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Abstract
This paper presents a theoretical framework for
understanding uncertainty through the lens of sta-
tistical risks. It introduces a method to differenti-
ate between aleatoric uncertainty, which is related
to inherent data variability, and epistemic uncer-
tainty, which is linked to lacking of best model
parameters knowledge. We explain how point-
wise risk can be decomposed into Bayes risk and
Excess risk, showing that Excess risk, linked to
epistemic uncertainty, corresponds to Bregman
divergences. To convert these theoretical risk
measures into practical uncertainty estimates, we
propose using a Bayesian approach, approximat-
ing the risks through posterior distributions. We
validate our method on image datasets, assessing
its capability to identify out-of-distribution and
misclassified data using the AUROC metric. Our
findings demonstrate the efficacy of this approach
and provide practical insights for estimating un-
certainty in real-world scenarios.

1. Introduction
In the modern world, predictive models are applied in a
variety of fields requiring high-risk decisions such as med-
ical diagnosis (Shen et al., 2017; Litjens et al., 2017), fi-
nance (Ozbayoglu et al., 2020; Heaton et al., 2017), au-
tonomous driving (Grigorescu et al., 2020; Mozaffari et al.,
2020) and others. A careful analysis of model predictions
is required to mitigate the risks. Hence, it is of high impor-
tance to evaluate the predictive uncertainty of the models.
In recent years, a variety of approaches to quantify pre-
dictive uncertainty have been proposed (Kotelevskii et al.,
2022; Kendall & Gal, 2017; Van Amersfoort et al., 2020;
Liu et al., 2020; Lakshminarayanan et al., 2017; Malinin
& Gales, 2021; Schweighofer et al., 2023). Specific at-
tention has been paid to the distinction between different
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sources of uncertainty. It is commonly agreed to consider
two sources (Hüllermeier & Waegeman, 2021) – the first
one, aleatoric uncertainty, effectively reduces to the inher-
ent ambiguity in label distribution, while the second one,
epistemic uncertainty, is referred to as the uncertainty due to
the “lack of knowledge”. Distinguishing between aleatoric
and epistemic uncertainties is crucial in practice because
it helps identify whether uncertainty can be reduced by
gathering more data (epistemic) or if it is inherent to the
problem (aleatoric), thus guiding better decision-making
and model improvement. Applications of uncertainty disen-
tanglement include active learning (Beluch et al., 2018; Gal
et al., 2017), out-of-distribution detection (Kotelevskii et al.,
2022; 2023; Mukhoti et al., 2021), and misclassification
detection (Vazhentsev et al., 2022).

Despite the practical importance and widespread usage of
uncertainty quantification, there is still no common strict
formal definition of both types of uncertainty. Essentially,
various often ad hoc definitions are adopted that lead to even
higher number of different measures to quantify either type
of uncertainty (see for example (Lakshminarayanan et al.,
2017; Gal et al., 2017; Malinin & Gales, 2021; Hüllermeier
& Waegeman, 2021; Kotelevskii et al., 2022; Schweighofer
et al., 2023)). However, it is not clear how all these measures
of uncertainty are related to each other. Do they complement
or contradict each other? Are they special cases of some
general class of measures? In this paper, we are going to
address these questions by introducing a proper statistical
approach for predictive uncertainty quantification, reasoning
in terms of pointwise risk estimation. Our contributions are
as follows:

1. We suggest looking at pointwise risk, which is defined
as the expected value of a loss function, as a natural
measure of predictive uncertainty; see Section 2.

2. We consider a specific class of loss functions, namely
proper scoring rules, that allow us to derive a unified
treatment for the wide family of uncertainty measures;
see Section 3. In particular, we demonstrate that Excess
risk, serving as the measure of epistemic uncertainty,
can be represented as Bregman divergence, and we
show some special instances of it.

3. We incorporate Bayesian reasoning into our frame-
work (see Section 4), showing that commonly used
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measures of epistemic uncertainty, such as Bayesian
Active Learning by Disagreement (BALD) (Houlsby
et al., 2011; Gal et al., 2017) and Expected Pairwise
Kullback-Leibler divergence (EPKL), are special cases
within our general approach. We also highlight the lim-
itations of our framework, elaborating on discussions
from (Wimmer et al., 2023; Schweighofer et al., 2023).

4. We experimentally evaluate the proposed uncertainty
measures in various tasks, including out-of-distribution
detection and misclassification detection; see Section 6.
Our results highlight the conditions under which each
measure is most effective, providing practical insights
for selecting appropriate uncertainty measures.

2. Predictive uncertainty quantification via
risks

Assume we have a dataset Dtr = {(Xi, Yi)}Ni=1, where
pairs Xi ∈ Rd, Yi ∈ Y are i.i.d. random variables sampled
from a joint training distribution Ptr(X,Y ). We consider a
classification task over K classes, i.e. Y = {1, . . . ,K}. We
can express this joint distribution as a product: Ptr(X,Y ) =
Ptr(Y | X)Ptr(X).

In practice, we typically consider a parametric model P (Y |
X, θ) with parameters θ to approximate Ptr(Y | X). We
denote the true class probabilities for an input x as η(x) =
Ptr(Y | X = x), and the predicted probabilities as η̂θ(x) =
P (Y | X = x, θ). We will often omit the index θ and
denote the predicted probability vector by η̂.

2.1. Pointwise Risk as a Measure of Uncertainty

The goal of uncertainty quantification is to measure the
degree of confidence of predictive models, distinguishing
between aleatoric and epistemic sources of uncertainty. De-
spite its importance, there is no unified definition, leading to
diverse methods and measures. In the paper, we introduce
uncertainty via the statistical concept of risk.

In machine learning, the main concern is the model’s “error”
at a particular input point x. One way to express this error
is through expected risk. Let ℓ : RK × Y → R be a loss
function that measures how well η̂(x) matches the true label
y. The pointwise risk R(η̂ | x) for a model η̂ is defined as:

R(η̂ | x) =
∫

ℓ(η̂(x), y) dP (y | X = x), (1)

Thus, pointwise risk is an expected loss received by a spe-
cific predictor η̂ at a particular input point x. Importantly,
pointwise risk, while being a natural measure of expected
model error, can not be used directly as a measure of uncer-
tainty as it is not possible to compute it due to unknown true
data distribution. We will discuss possible ways to trans-

form pointwise risk into the practical uncertainty measure
in Section 4.

Note, that we use distribution P , which might differ from
Ptr. If P (X) ̸= Ptr(X) but P (Y | X = x) = Ptr(Y |
X = x) for any x, this situation is called “covariate shift”.
We will assume P (Y | X = x) is valid for any x, meaning
it is a vector of length K regardless of the input. Limitations
of this assumption are discussed in Section 7.

2.2. Aleatoric and Epistemic Uncertainties via Risks

Predictive uncertainty can be divided into two sources.
Aleatoric uncertainty expresses the degree of ambiguity
in data and does not depend on the model, being an inherent
property of data given a particular choice of design. Epis-
temic uncertainty, which is vaguely defined, but typically
associated with the “lack of knowledge” of choosing the
right model parameters θ. Sometimes, when the source is
not important, practitioners consider total uncertainty.

Pointwise risk allows for the following decomposition:

R(η̂ | x)︸ ︷︷ ︸
Total risk

= RBayes(x)︸ ︷︷ ︸
Bayes risk

+R(η̂ | x)− RBayes(x)︸ ︷︷ ︸
Excess risk

, (2)

where RBayes is the pointwise Bayes risk, defined as:

RBayes(x) =

∫
ℓ(η(x), y) dP (y | X = x).

The Bayes risk represents the expected error from the true
data-generative process η(x) = P (Y | X = x). It does not
depend on the parameters of the model nor the choice of
model architecture, and hence can be seen as a measure of
aleatoric uncertainty. The second term in equation (2) is
“Excess risk” and represents the difference between the risks
computed for the approximation and for the true model at a
given input point x. Thus, it naturally represents a lack of
knowledge about the true data distribution, i.e. epistemic
uncertainty. We note that decomposition (2) was previ-
ously considered in the context of uncertainty quantification
in (Kotelevskii et al., 2022; Lahlou et al., 2022) but for
specific loss functions and without the detailed analysis.

Although the decomposition (2) is useful, it doesn’t provide
much information about the properties of these risk func-
tions in general cases. Therefore, we consider a specific
class of loss functions, strictly proper scoring rules, which
allows us to do a theoretical analysis.

3. Risks for Strictly Proper Scoring Rules
Strictly proper scoring rules (Gneiting & Raftery, 2007)
represent a class of loss functions that ensure that the
minimizing predictive distributions coincide with the data-
generative distribution P (Y | X). Let’s say a forecaster can
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A dog, has sufficient probability under
Ptr . Conditional η(x) is meaningful.

A cat, has sufficient probability under Ptr .
Conditional η(x) is meaningful.

A pigeon, has almost no probability mass
under Ptr . Conditional η(x) is vague.

Figure 1: The figure shows different examples of input objects in binary classification problem (cats vs dogs). The limitation
of our approach is that η(x) = Ptr(Y | X = x) should be defined even for objects with tiny mass under Ptr. See discussion
in Section 7.

produce a vector of predicted probabilities P ∈ PK , where
PK is a space of discrete probability distributions over K
classes. Then, ℓ(P, y) : PK × Y → R is the penalty the
forecaster would have, given that event y is materialized. Its
expected value with respect to some distribution Q we will
denote as ℓ(P,Q) =

∫
ℓ(P, y)dQ(y).

The scoring rule that for any P,Q ∈ PK has the property
that ℓ(P,Q) ≥ ℓ(Q,Q) with equality if and only if P = Q
is called strictly proper scoring rule. Under mild assump-
tions (see Theorem 3.2 in (Gneiting & Raftery, 2007)), any
strictly proper scoring rule can be represented as:

ℓ(η, i) = ⟨G′(η) , η⟩ −G′
i(η)−G(η),

where ⟨. , .⟩ is a scalar product, G : PK → R is a strictly
convex function, and G′(η) = {G′

1(η), . . . G
′
K(η)} is a

vector of element-wise subgradients.

Risk decompositions for strictly proper scoring rules.
Here we present the general results for different types of
risk (detailed derivations are in Appendix A).

• Total Risk (Total Uncertainty):

RTot(η̂θ | x) = ⟨G′(η̂) , η̂⟩−G(η̂)−⟨G′(η̂) , η⟩. (3)

Note, that Total risk depends linearly on the true data
generative distribution η.

• Bayes Risk (Aleatoric Uncertainty):

RBayes(x) = −G(η). (4)

Note, that Bayes risk is a concave function of η, since
function G is convex.

• Excess risk (Epistemic Uncertainty):

RExc(η̂ | x) = DG

(
η ∥ η̂

)
. (5)

Excess risk is a Bregman divergence (Bregman, 1967)
denoted as DG

(
η ∥ η̂

)
, it is convex in η.

Specific Instances of Proper Scoring Rules. Different
choices of the convex function G lead to different proper
scoring rules. Table 1 shows the results for some popu-
lar cases often used in machine learning algorithms (see
detailed derivations in Appendix B).

From Table 1, we see, that some of the risks correspond to
well-known aleatoric uncertainty measures. For example,
the Bayes risk for the Log score is given by the entropy
of the predictive distribution. For the Zero-one score, this
component is given by the so-called MaxProb, also widely
applied (Geifman & El-Yaniv, 2017; Kotelevskii et al., 2022;
Lakshminarayanan et al., 2017). For the Excess risk, we
obtain different examples of Bregman divergence which
lead to some well-known uncertainty measures when cou-
pled with the Bayesian approach to risk estimation that we
discuss in Section 4 below.

Estimating risks. The derived equations are useful but
require access to the true data-generative distribution η,
which is typically unknown.

One approach to deal with this problem was introduced
in (Kotelevskii et al., 2022), where authors considered a spe-
cific model η̂θ, namely Nadaraya-Watson kernel regression,
as it has useful asymptotic properties to approximate Excess
risk. Another approach, the DEUP (Lahlou et al., 2022)
proposed a method for estimating Excess risk by directly
training a model to predict errors. However, in general cases,
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Log score Brier score Zero-one score Spherical score Negative log score

G(η)
∑K

k=1 ηk log ηk −
∑K

k=1 ηk(1− ηk) maxk ηk − 1 ∥η∥2 − 1 −
∑

k log ηk

Aleatoric
(Bayes
risk)

Hη 1− ∥η∥22 1−maxk ηk 1− ∥η∥2
∑

k log ηk

Epistemic
(Excess

risk)
DKL[η∥η̂] ∥η − η̂∥22 maxk ηk − ηargmaxkη̂k ∥η∥2 (1− ⟨ η̂

∥η̂∥2
, η
∥η∥2

⟩) DIS[η∥η̂]

Total
(Risk) CE[η∥η̂] ∥η − η̂∥22 − ∥η∥22 + 1 1− ηargmaxkη̂k 1− ∥η∥2 ⟨ η̂

∥η̂∥2
, η
∥η∥2

⟩
∑K

k=1(log η̂k − 1 + ηk

η̂k
)

Table 1: Resulting expressions for different risks, computed for different strictly proper scoring rules. Dependence on x is
omitted for clarity. DKL stands for Kullback-Leibler divergence, CE for Cross-Entropy, and DIS for Itakura–Saito distance.
See Appendix B for full derivations.

it is hardly possible to derive these results. In this paper, we
consider a Bayesian approach to approximate η that allows
us to derive both well-known from the literature and new
uncertainty measures based on one unified framework.

4. Bayesian Risk Estimation
The derived equations for risks depend on the true data
generative distribution η(x) and on some approximation
of it η̂(x). In particular, η(x) appears in all the risks and
is unknown. One needs to deal with that to obtain a com-
putable uncertainty measure. In the Bayesian paradigm, one
considers a posterior distribution over model parameters
p(θ | Dtr) that immediately leads to a distribution over
predictive distributions η̂θ | Dtr. The goal of this section
is to give a complete recipe for risk estimation under the
Bayesian approach.

One can think of the risks as functions of η(x) and η̂(x)
, namely g

(
η(x), η̂(x)

)
, where g is a shortcut for any risk

function. We can approximate the risks with the help of
posterior distribution using one of two ideas:

1. Bayesian averaging of risk. For example, one can
consider Ep(θ̃|Dtr)

g(η̂θ̃, η̂) to approximate an impact
of the true model η. In a fully Bayesian paradigm, the
same can be done with η̂ leading to the fully Bayesian
risk estimate Ep(θ̃|Dtr)

Ep(θ|Dtr) g(η̂θ̃, η̂θ).

2. Bayesian model averaging. Alternatively, one
may use posterior predictive distribution given by
η̂Dtr (x) = Ep(θ̃|Dtr)

η̂θ̃(x) and plug it in risk equa-
tions instead of η and/or η̂.

In general, one can consider four approximations of any
risk: g̃(1,1) = Ep(θ̃|Dtr)

Ep(θ|Dtr) g(η̂θ̃, η̂θ), g̃(1,2) =

Ep(θ̃|Dtr)
g(η̂θ̃, η̂Dtr ), g̃

(2,1) = Ep(θ|Dtr) g(η̂Dtr , η̂θ) and

g̃(2,2) = g(η̂Dtr
, η̂Dtr

), where by superscripts we denote
the index of approximation ideas discussed above. In this
section, we present the resulting formulas for the resulting
total, aleatoric, and epistemic uncertainty measures with
brief remarks on different approximations. For detailed
derivations and discussions, refer to Appendix C.

For Total risk we obtain the following equations:

R̃
(1)

Tot (x) =

Ep(θ|Dtr)

(
⟨G′(η̂θ) , η̂θ⟩ −G(η̂θ)− ⟨G′(η̂θ) , η̂Dtr

⟩
)
,

and

R̃
(2)

Tot (x) = ⟨G′(η̂Dtr
) , η̂Dtr

⟩ −G(η̂Dtr
)−

⟨G′(η̂Dtr
) , η̂Dtr

⟩ = −G(η̂Dtr
).

Note, that due to the linear dependence on η, approxima-
tions for the ground truth led to the same result of η̂Dtr

.
The two options above aim to approximate the predictive
distribution. The first approximation leads to the Expected
Pairwise Proper Scoring Rule (in particular, expected pair-
wise Cross-Entropy). The second approximation leads to
some concave function of η̂Dtr

.

For Bayes risk one also obtains only two cases as it doesn’t
depend on η̂:

R̃
(1)

Bayes(x) = −Ep(θ̃|Dtr)
G(η̂θ̃)

and R̃
(2)

Bayes(x) = −G(η̂Dtr
).

Interestingly, R̃
(2)

Bayes(x) = R̃
(2)

Tot (x), which effectively means
zero Excess risk. In the Appendix C, we provide a reasoning
for which approximation is better for Bayes risk approxima-
tion.

For Excess risk we obtain the whole family of approxima-
tions:
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• Expected Pairwise Bregman Divergence (EPBD):

R̃
(1,1)

Exc (x) = Ep(θ̃|Dtr)
Ep(θ|Dtr)DG

(
η̂θ̃ ∥ η̂θ

)
,

In a special case of Log score, it is an Ex-
pected Pairwise KL (EPKL; (Malinin & Gales, 2021;
Schweighofer et al., 2023)).

• Bregman Information (BI):

R̃
(1,2)

Exc (x) = Ep(θ̃|Dtr)
DG

(
η̂θ̃ ∥ η̂Dtr

)
,

In a special case of Log score, it is Mutual Information
(also known as BALD (Gal et al., 2017; Houlsby et al.,
2011)).

• Reverse Bregman Information (RBI):

R̃
(2,1)

Exc (x) = Ep(θ|Dtr)DG

(
η̂Dtr

∥ η̂θ

)
,

Its special case for Log score is known as Reverse
Mutual Information (RMI; (Malinin & Gales, 2021)).

• Finally, we obtain that

R̃
(2,2)

Exc (x) = DG

(
η̂Dtr

∥ η̂Dtr

)
= 0,

which is coherent with the result obtained for the Total
risk, when Excess risk (epistemic uncertainty) is equal
to 0.

We observe that the general approach presented in this work
allows us to obtain many existing uncertainty measures in
the case of the Log score loss function while leading to the
whole family of new measures (see Table 1). We refer to
Appendix C for additional discussion and to Appendix D
for the discussion of connections of these approximations
to each other.

5. Related Work
The field of uncertainty quantification for predictive models,
especially neural networks, has seen rapid advancements
in recent years. Among these, methods allowing explicit
uncertainty disentanglement are particularly interesting due
to the ability to use estimates of different sources of uncer-
tainty in various downstream tasks. For instance, epistemic
uncertainty is effective in out-of-distribution data detec-
tion (Hüllermeier & Waegeman, 2021; Kotelevskii et al.,
2023; Mukhoti et al., 2021) and active learning (Beluch
et al., 2018; Gal et al., 2017). In contrast, aleatoric un-
certainty, which is associated with label noise, is useful in
misclassification detection (Vazhentsev et al., 2022).

Bayesian methods have become popular because they natu-
rally handle distributions of model parameters, leading to

prediction uncertainty. Exact Bayesian inference is very
computationally expensive (Izmailov et al., 2021), so many
lightweight versions are used in practice (Gal & Ghahra-
mani, 2016; Thin et al., 2021; 2020; Blei et al., 2017; Lak-
shminarayanan et al., 2017). Early approaches inspired by
Bayesian ideas (Gal et al., 2017; Kendall & Gal, 2017; Lak-
shminarayanan et al., 2017) used information-based mea-
sures like BALD (Houlsby et al., 2011) to quantify epistemic
uncertainty and measures like entropy or maximum prob-
ability for aleatoric uncertainty. These methods, despite
different computational costs, are widely used in the field.

However, the practical expense of Bayesian inference, even
in its approximate forms, has led to the introduction of more
simplified approaches. Some of these methods leverage hid-
den neural network representations, considering distances
in their hidden space as a proxy for epistemic uncertainty
estimation (Van Amersfoort et al., 2020; Liu et al., 2020;
Kotelevskii et al., 2022; Mukhoti et al., 2021). While they
offer the advantage of requiring only a single pass over the
network, their notion of epistemic uncertainty, often linked
to the distance of an object’s representation to training data,
captures only a part of the full epistemic uncertainty. De-
spite this limitation, their efficiency and effectiveness in
out-of-distribution detection have made them widely used.

Another class aimed at simplifying Bayesian inference are
the so-called second-order models (Sensoy et al., 2018;
Malinin & Gales, 2018; 2019; Charpentier et al., 2020;
2021; Kotelevskii et al., 2023; Sale et al., 2023b;a). These
models induce a conjugate prior distribution to the predictive
distribution but lack a universally accepted approach for
uncertainty quantification. Some methods within this class
assess the flatness of the predicted second-order distribution
as a proxy for epistemic uncertainty (Malinin & Gales, 2018;
2021; Charpentier et al., 2020; 2021), while others introduce
a reference distribution, considered to be devoid of specific
uncertainty components, and measure distances to them as
uncertainty metrics (Sale et al., 2023b;a).

Despite the diversity of these approaches, the arbitrary na-
ture of choosing uncertainty measures has led to ambiguity
in understanding uncertainty. This paper aims to address
this gap by proposing a unified framework that not only
categorizes these diverse methods but also offers a more
comprehensive understanding of uncertainty quantification.

Related paper (Adlam et al., 2022) is close to our work
and it looks at Bregman divergence loss functions and their
decomposition but does not cover uncertainty quantification
or Bayesian approximation.

6. Experiments
In this section, we test different uncertainty measures de-
rived from our general framework. Any Bayesian method
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that produces multiple samples of model weights (or param-
eters of the first-order distribution) can be used to compute
our proposed measures. For example, Hamiltonian Monte
Carlo (HMC) (Neal, 2012) are considered in the Bayesian
approximation literature as a “gold standard”. However,
they typically require a lot of steps to converge, and hence
becoming impractical in real scenarios. For this reason, deep
ensembles are considered the “practical gold standard” in
uncertainty quantification (Lakshminarayanan et al., 2017).
Therefore, we use deep ensembles, trained with various
strictly proper scoring rules as loss functions for our experi-
ments.

As training (in-distribution) datasets, we consider CIFAR10
and CIFAR100 (Krizhevsky et al., 2009), along with manu-
ally created noisy versions where some labels are randomly
shuffled (see Section E for details). We evaluate the pro-
posed measures of uncertainty by focusing on two specific
problems: out-of-distribution detection and misclassifica-
tion detection. For both problems, we use deep ensembles
with 20 members. Each ensemble member shares the same
architecture but differs due to randomness in initialization
and training. We consider two architectures: VGG19 (Si-
monyan & Zisserman, 2014) and ResNet18 (He et al., 2016)
(additional details can be found in Section F).

Our experimental evaluation aims to answer the following
questions:

1. Does training with a specific loss function leads to bet-
ter uncertainty estimates when using the same proper
scoring rule for uncertainty measures? For example,
does training with Log score (cross-entropy) and eval-
uating uncertainty with risks based on Log score yield
better results than using other scores for uncertainty
quantification?

2. Is Excess risk always better than Bayes risk for out-of-
distribution detection?

3. Is Bayes risk always better than Excess risk for mis-
classification detection?

4. Does the choice of approximation strategy matter?

We emphasize that the goal of our experimental evaluation
is not to provide new state-of-the-art measures or compete
with other known approaches for uncertainty quantifica-
tion. Instead, we aim to verify whether different uncertainty
estimates accurately quantify specific types of uncertainty.

6.1. Impact of Matching Scoring Rules on Uncertainty
Measures

In this section, we address the first question. Our results are
shown in Figure 2, which presents the distribution of the area

under the ROC curve (AUROC) for different problems when
using matching and non-matching scoring rules, averaged
over various datasets, risks, and architectures. Note that we
excluded two loss functions from the training: the Zero-one
score, which is not differentiable, and the Negative log score
(Neglog), which is unstable during training.

Our observations indicate that using mismatched scoring
rules can lead to poor results for both out-of-distribution
detection and misclassification detection. Conversely, when
the loss function used during training matches the proper
scoring rule applied for uncertainty measures, the results
are consistently good. For a more detailed analysis, refer to
Appendix G.

Therefore, while the answer to the first question is not abso-
lute, our findings strongly support using matching scoring
rules, i.e. the same scoring rule for the training of the model
and uncertainty quantification. Using non-matching scoring
rules can result in suboptimal performance in some cases.

6.2. Evaluating Excess Risk and Bayes Risk for
Out-of-Distribution Detection

In this section, we evaluate different types of risks to identify
out-of-distribution (OOD) samples. Since the uncertainty
associated with OOD detection is epistemic, we expect that
Excess risk and Total risk will perform well for this task,
while Bayes risk will likely fail.

We used CIFAR10 and CIFAR100 as in-distribution datasets
and SVHN (Netzer et al., 2011) and blurred versions of
CIFAR10 and CIFAR100 as out-of-distribution datasets (de-
tails in Appendix E). The Gaussian blur augmentation re-
sults in “soft-OOD” samples that maintain the same ground-
truth labels and meaningful prediction probability vectors.

To evaluate the metrics, we calculated them on both in-
distribution and out-of-distribution objects and then com-
puted the AUROC of the resulting ordering. The results are
presented in Table 2. Note that the columns for Bayes and
Total risks are averaged over all approximations. The Excess
risk is averaged over all approximations, except Inner Inner,
as it is equal to 0 (see separate evaluation in Appendix J).
The results shown are for the case where the proper scor-
ing rules used for loss function and uncertainty estimation
match.

We distinguish between two types of out-of-distribution
data: “soft-OOD” and “hard-OOD”. “Soft-OOD”, such as
the blurred versions of CIFAR10 and CIFAR100, have pre-
dicted probability vectors that are still meaningful. “Hard-
OOD” samples, however, have completely non-informative
predicted probability vectors (see Section 7 for discussion).
For example, when a set of classes is considered during
training, but an incoming image does not belong to those
classes, the resulting probability distribution over training
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Figure 2: Left: AUROC for out-of-distribution detection. Right: AUROC for misclassification detection. Results are
stratified by the plug-in proper scoring rule used for risk estimations. The legend indicates “Same” for the matching scoring
rules and “Different” for the non-matching scoring rules.

classes is meaningless.

For “soft-OOD” datasets, the results meet our expectations:
Excess risk (which includes BI, RBI, and EPBD) and Total
risk perform well. However, for “hard-OOD” datasets, the
results are unexpected—Bayes risk typically outperforms
Excess risk.

One possible explanation, discussed in detail in Section 7, is
that for “hard-OOD” samples, the target distribution p(y | x)
is not well-defined. Our Bayesian approximation of this
distribution seems suboptimal in these cases. In contrast, for
“soft-OOD” samples, the approximation remains reasonable,
making Excess risk and Total risk effective.

This highlights a crucial limitation of Excess risk (in-
cluding BI, RBI, and EPBD) as a measure of epistemic
uncertainty. These measures naturally appear when ap-
proximating Excess risk in a Bayesian way, which assumes
a specific form of ground-truth distribution approximation.
However, this approximation becomes inaccurate for “hard-
OOD” samples, making these measures a poor choice in
these cases. This criticism aligns with findings from (Wim-
mer et al., 2023; Schweighofer et al., 2023; Bengs et al.,
2023), which indicate that Bregman Information (in a par-
ticular case of Log score) is not an intuitive measure of
epistemic uncertainty and does not follow their proposed
axioms.

Therefore, the answer to the second question is not absolute
as well. For “soft-OOD” samples, where predicted prob-
ability vectors remain meaningful, Excess risk is a good
choice. For “hard-OOD” samples, Bayes risk might be bet-
ter. Total risk consistently shows decent results, making
it a safe choice when the nature of incoming data is un-

known. A comparison of matching/not-matching results for
out-of-distribution detection is in Appendix H.

6.3. Is Bayes Risk Always Better than Excess Risk for
Misclassification Detection?

Now we consider misclassification detection. As in the pre-
vious experiment, we present AUROC obtained for different
measures of uncertainty. The results are shown in Table 3,
which is structured similarly to Table 2.

Misclassification detection is intuitively connected to
aleatoric uncertainty. Therefore, we expect Bayes risk and
Total risk to perform well in this task, while all instances
of Excess risk should perform worse. It is known that stan-
dard versions of CIFAR10 and CIFAR100 lack significant
aleatoric uncertainty (Kapoor et al., 2022), making it chal-
lenging to demonstrate the usefulness of the appropriate
uncertainty measures immediately. To address this, we in-
clude noisy versions of these standard datasets, as well as
datasets with missing classes, to introduce more noise (see
details in Appendix E).

As expected, Bayes risk and Total risk outperform Excess
risk for misclassification detection, except for the clean
CIFAR10 dataset where the results are very close. Moreover,
the difference in performance becomes more significant as
more aleatoric noise is introduced into the training dataset.

Hence, the answer to this question is mostly positive. Bayes
risk and Total risk are better for misclassification detection,
and their advantage becomes more significant with the in-
crease in aleatoric noise in the datasets. A comparison of
matching/not-matching results for misclassification detec-
tion is in Appendix I.
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Dataset

Bayes Excess Total
InD OOD

CIFAR10 Blurred CIFAR10(*) 84.38 87.80 85.90
Blurred CIFAR100 94.48 95.65 95.42
CIFAR100 91.05 90.08 90.87
SVHN 94.54 93.31 94.44

CIFAR100 Blurred CIFAR10 87.96 85.36 90.32
Blurred CIFAR100(*) 71.40 77.55 74.15
CIFAR10 79.35 72.70 79.27
SVHN 84.90 73.99 84.59

Table 2: AUROC for OOD detection. Best results in bold,
second-best underline. By asterisk (*) we denote “soft-OOD”.

Dataset

Bayes Excess Total

CIFAR10 94.53 94.65 94.78
CIFAR100 86.47 82.90 86.83
Missed class CIFAR10 93.73 83.23 91.14
Noisy CIFAR10 81.00 74.35 80.97
Noisy CIFAR100 82.64 72.30 82.45

Table 3: AUROC for misclassification detection. Best
results in bold, second-best underline.

6.4. Does the Choice of Approximation Strategy
Matter?

Due to space limitations, we provide a detailed discussion
in Appendix J. In summary, our experiments show that
the choice of approximation strategy is not always crucial.
Different approximation strategies can behave differently
across various datasets and experiments, making it difficult
to conclusively determine if one is better than another.

7. Limitations
We see two limitations to our approach.

Valid conditional η(x) = p(y | x) for all x. This assump-
tion implies, that regardless of the input x, the form of the
probability distribution η(x) will not change. This means,
that even for inputs, that do not belong to Ptr(X), the condi-
tional should produce some categorical vector over the same
number of classes. Let us consider an example of a binary
classification problem, where we want our model to distin-
guish between cats and dogs (see Figure 1). In this case,
the distribution of covariates Ptr(X) is the distribution over
images of all possible cats and dogs. An image of a pigeon
under this distribution should have a negligible probability.
Now imagine, that somehow it happened that x is actually
an image of a pigeon. Under our assumption, η(x) should
be valid, so it should produce a vector of probabilities over
two classes: Cats and Dogs, despite an input being an ap-
parent out-of-distribution object. There is no good way to
define η(x) for such input objects, hence we say it is vague.
However, for unusual (but still in-distribution) inputs, like
rare dog breeds, η(x) is meaningful.

Incorporation of Bayesian reasoning for estimation of
η. In practice, we do not have access to η(x). Hence, we
suggested approximating it using the Bayesian approach and
proposed two ideas to do it (inner and outer expectations).

For Bayes risk the best Bayesian estimate is given by outer
expectation (see Appendix C). However, this is not the case
for Excess risk. It appears (see discussion in Appendix C)
that Excess risk depends on the estimate of the Total risk.
But we never know in advance for a particular input x, in
which regime (overestimated or underestimated Total risk)
we are. Thus, we do not know what is the best choice for an
approximation to epistemic uncertainty.

8. Conclusion
In this paper, we developed a general framework for pre-
dictive uncertainty estimation using pointwise risk estima-
tion and strictly proper scoring rules as loss functions. We
proposed pointwise risk as a natural measure of predictive
uncertainty and derived general results for total, epistemic,
and aleatoric uncertainties, demonstrating that epistemic
uncertainties can be represented as a Bregman divergence
within this framework.

We incorporated Bayesian reasoning into our framework,
showing that commonly used measures of epistemic un-
certainty, such as Bayesian Active Learning by Disagree-
ment (BALD) and Expected Pairwise Kullback-Leibler di-
vergence (EPKL), are special cases within our general ap-
proach. We also discussed the limitations of our framework,
elaborating on recent critiques in the literature (Wimmer
et al., 2023; Schweighofer et al., 2023).

Finally, in our experiments on image datasets, we evaluated
these measures for out-of-distribution detection and misclas-
sification detection tasks and discussed which measures are
most suitable for each scenario.
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A. Derivations of different risks with proper scoring rules
We will start with the derivation of Total risk. In what follows, we will omit dependency on x for η(x) and η̂θ(x).

RTot(η̂θ | x) =
∫

ℓ(η̂θ, y)dP (y | x) =
K∑

k=1

(
⟨G′(η̂θ) , η̂θ⟩ −G′

k(η̂θ)−G(η̂θ)
)
ηk =

⟨G′(η̂θ) , η̂θ⟩ −G(η̂θ)− ⟨G′(η̂θ) , η⟩.

Let us now consider Bayes risk:

RBayes(x) =

∫
ℓ(η, y)dP (y | x) =

K∑
k=1

(
⟨G′(η) , η⟩ −G′

k(η)−G(η)
)
ηk =

⟨G′(η) , η⟩ − ⟨G′(η) , η⟩ −G(η) = −G(η).

Finally, let us consider Excess risk:

RExc(η̂θ | x) =
∫

ℓ(η̂θ, y)dP (y | x)︸ ︷︷ ︸
Total risk

−
∫

ℓ(η, y)dP (y | x)︸ ︷︷ ︸
Bayes risk

=

⟨G′(η̂θ) , η̂θ⟩ −G(η̂θ)− ⟨G′(η̂θ) , η⟩+G(η) =

G(η)−G(η̂θ)− ⟨G′(η̂θ) , η − η̂θ⟩ := DG

(
η∥η̂θ

)
.

B. Derivation of risks for specific choices of scoring rules
In this section, we will derive specific equations for Total, Bayes, and Excess pointwise risks to get the estimates of total,
aleatoric, and epistemic uncertainties correspondingly. We will omit subscript θ in this section, indicating an estimate by
using a hat.

Recall equations for proper scoring rule and different risks:

ℓ(η, i) = ⟨G′(η) , η⟩ −G′
i(η)−G(η),

RTot = ⟨G′(η̂) , η̂⟩ −G(η̂)− ⟨G′(η̂) , η⟩,

RBayes = −G(η),

RExc = G(η)−G(η̂) + ⟨G′(η̂) , η̂ − η⟩.

B.1. Log score (Cross-Entropy)

G(η) =

K∑
k=1

ηk log ηk,

G′(η)k = 1 + log ηk,

ℓ(η, i) = ⟨1 + log η , η⟩ − 1− log ηi −
K∑

k=1

ηk log ηk =

K∑
k=1

ηk log ηk + 1− 1− log ηi −
K∑

k=1

ηk log ηk = − log ηi,
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RTot =

K∑
k=1

(
(1 + log η̂k)η̂k − η̂k log η̂k − (1 + log η̂k)ηk

)
=

K∑
k=1

(
η̂k log η̂k − η̂k log η̂k − ηk log η̂k

)
= CE

[
η∥η̂

]
,

RBayes = −
K∑

k=1

ηk log ηk = Hη,

RExc = RTot − RBayes = CE
[
η∥η̂

]
−Hη = KL

[
η∥η̂

]
.

B.2. Quadratic score (Brier Score)

G(η) = −
K∑

k=1

ηk(1− ηk),

G′(η)k = 2ηk − 1,

ℓ(η, i) = ⟨2η − 1 , η⟩ − 2ηi + 1 +

K∑
k=1

ηk(1− ηk) =

2

K∑
k=1

η2k − 1− 2ηi + 1 + 1−
K∑

k=1

η2k =

K∑
k=1

η2k − 2ηi + 1,

since constant does not affect optimization, we will use the following:

ℓ(η, i) =

K∑
k=1

η2k − 2ηi.

RTot =

K∑
k=1

(2η̂k − 1)η̂k +

K∑
k=1

η̂k(1− η̂k)−
K∑

k=1

(2η̂k − 1)ηk =

K∑
k=1

(η̂2k − 2η̂kηk + η2k − η2k) + 1 = ∥η̂ − η∥22 − ∥η∥22 + 1,

RBayes =

K∑
k=1

ηk(1− ηk) = 1− ∥ηk∥22,

RExc = RTot − RBayes = ∥η̂ − η∥22 − ∥η∥22 + 1− 1 + ∥ηk∥22 = ∥η̂ − η∥22.

B.3. Zero-one score

G(η) = max
k

ηk − 1,

G′(η)k = I[k = argmax
j

ηj ],

ℓ(η, i) = ⟨I[k = argmax
j

ηj ] , η⟩ − I[i = argmax
j

ηj ]−max
k

ηk + 1 =

max
k

ηk − I[i = argmax
j

ηj ]−max
k

ηk + 1 = 1− I[i = argmax
j

ηj ],

12



Predictive Uncertainties Based on Proper Scoring Rules

RTot =

K∑
k=1

(
η̂kI[k = argmax

j
η̂k]− ηkI[k = argmax

j
η̂k]

)
−max

k
η̂k + 1 =

max
k

η̂k − ηargmaxj η̂k
−max

k
η̂k + 1 = 1− ηargmaxj η̂k

,

RBayes = 1−max
k

ηk,

RExc = RTot − RBayes = 1− ηargmaxj η̂k
− 1 + max

k
ηk = ηargmaxj ηk

− ηargmaxj η̂k
.

B.4. Spherical score

G(η) = ∥η∥2 − 1,

G′(η)k =
ηk
∥η∥2

,

ℓ(η, i) = ⟨ η

∥η∥2
, η⟩ − ηi

∥η∥2
− ∥η∥2 + 1 = ∥η∥2 −

ηi
∥η∥2

− ∥η∥2 + 1 = 1− ηi
∥η∥2

,

RTot =

K∑
k=1

( η̂kη̂k
∥η̂∥2

− ηkη̂k
∥η̂∥2

)
− ∥η̂∥2 + 1 = 1−

K∑
k=1

ηkη̂k
∥η̂∥2

= 1− ∥η∥2⟨
η

∥η∥2
,

η̂

∥η̂∥2
⟩,

RBayes = 1− ∥η∥2,

RExc = RTot − RBayes = 1− ∥η∥2⟨
η

∥η∥2
,

η̂

∥η̂∥2
⟩+ ∥η∥2 − 1 = ∥η∥2

(
1− ⟨ η

∥η∥2
,

η̂

∥η̂∥2
⟩
)
.

B.5. Negative log score

G(η) = −
K∑

k=1

log ηk,

G′(η)k = − 1

ηk
,

ℓ(η, i) = ⟨−1

η
, η⟩+ 1

ηi
+

K∑
k=1

log ηk = −K +
1

ηi
+

K∑
k=1

log ηk,

since constant does not affect optimization, we will have:

ℓ(η, i) =
1

ηk
+

K∑
k=1

log ηk,

RTot =

K∑
k=1

(
− η̂k
η̂k

+
ηk
η̂k

+ log η̂k

)
=

K∑
k=1

(ηk
η̂k

+ log η̂k − 1
)
,

RBayes =

K∑
k=1

log ηk,

RExc = RTot − RBayes =

K∑
k=1

(ηk
η̂k

+ log η̂k − 1− log ηk

)
=

K∑
k=1

(ηk
η̂k

− log
ηk
η̂k

− 1
)
= DIS[η∥η̂].
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C. Approximations
In this section, we provide derivations for different types of Bayesian approximations. First, let us note, that Bayes risk
depends only on the ground truth density (hence has only one argument), while Total and Excess risks are functions of both
ground truth density and our approximation (they have two arguments).

Given a set of models (ensemble or samples from a posterior distribution over model parameters), we can use these
approximation ideas for both of the arguments.

Total risk. Let us start with Total risk. Since RTot depends linearly on η, both approximations of the ground truth density
lead to the same result:

R̃Tot(θ | x) = ⟨G′(η̂θ) , η̂θ⟩ −G(η̂θ)− ⟨G′(η̂θ) , η̂Dtr
⟩, (6)

where η̂Dtr (x) = Ep(θ̃|Dtr)
η̂θ̃(x) denotes posterior predictive distribution.

We also have a second argument, for which we also can incorporate this Bayesian reasoning. To do so, we will use an
ensemble. Again, two approximation ideas, which lead to the following:

R̃
(1)

Tot (x) = Ep(θ|Dtr)

(
⟨G′(η̂θ) , η̂θ⟩ −G(η̂θ)− ⟨G′(η̂θ) , η̂Dtr

⟩
)
,

and
R̃
(2)

Tot (x) = ⟨G′(η̂Dtr
) , η̂Dtr

⟩ −G(η̂Dtr
)− ⟨G′(η̂Dtr

) , η̂Dtr
⟩ = −G(η̂Dtr

),

where by superscripts we denote the index of approximation idea.

As we will see below, the second case effectively corresponds to the situation with zero Excess risk (no epistemic uncertainty).

Bayes risk. For Bayes risks, these two approximation ideas lead to the following results:

R̃
(1)

Bayes(x) = −Ep(θ̃|Dtr)
G(η̂θ̃) and R̃

(2)

Bayes(x) = −G(η̂Dtr ).

However, it is not clear, which of these approximations is better. To investigate it, we assume that there exists a vector of
true parameters θ∗, for which η(x) = p(y | x) = p(y | x, θ∗) for any input point x. For example for neural networks, which
are flexible enough to represent any function, this is a mild assumption.

Note, that according to equation (4), Bayes risk is concave. Using g(.) = −ExG(.), the following follows from Jensen’s
inequality:

Ep(θ|Dtr)g(η̂θ) ≤ g(Ep(θ|Dtr)η̂θ).

At the same time, we know that for Bayes risk the following must hold for any θ:

g(η) = g
(
p(y | x, θ∗)

)
≤ g(η̂θ),

and in particular:
g(η) ≤ Ep(θ|Dtr)g(η̂θ).

Hence, we have the following:
g(η) ≤ Ep(θ|Dtr)g(η̂θ) ≤ g(Ep(θ|Dtr)η̂θ). (7)

From equation (7) we see that for estimating Bayes risk, it is beneficial to use the first approximation idea, as it leads to a
tighter upper-bound on a true risk, under the assumption that true parameter θ∗ belongs to the set of possible parameters of
the model.

Excess risk. For Excess risk these two approximation ideas for the ground truth distribution lead to the following results:

R̃
(1)

Exc(θ | x) = Ep(θ̃|Dtr)
DG

(
η̂θ̃ ∥ η̂θ

)
and R̃

(2)

Exc(θ | x) = DG

(
η̂Dtr

∥ η̂θ

)
.
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Furthermore, using results of (Pfau, 2013), we can rewrite the first approximation as follows:

R̃
(1)

Exc(θ | x) = DG

(
η̂Dtr

∥ η̂θ

)
+ Ep(θ̃|Dtr)

DG

(
η̂θ̃ ∥ η̂Dtr

)
= R̃

(2)

Exc(θ | x) + Ep(θ̃|Dtr)
DG

(
η̂θ̃ ∥ η̂Dtr

)
.

We see that the first approximation contains the second one, and as Bregman divergence is non-negative, R̃
(1)

Exc(θ | x) ≥
R̃
(2)

Exc(θ | x) (which also follows from the convexity of Bregman in its first argument). Moreover, the difference between
estimates is equal to Ep(θ̃|Dtr)

DG

(
η̂θ̃∥η̂Dtr

)
, which is known (Banerjee et al., 2005) as a Bregman Information. A specific

case of Bregman information for Log score (see Table 1) is BALD (Gal et al., 2017; Houlsby et al., 2011), a well-known
epistemic uncertainty measure. We see, that BALD is only a part of the epistemic uncertainty estimate. Worth noting, that in
recent work (Wimmer et al., 2023; Schweighofer et al., 2023) concerns regarding this expression as a proper measure of
epistemic uncertainty were raised.

Furthermore, similarly to the Total risk estimation, we can use ensembles to incorporate the Bayesian approximation idea
for the second argument. Thus, we end up with four different estimates of Excess risk:

• Expected Pairwise Bregman Divergence (EPBD):

R̃
(1,1)

Exc (x) = Ep(θ̃|Dtr)
Ep(θ|Dtr)DG

(
η̂θ̃ ∥ η̂θ

)
.

Note, that since KL divergence is a special case of Bregman divergence, Expected Pairwise KL (EPKL (Malinin &
Gales, 2021; Schweighofer et al., 2023)) is one of the special cases of this Excess risk estimate.

• Bregman Information (BI):
R̃
(1,2)

Exc (x) = Ep(θ̃|Dtr)
DG

(
η̂θ̃ ∥ η̂Dtr

)
,

which special case is BALD (Gal et al., 2017; Houlsby et al., 2011).

• Reverse Bregman Information (RBI):

R̃
(2,1)

Exc (x) = Ep(θ|Dtr)DG

(
η̂Dtr

∥ η̂θ

)
.

Its special case for Log score is known as Reverse Mutual Information (Malinin & Gales, 2021).

• Finally, we obtain

R̃
(2,2)

Exc (x) = DG

(
η̂Dtr

∥ η̂Dtr

)
= 0,

which is coherent with the result obtained for the Total risk, when Excess risk (epistemic uncertainty) is equal to 0.

However, it is not clear, what estimate of the Excess risk we should use. Indeed, neither of these estimates are upper nor
lower bounds for the true Excess risk. This is because contrary to Bayes risk, we don’t have any idea if Excess risk with
ground truth η reaches any extreme. For another explanation, see Figure 3 and discussion in Section 7.

In Figure 3, for simplicity, we consider only the Bayesian approximation of the first argument (ground-truth probability). In
black, we have actual (real risks), while in color we have different estimates of risks. Also, as two-sided arrows, we show
the Excess risk.

If we underestimate the Total risk (see top plot in Figure 3), the best choice for Excess risk will be R̃
(1)

Exc, as despite being a

lower bound on Excess risk, it is the best we can do (R̃
(2)

Exc in this case will be even worse). However, if we overestimate
Total risk, then there is no single best choice. In the bottom plot, when R̃Tot significantly overestimates RTot, the second idea
for estimating Excess risk gives a better estimate, despite the first idea for Bayes risk still better.

Hence, the best estimate of Excess risk depends on how well we estimate Total risk. But we never know in advance for a
particular input x, in which regime (overestimated or underestimated Total risk) we are. Thus, there is no best choice among
these risks to approximate epistemic uncertainty.
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RTot

R̃Tot

RBayes

R̃
(1)

Bayes R̃
(2)

Bayes

RExc

RTot

R̃Tot

RBayes

R̃
(1)

Bayes R̃
(2)

Bayes

RExc

R0

R0

Figure 3: Different situations for risk estimates. Risks typed in black and above the axis are the true ones. Risks, typed in
color, and below are estimates. Two-pointed arrows show Excess risks.
Top. R̃Tot underestimates RTot, R̃

(1)

Bayes better estimates RBayes, and R̃
(1)

Exc better estimates RExc.

Bottom. R̃Tot overestimates RTot, R̃
(1)

Bayes better estimates RBayes, and R̃
(2)

Exc better estimates RExc. We see, that for different
estimates of RTot, we have different best approximations for RExc. See discussion in Section 7.

D. Relations between the estimates
In this section, we discuss how the measures of uncertainty are connected. In the main text, we discussed several ways how
one can estimate risk given an ensemble of models, posterior, or samples from it. In what follows, we show how one can
further decompose these estimates of Excess risk.

Let us start with R̃
(1,1)

Exc (x). Using results of (Pfau, 2013), we have:

R̃
(1,1)

Exc (x) = Ep(θ|Dtr)Ep(θ̃|Dtr)
DG

(
η̂θ̃∥η̂θ

)
=

Ep(θ|Dtr)DG

(
η̂Dtr

∥η̂θ
)
+ Ep(θ̃|Dtr)

DG

(
η̂θ̃∥η̂Dtr

)
= R̃

(2,1)

Exc (x) + R̃
(1,2)

Exc (x).

Since all of these estimates are non-negative, the following holds true:

R̃
(1,1)

Exc (x) ≥ R̃
(2,1)

Exc (x) ≥ R̃
(2,2)

Exc (x) = 0,

and
R̃
(1,1)

Exc (x) ≥ R̃
(1,2)

Exc (x) ≥ R̃
(2,2)

Exc (x) = 0

for any x.

Moreover, one can show that the following holds:

R̃
(1)

Tot (x) = R̃
(1)

Bayes(x) + R̃
(1,1)

Exc (x) = R̃
(2)

Bayes(x) + R̃
(2,1)

Exc (x),

and
R̃
(2)

Tot (x) = R̃
(2)

Bayes(x) + R̃
(2,2)

Exc (x) = R̃
(1)

Bayes(x) + R̃
(1,2)

Exc (x).

Additionally, Bregman information can be received as follows:

BI(x) = R̃
(1,1)

Exc (x)− R̃
(2,1)

Exc (x) = R̃
(1,2)

Exc (x)− R̃
(2,2)

Exc (x) = R̃
(2)

Bayes(x)− R̃
(1)

Bayes(x).

Reverse Bregman Information:

RBI(x) = R̃
(2,1)

Exc (x)− R̃
(2,2)

Exc (x) = R̃
(1,1)

Exc (x)− R̃
(1,2)

Exc (x) = R̃
(1)

Tot (x)− R̃
(2)

Tot (x).

E. Hand-crafted datasets
In this section, we describe the noisy versions of CIFAR10 and CIFAR100 datasets created for our experiments. We created
three noisy datasets, each discussed below.
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E.1. Noisy labels datasets

In the dataset, the images are the same as in the original dataset (covariates are not changed). However, some of the labels are
randomly swapped. Hence, only labels were changed, while covariates were kept as in the original dataset. The motivation
for the creation of this dataset is due to the fact that conventional image classification datasets essentially contain no aleatoric
uncertainty (Kapoor et al., 2022). To mitigate the limitation, which is critical for our evaluation, we introduce the label noise
manually. By nature, this noise is aleatoric.

CIFAR10. We decide to do the following pairs of labels that are randomly swapped: 1 to 7, 7 to 1, 3 to 8, 8 to 3, 2 to 5,
and 5 to 2.

CIFAR100. We decided to randomly swap the following pairs of labels: 1 to 7, 7 to 1, 3 to 8, 8 to 3, 2 to 5, 5 to 2, 10 to
20, 20 to 10, 40 to 50, 50 to 40, 90 to 99, 99 to 90, 25 to 75, 75 to 25, 17 to 71, 71 to 17, 13 to 31, 31 to 13, and 24 to 42, 42
to 24.

E.2. Blurred datasets

When predicting by a model trained to particular data, on some another dataset, where covariates are drastically different
(“hard-OOD”), predictions are not meaningful anymore.

To introduce “soft-OOD” datasets, where labels remain the same but covariates are altered (yet the predicted vectors are
still reasonable), we applied a Gaussian blur to the images in CIFAR10 and CIFAR100. Specifically, before the same
transformations that we did for standard validation splits, we did Gaussian blur with kernel size of (3, 3) and sigma of
(0.1, 2.0). These blurred datasets help model “soft-OOD” scenarios.

E.3. Missing class dataset

Essentially, Excess risk-based uncertainty measures evaluate disagreement between models in an ensemble. It is interesting
to study this disagreement in the case when some of the classes are missing for some members within the ensemble. For
this, we consider a special version of the CIFAR10 dataset, when we totally ignore some classes for some members of the
ensemble. It results in an increase disagreement between ensemble members.

In our experiments, we had overall 20 ensemble members. For members 1 and 2 class 0 was missed. For members 3 and 4
class 1 was missed. And for members 5 and 6 class 2 was missed. All other members of the ensemble had all the classes.

F. Training details
Training procedures for each dataset were similar. We used either ResNet18 or VGG19 architectures.

For CIFAR10-based datasets, we used code from this repository: https://github.com/kuangliu/
pytorch-cifar. The training procedure consisted of 200 epochs with a cosine annealing learning rate. For an
optimizer, we use SGD with momentum and weight decay. For more details see the code.

In Figure 4 we present performance summary statistics of the ensembles of different architectures. Specifically, we show
accuracy, macro averaged precision, recall, and F1-score. In the left figure, the distribution for ResNet18, trained with
different loss functions. In the right figure, VGG19.

For CIFAR100-based datasets, we used code from this repository: https://github.com/weiaicunzai/
pytorch-cifar100. The training procedure consisted of 200 epochs with learning rate decay at particular mile-
stones: [60, 120, 160]. For an optimizer, we use SGD with momentum and weight decay. For more details see the
code.

Similarly to CIFAR10, in Figure 5 we present performance summary statistics of the ensembles of different architectures. In
the left figure, the distribution for ResNet18, trained with different loss functions. In the right figure, VGG19.
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Figure 4: Violin plots for different training loss functions and different metrics. The training dataset is CIFAR10. Left:
ResNet18. Right: VGG-19.
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Figure 5: Violin plots for different training loss functions and different metrics. The training dataset is CIFAR100. Left:
ResNet18. Right: VGG-19.

G. Additional experiments on matching / not-matching proper scoring rules
In this section, we provide additional results on the matching and non-matching proper scoring rules used for loss function
and risk (uncertainty measures) computations.

Figure 6 displays a histogram of AUROC scores for out-of-distribution detection, comparing the matching and non-matching
cases. For the matching case, the results are meaningful, showing a significant margin from an AUROC score of 0.5, which
corresponds to a constant predictor. In contrast, the non-matching case includes values less than 0.5, indicating a drawback
in combining different loss functions and uncertainty measures.

From Figure 2 in the main text, we see that the most unstable scoring rule is Neglog. One might think this instability is due
to its computational issues, and excluding it might equalize the results for matching and non-matching cases. To test this, we
plot an additional figure (Figure 7) excluding the Neglog scoring rule.

However, even after excluding Neglog, we still observe noise in the results, particularly from combinations of the Spherical
loss function with other scoring rules for risk computations. This demonstrates that the effect of matching and non-matching
scoring rules persists beyond the instability of any single rule.
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Figure 6: AUROC for out-of-distribution detection. Left: When scoring rules, used for loss function and risks computation,
match. Right: When they are not matching. All proper scoring rules are considered.

H. Additional experiments on out-of-distribution detection
In this section, we provide an additional comparison of matching and not-matching results for out-of-distribution detection.
For this, we add Table 4 and compare columns “Matching” and “Not-Matching” in this table element-wise. Column
“Matching” corresponds to matching proper scoring rule used for loss function and uncertainty measures. Column “Not-
Matching” corresponds to different ones. We see, that results in the left part of Table 4, except two values (in red), are
systematically better, than in its right part. However, those two values are very close to each other.

I. Additional experiments misclassification detection
Similarly to the previous section with out-of-distribution detection, we compare columns “Matching” and “Not-Matching”
in Table 5 element-wise. Column “Matching” corresponds to matching proper scoring rule used for loss function and
uncertainty measures. Column “Not-Matching” corresponds to different ones. We see, that results in the left part of Table 5,
are systematically better, than in its right part.

J. Other approximations
In this section, we discuss choices of Bayesian approximation strategy (Inner or Outer) separately for different problems.
Outer in this notation means the first approach of the Bayesian approximation, when we perform Bayesian averaging of risk,
and effectively apply an outer expectation. Inner corresponds to the second approach of Bayesian approximation, namely
Bayesian model averaging when we first find the expectation and then plug it in the risk. Effectively we do inner expectation
in this case.

J.1. Out-of-distribution detection

Here, we extend the results presented in the main part, and demonstrate, how the approximation strategy of risks influences
the results of out-of-distribution detection. We present results in Table 6, where matching scoring rules were used for loss
function and risks computations, and Table 7, where they are different.

We see, that results in Table 6 (matching scoring rules) are systematically better, than results in Table 7, when there was no
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Figure 7: AUROC for out-of-distribution detection. Left: When scoring rules, used for loss function and risks computation,
match. Right: When they are not matching. Neglog proper scoring rule excluded from consideration.

matching.

Bayes risk. We see, that there is no the only leader of specific approximation. Nevertheless, in most cases and on
average, Inner approximations seem slightly better. Average values for matching case: Bayes(O) - 85.47± 8.12, Bayes(I) -
86.54± 7.69. Average values for not matching case: Bayes(O) - 85.09± 8.32, Bayes(I) - 86.41± 7.72. In both cases, the
Inner approximation is slightly (on average) better, than the Outer.

Total risk. Similarly to Bayes risk, we see that measures are very close to each other. Average values for matching case:
Total(O) - 87.20± 7.17, Total(I) - 86.54± 7.69. Average values for not matching case: Total(O) - 85.26± 8.37, Total(I) -
86.41± 7.72.

Excess risk. In these Tables we have three out of four different approximations of Excess risk: Bregman Information (BI),
Reverse Bregman Information (RBI), and Expected Pairwise Bregman Divergence (EPBD). We do not consider Inner Inner
approximation, as it is zero. As in the previous cases, there is no sole leader in these measures.

J.2. Misclassification detection

Similar to the previous section, here we demonstrate extended results of misclassification detection. We present results in
Table 8, where matching scoring rules were used for loss function and risks computations, and Table 9, where they are
different.

We see, that results in Table 8 (matching scoring rules) are systematically better than results in Table 9, when there was no
matching.

Bayes risk. As before, there is no sole leader. Average values for matching case: Bayes(O) - 87.62 ± 6.48, Bayes(I) -
87.72± 5.99. Average values for not matching case: Bayes(O) - 86.71± 7.23, Bayes(I) - 87.06± 6.40.

Total risk. Similarly to Bayes risk, we see that measures are very close to each other. Average values for matching case:
Total(O) - 86.75± 5.70, Total(I) - 87.72± 5.99. Average values for not matching case: Total(O) - 82.54± 7.97, Total(I) -
87.06± 6.40.
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Dataset Matching Not-Matching

Bayes Excess Total Bayes Excess Total
InD OOD

CIFAR10 Blurred CIFAR10(*) 84.38 87.80 85.90 83.91 86.59 86.00
Blurred CIFAR100 94.48 95.65 95.42 94.25 94.95 95.34
CIFAR100 91.05 90.08 90.87 90.96 88.21 90.77
SVHN 94.54 93.31 94.44 94.46 91.90 94.30

CIFAR100 Blurred CIFAR10 87.96 85.36 90.32 87.65 76.68 87.96
Blurred CIFAR100(*) 71.40 77.55 74.15 70.99 72.83 73.55
CIFAR10 79.35 72.70 79.27 78.87 64.19 76.64
SVHN 84.90 73.99 84.59 84.91 65.46 82.12

Table 4: AUROC for OOD detection. Left (Matching): For computation of OOD measures, we used loss and corresponding
risks, generated by the matching function G. Right (Not-matching): Loss and corresponding risks generated by not-
matching functions G. The best results (element-wise, between Matching and Not-matching) are in bold. In red are those
where Different is better. By asterisk (*) we denote “soft-OOD”.

Dataset Matching Not-Matching

Bayes Excess Total Bayes Excess Total

CIFAR10 94.53 94.65 94.78 94.30 92.72 94.39
CIFAR100 86.47 82.90 86.83 85.57 71.62 83.13
Missed class CIFAR10 93.73 83.23 91.14 93.55 79.71 89.75
Noisy CIFAR10 81.00 74.35 80.97 79.49 70.17 78.52
Noisy CIFAR100 82.64 72.30 82.45 81.49 60.23 78.19

Table 5: AUROC for misclassification detection. Left (Matching): For computation of OOD measures, we used loss and
corresponding risks, generated by the matching function G. Right (Not-Matching): Loss and corresponding risks generated
by not-matching functions G. The best results (element-wise, between Matching and Not-Matching) are in bold.

Excess risk. In these Tables we have three out of four different approximations of Excess risk: Bregman Information (BI),
Reverse Bregman Information (RBI), and Expected Pairwise Bregman Divergence (EPBD). We do not consider Inner Inner
approximation, as it is zero. As in the previous cases, there is no sole leader in these measures.
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Dataset Metrics

Bayes(O) Bayes(I) Total(O) Total(I) BI RBI EPBD
InD OOD

CIFAR10 Blurred CIFAR10(*) 83.26 85.49 86.30 85.49 87.63 87.93 87.84
Blurred CIFAR100 93.75 95.22 95.62 95.22 95.60 95.68 95.66
CIFAR100 91.11 90.99 90.75 90.99 90.20 89.96 90.07
SVHN 94.55 94.54 94.34 94.54 93.39 93.23 93.31

CIFAR100 Blurred CIFAR10 86.74 89.18 91.45 89.18 85.83 84.48 85.76
Blurred CIFAR100(*) 70.18 72.62 75.68 72.62 76.76 78.03 77.87
CIFAR10 79.25 79.44 79.10 79.44 73.49 71.82 72.78
SVHN 84.95 84.85 84.33 84.85 75.07 72.80 74.11

Table 6: AUROC for out-of-distribution detection, when matching scoring rules were used for loss/risks. Here we extend
different approximations. Notation: O - Outer, I - Inner. (R)BI - (Reverse) Bregman Information, EPBD - Expected Pairwise
Bregman Divergence. Best results in bold, second-best underline. By asterisk (*) we denote “soft-OOD”.

Dataset Metrics

Bayes(O) Bayes(I) Total(O) Total(I) BI RBI EPBD
InD OOD

CIFAR10 Blurred CIFAR10(*) 82.56 85.26 86.74 85.26 86.57 86.46 86.73
Blurred CIFAR100 93.45 95.05 95.64 95.05 95.00 94.71 95.12
CIFAR100 90.92 90.99 90.55 90.99 88.34 88.04 88.25
SVHN 94.41 94.51 94.09 94.51 91.94 91.75 92.00

CIFAR100 Blurred CIFAR10 86.36 88.94 86.98 88.94 76.98 75.04 78.02
Blurred CIFAR100(*) 69.42 72.56 74.54 72.56 71.87 72.99 73.63
CIFAR10 78.71 79.03 74.26 79.03 64.67 63.30 64.61
SVHN 84.87 84.95 79.29 84.95 66.20 64.34 65.84

Table 7: AUROC for out-of-distribution detection, when not-matching scoring rules were used for loss/risks. Notation: O -
Outer, I - Inner. (R)BI - (Reverse) Bregman Information, EPBD - Expected Pairwise Bregman Divergence. Best results in
bold, second-best underline. By asterisk (*) we denote “soft-OOD”.

Dataset Metrics

Bayes(O) Bayes(I) Total(O) Total(I) BI RBI EPBD
InD

CIFAR10 94.30 94.76 94.79 94.76 94.68 94.60 94.65
CIFAR100 86.12 86.81 86.86 86.81 83.74 81.92 83.04
Missed class CIFAR10 94.47 92.99 89.30 92.99 86.34 80.86 82.49
Noisy CIFAR10 80.57 81.42 80.53 81.42 74.77 73.98 74.31
Noisy CIFAR100 82.66 82.62 82.28 82.62 73.28 71.25 72.37

Table 8: AUROC for misclassification detection, when matching scoring rules were used for loss/risks. Notation: O - Outer,
I - Inner. (R)BI - (Reverse) Bregman Information, EPBD - Expected Pairwise Bregman Divergence. Best results in bold,
second-best underline.
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Dataset Metrics

Bayes(O) Bayes(I) Total(O) Total(I) BI RBI EPBD
InD

CIFAR10 94.11 94.50 94.29 94.50 92.53 92.59 93.04
CIFAR100 85.19 85.96 80.30 85.96 72.45 70.00 72.40
Missed class CIFAR10 94.28 92.83 86.67 92.83 81.24 77.62 80.26
Noisy CIFAR10 78.52 80.45 76.59 80.45 71.02 69.18 70.33
Noisy CIFAR100 81.44 81.54 74.85 81.54 61.37 58.88 60.45

Table 9: AUROC for misclassification detection, when not-matching scoring rules were used for loss/risks. Notation: O -
Outer, I - Inner. (R)BI - (Reverse) Bregman Information, EPBD - Expected Pairwise Bregman Divergence. Best results in
bold, second-best underline.
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