displays a code suggestion inline,125

which is greyed out as shown in Figure 2(b). The LLM is assumed to be able to fill in code given a126

suffix and prefix. A suggestion, based on the current code body in the editor, appears whenever the127

programmer pauses typing for more than two seconds or when the programmer requests a suggestion128

by pressing a hotkey. The programmer can accept the suggestion by pressing the tab key or reject it129

by pressing escape or continuing to type.130

In chat-based assistance, the programmer writes code in an editor and has access to a side chat131

window where the programmer can ask questions and get responses from the LLM, as illustrated in132

Figure 2(c). The LLM is assumed to be a chat model. The programmer can copy and paste code from133

the LLM’s responses into the editor. Currently, the interface supports any LLM invoked via an online134

API. Further information on the implementation of both forms of assistance is in Appendix B.135

Telemetry logging. RealHumanEval logs all user behavior, including interactions with LLM support.136

For each autocomplete suggestion, we log the following tuple {(Pi, Si), Ri, Ai}ni=1 where (Pi, Si)137

is the prefix and suffix of the code based on cursor position at the time of suggestion i, Ri is the LLM138

suggestion, and Ai is a binary variable indicating whether the suggestion was accepted. All the logs139

are stored in a dataset Dac. For chat-assistance, we log for each user message the following tuple140

{Xi,Mi, Ri, Ci}ni=1 where Xi is the code at the time of message i, Mi is the user message (including141

prior chat history), Ri is the response from the LLM for the message, and Ci is the number of times142

code was copied from the LLM’s response. All the logs are stored in a dataset Dchat. Moreover, every143

15 seconds, the interface saves the entire code the user has written.144

Metrics. From the telemetry logs, RealHumanEval provides multiple metrics to analyze programmer145

behaviors: the number of tasks completed (completion is measured by whether the submitted code146

passes a set of private test cases), time to task success (measured in seconds), acceptance rate (fraction147

of suggestions shown that are accepted, for autocomplete), and number of chat code copies (counting148

when user copies code from LLM response, for chat) among other metrics.149

4 Study Design150

Using RealHumanEval, we conducted a user study to evaluate (1) the impact of LLM assistance151

on programmer performance as a function of the LLM’s performance on static benchmarks and (2)152

whether human preference metrics correlate with programmer productivity metrics.153

Overview. For the entire duration of the study, participants are randomly assigned either to a154

control group, where they experienced the no LLM condition, or to the LLM-assisted group, where155

they experienced the autocomplete or chat support condition. For autocomplete-based support,156

the window in Figure 2(c) is hidden. For chat-based support, no autocomplete suggestions are157

shown in Figure 2(b). Participants are only assigned to one condition to minimize context switching,158

given the relatively short duration of the study. The study was conducted asynchronously using the159

RealHumanEval platform; participants were told not to use any outside resources (e.g., Google),160

and cannot paste any text originating outside the app into the editor. Specific instructions are in161

Appendix B. The first problem was a simple task (i.e., compute the sum and product of a list) for162

participants to familiarize themselves with the interface. Participants are given 35 minutes to complete163

as many tasks as possible. If 10 minutes pass and the participant has not completed the task, a button164

appears to provide the option to skip the task.165

Tasks. We designed 17 coding tasks for the platform that can be categorized into three categories: (a)166

algorithmic problems from HumanEval (e.g., solve interview-style coding), (b) data manipulation167

problems (e.g., wrangle input dataframe into desired output), and (c) editing and augmenting code168
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tasks (e.g., fill in provided code scaffold to achieve desired behavior). While the set of tasks does not169

evaluate all types of coding problems exhaustively, they do capture tasks of varying difficulty and170

solutions of varying length, as well as the use of different programming skills, leading to varying171

opportunities to benefit from LLM support. We chose 17 tasks to build diversity across tasks while172

being able to collect enough samples per task. We ensured that no LLM model considered in the173

study, in addition to GPT-4, could solve all tasks perfectly, so that programmers would not simply174

accept all LLM suggestions and that each task could be solved in under 20 minutes by an experienced175

programmer (validated through pilots with the authors and volunteer participants), to ensure that176

these were reasonable questions to consider for a user study. These 17 tasks are distributed into five177

sets, where each set consists of a different mix of task types in varying orders but shares the first two178

tasks. Each participant is randomly assigned to one of these sets. The LLMs are not aware of the task179

descriptions unless the programmer types them in the editor or chat window; this is to simulate the180

real world where the task description represents the programmer’s hidden true intent. We provide181

examples of the coding tasks in Appendix C and in full in the supplementary materials.182

Conditions. For the autocomplete conditions, we chose base LLM models that naturally generate183

next-word predictions, whereas the “chatty” variants of the base models are employed for the chat con-184

ditions. To evaluate the effect of LLM capabilities, we selected three types of models that demonstrate185

clear gaps in performance on existing benchmarks (as shown in Figure 8). In total, we selected 6 LLMs186

for our study: 4 from the Code Llama family [48] (CodeLlama-7b, CodeLlama-7b-instruct,187

CodeLlama-34b, CodeLlama-34b-instruct), along with two models from the GPT series [7]188

(GPT-3.5-turbo and GPT-3.5-turbo-instruct). To avoid confusion, we refer to the autocom-189

plete conditions by the base name of the model: CodeLlama-7b, CodeLlama-34b and GPT-3.5190

(refers to GPT-3.5-turbo-instruct); and the chat conditions by the base name of the model with191

chat: CodeLlama-7b (chat) (refers to CodeLlama-7b- instruct), CodeLlama-34b (chat)192

(refers to CodeLlama-34b- instruct) and GPT-3.5 (chat) (refers to GPT-3.5-turbo). Spe-193

cific choices of parameters, system prompts, and other considerations are provided in Appendix D.194

Participants. We recruited 229 total participants from university mailing lists and social media to195

capture a range of coding experiences. We verified that participants were above 18 years of age,196

resided in the United States, and correctly completed a simple Python screening question. Out of the197

229 participants, we filtered out those who did not complete any task or did not write code for a period198

of 15 minutes during the study to arrive at 213 final participants. Of the 229 participants, 34% identify199

as Female. In terms of occupation, 79% are Undergraduate or Graduate Students studying computer200

science, 13% work in Software Development and 7% work in AI. While a majority of our participants201

were students, only 34% of participants had less than 2 years of professional programming experience.202

We ensured that participants were roughly equally distributed across experimental conditions based on203

programming experience. 11% had never used any form of AI for coding while 67% of participants204

use AI at least once a week for coding. Participants were provided with a $15 Amazon gift card as205

compensation. This study was approved by institutional IRB review.206

User study metrics. To quantify the benefits of LLM assistance on the number of tasks completed207

and time to task success, we report the gap between each condition where some form of LLM208

assistance was provided and the control no LLM condition, which we denoted as ∆. For example, for209

time to task success, ∆ < 0 for LLM support indicates that participants took less time to complete210

tasks with the LLM. In addition to the quantitative metrics, we also ask post-study questions to obtain211

participants’ subjective measures of their interactions with the LLM: we ask participants to rate the212

helpfulness of the LLM on a scale of [1, 10] and to describe how the LLM support provided (if any)213

was helpful and how it could be improved. We also measure two preference metrics, suggestion214

acceptance rate and percentage of chat code copies.215

5 Results216

We report results for data collected from 213 participants split across the seven conditions; since217

condition assignment is random, each condition has around 25 to 35 participants (except for No LLM,218
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Figure 3: We measure the effect of LLM support on user study performance on mean task duration in
seconds (a,c) and number of tasks completed across model type (b,d). In (a) and (b), we compute ∆,
the difference between each model type—aggregating conditions corresponding to the same model
type, e.g., Codellama7b and Codellama7b (chat)—and the No LLM condition for each metric. In (c)
and (d), we break down the same metrics for each of the seven conditions and mark the percentage
improvement over the No LLM condition. We observe that better LLM support can improve task
completion time, but not necessarily increase the number of tasks completed. Error bars denote
standard errors—the standard deviation divided by the square root of the sample size (i.e., across
participants), where each participant contributes a single data point.

which has 39 participants). Participants completed a total of 771 coding tasks (mean of 3.6 tasks per219

person) on average in 334 seconds (std=238 seconds), were shown 5204 autocomplete suggestions220

(|Dac|), with an average 11.3% acceptance rate, and received 775 messages from the chat LLMs221

(|Dchat|), with 29.6% of messages having at least one copy event. In the following analyses, we222

conduct ordinary least squares regressions with Benjamini-Hochberg correction and use a significance223

level of 0.05. A more in-depth analysis of both datasets and results is in Appendix E.224

Providing LLM assistance reduces the amount of time spent coding. To measure the productivity225

gains of LLM assistance to programmers, we look at two metrics: the amount of time spent coding226

(in seconds) and the number of tasks completed. We first distill our observations for each metric by227

comparing performance for each model type (i.e., combining autocomplete and chat models) against228

the No LLM condition.3 As shown in Figure 3(a), we find that compared to the No LLM setting where229

participants spent an average of 400 seconds per task, both GPT-3.5 and CodeLlama-34b models230

reduce the amount of time spent per task by an average of 78 and 64 seconds respectively (p = 0.04231

and p = 0.12). In contrast, CodeLlama-7b models slightly increase the average time spent on a task232

by 10 seconds. However, we do not observe statistical differences across any of the conditions in233

3In Appendix E, we repeated the same analyses controlling for task difficulty and observed the same trends.
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Figure 4: Measuring participant preferences of different models by the amount of interaction with
chat (a) or autocomplete systems (b), with standard error. We find that preference judgments align
with the reported helpfulness of the LLM assistant post-study (c); however, these preferences do not
necessarily align with their actual task performance.

the number of tasks completed, as shown in Figure 3(b), meaning no form of LLM support allowed234

programmers to solve more problems than they otherwise would have on their own. We hypothesize235

that benefits in task completion were not observed because of the short duration of the user study (35236

minutes) and the amount of time it takes to complete each task, though we do observe an increase in237

the number of tasks attempted.238

We now consider how our observations using RealHumanEval implicate the broader code LLM239

evaluation landscape, specifically the use of (1) static benchmarks and (2) human preference metrics.240

(1) Are LLM performance on static benchmarks informative of user productivity with LLM241

assistance? We find that improvements in model-specific evaluations on benchmarks also improve242

human performance on both productivity metrics in the user study (i.e., CodeLlama-7b models led243

to the least number of tasks completed, while GPT-3.5 models led to the most). Interestingly, this244

trend holds even when considering metrics with chat and autocomplete separately, in Figure 3(c-245

d). However, significant gaps in benchmark performance result in relatively indistinguishable246

differences in terms of human performance. For instance, CodeLlama-34b (chat) is 19% better247

over CodeLlama-7b (chat) models on HumanEval, and participants are 22.8% (95% CI [2.8,248

38.7]) faster on average to complete a task with 34b vs 7b. Yet, GPT-3.5 (chat) model outperforms249

CodeLlama-34b (chat) by 85% on HumanEval, and yet participants equipped with GPT-3.5250

(chat) models are only 8.3% (95% CI [-11.2, 24.6]) faster than those with CodeLlama-34b (chat).251

While we do not necessarily expect performance gaps to be consistent, this finding suggests that,252

after a certain point, additional gains on static benchmarks may not translate to practical utility.253

(2) Do human preferences align with productivity? We also consider programmer preferences254

for the LLM assistant’s suggestions on autocomplete and chat: the average suggestion acceptance255

rate and the average copies-per-response respectively. While both GPT-3.5 and CodeLlama-34b256

models reduced the amount of time spent coding over CodeLlama-7b, we do not find the same257

trends reflected in human preferences. As shown in Figure 4(a), we find that suggestions from258

CodeLlama-34b are less likely to be accepted at 5% compared to 15% and 9% for GPT-3.5 and259

CodeLlama-7b (p < 0.001 and p = 0.19). The same ordering occurs for the percentage of chat260

messages copied (27% versus 35% and 29%, though not significant) in Figure 4(b). By analyzing261

the participants’ qualitative responses, discussed in Section F, we identify potential factors that may262

have contributed to these preferences, including a perceived lack of context in CodeLlama-34b263

suggestions and a slight increase in latency in CodeLlama-34b (chat) responses. These results264

suggest that various external factors that might be difficult to anticipate a priori can easily affect265

human preferences even if they do not impact downstream productivity.266

5.1 Additional User Study Observations267

Findings on the effect of the form of LLM support and task type further illustrate the importance of268

evaluation with humans in the loop.269
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Chat support is perceived to be more helpful than autocomplete support. Even though au-270

tocomplete and chat variants obtained similar performance on static benchmarks and participant271

performance in both conditions conditioned on a model type was relatively similar, we observe that272

chat models are rated by participants in the post-study questions as significantly more helpful than273

autocomplete models (p < 0.001), as shown in Figure 4(c). Again, we observe that CodeLlama-34b274

models tend to be rated as less helpful (3.3 out of 10), than the other two models (4.19 and 5.09 out275

of 10 for CodeLlama-7b and GPT-3.5).276

The benefits of LLM assistance can vary by task type. We also analyze the time spent on each task277

category, comparing when participants have access to LLM assistance versus the control condition.278

As shown in Figure 12, we find suggestive evidence that LLM assistance was particularly effective in279

reducing the time programmers needed to solve data manipulation tasks, by 28.35%, and slightly280

less so for problems that required editing and augmenting existing code, by 13.48%. In contrast, we281

found that LLMs were unhelpful on algorithmic problems, increasing the amount of time spent by282

11.7%. A breakdown by individual task is in Appendix E.283

6 Discussion284

In this work, we introduce RealHumanEval, a human-centric evaluation platform for code LLMs,285

and conduct a user study using the platform to measure programmer productivity assisted by different286

LLMs. We believe RealHumanEval can be adopted to evaluate newly released LLM models in a287

more meaningful way and become a standard for evaluation. To enable this, our interface is designed288

to be easily repurposed for future user studies and evaluations by the community and extended to289

evaluate new ways of interacting with LLMs for programming.290

Recommendations for future work. We summarize participant suggestions on how coding assistants291

could be improved (more detail in Appendix F). Participants overwhelmingly felt that LLMs struggled292

to infer the appropriate context to provide the most useful support from the information available,293

highlighting the need for benchmarks that capture settings where LLMs need to infer intent from294

partial or fuzzy instructions. The suggestion also underscores the importance of evaluating LLMs295

with humans-in-the-loop; we recommend the community leverage and build on RealHumanEval296

to evaluate new LLMs’ coding abilities. There are also opportunities to improve autocomplete and297

chat assistants to be better programming partners [54]. For example, autocomplete systems might298

benefit from personalization of when participants would benefit from suggestions and dynamically299

adjusting the length, while chat-based systems could be improved to have better, more tailored300

dialogue experience and better integration with the editor. Toward these goals, we release the datasets301

of user interactions that can be leveraged as signals of user preferences and behavior patterns.302

Limitations. Firstly, we acknowledge that a set of 17 coding tasks does not span the entire set of303

tasks a professional programmer might encounter in their work and may limit the generalizability of304

our evaluations of the 6 models. We encourage future work to leverage RealHumanEval to conduct305

further studies with a more extensive set of tasks. Second, the coding tasks we used are of short306

duration, while real-world programming tasks can take hours to months. This presents a trade-off307

in study design: short tasks allow us to evaluate with more participants and models in a shorter308

period but give us a less clear signal compared to longer-term tasks. Third, RealHumanEval does309

not fully replicate all functionality existing products such as GitHub Copilot may have so the study310

may underestimate exact productivity benefits. Such products are complex systems comprising311

more than a single LLM, where many details are hidden and thus not easily replicable. We release312

RealHumanEval to enable others to build more functionality in an open-source manner.313

Societal implications. While our evaluations focused on productivity metrics, there are additional314

metrics of interest that may be important to measure when studying programmer interactions with315

LLM support. On the programmer side, further evaluations are needed to understand whether316

programmers appropriately rely on LLM support [50] and whether LLM support leads to potential317

de-skilling [6]. Further, our metrics do not consider potential safety concerns, where LLMs may318

generate harmful or insecure code [42, 44].319
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A Comparison to prior studies554

Table 1: A comparison of our study against prior studies understanding programmer-LLM interactions
in terms of the number of participants, models, types of LLM interaction, and tasks. Note that Cui et
al. [14] was a field experiment and thus not a controlled user study with a fixed number of tasks.

Study # participants # models Autocomplete? Chat? # tasks
Vaithilingam et al. [51] 24 1 ✓ ✗ 3
Peng et al. [43] 95 1 ✓ ✗ 1
Barke et al. [4] 20 1 ✓ ✗ 4
Prather et al. [45] 19 1 ✓ ✗ 1
Mozannar et al. [36] 21 1 ✓ ✗ 8
Vasconcelos et al. [52] 30 1 ✓ ✗ 3
Cui et al. [14] 1974 1 ✓ ✗ *

Ross et al. [47] 42 1 ✗ ✓ 4
Chopra et al. [12] 14 1 ✗ ✓ 4
Gu et al. [20] 22 1 ✗ ✓ 10
Kazemitabaar et al. [25] 69 1 ✗ ✓ 45
Nam et al. [39] 32 1 ✗ ✓ 2

Ours 213 6 ✓ ✓ 17

In Table 1, we compare the aspects of our study with prior works that have conducted user studies555

where programmers code with LLM support. To our knowledge, ours is the first study to consider556

models of varying performance capabilities and multiple forms of support. Additionally, we note that557

the majority of studies have similar participant profiles as ours (i.e., students with some programming558

experience and industry professions), though a few focus exclusively on novice programmers [25, 45].559

Finally, multiple studies have limited scope in terms of the number and types of coding tasks that are560

considered (e.g., focusing on one minesweeper game [45] or simple plotting tasks [47]), which differ561

from the breadth of tasks that have been evaluated in benchmarks and are present in practical use562

cases.563

B User study details564

B.1 RealHumanEval interface screenshots565

We show examples of the RealHumanEval web interface used in the study: autocomplete conditions566

(Figure 5 and Figure 6) and chat conditions (Figure 7). Note that the interface is the same as that of567

the autocomplete conditions for the no LLM condition, except there is no LLM to provide any inline568

code suggestions.569

B.2 User Study Instructions570

Before participants enter the main interface, they are provided with the following text:571

After you fill out the information here, click the Start Experiment button to proceed.572

Please DO NOT refresh or press back as you may lose a fraction of your progress,573

if needed you can refresh while coding but you will lose your code.574

Your name and email will NOT be shared with anyone or used in the study.575

Note that there is a chance the interface may not have AI, that is not a bug.576

By performing this task, you consent to share your study data.577

In all conditions, a pop-up is displayed with the following instruction:578

Welcome to the user study! You will first complete a tutorial task to make you familiar with the study.579
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Figure 5: Screenshot of the autocomplete LLM-assistance interface in our user study.

Figure 6: Another screenshot of the autocomplete LLM-assistance interface in our user study.

• You will be writing code in Python only and use only standard python libraries and only580

numpy and pandas.581

• After the tutorial task, you will have 35 minutes total where you will try to solve as many582

coding tasks as possible one at a time.583

• It is NOT allowed to use any outside resources to solve the coding questions (e.g., Google,584

StackOverflow, ChatGPT), your compensation is tied to effort only.585

B.2.1 Autocomplete Condition586

You will write code in the interface above: a code editor equipped with an AI assistant that provides587

suggestions inline.588

• The AI automatically provides a suggestion whenever you stop typing for more than 2589

seconds.590

• You can accept a suggestion by pressing the key [TAB] or reject a suggestion by pressing591

[ESC].592
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Figure 7: Screenshot of the chat LLM-assistance interface in our user study.

• You can also request a suggestion at any time by pressing [CTRL+ENTER] (Windows) or593

[CMD+ENTER] (Mac).594

• You can run your code by pressing the run button and the output will be in the output box at595

the bottom in grey.596

• Press the submit button to evaluate your code for correctness. You can submit your597

code as many times as you wish until the code is correct.598

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this599

button if you absolutely cannot solve the task.600

Note: please be aware that the AI assistant is not perfect and may provide incorrect suggestions.601

Moreover, the AI may generate potentially offensive suggestions especially if prompted with language602

that is offensive.603

B.2.2 Chat Condition604

You will write code in the interface above: a code editor equipped with an AI assistant chatbot in the605

right panel.606

• The AI chatbot will respond to messages you send and incorporate previous messages in its607

response. The AI does not know what the task is or the code in the editor.608

• When the AI generates code in its response, there is a COPY button that will show up above609

the code segment to allow you to copy.610

• You can test your code by pressing the run button and the output will be in the output box at611

the bottom in grey.612

• Press the submit button to evaluate your code for correctness. You can submit your613

code as many times as you wish until the code is correct.614

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this615

button if you absolutely cannot solve the task.616

Note: please be aware that the AI assistant is not perfect and may provide incorrect suggestions.617

Moreover, the AI may generate potentially offensive suggestions especially if prompted with language618

that is offensive.619
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B.2.3 No LLM Condition620

You will write code in the interface above: a code editor.621

• You can run your code by pressing the run button and the output will be in the output box at622

the bottom in grey.623

• Press the submit button to evaluate your code for correctness. You can submit your624

code as many times as you wish until the code is correct.625

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this626

button if you absolutely cannot solve the task.627

B.2.4 Post-Study Questionnaire628

• Thinking of your experience using AI tools outside of today’s session, do you think that629

your session today reflects your typical usage of AI tools?630

• How mentally demanding was the study? (1-20)631

• How physically demanding was the study? (1-20)632

• How hurried or rushed was the pace of the study? (1-20)633

• How successful were you in accomplishing what you were asked to do? (1-20)634

• How hard did you have to work to accomplish your level of performance? (1-20)635

• How insecure, discouraged, irritated, stressed, and annoyed were you? (1-20)636

• Overall, how useful/helpful was the AI assistant? (1-10)637

• In which ways was the AI assistant helpful? What did it allow you to accomplish? (free-text)638

• How could the AI suggestions be improved? (free-text)639

• Additional comments (Optional): anything went wrong? any feedback? (free-text)640

To ensure consistency in responses to scale-based questions, we labeled 1 with “low” and either 10 or641

20 with “high” depending on the question.642

B.3 Data release considerations643

We took the following measures to mitigate potential ethical concerns regarding the release of the644

study. First, the study protocol was approved by institutional IRB review. Second, before participating645

in the actual study, all participants were provided with a consent form outlining the study and the646

data that would be collected as part of the study (including interaction data with LLMs) and provided647

with the option to opt out of the study if they so choose. Finally, after data collection and prior to648

public data release, the authors carefully checked all participant interactions with LLMs, particularly649

chat dialogue, to ensure that no personally identifiable information was revealed.650

C Task Design651

C.1 Task categories652

Algorithmic coding problems: Many coding tasks require programmers to implement algorithmic653

thinking and reasoning and are widely used to evaluate programmers in coding interviews. To654

identify algorithmic coding problems, we sample representative problems from the HumanEval655

dataset [10]. Given gpt-3.5-turbo’s high performance on this type of problem, we ensure that we656

also include problems where it fails to solve the problem on its own. We evaluated each question using657

test cases from the HumanEval dataset. We included the following problem ids from HumanEval:658

is_bored 91, is_multiply_prime 75, encode_message 93, count_nums 108, order_by_points 145,659

even_odd_count 155, sum_product 8, triple_sum_to_zero 40. In addition, we created a custom660

problem called event_scheduler. All tasks with unit tests will be released.661
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Editing and augmenting existing code: When working with existing repositories, programmers662

will often need to edit and build on code that may have been written by others [49]. We designed663

questions where participants are either provided with either code scaffold to fill in or with code body664

that they are asked to modify the functionality of. When designing such questions, we take care to665

avoid common implementations (e.g., a traditional stack and queue) that would have appeared in666

LLM training data. We also constructed a set of test cases for each question. The four problem names667

are calculator, tokenizer, login authenticator and retriever.668

For example, here is the login authenticator problem description:669

Your goal is to implement the LoginAuthenticator class, which will be used to670

authenticate users of a system. The class will include the following methods:671

_hash_password (Private Method): Creates a hash of a given password. Accepts a pass-672

word (string) and returns the hashed password using any hashing technique.673

add_user Method: Adds a new user to the system with a username and a password. It674

checks if the username already exists, hashes the password if it does not, and stores675

the credentials. Returns True if successful.676

remove_user Method: Removes a user from the system by deleting their username entry677

from self.user_credentials if it exists. Returns True if successful.678

change_password Method: Changes a user’s password after authenticating the user with679

their old password. If authenticated, it hashes the new password and updates680

self.user_credentials. Returns True if successful.681

The programmer is given the following initial code:682

683
684

class LoginAuthenticator:685

def __init__(self):686

# DO NOT CHANGE687

self.user_credentials = {} # dictionary for username:688

hashed_password689

690

def _hash_password(self , password):691

# WRITE CODE HERE692

return693

694

def add_user(self , username , password):695

# WRITE CODE HERE696

return697

698

def authenticate_user(self , username , password):699

# DO NOT CHANGE700

#Checks if the given username and password are valid701

if username not in self.user_credentials:702

return False703

return self.user_credentials[username] == self._hash_password(704

password)705

706

def remove_user(self , username):707

# WRITE CODE HERE708

return709

710

def change_password(self , username , old_password , new_password):711

# WRITE CODE HERE712

return713714

Data science tasks: Given the increased usage of data in many engineering disciplines, program-715

mers are often involved in data science problems. We design data science problems inspired by the716
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DS-1000 dataset [28], where participants need to perform multiple data manipulation and wrangling717

operations and return a resulting Pandas dataframe. To ensure that an LLM cannot achieve perfect718

accuracy on its own, we only show an example of the input and target dataframes without providing719

specific instructions on each operation. The code will be evaluated based on the correctness of720

the dataframe in an element-wise fashion. The four problem names are table_transform_named,721

table_transform_unnamed1, table_transform_unnamed2 and t_test.722

Here is for example the problem table_transform_unnamed1:723

Given the input pandas DataFrame:724

col1 col2 col3 col4 col5

0 6 1 5.38817 3 2
1 9 2 4.19195 5 8
2 10 8 6.8522 8 1
3 6 7 2.04452 8 7
4 1 10 8.78117 10 10

725

Transform this DataFrame to match the following output structure, recognizing the726

relationship between the input and output DataFrames:727

col1 col2 col3

0 6 2 8.38817
1 15 3 9.19195
2 25 9 14.8522
3 31 8 10.0445
4 32 11 18.7812
0 0 0 0
0 0 0 0

728

Implement a function named transform_df that takes the input DataFrame and729

returns the transformed DataFrame, discovering and applying the patterns between730

them.731

The programmer is given the following initial code:732

733
734

import pandas as pd735

from io import StringIO736

737

# Original dataset738

data = ’’’739

col1 ,col2 ,col3 ,col4 ,col5740

6,1,5.3881673400335695 ,3,2741

9,2,4.191945144032948 ,5,8742

10 ,8,6.852195003967595 ,8,1743

6,7,2.0445224973151745 ,8,7744

1,10,8.781174363909454 ,10,10745

’’’746

747

# Read the dataset into a DataFrame748

df = pd.read_csv(StringIO(data))749

750

def transform_df(df):751

# Your code here752

753

print(transform_df(df))754755
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C.2 Task organization756

We created five task sets where we fixed the first task (in addition to the tutorial sum_product task)757

and varied the remaining tasks randomly ensuring a split across the categories. The five sets are:758

1. Task Set 1: even_odd_count, triple_sum_to_zero, table_transform_named, tokenizer, en-759

code_message, t_test, event_scheduler.760

2. Task Set 2: even_odd_count, is_bored, login_authenticator, is_multiply_prime, count_nums,761

table_transform_named, calculator.762

3. Task Set 3: even_odd_count, count_nums, calculator, table_transform_unnamed2, lo-763

gin_authenticator, encode_message, is_bored.764

4. Task Set 4: even_odd_count, order_by_points, retriever, triple_sum_to_zero, tokenizer,765

event_scheduler, encode_message.766

5. Task Set 5: even_odd_count, is_multiply_prime, table_transform_unnamed1, t_test,767

is_bored, order_by_points, triple_sum_to_zero.768

D LLM Details769
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Figure 8: Pass@1 of LLM models and their chat variants on two canonical benchmarks, Hu-
manEval and MBPP (results from [48, 33]), showing that CodeLlama-7b models perform worse
than CodeLlama-34b models, which are less performant than GPT-3.5 models.

We select three models of varying benchmark performance as shown in Figure 8. Here we provide770

links to model weights (where applicable) and any additional details.771

• CodeLlama (7b, 34b) and CodeLlama Instruct (7b, 34b). Accessed from https://api.772

together.xyz/. Note that the base model variants are no longer available from this source.773

The license for the CodeLlama models is at https://github.com/meta-llama/llama/774

blob/main/LICENSE.775

• GPT-3.5-turbo. Specific model version is gpt-3.5-turbo-0613. Accessed through the776

OpenAI API. This is a closed model and does not have an associated license.777

• GPT-3.5-turbo-instruct. Accessed through the OpenAI API. This is a closed model and778

does not have an associated license.779

LLM parameters. For all LLMs, we used a temperature setting of 1 to ensure varied responses.780

For autocomplete LLMs, each time we query the LLM to generate a suggestion, we sample a random781

number according to a normal distribution with mean 64 tokens and std 15 truncated to the range782

[10,120] and set the max_token parameter to that sampled value. We used the mean value of 64 in783

accordance with Personal Copilot HuggingFace implementation 4. We allow the max_token length784

to be random so that we have access to future data to determine the optimal length of suggestions,785

this is because base LLMs are not trained with an EOS token and thus do not know when to stop786

generating code. For the chat LLMs, we set the max_token parameter to 512 tokens constant.787

4https://huggingface.co/blog/personal-copilot
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Why we did not select other model candidates. Of the CodeLlama models available to use at the788

time of the study, we omitted CodeLlama-13b. We did not select CodeLlama-13b as its performance789

on HumanEval is very similar to the 7b variant. Additionally, CodeLlama-70b had not been released790

when we conducted the study. We did not include GPT-4 because of the lack of availability of the791

completion-based variant via API.792

D.1 Prompts used793

We used the following system prompt for all chat-based LLMs:794

You are an expert Python programmer, be helpful to the user795

and return code only in Python.796

For autocomplete-based LLMs, the first line of the prompt is always the following:797

# file is main.py, ONLY CODE IN PYTHON IN THIS FILE798

These prompts help to ensure that LLM responds in Python.799

E Additional Results800

E.1 Pre-registration801

We pre-registered our study design prior to data collection but not the analysis plan https://802

aspredicted.org/blind.php?x=K3P_K1J. Due to the limit on the number of participants who803

completed the task within the timeframe of the study, we thus ended up with fewer participants in the804

final dataset than we originally anticipated being able to collect (i.e., 30 per condition instead of 50805

per condition). As a result, we opted to pool together data from the same model class to study both806

hypotheses. All other additional analyses in this work are exploratory and were not pre-registered.807

E.2 Dataset Analysis808

We post-processed both datasets to ensure they did not reveal any identifying information about809

participants or contain harmful language.810

Autocomplete dataset. Recall that users had the option to request suggestions via hotkey or were811

provided the suggestion after some time. As shown in Figure 9, participants are much more likely to812

accept suggestions if they request them. Interestingly, CodeLlama-34b suggestions seemed to be813

more preferred than CodeLlama-7b when requested.814

0.0 0.1 0.2 0.3 0.4 0.5
Non-requested: % Suggestion Accepted

GPT-3.5

CodeLlama-34b

CodeLlama-7b

0.0 0.1 0.2 0.3 0.4 0.5
Requested: % Suggestion Accepted

Figure 9: Comparing the acceptance rate for when participants requested suggestions with when they
were automatically provided with suggestions by the autocomplete system.
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Chat dataset. We analyze the 775 chat messages participants sent across the three conditions, as815

shown in Figure 10. On average 2.8 messages were sent per task with a length of 100.8 characters.816

We note that there is a particularly long tail in terms of words appearing in chat messages because817

many questions contained implementation-specific variables. In accordance with our findings that818

LLMs were most useful for data manipulation tasks, we also find that participants engaged with LLM819

support the most for those tasks.820
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Figure 10: Analysis of the number of messages sent per task (top left), the length of chat messages
(top right), the number of messages sent per task category (lower left), and the frequency of words
appearing in chat messages (lower right).

E.3 Accounting for task difficulty821

To facilitate comparisons between different sets of tasks, which may have varying difficulty, the value822

of each metric is z-scored within the task set:823

Mz
i,t =

Mi,t − µM,t

σM,t

where Mz
i,t is the value of metric M achieved by participant i, z-scored within task set t; µM,t and824

σM,t are the mean and standard deviation of metric M for task set t, across all participants. We rerun825

our analysis for performance metrics and present results in Figure 11.826

E.4 Task completion time827

In Figure 3, we find the most significant differences between models in terms of task completion time.828

We further analyze task completion time across multiple axes.829

By task type. When comparing when participants have access to LLM assistance versus the control830

condition, as shown in Figure 12, we find suggestive evidence that LLM assistance was particularly831

effective in reducing the time programmers needed to solve data manipulation tasks and problems that832

required editing and augmenting existing code, but not for algorithmic problems. We also analyze833

whether participants benefited from LLM assistance on an individual task level in Figure 13. We834
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Figure 11: Performance results across models, z-scored to account for potential variation in task
difficulty across sets.

observe that trends for individual tasks within a category are similar, indicating the importance of835

understanding how programmers interact with LLMs for different types of tasks.836

Verifying outlier behavior. We plot a histogram of task completion times in Figure ?? to verify837

that across participants, there were not a significant number of outliers. We also performed a similar838

check by plotting across conditions in Figure 16 to ensure that there was not differing behavior across839

participants (e.g., no bimodal behavior within a given condition).840

250 300 350 400 450 500
Avg task duration (s)

Algorithmic Problems

Data Manipulation

Edit/Augment Code

LLM-assisted
False
True

Figure 12: Average task duration with and without LLM assistance with standard error by task
category.

E.5 Code Quality Metrics841

Code Comments. Code written with the assistance of the LLM will inherit some of the charac-842

teristics of the writing style of the LLM. One instance of that is comments in the code written. We843

investigate the number of comments written by participants for the different types of interaction844

with the LLM: autocomplete, chat, or no LLM. We count how many additional comments are in845

the code participants write compared to the number of comments in the provided code participants846

complete. Participants in the autocomplete conditions wrote 0.85 ± 0.1 additional comments, in847

the chat condition wrote 0.59 ± 0.08 comments and those in the No LLM condition wrote 0.41 ±848

0.13 comments. Participants writing code with autocomplete LLM write twice as many comments849

as those without an LLM (p = 3e− 6). There are two possible explanations for this increase: first,850

programmers usually prompt the LLM with inline comments to get a suggestion they desire, and851

second, we often observe that code generated by LLMs is often heavily commented. This indicates852

that we can potentially differentiate code written by programmers with LLM assistance by the number853

of comments in the code.854
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Figure 13: Time to task completion with and without LLM assistance, reported by task and grouped
by task category, with standard error.

F Design Opportunities855

To understand the design opportunities around improving the coding assistance provided through856

RealHumanEval, we analyzed a post-study question on how coding assistants could be improved.857

Answers to the question were collected in free response format and were optional, though it was858

answered by the majority of participants (174 out of the 213). We summarize participant suggestions859

into general comments that could apply to both types of interactions and identify autocomplete- and860

chat-specific suggestions.5861

Both autocomplete and chat models need improved context. A theme that spanned both types of862

interactions and model types was the perceived lack of context that the LLM had about the general task863

when providing either suggestions or chat responses (example shown in Figure 17). While one might864

expect that a more performant model might mitigate these concerns, we do not observe a significant865

decrease in mentions regarding this issue for GPT-3.5 models compared to both CodeLlama-7b866

5We omit the obvious, blanket suggestion for replacing the assistant with a better LLM, as model-only
performance is one of the independent variables in our experiment and a more performant model would
undoubtedly improve the assistance provided.
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Figure 14: Histogram depicting the distribution of task completion times across all participants and
conditions. The histogram is overlaid with dashed lines representing key statistical measures: the
mean (red) and the median (green).
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Figure 15: Violin plot of the difference in average task duration times (in seconds) between the
No-LLM condition and all other conditions.

and CodeLlama-34b models. In general, it may not be obvious how to concisely specify the full867

“context”—recall that we intentionally considered a set-up where the LLM is unaware of task T to868

mimic realistic constraints—but the development of new interfaces to facilitate context specification869

and mechanisms to prompt for additional task-specific information could improve LLM generations.870

Additionally, further baseline checks can be implemented to minimize concerns mentioned by871

participants (e.g., ensuring that the LLM responses are provided in the correct programming language,872

beyond prompting-based approaches implemented in our study). We note that issues surrounding873

context control have also been highlighted in prior work [12, 4].874
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Figure 16: For each of the seven conditions, we plot the average time for participants to complete the
tutorial task, the first task they solved, the second task they solved, and so on.

Autocomplete-specific suggestions. We highlight the three most commonly mentioned avenues of875

improvement across all three model types. (1) Minimize suggestion frequency: Participants noted876

that the frequency of suggestions appearing in the code editor could disrupt their train of thought. To877

address this issue, it may be preferable to allow participants to turn off the LLM model when they878

are brainstorming the next steps or to modify the LLM to detect when participants may not need as879

frequent suggestions based on their current coding behavior. Moreover, we observe quantitatively that880

participants are between 3− 10× more likely to accept an assistant’s suggestion if they requested881

it, as shown in Figure 9. (2) Dynamic suggestion length: A common issue with autocomplete882

interactions noted by participants was the presence of “incomplete variable definitions or function883

implementations” and “fragmented code” (e.g., Figure 18 (left)). As this behavior is a product of the884

fixed length of LLM generations, autocomplete assistants can be improved by ensuring the suggestion885

is complete before terminating generation. (3) More concise suggestions: Finally, participants also886

noted that code completions could be more concise, as “it was overwhelming” and “large chunks887

of code... start deviating from the task question” (e.g., Figure 18 (right)). It is an open question to888

determine the appropriate length for how much code to generate in a context-aware manner.889

Chat-specific suggestions. There were three common suggestions shared across models. (1)890

Responses should focus on code, rather than explanation: It is well known that chat LLMs tend891

to generate verbose responses, which could be detrimental when used as programming assistants.892

An example of a lengthy response is in Figure 20. In particular, participants noted the additional893

time required to read large blocks of texts and suggested to “get rid of all explanations and stick894

to code only, unless the user specifies they want explanations.” Additionally, when focusing on895

code, participants suggested that the chat assistant could anticipate alternative implementations (2)896

Improved dialogue experience: First, instead of making assumptions about potentially ambiguous897

points in a programmer’s question (e.g., as in Figure 19), a participant suggested that the LLM898

“could ask clarifying questions or provide multiple suggestions.” Additionally, in particular for899

CodeLlama-7b, participants asked for better consistency across multiple chat messages (e.g., “It900

wasn’t able to refer back to previous messages that I had sent when answering a question.”). (3)901

Better integration with code editor: Currently, the burden is on the programmer to appropriately902

prompt the chat assistant with questions and then to integrate chat suggestions into the code body in903

the editor. This onus can be reduced by more readily incorporating “the code and the most recent904

error, if any, as well as the test case that generated it in the context for the assistant” and “autocorrect905

code” based on its suggestions.906
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User
how would I get the day from this 2019-03-06 
where I want the number 6

 Chatbot
You can use the `day` attribute of the 
`datetime.date` class to get the day of the month. 
Here's an example:

import datetime
date = datetime.date(2019, 3, 6)
day = date.day
print(day) # prints 6

Examples of helpful interactions

def even_odd_count(num):
  even_count = 0
  odd_count = 0
  whi le num > 0:
    remainder = num % 10
    i f remainder % 2 == 0:
      even_count += 1
    else:
      odd_count += 1
    num = num // 10
 
 return even_count, odd_count

print(even_odd_count(2468))
print(even_odd_count(1357))
print(even_odd_count(111))

User
Write python code to determine whether a 
number is the product of 3 prime numbers

 Chatbot
To determine whether a number is the product of 3 prime 
numbers, we can follow the steps below:
1. Create a function `is_product_of_3_primes(num)` that 
accepts an integer `num` as a parameter.
2. Initialize a variable `count` to 0 to keep track of 
the number of prime factors.
3. Create a helper function `is_prime(n)` that accepts an 
integer `n` and checks whether it is a prime number.
...

Verbose explanation, no code Incomplete, illogical generation

Actionable response to question Brainstorm test cases

Examples of unhelpful interactions

def i s_multiply_prime(a):
  primes =
 cond = True

i f len(str(a))%2!=0:
return False

for i in range(len(str(a))):
primes = 0
start = i
whi le(a%int(str(a)[start

Figure 17: Examples from of helpful and unhelpful chat and autocomplete interactions from the
user study. While these examples showcase how LLM assistance can improve programmer produc-
tivity (e.g., by providing actionable responses and generating test cases), they also highlight how
programmer-LLM interactions can be improved. We discuss design opportunities collected from
post-task participant responses in Section F and provide more examples in Appendix G.

Why was CodeLlama-34b less preferred by users? Based on participants’ survey responses, we907

identify two potential reasons that might qualitatively explain why CodeLlama-34bwas less preferred908

for both autocomplete and chat. For autocomplete, the lack of context was a particularly prevalent909

issue in responses for CodeLlama-34b, mentioned by 54% of responses, as compared to 32% and910

28% of CodeLlama-7b and GPT-3.5 responses respectively. In particular, participants noted that the911

generated suggestions were often irrelevant to the prior code and in the wrong programming language.912

We show examples of rejected suggestions that illustrate a lack of context from participants who913

interacted with the CodeLlama-34b model in Figure 21. For chat, while there were no exceptional914

concerns about lack of context, CodeLlama-34b had the most mentions of latency as a point of915

improvement (6 mentions as compared to only 2 and 1 mentions for CodeLlama-7b and GPT-3.5916

respectively). For example, one participant noted that “the responses are slow so sometimes it917

was faster to go off of my memory even if I wasn’t sure if it would work.” Indeed, we found918

that CodeLlama-34b response time (about 10 seconds) was on average twice as slow as either919

CodeLlama-7b or GPT-3.5 (about 5 seconds). We note that this slight delay did not significantly920

impact any participant’s performance metrics.921

F.1 Opportunities to use data922

Simulating programmer-LLM interaction. The data collected in our study presents an opportunity923

to build and evaluate simulation environments that mimic how programmers write code with an LLM.924

Essentially, the simulator could be used to more efficiently replicate the results of RealHumanEval925

and evaluate a wider set of models. However, despite initial work on simulating programmer-LLM926

interaction [37], building a useful simulator requires significant training and validation. Our dataset927

provides training data for both chat and autocomplete interactions: The dataset of interactions with928

the chat models Dchat allows us to simulate the queries programmers make to the chat assistant given929

the code they have currently written. The dataset of interactions with the autocomplete models Dac930

can allow us to simulate finer-grain interactions with LLM suggestions such as verifying and editing931
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suggestions, among other activities outlined in [37]. To validate a proposed simulator, one should test932

whether it faithfully replicates the trends observed in RealHumanEval before it can be used as an933

evaluation benchmark.934

Optimizing suggestions from human feedback. In addition to using the human feedback data935

to simulate the interaction, one can use it to fine-tune the models. For instance, the dataset of936

interactions with autocomplete models Dac reveals which suggestions programmers accept and which937

they reject, which can be used to update the LLM and generate suggestions that maximize the938

probability of being accepted by the programmer. Moreover, the dataset also captures how accepted939

suggestions were edited over time, which can be used to generate suggestions that are more likely940

to persist in the programmer’s code. Finally, an LLM that is not instruction-tuned usually requires941

specifying a maximum generation length parameter to stop the generation of a code suggestion. In942

our autocomplete implementation, we intentionally randomized the maximum suggestion length of943

the generated suggestion to be between the range [10, 120] with a mean token length of 64. This944

design decision can provide yet another signal about when the LLM should stop generating code.945

G Example user interactions946

import pandas as pd
from io import StringIO

# Original dataset
data = '''
col1,col2,col3,col4,col5
6,1,5.3881673400335695,3,2
9,2,4.191945144032948,5,8
10,8,6.852195003967595,8,1
6,7,2.0445224973151745,8,7
1,10,8.781174363909454,10,10
'''

# Read the dataset into a DataFrame
df = pd.read_csv(StringIO(data))

def transform_df(df):
  # Add col3 col4 and col5
  new_col = df['col3'] + df['col4'] + df['col5']
  #use insert() to add new column at position 3

df.insert(3,"col6",new_col)
# Create new column by taking the square root of col6
df["col7"] = [round((x ** (1/2)),

def even_odd_count(num):
  str_num = str(num)
  even = 0
  odd = 0

 for k in str_num:
if int(k) % 2 == 0:

even += 1
else:

odd += 1
return [even, odd]

def pairs(lst):
cnt = 0
for i, ele in enumerate(lst):

if not

Figure 18: Examples of problematic autocomplete suggestions: incomplete suggestion (left) and
starting new irrelevant function (right).

User
Do you see any errors in this function?

 Chatbot
Yes, there is an error in the provided function. When sorting the `ans` list, it uses the 
default sorting order, which is ascending based on the sum of the split digits. 
However, the desired behavior is to sort in descending order based on the sum.

To fix this, you can pass a lambda function as the ̀ key` argument to the `.sort()` 
method, which specifies that the list should be sorted based on the negated sum.

def order_by_points(nums):
  ans = []
  for number in nums:
    split = [int(x) for x in str(number) if x != '-']
    if number < 0:
      split[0] = -split[0]
    ans.append((sum(split), number))
  ans.sort()
  return [x[1] for x in ans]

User
The goals is to be sorted in ascending order based on the sum of the split digits

 Chatbot
Apologies for the confusion. If the goal is to sort the list in ascending order based on 
the sum of the split digits, the original code is correct. The `.sort()` method, without 
any additional arguments, sorts the list in ascending order.

Figure 19: Example of a chat interaction where the chat assistant could have proactively asked more
clarifying questions. Note that the chat agent response is shortened (by excluding code snippet) for
brevity.
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User
Write python code to determine whether a number is the product of 3 prime numbers

 Chatbot
To determine whether a number is the product of 3 prime numbers, we can follow 
the steps below:

1. Create a function `is_product_of_3_primes(num)` that accepts an integer ̀ num` 
as a parameter.
2. Initialize a variable ̀ count` to 0 to keep track of the number of prime factors.
3. Create a helper function `is_prime(n)` that accepts an integer ̀ n` and checks 
whether it is a prime number. This function will return True if `n` is prime, and False 
otherwise.
4. Iterate from 2 up to the square root of `num` (inclusive) using a for loop. Check if 
each number is a prime factor of `num`.
- If the current number is a prime factor, increment the `count` by 1.
- If the ̀ count` exceeds 3, break the loop as there can't be more than 3 prime factors.
5. After the loop, check if the `count` is equal to 3.
- If it is equal to 3, return True as `num` is the product of 3 prime numbers.
- If it is not equal to 3, return False.

Here is the implementation of the above steps:

You can now use the function `is_product_of_3_primes(num)  ̀to check if a number 
`num` is the product of 3 prime numbers. The function will return True if it is, and 
False otherwise.

def i s_product_of_3_primes(num):
  count = 0

 def i s_prime(n):
i f n < 2:

return Fa lse
for i  in range(2, int(math.sqrt(n)) + 1):

i f n % i  == 0:
return Fa lse

return True
for i  in range(2, int(math.sqrt(num)) + 1):

i f num % i  == 0 and is_prime(i):
count += 1
i f count > 3:

break
return count == 3

Figure 20: Example of an overly lengthy response from a chat interaction.

class Tokenizer:
  def __init__(self, max_vocab_size=200):
    self.max_vocab_size = max_vocab_size
    self.word_to_id = {}
    self.id_to_word = {}

  def tokenize(self, text):
    # do not change
    # Split

    return self.id_to_word.get(word_id)
<POST> # End of file main.py
의외로간단

import pandas as pd
from io import StringIO

[excluding code to define dataframe]

def transform_df(df):
  # Your code here
  print(df["height"].astype("int" </PRE> # file is a cell, NOT CODE IN PYTHON IN THIS 
FILE

import pandas as pd
from io import StringIO

# Original dataset

Figure 21: Examples of rejected suggestions from CodeLlama-34b, which failed to consider the
context of existing code: (left) the suggested code tried to import the same packages that are already
present and (right) the suggested code trails off into irrelevant, non-Python text.
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