
000 ASTABENCH: RIGOROUS BENCHMARKING OF AI 001 AGENTS WITH A SCIENTIFIC RESEARCH SUITE 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 AI agents hold the potential to revolutionize scientific productivity by automating
012 literature reviews, replicating experiments, analyzing data, and even proposing new
013 directions of inquiry; indeed, there are now many such agents, ranging from general-
014 purpose “deep research” systems to specialized science-specific agents, such as AI
015 Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet
016 existing benchmarks fall short on several fronts: they often (1) lack reproducible
017 agent tools necessary for a controlled comparison of core agentic capabilities; (2)
018 do not account for confounding variables such as model cost and tool access; (3) do
019 not provide standardized interfaces for quick agent prototyping and evaluation; (4)
020 fail to provide holistic, product-informed measures of real-world use cases such as
021 science research; and (5) lack comprehensive baseline agents necessary to identify
022 true advances. In response, we define principles and tooling for more rigorously
023 benchmarking agents. Using these, we present AstaBench, a suite that provides a
024 holistic measure of agentic ability to perform scientific research, comprising 2400+
025 problems spanning the entire scientific discovery process and multiple scientific
026 domains, and including many problems inspired by actual user requests to deployed
027 Asta agents. Our suite comes with the first scientific research environment with
028 production-grade search tools that enable controlled, reproducible evaluation, better
029 accounting for confounders. Alongside, we provide a comprehensive suite of nine
030 science-optimized classes of Asta agents and numerous baselines. Our extensive
031 evaluation of 57 agents across 22 agent classes reveals several interesting findings,
032 most importantly that despite meaningful progress on certain individual aspects,
033 AI remains far from solving the challenge of science research assistance.

034 1 INTRODUCTION 035

036 AI agents are increasingly being applied to complex real-world use cases. In particular, they hold the
037 promise to revolutionize scientific productivity by automating reviews of the literature, replicating
038 complex experiments, analyzing high volumes of data, and even proposing new avenues to explore.
039 Large organizations such as OpenAI and Google are investing in general-purpose “deep research”
040 systems to help everyone, including scientists, comb through literature much more effectively. We
041 even have specialized science-specific agents, such as AI Scientist (Lu et al., 2024; Yamada et al.,
042 2025) and AIGS (Liu et al., 2024), targeting scientific research. With so many different agents—many
043 behind paywalls and all evaluated in bespoke ways—how are end users and AI developers to know
044 which perform best?

045 Unfortunately, existing agent benchmark suites have several deficiencies, when considered as a
046 general measure of AI skill, including for their ability to do scientific research (Table 1). First, suites
047 often *lack the standard task environments and tools* necessary for realistic, controlled comparison of
048 agents on a level playing field; for example, no large-scale, controlled document retrieval tools exist,
049 making it unclear whether a ‘winning’ agent has superior AI capabilities or merely access to a more
050 relevant information source. Second, they *fail to properly account for confounding variables*; we are
051 unaware of benchmarks that consider variations in tool usage, and only a few like HAL (Kapoor et al.,
052 2025) measure cost, which is critical since even simplistic strategies (e.g., taking a majority vote over
053 repeated invocation) can boost accuracy by spending more (Kapoor et al., 2024). Third, *benchmark
suite interfaces are rarely standardized for use by general agents*, since suite developers typically
assume either that users will evaluate only agents that come with the suite (and so it is fine for evals

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969<br

108
109
110
111
112



113
114
115
116
117
Figure 1: Using AstaBench we evaluated 22 agent classes on a diverse set of science tasks while
controlling the set of available tools, e.g., to ensure each agent has access to the same set of scientific
papers. AstaBench leaderboards record not just agents accuracy but also how much computation is
required to achieve that performance.

118
119
logged by Inspect (UK AI Security Institute, 2024), a standard agent evaluation framework that
provides broad model and evaluation compatibility.

120
121
• We introduce AstaBench Leaderboard⁴ built using this Toolkit. It’s the *first agent leaderboard to*
properly account for confounding variables such as the tools used by the agent and inference cost.

122
123
• Finally, we present the *agent–baselines Agents Suite*⁵ (Section 4.3), the *most comprehensive*
standardized agents suite, comprised of nine Asta agent classes that have been optimized for
scientific research tasks, as well as numerous baselines.

124
125
Together, the AstaBench benchmark suite, agent environment, agents suite, and leaderboard enable a
holistic measurement of the current state of LLM agents for scientific research assistance, as well
as a path for continuous improvement (Fig. 1). We report on an extensive set of experiments on
AstaBench using our agents suite with 57 agents spanning 22 classes of agent architectures, ranging
from task-specific agents such as Asta Scholar QA and Asta CodeScientist to generic, ReAct-style
architectures applicable to the broad range of benchmarks within AstaBench. We find that while
meaningful progress has been made on many fronts, *science research assistance remains far from*
solved. Section 5 summarizes our findings, with more details in the appendices.

126
127
128
129
130
131
132
133
134
135
136
137
138
These findings provide a current snapshot of the state of scientific research assistance agents. But
this is only a starting point. AstaBench offers the ability to help the community continually and
systematically assess progress (or lack thereof) as new agents are designed, something that has
been difficult to do holistically. We hope AstaBench will continue to serve as a valuable guide for
the development of future agents through its clear targets, cost-aware performance reporting, and
transparent evaluation regimen.

139
140
141

2 RELATED WORK

142
143
144
145
146

Our efforts relate to two recent threads of research: the development of *holistic agent evaluations*
that test a wide range of LLM-driven automation (for a general review, see Yehudai et al. (2025)) and
the development of new benchmarks for measuring the *scientific reasoning* of LLMs and their use as
scientific assistants and agents (Wang et al., 2023). We consider each in turn.

147
148
149
150
151
152
153
154
155
156
157

Holistic Agent Evaluations The last few years have seen a surge in benchmarks and evaluation
frameworks that attempt to holistically measure the reasoning abilities of LLMs (e.g., Gu et al.,
2025; Gao et al., 2024; Habib et al., 2023; Guha et al., 2024). Given the rise of LLM-driven
automation, recent efforts have centered around new benchmarks and frameworks for evaluating
LLM agents. Table 1 highlights recent efforts that are most closely related to AstaBench in terms
of their scope as holistic or science agent benchmarks: AutoGenBench (Fourney et al., 2024),
BixBench (Mitchener et al., 2025), BrowerGym (Le Sellier De Chezelles et al., 2025), the Holistic
Agent Leaderboard (HAL) (Kapoor et al., 2025), Inspect Evals (UK AI Safety Institute and Arcadia
Impact and Vector Institute, 2025), Lab-Bench (Laurent et al., 2024), OpenHands Evals (Wang
et al., 2025), ScienceAgentBench (Chen et al., 2025b), Terminal-Bench (The Terminal-Bench Team,
2025a), and the Vector Institute Leaderboard (Vector Institute, 2025).⁶ We compare these efforts to
AstaBench across the following dimensions: **holistic scientific reasoning** (i.e., focuses on a broad

158
159
160
161
4.5 URL redacted for blind review

162
163
164
165
166
6 Agent counts for Table 1 were derived from live leaderboards and repositories accessed August 2025, in
addition to the canonical benchmark references (Microsoft, 2024; ServiceNow, 2025; SAgE Team, Princeton
University, 2025; ArcadiaImpact / UK Government BEIS Team, 2025; All-Hands-AI, 2025a;b; The Terminal-
Bench Team, 2025b).

162 spectrum of task types and across more than one scientific domain), **product usage-based** (i.e.,
163 involves tasks based on product use cases), **controlled, realistic tools** (i.e., distributes standard,
164 realistic tools that allow for controlled comparison of agents), **scoring accounts for confounders**
165 (i.e., scores systematically account for cost, controlled tool use, and other confounders), **general**
166 **agents** (i.e., tasks have uniform formats that support general-purpose agents), and **number of agents**
167 (i.e., total number and number of different classes of agent).

168 AstaBench stands out on these dimensions, which are key to advancing scientific AI and increasing
169 benchmarking rigor generally (Appendix A). In terms of science, the other agent benchmark suites
170 are all less holistic, either more limited in terms of task category (e.g., HAL’s only science tasks are
171 coding tasks) or the domain (e.g., LAB-Bench is limited to biology); AstaBench is also the only
172 benchmark to leverage data from a companion product (Asta) in its tasks. Despite its importance,
173 few suites have seriously focused on cost (HAL is an exception), and none have distributed standard
174 tools that are decoupled from agents or agent frameworks. While some leaderboards are scaling up
175 the number of agents they test (again, notably HAL), all test far fewer agent classes (architectures)
176 compared to AstaBench, which also *distributes* open-source code for these agent classes through
177 agent-baselines Agents Suite.

178 **Science Benchmarks and Agents for Science** Naturally, the rise of powerful large language models
179 (LLMs) has led to much recent interest in LLM-driven approaches to scientific research-related tasks.
180 Many new benchmarks have been developed, often focusing on particular sub-problems in the full
181 research pipeline, including scientific coding and execution (Tian et al., 2024; Lai et al., 2023; Chen
182 et al., 2025a; Chan et al., 2025; Huang et al., 2024), data analysis (Majumder et al., 2025; Xu et al.,
183 2025), research reproduction (Bogin et al., 2024; Siegel et al., 2025; Tang et al., 2025; Kon et al.,
184 2025; Xiang et al., 2025; Starace et al., 2025; Zhao et al., 2025; Yan et al., 2025), ideation and
185 hypothesis generation (Ruan et al., 2024; Si et al., 2024; Vasu et al., 2025), and literature retrieval
186 and understanding (Shi et al., 2025; He et al., 2025), among others (Zhu et al., 2025). AstaBench
187 spans many of these task categories, and provides the most comprehensive evaluation of scientific
188 agent performance to date (Table 1).

189 Increased LLM capabilities have led to emergence of a host of agents for end-to-end, open-ended sci-
190 entific discovery, including AI Scientist (Lu et al., 2024; Yamada et al., 2025), Agent Lab (Schmidgall
191 et al., 2025), AIGS (Liu et al., 2024), and CodeScientist (Jansen et al., 2025), among others (Cheng
192 et al., 2025). To bring clarity to this area (and accelerate its progress), AstaBench introduces a new
193 end-to-end task that evaluates an agent’s ability to complete a research project, starting from an idea
194 and ending with a written report and code. We believe this task is a useful complement to the many
195 existing benchmarks that focus on more narrow problems in the research pipeline.

196 197 3 ASTABENCH: A HOLISTIC SCIENTIFIC RESEARCH BENCHMARK SUITE

200 We present AstaBench, the first benchmark suite for holistic evaluation of agents’ ability to perform
201 scientific research. Crucially, our suite is reproducible even as science progresses, since it comes with
202 the first realistic, reproducible search tools (Section 4). Our suite implements a new standard interface
203 for agent benchmark suites and provides time-invariant cost reporting through the `agent-eval`
204 Agents Evaluation Toolkit (Section 4.2)). As such, AstaBench is ready for use by new general agents
205 such as those in our agent baselines suite (Section 4.3).

207 AstaBench comprises the following 11 benchmarks (summarized in Table 2, with full details
208 in Appendix E and example inputs in Appendix H; note that AstaBench uses slightly modified
209 versions of some of the cited datasets): `PaperFindingBench` tests an agent’s ability to handle
210 challenging scientific search queries. `LitQA2-FullText/LitQA2-FullText-Search` (Skarlinski
211 et al., 2024) measure an agent’s ability to answer questions and retrieve papers within the biomedical
212 domain. `ScholarQA-CS2` tests an agent’s ability to answer long-form scientific questions.
213 `ArxivDIGESTables-Clean` (Newman et al., 2024) tests an agent’s ability to create a literature
214 review table. `SUPER-Expert` (Bogin et al., 2024) tests the ability of code agents to set up and
215 execute Python machine learning experiments reported in ML and NLP papers. `CORE-Bench-`
216 `Hard` (Siegel et al., 2025) tests an agent’s ability to reproduce experiments and analyses from

216 Table 2: AstaBench benchmarks, spanning four task categories: Literature Understanding, Code
 217 & Execution, Data Analysis, and End-to-End Discovery. Benchmarks are fully reproducible when
 218 paired with the Asta Environment tools listed in the ‘Tools’ column, which come standard with each
 219 benchmark: Computational Notebook (Code) or Asta Scientific Corpus (Corpus) tools
 220 that restrict to papers before the specified ‘Date Cutoff’ (exclusive). (Original datasets were filtered to
 221 ensure questions are answerable with the environment.) [†]For ArxivDIGESTables-Clean, corpus
 222 tools are restricted to snippet search with specific paper IDs for each problem. * indicates created by
 223 us, and [†] indicates previously unreleased.

Name	Task category	Domains	Test	Val	Tools	Date Cutoff
PaperFindingBench *†	Lit. Und. (search)	CS	267	66	Corpus	2025-06-01
LitQA2-FullText-Search	Lit. Und. (search)	Biology	75	10	Corpus	2024-10-17
ScholarQA-CS2 *†	Lit. Und. (report)	CS	100	100	Corpus	2025-05-01
LitQA2-FullText	Lit. Und. (MC)	Biology	75	10	Corpus	2024-10-17
ArxivDIGESTables-Clean *	Lit. Und. (table)	Mixed	100	70	Snippet [†]	Paper IDs
SUPER-Expert *	Code & Exec.	CS	45	50	Code	—
CORE-Bench-Hard [—]	Code & Exec.	Mixed	37	35	Code	—
DS-1000	Code & Exec.	CS	900	100	Code	—
DiscoveryBench *	Data Analysis	Mixed	239	25	Code	—
E2E-Bench *†	End-to-End Disc.	CS	40	10	Code	—
E2E-Bench-Hard *†	End-to-End Disc.	CS	40	10	Code	—

237
 238 papers. ⁷ DS-1000 (Lai et al., 2023) tests the ability of agents on data science tasks encountered in
 239 research. DiscoveryBench (Majumder et al., 2025) tests whether the agent can automatically find
 240 and verify hypotheses from given dataset(s). E2E-Bench/E2E-Bench-Hard test whether agents can
 241 perform the full research pipeline of ideation, planning, (software) experiment design, implementation,
 242 execution, analysis, and producing a final report.

243 Full details of how these tasks are scored can be found in Appendix E. Some use LLMs as judges to
 244 evaluate outputs against rubrics (PaperFindingBench, ScholarQA-CS2, ArxivDIGESTables-
 245 Clean, DiscoveryBench, E2E-Bench, E2E-Bench-Hard) while others use programmatic eval-
 246 uation (LitQA2-FullText, LitQA2-FullText-Search, SUPER-Expert, CORE-Bench-Hard[—],
 247 DS-1000).

249 4 ASTA ENVIRONMENT

251 Asta Environment is, to our knowledge, the first realistic, reproducible scientific research environment
 252 for agents. It provides standardized tools, an evaluation toolkit, a leaderboard, and numerous agents.

254 4.1 STANDARD TOOLS FOR AGENTS

256 Asta Environment provides a comprehensive set of standard tools for science research assistance,
 257 from which each AstaBench task includes a specific subset based on its requirements (Table 2).

258 **Asta Scientific Corpus:** A toolset for accessing the scientific literature, which represents the
 259 first production-grade, reproducible search tools for agents. These tools can restrict outputs to papers
 260 preceding a date; AstaBench uses this feature to limit results to the date of benchmark creation so
 261 that new papers do not contaminate results (see cutoffs for specific tasks in Table 2). The snippet_-
 262 search tool can be further restricted to papers with specific IDs so that it can be used as a text retrieval
 263 mechanism over those papers (useful for detailed literature analysis, e.g., in ArxivDIGESTables-
 264 Clean). It provides the following specific tools via the MCP (Model Context Protocol) standard:
 265 snippet_search, search_papers_by_relevance, get_paper, get_paper_batch, get_-
 266 citations, search_authors_by_name, get_author_papers, search_paper_by_title

267 **Computational Notebook:** A stateful computational (Jupyter) notebook. The tool can execute
 268 Python code as well as standard IPython magic commands like %%writefile, %matplotlib

269 ⁷CORE-Bench-Hard[—] omits GPU-requiring tasks from the original CORE-Bench-Hard; see Appendix E.

270 `inline`, and `!shell_command`. Python variables and environment are maintained between calls
271 so that the tool can be used to solve problems incrementally. By default, the tool returns a timeout
272 message to the agent if a single cell takes more than 5 minutes to execute. Since the tool needs to
273 execute code, it lives in a new sandbox image that's created by the framework.

274 Our tools feature improved agent compatibility compared to other suites. They are cleanly decoupled
275 from agents and provide easy integration via MCP. Code executed in our sandbox can call tools
276 provided by the main (host) execution environment (e.g., Asta Scientific Corpus), enabling
277 testing of code execution agents, e.g., agents that implement the CodeAct (Wang et al., 2024) pattern.
278
279

280 4.2 AGENT-EVAL EVALUATION TOOLKIT & ASTABENCH LEADERBOARD 281

282 We use Inspect (UK AI Security Institute, 2024) as the framework for implementing our individual
283 agentic benchmarks, as it provides broad model provider and tool compatibility, useful logging and
284 debugging affordances, and a growing set of compatible evals (UK AI Safety Institute and Arcadia
285 Impact and Vector Institute, 2025). However, Inspect logs only model usages (not normalized dollar
286 amounts) and it lacks tooling for defining benchmark suites with unified scoring or leaderboards. To
287 fill this gap, we present the `agent-eval`⁸ agent leaderboard toolkit, which provides a benchmark
288 suite, reporting, and leaderboard layer on top of a suite of Inspect-formatted benchmarks; it features:

289 **Time-invariant cost calculation:** The `agent-eval` toolkit computes normalized dollar costs based
290 on model usages logged through Inspect. For mapping model usages to prices, we use a frozen
291 snapshot of the `litellm` cost map, which is community-sourced for broad model coverage.⁹ It
292 factors in cache discounts for agents that take advantage of caching, as this is an increasingly adopted
293 optimization technique (and providers like OpenAI provide these discounts automatically); however,
294 it does not factor in any latency-related discounts (e.g., service tier or batching). Using a frozen
295 snapshot allows a fair comparison of evaluation costs even if API prices change between evaluations.¹⁰
296

297 **Reporting that accounts for confounders:** In addition to cost, the `agent-eval` toolkit and leader-
298 boards categorize agent evaluation submissions according to their reproducibility and degree of
299 control based on the following dimensions (full definitions in Appendix B):

- 300 • **Agent openness** (*is the agent implementation open?*): Open-source, open-weight (✓), Open-
301 source, closed-weight (~), Closed source & API available (✗), or Closed & UI only (✗)
- 302 • **Agent tooling** (*does the agent use the provided standard tools for the tasks?*): Standard (✓),
303 Custom interface (~), or Fully custom (✗)

304 **Leaderboard web interface:** In addition to the `agent-eval` CLI-based leaderboard interface
305 (which requires authentication currently unavailable to the public for AstaBench), we also include a
306 web application interface for the AstaBench Leaderboard¹¹, which supports external submissions
307 (with Hugging Face user-based authentication) and provides interactive plots and tables.
308
309

310 4.3 AGENT-BASELINES AGENTS SUITE 311

312 To enable comprehensive measurement on AstaBench and other benchmarks—and advance the state
313 of the art—we provide the `agent-baselines` Agents Suite,¹² which consists of a large set of agents
314 from 16 agent classes¹³ with a standard Inspect-compatible interface. Table 3 lists these agents,
315 grouped into (1) the Asta agents that we optimized for scientific research tasks and (2) numerous
316 baseline agents that we evaluate. Detailed descriptions are deferred to Appendix F.
317
318

^{8,11,12} URL redacted for blind review

⁹We supplement the cost map with prices for custom models based on Together AI (<https://www.together.ai/>) generic model size-based pricing.

¹⁰The cost map snapshot used for the leaderboard may be periodically updated, but we will always re-calculate
321 all costs based on the current snapshot to ensure fair comparison.
322

¹³Slightly less than the 22 we evaluate because some are closed source and thus not usable on new inputs;
323 however, we provide ways to reproducing those results based on cached answers obtained for our experiments.

324 Table 3: Agent classes in the agent-baselines Agents Suite, with Asta agents in the top section
 325 and baseline agents in the bottom section. “Standard” tooling means that the only tools used are the
 326 ones distributed with the AstaBench tasks; “Custom interface” means that standard date-restricted
 327 search is used but additional custom tooling may be used; “Fully custom” means that tooling is
 328 custom and standard search tools are not used.

Name	Task optimization	Open-source	Tooling
Asta Paper Finder	Lit. Und. (search)	✓ Yes	~ Custom interface
Asta Scholar QA	Lit. Und. (report)	✓ Yes	~ Custom interface
Asta Scholar QA (w/ Tables)	Lit. Und. (report)	✓ Yes	~ Custom interface
Asta Table Synthesis	Lit. Und. (table)	✓ Yes	~ Custom interface
Asta Code	Code & Execution	✓ Yes	~ Custom interface
Asta DataVoyager	Data Analysis	✓ Yes	~ Custom interface
Asta Panda	End-to-End Disc.	✓ Yes	✗ Fully custom
Asta CodeScientist	End-to-End Disc.	✓ Yes	✗ Fully custom
Asta v0	Multi	✓ Yes	✗ Fully custom
ReAct	None (general)	✓ Yes	✓ Standard
Smolagents Coder	None (general)	✓ Yes	~ Custom interface
You.com Search API	Lit. Und. (search)	✗	✗ Fully custom
Elicit	Lit. Und. (report)	✗	✗ Fully custom
FutureHouse Crow	Lit. Und. (report)	✗	✗ Fully custom
FutureHouse Falcon	Lit. Und. (report)	✗	✗ Fully custom
OpenAI Deep Research	Lit. Und. (report)	✗	✗ Fully custom
OpenSciLM	Lit. Und. (report)	✓ Yes	~ Custom interface
Perplexity Sonar Deep Research	Lit. Und. (report)	✗	✗ Fully custom
SciSpace Deep Review	Lit. Und. (report)	✗	✗ Fully custom
STORM	Lit. Und. (report)	✓ Yes	✗ Fully custom
You.com Research API	Lit. Und. (report)	✗	✗ Fully custom
Faker	End-to-End Disc.	✓ Yes	✓ Standard

5 EXPERIMENTS

355 We now present experimental results, which we have also used to seed the interactive AstaBench
 356 leaderboard.¹⁴ Our experiments were conducted over a period of several months. Since one may
 357 boost scores by using more compute (eg using repetition and majority vote) (Dodge et al., 2019),
 358 we report cost as well as accuracy. We also report the standard deviation of our measurements. For
 359 brevity, when an agent was tested with multiple different models, we report the top result(s) plus
 360 any other significant data points. The entire set of results, plus plots of scores vs. costs including the
 361 Pareto frontier (showing the best agent for a given cost), are in Appendix D.

362 Some agents (e.g., ReAct) can attempt *all* 11 benchmarks; others are category-specific or even
 363 benchmark-specific. Table 4 shows the overall results for those agents attempting *all* benchmarks, as
 364 well as agents that can solve all the benchmarks in at least one category. Category- and benchmark-
 365 specific results are presented in Appendix C for space reasons.

366 As noted above, agents powered by closed weight LLMs currently far exceed the reach of those
 367 powered by open weight LLMs. On the other hand, simply switching the underlying LLM with the
 368 latest and greatest one isn’t necessarily a reliable recipe for success on AstaBench. As a case in point,
 369 one of the newest LLMs, gpt-5, provides only a modest boost over an earlier “reasoning LLM”, o3,
 370 except on three benchmarks. In fact, gpt-5 hurts the performance of several specialized agents.

371 *Tools designed specifically for science research assistance can significantly help AI agents.* This is
 372 most noticeable with Asta v0, which scores ~9% higher than the next best agent, ReAct with gpt-5
 373 (53.0% vs. 44.0%). However, this comes with the trade-off of significantly higher development
 374 (engineering) cost, and (for some tasks, specifically in end-to-end-discovery) higher inference cost.

375 *None of the commercial scientific research agents were able to perform the full range of research*
 376 *tasks in AstaBench.* The best such API-based agent (FutureHouse Falcon) and the best closed

377 ¹⁴ URL redacted for blind review

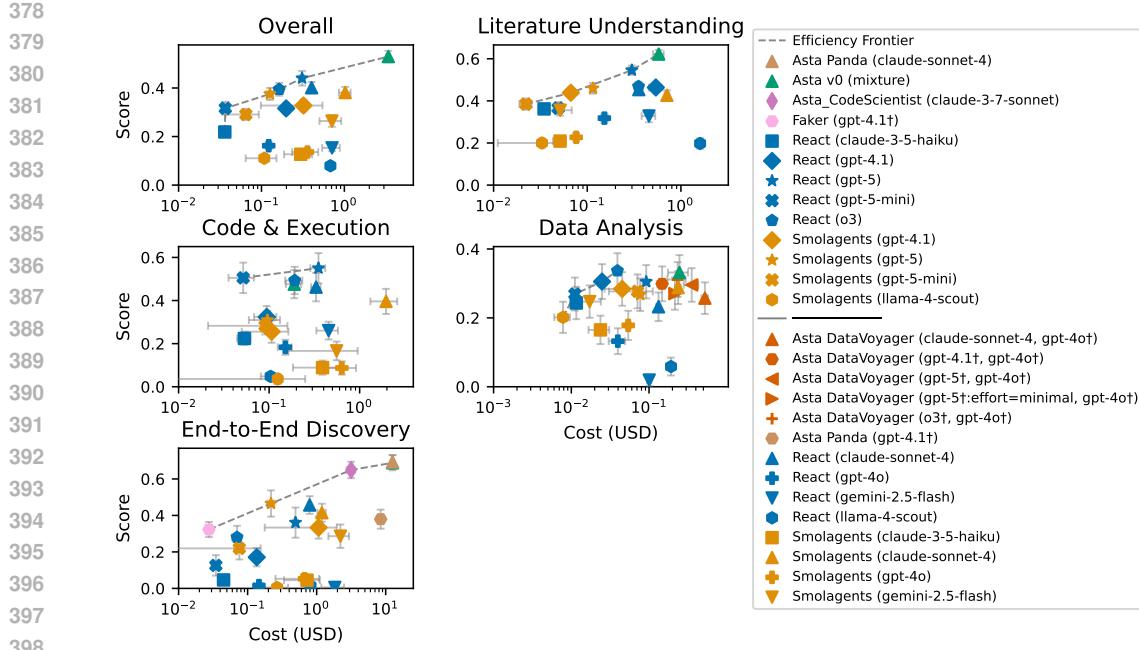


Figure 2: Score vs. cost analysis for overall and category results (from Tables 4, 11, 16 and 17). Points indicate means. Points on the Pareto frontier are connected with dotted lines, representing optimal quality-cost trade-offs for each category (Literature Understanding, Code & Execution, Data Analysis, End-to-End Discovery). \dagger denotes models not pinned to a date-stamped version. Note: the x-axis (cost per answer in dollars) uses a log scale. For more detailed plots for individual categories and benchmarks, see Appendix D.

one (OpenAI Deep Research) score well on literature understanding, but are unable to perform the full spectrum of science research assistance.

Science research assistance is still far from solved, as evidenced by the generally low overall scores for the full gamut of agents, from fully open to fully closed. For example: The best open source agent with open weights LLMs scores a terrible 11.1% (Smolagents Coder with Llama-4-Scout-17B-16E-Instruct) (Table 4). The best open source agent with closed LLM(s) is much better: 53.0% (Asta v0) (Table 4). While the best API-based agent (FutureHouse Falcon) and closed agent (OpenAI Deep Research) score well on a single benchmark (Table 6), they are stymied by the full range of tasks.

The cost-performance tradeoff across agents, highlighted by the Asta leaderboard’s Pareto curve provides several interesting insights. *The best economical model is ReAct with gpt-5-mini*, scoring 32%—within 21% (absolute) of the best performing models—while costing over an order of magnitude less at \$0.04 per problem.

Powering a general agent with an expensive model can lower the overall cost. Though the per-token cost is 3 to 25 times lower for gemini-flash and llama-scout compared to o3 or sonnet, the weaker models often take more steps or get stuck in loops, causing a ReAct agent to end up being twice as expensive in addition to lower-performing.

Surprisingly, most of our specialized agents (Asta Scholar QA (Table 6), Asta DataVoyager (Table 4), Asta Code (Table 8)) *perform worse with gpt-5* than with previous models, while ReAct performs much better. One possible explanation for this is that gpt-5 has been tuned to do well with now-common ReAct-style workflows, and conversely may be relatively less adaptive to alternate workflows. If this is indeed true, and trends continue, there may be diminishing value in application-specific workflows.

As the LLM underlying ReAct, gpt-5’s *boost over o3 is generally light*, with only a gain of 0%-5% across most benchmarks. However, gpt-5 provides a huge boost in 4 benchmarks: +13.4%

432 absolute on ScholarQA-CS2 (Table 6), + 24.8% on SUPER-Expert (Table 8), +25.3% on LitQA2-
433 FullText-Search (Table 5), and +21.1% on E2E-Bench-Hard (Table 10).

434 In general, today’s agents are reasonably good at literature understanding. However, despite some
435 recent progress, coding, experiment execution, data analysis, and data-driven discovery still remain
436 major, unsolved problems for science assistance agents.

437 **Literature Understanding:** For literature search agents, *Asta Paper Finder stands out as an*
438 *impressive system*, scoring much higher than its closest rival (ReAct) on PaperFindingBench and
439 LitQA2-FullText-Search (Table 5). Despite this, it is clear that the paper-finding task is far from
440 ‘solved,’ requiring further work to achieve truly comprehensive results.

441 For literature question-answering agents, our results (Table 6) suggest that (among other things):
442 *The best models have relatively good performance in this category*, scoring around 80%. This is
443 likely because literature understanding has been a strong focus of many task-optimized agents in the
444 community (or conversely, the community has targeted literature understanding because this category
445 is particularly well suited for language models). *Asta Scholar QA, Elicit, and SciSpace Deep*
446 *Review are the best tools on these tests* (all score about 85% or higher on ScholarQA-CS2, Table 6).
447 For all three tools, the higher performance is driven by the citation subscores of the evaluation. The
448 *other external/commercial agents are not far behind, but also do not do significantly better than the*
449 *best ReAct baseline*. This is indeed surprising given ReAct’s simplicity, but is also an indicator of
450 the challenging nature of the task that requires system responses to be precise and cover the relevant
451 points as well as cite the correct supporting sources for claims as necessary.

452 For literature review table generation agents, our results (Table 7) suggest that: *even the best models*
453 *do not yet achieve strong performance in this category*, with recall scores around 43%, likely due
454 to limited efforts to build task-optimized agents in this space. *Asta Table Synthesis, backed*
455 *by gpt-5, wins on this task, beating the best general agents*. However, *Asta Table Synthesis*
456 *backed by gpt-5-mini* also shows competitive performance, at just 13% of the cost.

457 **Code and Execution:** *Coding and execution is far from solved*—all agents score low on these tasks,
458 e.g., all but two scored below 25% on SUPER-Expert (ReAct with gpt-5 scored 41%), Table 8.
459 Coding and execution thus remain major bottlenecks for assisting with and automating science.

460 *The impact of using gpt-5 is highly unpredictable.* Surprisingly, running the general ReAct agent
461 with gpt-5 significantly improves its performance (compared to running with other LLMs), while
462 running the more custom-built Smolagents Coder with gpt-5 notably *decreases* performance.
463 One possible explanation is that gpt-5 has been tuned for the common ReAct-style workflow, making
464 gpt-5 less adaptive to alternate workflows.

465 **Data Analysis:** Similarly, *automated data analysis and data-driven discovery is a major, unsolved*
466 *challenge for science assistance agents*. We see agents struggle with this benchmark, with the
467 maximum score being only 34% (Table 4) despite increased attention in the community.

468 **End-to-End Discovery:** *End-to-end discovery remains far from being meaningfully solved.* Although
469 the *average* research step completion scores appear reasonable (scores up to $\sim 70\%$, Table 10), the
470 likelihood of completing *all* experiment steps remains near zero. For example, given ~ 10 steps
471 per experiment, and a success rate of 70% per step, the success rate to complete *all* steps in the
472 experiment will be $\approx 0.7^{10} \approx 3\%$ (see Table 20 for actual numbers, reaching a maximum of 5%).
473 A lot more work is needed, and we hope these benchmarks will help push research forward in this
474 direction.

475 6 CONCLUSION AND FUTURE WORK

476 In summary, we identify limitations of current approaches to benchmarking agents, and present
477 methodology and tooling for doing so more rigorously. Using this methodology and tooling, we
478 introduce AstaBench, a holistic benchmark suite for scientific research that addresses key limitations.
479 AstaBench is the first major agent benchmark suite to come with standard environment and tools
480 that enable controlled comparison of agents: the Asta Environment, the first scientific research
481 environment for agents with realistic, controlled search tools. Alongside, we present the agent-
482 baselines Agents Suite, a large suite of standardized agents, which we used to conduct experiments
483 on AstaBench with 57 agents across 22 architectural classes. This revealed several interesting

486 findings, most importantly that despite meaningful progress on certain individual aspects, agentic AI
487 remains far from solving the challenge of scientific research assistance. We invite the community to
488 make submissions to the AstaBench Leaderboard, which is powered by our `agent-eval` Agents
489 Evaluation Toolkit.

490 This work opens up many exciting possibilities for the agentic AI, scientific research assistance,
491 and automated scientific discovery communities. We are actively pushing the performance-cost
492 frontiers in AstaBench and closing the gap for truly open agents by developing new agent techniques,
493 tools, and open models specialized for scientific research. We are also enhancing agent abilities to
494 manage complex context, from improving on Asta v0 simple orchestration techniques to handling
495 long-duration tasks in complex research projects. We are continuing to research how to refine our
496 LLM-as-a-judge grading procedures, especially for challenging scientific discovery tasks. We plan to
497 develop fresh benchmark problems that use the latest scientific knowledge, which is contamination-
498 resistant and past the training cut-off date of models. We also plan to build benchmarks that test
499 more aspects of collaboration with humans, and deepen coverage of problems in impactful fields
500 such as biomedicine. Finally, we are committed to continuing to measure the latest advances—both
501 by testing the latest LLMs and by adding more agent architectures to `agent-baselines`.

502

503 ETHICS STATEMENT

504

505 We took care to adhere to a high ethics bar. We obtained legal review for all material presented in this
506 work. The new real-world user queries used in the Literature Understanding tasks were collected
507 with user consent. We also credit any benchmarks that we adapted for use in our suite, as well as
508 agents that we leverage, citing those works. When measuring existing agents, we worked with the
509 agent creators where possible to ensure they are measured fairly, including Elicit, Future House, and
510 SciSpace.

511

512 REPRODUCIBILITY STATEMENT

513

514 We took special care to make this work reproducible; indeed, reproducibility is a core value proposition
515 of our benchmark suite. AstaBench comes with open source code for all included benchmarks,
516 agents, and core infrastructure—as well as logs of all reported experiment. The framework logs
517 and reports specific repository commits, including for data. The agent tools in AstaBench improve
518 reproducibility by providing date-restricted access to the supporting document corpus.

519

520 THE USE OF LARGE LANGUAGE MODELS (LLMs)

521

522 We used AI-based tools (Claude Code, Github Copilot, ChatGPT) for analyzing results data, generating
523 code to populate plots and tables, identifying errors and missing references, and (minor) writing
524 assistance.

525

526 REFERENCES

527

528 Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, and Tianyu Gao.
529 LitSearch: A retrieval benchmark for scientific literature search. In *EMNLP*, 2024. URL <https://aclanthology.org/2024.emnlp-main.840/>.

530

531 All-Hands-AI. OpenHands agent hub, 2025a. URL <https://github.com/All-Hands-AI/OpenHands/tree/55d204aelb5581b0e55ebbd6465c7e2211b26765/openhands/agenthub>. Accessed: 2025-08-25.

532

533 All-Hands-AI. OpenHands evaluation leaderboard, 2025b. URL <https://docs.google.com/spreadsheets/d/1wOUDFCMyY6Nt0AIqF705KN4JKOWgeI4wUGUP60krXXs/edit?gid=0#gid=0>. Accessed: 2025-08-25.

534

535 ArcadiaImpact / UK Government BEIS Team. Inspect Evals Dashboard, 2025. URL <https://inspectevalsdashboard-vv8euilv46.streamlit.app/>. Accessed: 2025-07-08; site was down on 2025-08-25.

540 Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle Lo,
541 Luca Soldaini, Sergey Feldman, Mike D’Arcy, David Wadden, Matt Latzke, Minyang Tian, Pan
542 Ji, Shengyan Liu, Hao Tong, Bohao Wu, Yanyu Xiong, Luke S. Zettlemoyer, Graham Neubig,
543 Daniel S. Weld, Doug Downey, Wen tau Yih, Pang Wei Koh, and Hanna Hajishirzi. OpenScholar:
544 Synthesizing scientific literature with retrieval-augmented LMs. *ArXiv*, abs/2411.14199, 2024.
545 URL <https://api.semanticscholar.org/CorpusID:274166189>.

546 Ben Beglin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
547 Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks from
548 research repositories. In *EMNLP*, 2024. URL <https://aclanthology.org/2024.emnlp-p-main.702>.

549 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
550 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mádry. MLE-
551 bench: Evaluating machine learning agents on machine learning engineering. In *ICLR*, 2025. URL
552 <https://openreview.net/forum?id=6s5uXNWGIh>.

553 Hui Chen, Miao Xiong, Yujie Lu, Wei Han, Ailin Deng, Yufei He, Jiaying Wu, Yibo Li, Yue Liu,
554 and Bryan Hooi. MLR-Bench: Evaluating AI agents on open-ended machine learning research.
555 *arXiv:2505.19955*, 2025a. URL <https://arxiv.org/abs/2505.19955>.

556 Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
557 Liao, Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns, Daniel
558 Adu-Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. ScienceAgentBench:
559 Toward rigorous assessment of language agents for data-driven scientific discovery. In *ICLR*,
560 2025b. URL <https://openreview.net/forum?id=6z4YKr0GK6>.

561 Junyan Cheng, Peter Clark, and Kyle Richardson. Language modeling by language models.
562 *arXiv:2506.20249*, 2025. URL <https://arxiv.org/abs/2506.20249>.

563 Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and E. Voorhees. Overview
564 of the TREC 2020 deep learning track. *ArXiv*, abs/2102.07662, 2021. URL <https://api.semanticscholar.org/CorpusID:212737158>.

565 Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show your work:
566 Improved reporting of experimental results. In *EMNLP*, 2019.

567 Adam Journey, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang Zhu,
568 Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
569 Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
570 Amershi. Magentic-One: A generalist multi-agent system for solving complex tasks. *arXiv*,
571 abs/2411.04468, 2024. URL <https://arxiv.org/abs/2411.04468>.

572 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
573 Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
574 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
575 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
576 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

577 Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
578 OLMES: A standard for language model evaluations. In *Findings of NAACL*, 2025. URL
579 <https://arxiv.org/abs/2406.08446>.

580 Etash Guha, Negin Raoff, Jean Mercat, Ryan Marten, Eric Frankel, Sedrick Keh, Sachin Grover,
581 George Smyrnis, Trung Vu, Jon Saad-Falcon, Caroline Choi, Kushal Arora, Mike Merrill, Yichuan
582 Deng, Ashima Suvarna, Hritik Bansal, Marianna Nezhurina, Reinhard Heckel, Seewong Oh, Tat-
583 sunori Hashimoto, Jenia Jitsev, Yejin Choi, Vaishaal Shankar, Alex Dimakis, Mahesh Sathiamoorthy,
584 and Ludwig Schmidt. Evalchemy: A post-trained model evaluation framework, November
585 2024. URL <https://github.com/mlfoundations/evalchemy/tree/ce5cea94f9f0f61388d2234afb01d811ff4357f4>.

594 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval:
595 A lightweight framework for LLM evaluation, 2023. URL <https://github.com/huggingface/lighteval/tree/126f908a323a6d36f718076c4748e212d7275cfe>.
596

597 Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, and Weinan E.
598 PaSa: An LLM agent for comprehensive academic paper search. In *ACL*, 2025. URL <https://aclanthology.org/2025.acl-long.572/>.
599

600 Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAGentBench: Evaluating language
601 agents on machine learning experimentation. In *ICML*, 2024.
602

603 Peter Jansen, Oyvind Tafjord, Marissa Radensky, Pao Siangliulue, Tom Hope, Bhavana Dalvi,
604 Bodhisattwa Prasad Majumder, Daniel S. Weld, and Peter Clark. CodeScientist: End-to-end
605 semi-automated scientific discovery with code-based experimentation. In *ACL Findings*, 2025.
606

607 Sayash Kapoor, Benedikt Stroebel, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. AI agents
608 that matter. *arXiv:2407.01502*, 2024. URL <https://arxiv.org/abs/2407.01502>.
609

610 Sayash Kapoor, Benedikt Stroebel, Peter Kirgis, Franck Stéphane Ndzomga, Kangheng Liu, and
611 Arvind Narayanan. HAL: A holistic agent leaderboard for centralized and reproducible agent
612 evaluation. <https://github.com/princeton-pli/hal-harness>, 2025.
613

614 Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang,
615 Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Matei Zaharia, and Ang
616 Chen. EXP-Bench: Can AI conduct AI research experiments? *arXiv:2505.24785*, 2025. URL
617 <https://arxiv.org/abs/2505.24785>.
618

619 Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
620 Daniel Fried, Sida Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for data science
621 code generation. In *ICML*, 2023.
622

623 Jon M. Laurent, Joseph D. Janizek, Michael Ruzo, Michaela M. Hinks, Michael J. Hammerling,
624 Siddharth Narayanan, Manvitha Ponnappati, Andrew D. White, and Samuel G. Rodrigues. LAB-
625 Bench: Measuring capabilities of language models for biology research. *arXiv:2407.10362*,
626 2024.
627

628 Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo Boisvert,
629 Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang,
630 Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham
631 Neubig, Ruslan Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The BrowerGym
632 ecosystem for web agent research. *TMLR*, 2025. URL <https://openreview.net/forum?id=5298fKGmv3>.
633

634 Zijun Liu, Kai Liu, Yiqi Zhu, Xuanyu Lei, Zonghan Yang, Zhenhe Zhang, Peng Li, and Yang Liu.
635 AIGS: Generating science from AI-powered automated falsification. *ArXiv*, abs/2411.11910, 2024.
636 URL <https://api.semanticscholar.org/CorpusID:274140961>.
637

638 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob N. Foerster, Jeff Clune, and David Ha. The AI
639 scientist: Towards fully automated open-ended scientific discovery. *ArXiv*, abs/2408.06292, 2024.
640

641 Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish Sabharwal,
642 and Peter Clark. Data-driven discovery with large generative models. *ICML*, 2024.
643

644 Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
645 jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
646 DiscoveryBench: Towards data-driven discovery with large language models. In *ICLR*, 2025. URL
647 <https://openreview.net/pdf?id=vyflgpwfJW>.
648

649 Microsoft. AutoGen agent implementations, 2024. URL https://github.com/microsoft/autogen/tree/d4dd4a26ca5c9a7e29307cf2efef7ffec9bd23da/python/packages/autogen-ext/src/autogen_ext/agents. Accessed: 2025-08-25.
650

648 Jordan Mitchener, Francisco Pineda, Yuxin Ye, Spyros Maniatis, Kenneth Holstein, Kam Dahlquist,
649 James D. Braza, Andrew D. White, and Samuel G. Rodriques. BixBench: a comprehensive
650 benchmark for llm-based agents in computational biology. *arXiv:2503.00096*, 2025. URL
651 <https://arxiv.org/abs/2503.00096>.

652 Benjamin Newman, Yoonjoo Lee, Aakanksha Naik, Pao Siangliuue, Raymond Fok, Juho Kim,
653 Daniel S Weld, Joseph Chee Chang, and Kyle Lo. ArxivDIGESTTables: Synthesizing scientific
654 literature into tables using language models. In *EMNLP*, 2024. URL <https://aclanthology.org/2024.emnlp-main.538/>.

655

656 Vishakh Padmakumar, Joseph Chee Chang, Kyle Lo, Doug Downey, and Aakanksha Naik. Setting
657 the table with intent: Intent-aware schema generation and editing for literature review tables.
658 *arXiv:2507.19521*, 2025.

659

660 Pritika Ramu, Aparna Garimella, and Sambaran Bandyopadhyay. Is this a bad table? a closer look at
661 the evaluation of table generation from text. In *EMNLP*, 2024. URL <https://aclanthology.org/2024.emnlp-main.1239/>.

662

663 Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
664 mäki. ‘smolagents’: a smol library to build great agentic systems. <https://github.com/huggingface/smolagents>, 2025.

665

666 Kai Ruan, Xuan Wang, Jixiang Hong, Peng Wang, Yang Liu, and Hao Sun. LiveIdeaBench:
667 Evaluating LLMs’ divergent thinking for scientific idea generation with minimal context.
668 *arXiv:2412.17596*, 2024. URL <https://arxiv.org/abs/2412.17596>.

669

670 SAgE Team, Princeton University. HAL: Holistic agent leaderboard, 2025. URL <https://hal.cs.princeton.edu/#leaderboards>. Accessed: 2025-08-25.

671

672 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
673 Zicheng Liu, and Emad Barsoum. Agent Laboratory: Using LLM agents as research assistants. In
674 *arXiv*, volume abs/2501.04227, 2025.

675

676 ServiceNow. BrowerGym leaderboard, 2025. URL <https://huggingface.co/spaces/ServiceNow/browergym-leaderboard>. Accessed: 2025-08-25.

677

678 Yijia Shao, Yucheng Jiang, Theodore A. Kanell, Peter Xu, Omar Khattab, and Monica S. Lam.
679 Assisting in writing Wikipedia-like articles from scratch with large language models, 2024. URL
680 <https://arxiv.org/abs/2402.14207>.

681

682 Xiaofeng Shi, Yuduo Li, Qian Kou, Longbin Yu, Jinxin Xie, and Hua Zhou. SPAR: Scholar paper
683 retrieval with llm-based agents for enhanced academic search. *arXiv:2507.15245*, 2025. URL
684 <https://arxiv.org/abs/2507.15245>.

685

686 Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
687 large-scale human study with 100+ nlp researchers. *arXiv preprint arXiv:2409.04109*, 2024.

688

689 Zachary S. Siegel, Sayash Kapoor, Nitya Nadgir, Benedikt Stroebel, and Arvind Narayanan. CORE-
690 Bench: Fostering the credibility of published research through a computational reproducibility
691 agent benchmark. *TMLR*, 2025-January:1–31, 2025. URL <https://tmlr.org/papers/v2025/01-2025paper.pdf>.

692

693 Amanpreet Singh, Joseph Chee Chang, Chloe Anastasiades, Dany Haddad, Aakanksha Naik, Amber
694 Tanaka, Angele Zamarron, Cecile Nguyen, Jena D. Hwang, Jason Dunkleberger, Matt Latzke,
695 Smita R Rao, Jaron Lochner, Rob Evans, Rodney Kinney, Daniel S. Weld, Doug Downey,
696 and Sergey Feldman. Ai2 Scholar QA: Organized literature synthesis with attribution. *ArXiv*,
697 abs/2504.10861, 2025. URL <https://api.semanticscholar.org/CorpusID:277786810>.

698

699 Michael D. Skarlinski, Sam Cox, Jon M. Laurent, James D. Braza, Michaela Hinks, Michael J.
700 Hammerling, Manvitha Ponnappati, Samuel G. Rodriques, and Andrew D. White. Language
701 agents achieve superhuman synthesis of scientific knowledge. *arXiv:2409.13740*, 2024. URL
702 <https://arxiv.org/abs/2409.13740>. Introduces the LitQA2 benchmark for evaluating
language models on scientific literature research tasks.

702 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
703 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai's ability
704 to replicate ai research. *arXiv preprint arXiv:2504.01848*, 2025.

705

706 Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. AI-Researcher: Autonomous scientific
707 innovation. *arXiv:2505.18705*, 2025. URL <https://arxiv.org/abs/2505.18705>.

708 The Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments,
709 Apr 2025a. URL <https://github.com/laude-institute/terminal-bench>.

710

711 The Terminal-Bench Team. Terminal-Bench leaderboard, 2025b. URL <https://tbench.ai/leaderboard>. Accessed: 2025-08-25.

712

713 Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
714 Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha Trinh,
715 Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian Lieret,
716 Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta, and Hao
717 Peng. SciCode: A research coding benchmark curated by scientists. *arXiv:2407.13168*, 2024.
718 URL <https://arxiv.org/abs/2407.13168>.

719 UK AI Safety Institute and Arcadia Impact and Vector Institute. Inspect Evals: Community-
720 contributed evaluations for inspect ai. https://github.com/UKGovernmentBEIS/inspect_evals, 2025. Accessed: 2025-08-24.

721

722 UK AI Security Institute. Inspect AI: Framework for Large Language Model Evaluations, May 2024.
723 URL https://github.com/UKGovernmentBEIS/inspect_ai.

724

725 Rosni Vasu, Chandrayee Basu, Bhavana Dalvi Mishra, Cristina Sarasua, Peter Clark, and Abraham
726 Bernstein. HypER: Literature-grounded hypothesis generation and distillation with provenance,
727 2025. URL <https://arxiv.org/abs/2506.12937>.

728

729 Vector Institute. Vector evaluation leaderboard, 2025. URL <https://huggingface.co/spaces/vector-institute/eval-leaderboard>. Accessed: 2025-08-25.

730

731 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
732 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
733 intelligence. *Nature*, 620(7972):47–60, 2023.

734

735 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
736 Executable code actions elicit better llm agents. In *ICML*, 2024.

737

738 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
739 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
740 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
741 Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An open platform for AI software
742 developers as generalist agents. In *ICLR*, 2025. URL <https://openreview.net/forum?id=OJd3ayDDoF>.

743

744 Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench: Bench-
745 marking llms in agent-driven algorithmic reproduction from research papers. *Proceedings of COLM*, 2025.

746

747 Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, and Pengfei Liu. ResearcherBench: Evaluat-
748 ing deep AI research systems on the frontiers of scientific inquiry. *arXiv:2507.16280*, 2025. URL
749 <https://arxiv.org/abs/2507.16280>.

750

751 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Nicolaus Foerster,
752 Jeff Clune, and David Ha. The AI Scientist-v2: Workshop-level automated scientific discovery via
753 agentic tree search. *ArXiv*, abs/2504.08066, 2025. URL <https://api.semanticscholar.org/CorpusID:277741107>.

754

755 Shuo Yan, Ruochen Li, Ziming Luo, Zimu Wang, Daoyang Li, Liqiang Jing, Kaiyu He, Peilin Wu,
George Michalopoulos, Yue Zhang, et al. Lmr-bench: Evaluating llm agent's ability on reproducing
language modeling research. *arXiv preprint arXiv:2506.17335*, 2025.

756 Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman Cohan, and
757 Michal Shmueli-Scheuer. Survey on evaluation of LLM-based agents. *arXiv:2503.16416*, 2025.
758 URL <https://arxiv.org/abs/2503.16416>.
759

760 Xuanle Zhao, Zilin Sang, Yuxuan Li, Qi Shi, Weilun Zhao, Shuo Wang, Duzhen Zhang, Xu Han,
761 Zhiyuan Liu, and Maosong Sun. Autoreproduce: Automatic ai experiment reproduction with paper
762 lineage. *arXiv preprint arXiv:2505.20662*, 2025.

764 Kunlun Zhu, Jiaxun Zhang, Ziheng Qi, Nuoxing Shang, Zijia Liu, Peixuan Han, Yue Su, Haofei
765 Yu, and Jiaxuan You. SafeScientist: Toward risk-aware scientific discoveries by LLM agents.
766 *arXiv:2505.23559*, 2025. URL <https://arxiv.org/abs/2505.23559>.
767
768

769 A PRINCIPLES FOR BENCHMARKING AGENTS 770

771 We propose the following principles for more rigorously benchmarking agents:
772

- 773 1. **The task suite must represent the complexity of real-world usage.** In order to determine
774 whether agents can serve as effective assistants for a use case, it is necessary to test a
775 broad range of relevant tasks. Real-world product usage provides an informative basis for
776 determining appropriate tasks, but unfortunately such data is typically guarded by product
777 companies (who use it to create private evaluations) and unavailable to academic benchmark
778 creators. Moreover, in order to measure progress towards broadly capable agents, the
779 task suite should require exercising a range of advanced, general skills such as reasoning,
780 planning, tool use, search, coding, and data analysis.
- 781 2. **A standard, realistic, and reproducible environment and tools must accompany the
782 suite for controlled comparison of AI capabilities.** The environment should be realistic
783 to measure agents' ability to act in the real world. At the same time, the environment and
784 tools must be standard and reproducible to facilitate controlled comparison across different
785 agents. Most existing benchmark suites lack standard tools, leading agent developers to use
786 disparate environments and tools that obscure whether performance differences are due to
787 superior AI capabilities or other enhancements. It is particularly important that benchmark
788 suites provide *standard search tools* with reproducible test-time access to the same document
789 corpus, yet large-scale, optimized search indexes are costly to create and public search tools
790 are not reproducible; we are unaware of any such public, reproducible, large-scale search
791 tools.
- 792 3. **Reporting must account for confounding variables—especially computational cost
793 and tool usage.** It's essential to account for cost, since even simplistic strategies, such
794 as repeating a task many times and taking majority votes, can boost accuracy by burning
795 cash Kapoor et al. (2024; 2025). Controlling for tool usage is also essential to separate gains
796 due to model or agent architecture advancements from benefits due to privileged access to
797 specialized information sources.
- 798 4. **Task interfaces must be standardized to facilitate integration of general agents.** General
799 agents that can perform many different tasks are likely to better meet diverse real-world
800 needs. Unfortunately, most previous benchmark suites require general agent developers to
801 adapt agents for individual tasks, introducing developer bias and hindering development.
802 To support the development of general agents, task interfaces should provide 'reasonable'
803 accommodation for an intelligent agent that has not been developed specifically for the test
804 tasks: complete task instructions, task-required tools, and submission affordances—all in a
805 standard format.
- 806 5. **Comprehensive agent baselines with standard interfaces are needed to measure state-
807 of-the-art.** A large integrated suite of agent baselines must be available to identify which
808 agents are truly state-of-the-art agents and to provide high-quality starting points for future
809 development, yet is lacking from current agent suites resulting in most evaluations comparing
only to a small number of other agents or ablations on the evaluator's own agent.

810 **B EVALUATION TOOLKIT: OPENNESS AND TOOLING**
811

812 Definitions for the **Agent openness** and **Agent tooling** classifications for baseline:
813

- 814 • **Agent openness** describes the transparency and reproducibility of an agent's implementation:
815
 - 816 – **Open-source, open-weight** (✓): Both agent code and ML model weights are publicly
817 available, enabling full end-to-end reproducibility.
 - 818 – **Open-source, closed-weight** (~): Agent code is available but relies on proprietary ML
819 models, allowing partial reproducibility of the approach.
 - 820 – **Closed source & API available** (A): Implementation details are proprietary, but the
821 system is accessible via API, enabling result verification but not method reproduction.
 - 822 – **Closed & UI only** (✗): Neither code nor programmatic API access is available.
- 823 • **Agent tooling** describes the tool usage and execution environment of an agent during
824 evaluation:
825
 - 826 – **Standard** (✓): Uses only predefined tools from the evaluation environment (as defined
827 in Inspect's state.tools).
 - 828 – **Custom interface** (~): Uses custom tools for accessing an equivalent underlying
829 environment, which for AstaBench we define as task-relevant portions of the Asta
830 Environment:
831
 - 832 * **Literature tasks**: Information access is limited to date-restricted usage of the Asta
833 Scientific Corpus.
 - 834 * **Code tasks**: Code execution is limited to an IPython shell in a machine environment
835 initialized with the standard Asta Environment sandbox Dockerfile (or equivalent).
 - 836 – **Fully custom** (✗): Uses tools beyond constraints of Standard or Custom interface.

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865 Table 4: Overall results for agents that can solve all the tasks (additional results in Table 11). Reported
866 values are macro averages over benchmark statistics; confidence intervals are omitted. \dagger denotes
867 models not pinned to a date-stamped version. Bold denotes the agent is on Pareto-optimal frontier for
868 that column pair.

869 870 871	O	T	Agent	Model	Overall		Literature Understanding		Code & Execution		Data Analysis		End-to-End Discovery	
					Score	Cost	Score	Cost	Score	Cost	Score	Cost	Score	Cost
872	\sim	\times	Asta v0	mixture	53.0	3.40	62.2	0.58	47.6	0.19	33.2	0.25	68.8	12.57
873	\sim	\checkmark	ReAct	gpt-5	44.0	0.31	54.6	0.30	55.0	0.35	30.5	0.09	36.1	0.49
874	\sim	\checkmark	ReAct	o3	39.4	0.16	46.8	0.35	49.3	0.19	33.7	0.04	28.0	0.07
875	\sim	\sim	Smolagents Coder	claude-sonnet-4	38.1	1.02	42.7	0.71	39.6	1.96	28.8	0.24	41.5	1.19
876	\sim	\sim	Smolagents Coder	gpt-5	37.5	0.13	46.0	0.12	30.9	0.10	26.7	0.08	46.5	0.22
877	\sim	\checkmark	ReAct	gpt-5-mini	31.6	0.04	36.5	0.05	50.5	0.05	26.9	0.01	12.6	0.03
878	\sim	\checkmark	ReAct	claude-3-5-haiku	21.9	0.04	36.2	0.03	22.4	0.05	24.3	0.01	4.6	0.04
879	\checkmark	\sim	Smolagents Coder	llama-4-scout	11.1	0.11	20.0	0.03	3.6	0.12	20.2	0.01	0.5	0.27

880
881 Table 5: Literature Understanding search benchmarks results (additional results in Table 12). \dagger
882 denotes models not pinned to a date-stamped version. Bold denotes the agent is on Pareto-optimal
883 frontier for that column pair.

884 885	O	T	Agent	Model	PaperFindingBench		LitQA2-FullText-Search	
					Score	Cost	Score	Cost
886	\sim	\sim	Asta Paper Finder	gemini-2-flash, gpt-4o	39.7 \pm 3.1	0.063 \pm 0.005	90.7 \pm 6.6	0.112 \pm 0.007
887	\sim	\times	Asta v0	mixture	37.6 \pm 3.1	0.063 \pm 0.005	90.7 \pm 6.6	0.112 \pm 0.007
888	\sim	\checkmark	ReAct	gpt-5	26.4 \pm 3.9	0.428 \pm 0.048	82.7 \pm 8.6	0.389 \pm 0.055
889	\sim	\checkmark	ReAct	o3	19.3 \pm 3.7	0.518 \pm 0.067	57.3 \pm 11.3	0.790 \pm 0.127
890	\sim	\sim	Smolagents Coder	gpt-4.1	16.5 \pm 3.5	0.080 \pm 0.007	50.7 \pm 11.4	0.095 \pm 0.037
891	\sim	\sim	Smolagents Coder	claude-sonnet-4	22.1 \pm 3.5	0.975 \pm 0.139	52.0 \pm 11.4	1.100 \pm 0.097
892	\mathcal{A}	\times	You.com Search API	-	7.2 \pm 2.0	-	36.0 \pm 10.9	-

895 C SUPPORTING EXPERIMENTAL RESULTS

896 This section contains supplemental tables and figures for the narrative in Section 5. Table 4 shows
897 the overall results for those agents attempting *all* benchmarks, as well as agents that can solve all
898 the benchmarks in at least one category. We then show category-specific results, for Literature
899 Understanding (Tables 5 to 7), Code and Execution (Table 8), Data Analysis (Table 9), and End-to-
900 End Discovery (Table 10). For details about referenced agents and models, refer to Tables 3 and 22,
901 respectively.

902 In the Tables, “O” denotes Openness, with values \checkmark (Open-source, open-weight), \sim (Open-source,
903 closed-weight), \mathcal{A} (Closed source & API available), and \times (Closed & UI only). “T” denotes Tooling,
904 with values \checkmark (Standard), \sim (Custom interface), and \times (Fully custom). The openness values apply to
905 the agent (including the model used). “ \pm ” denote 95% confidence intervals. Bold denotes the agent
906 is on Pareto-optimal frontier for that column pair. Our results reveal several noteworthy insights.

907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922 Table 6: Literature Understanding QA benchmarks results (additional results in Table 13). Agents
923 without an API could not be evaluated on LitQA2-FT. \dagger denotes models not pinned to a date-stamped
924 version. Bold denotes the agent is on Pareto-optimal frontier for that column pair.
925
926
927
928
929
930
931
932
933
934

O	T	Agent	Model	ScholarQA-CS2		LitQA2-FullText	
				Score	Cost	Score	Cost
\sim	\checkmark	ReAct	gpt-5	79.8 ± 3.5	0.373 ± 0.034	82.7 ± 8.6	0.276 ± 0.114
\sim	\times	Asta v0	mixture	87.7 ± 1.4	1.529 ± 0.291	70.7 ± 10.4	0.306 ± 0.093
\mathcal{A}	\times	FutureHouse Crow	gpt-4.1-mini, o3-mini, gemini-2.5-flash	81.1 ± 1.7	0.107 ± 0.004	72.0 ± 10.2	0.065 ± 0.003
\mathcal{A}	\times	FutureHouse Falcon	gpt-4.1-mini, gemini-2.5-flash, o3-mini	77.6 ± 1.3	0.403 ± 0.051	74.7 ± 9.9	0.220 ± 0.011
\sim	\checkmark	ReAct	o3	66.4 ± 3.0	0.275 ± 0.039	80.0 ± 9.1	0.347 ± 0.083
\sim	\sim	Smolagents Coder	gpt-5	68.4 ± 4.4	0.154 ± 0.014	73.3 ± 10.1	0.101 ± 0.026
\mathcal{A}	\times	Perplexity Sonar Deep Research	gemini-2.5-flash, sonar-deep- research	67.3 ± 1.2	0.416 ± 0.019	73.3 ± 10.1	0.219 ± 0.016
\sim	\sim	Smolagents Coder	gpt-4.1	73.7 ± 2.1	0.080 ± 0.016	65.3 ± 10.8	0.035 ± 0.005
\mathcal{A}	\times	You.com Research API	-	55.0 ± 2.2	-	8.0 ± 6.2	-
\sim	\sim	Asta Scholar QA (w/ Tables)	claude-sonnet-4	87.9 ± 1.2	1.314 ± 0.281	-	-
\sim	\sim	Asta Scholar QA	gemini-2.5-flash \dagger	87.7 ± 1.4	0.126 ± 0.010	-	-
\sim	\sim	Asta Scholar QA	claude-sonnet-4	86.2 ± 1.4	0.393 ± 0.030	-	-
\sim	\sim	Asta Scholar QA	gpt-5 \dagger	85.9 ± 1.6	1.099 ± 0.074	-	-
\times	\times	Elicit	-	85.5 ± 1.6	-	-	-
\times	\times	SciSpace Deep Review	claude-sonnet-4	84.6 ± 1.3	-	-	-
\sim	\times	STORM	gpt-3.5-turbo, gpt-4o	78.3 ± 2.4	0.094 ± 0.002	-	-
\mathcal{A}	\times	OpenAI Deep Research	o3-/o4-mini- deep-research, gemini-2.5-pro	79.4 ± 1.4	1.803 ± 0.039	-	-
\checkmark	\sim	OpenScILM	llama-3.1- openscholar-8b	58.0 ± 2.6	0.004 ± 0.000	-	-

946
947
948
949
950 Table 7: Literature Understanding ArxivDIGESTables-Clean task benchmark results (additional
951 results in Table 14). \dagger denotes models not pinned to a date-stamped version. Bold denotes the agent
952 is on Pareto-optimal frontier for that column pair.
953
954
955
956
957

O	T	Agent	Model	ArxivDIGESTables-Clean	
				Score	Cost
\sim	\times	Asta v0	mixture	42.9 ± 3.7	0.517 ± 0.056
\sim	\sim	Asta Table Synthesis	gpt-5 \dagger	42.6 ± 3.5	1.281 ± 0.140
\sim	\sim	Asta Table Synthesis	gpt-5-mini \dagger	41.7 ± 3.7	0.172 ± 0.019
\sim	\checkmark	ReAct	o3	32.9 ± 3.3	0.050 ± 0.004
\sim	\sim	Smolagents Coder	gpt-5	31.5 ± 3.2	0.060 ± 0.004

958
959
960
961
962 Table 8: Code & Execution category results (additional results in Table 15). \dagger denotes models
963 not pinned to a date-stamped version. Bold denotes the agent is on Pareto-optimal frontier for that
964 column pair.
965
966
967
968
969
970
971

O	T	Agent	Model	SUPER-Expert		CORE-Bench-Hard $^-$		DS-1000	
				Score	Cost	Score	Cost	Score	Cost
\sim	\checkmark	ReAct	gpt-5	41.1 ± 12.9	0.589 ± 0.140	45.9 ± 16.3	0.443 ± 0.139	78.0 ± 2.7	0.021 ± 0.0009
\sim	\checkmark	ReAct	o3	16.3 ± 9.6	0.369 ± 0.097	56.8 ± 16.2	0.196 ± 0.076	74.9 ± 2.8	0.010 ± 0.0007
\sim	\times	Asta v0	mixture	19.4 ± 10.4	0.332 ± 0.057	48.6 ± 16.3	0.226 ± 0.093	74.8 ± 2.8	0.011 ± 0.0007
\sim	\sim	Smolagents Coder	claude- sonnet-4	11.7 ± 8.0	3.559 ± 1.766	32.4 ± 15.3	2.199 ± 0.780	74.7 ± 2.8	0.114 ± 0.0079
\sim	\sim	Smolagents Coder	gpt-5	3.6 ± 4.8	0.079 ± 0.023	13.5 ± 11.2	0.190 ± 0.106	75.7 ± 2.8	0.019 ± 0.0007
\sim	\sim	Smolagents Coder	claude-3-5- haiku	16.8 ± 9.6	0.812 ± 0.581	0.0000	0.332 ± 0.210	9.9 ± 2.0	0.024 ± 0.0103
\sim	\sim	Asta Code	gpt-4.1	16.3 ± 9.4	0.285 ± 0.059	-	-	-	-
\sim	\sim	Asta Code	gpt-5	13.5 ± 9.4	0.372 ± 0.072	-	-	-	-

972
973
974
975
976
977

978 Table 9: Data Analysis `DiscoveryBench` results (additional results in Table 16). \dagger denotes models
979 not pinned to a date-stamped version. Bold denotes the agent is on Pareto-optimal frontier for that
980 column pair.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

O	T	Agent	Model	DiscoveryBench	
				Score	Cost
~	✓	ReAct	o3	33.7 \pm 5.1	0.039 \pm 0.004
~	✗	Asta v0	mixture	33.2 \pm 5.1	0.246 \pm 0.071
~	~	Asta DataVoyager	o3 † , gpt-4o †	31.1 \pm 5.0	0.234 \pm 0.061
~	✓	ReAct	gpt-5	30.5 \pm 4.8	0.092 \pm 0.009
~	~	Smolagents Coder	claude-sonnet-4	28.8 \pm 4.8	0.237 \pm 0.019

1002
1003
1004

Table 10: End-to-End Discovery category results (additional results in Table 17). \dagger denotes models
not pinned to a date-stamped version. Bold denotes the agent is on Pareto-optimal frontier for that
column pair.

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

O	T	Agent	Model	E2E-Bench		E2E-Bench-Hard	
				Score	Cost	Score	Cost
~	✗	Asta Panda	claude-sonnet-4	70.5 \pm 6.2	10.643 \pm 0.717	68.2 \pm 4.4	14.487 \pm 1.050
~	✗	Asta v0	mixture	70.4 \pm 6.3	10.643 \pm 0.717	67.3 \pm 5.3	14.487 \pm 1.050
~	✗	Asta CodeScientist	claude-3-7-sonnet	65.3 \pm 7.1	2.760 \pm 0.510	64.5 \pm 5.5	3.549 \pm 0.692
~	~	Smolagents Coder	gpt-5	62.8 \pm 9.8	0.205 \pm 0.025	30.3 \pm 10.5	0.232 \pm 0.043
~	✓	ReAct	claude-sonnet-4	52.5 \pm 6.8	0.749 \pm 0.072	38.9 \pm 6.9	0.836 \pm 0.057
~	~	Smolagents Coder	claude-sonnet-4	47.2 \pm 6.1	0.873 \pm 0.110	35.8 \pm 7.8	1.512 \pm 0.307
~	✓	Faker	gpt-4.1 †	39.2 \pm 6.9	0.026 \pm 0.001	25.4 \pm 4.5	0.029 \pm 0.001
~	✓	ReAct	o3	34.9 \pm 10.1	0.065 \pm 0.010	21.0 \pm 7.6	0.075 \pm 0.019
~	✓	ReAct	gpt-5	30.0 \pm 11.9	0.403 \pm 0.053	42.1 \pm 11.4	0.584 \pm 0.072

1026 Table 11: Overall results for agents that can solve all the tasks. Reported values are macro averages
1027 over benchmark statistics; cost confidence intervals are omitted for space. \dagger denotes models not
1028 pinned to a date-stamped version.

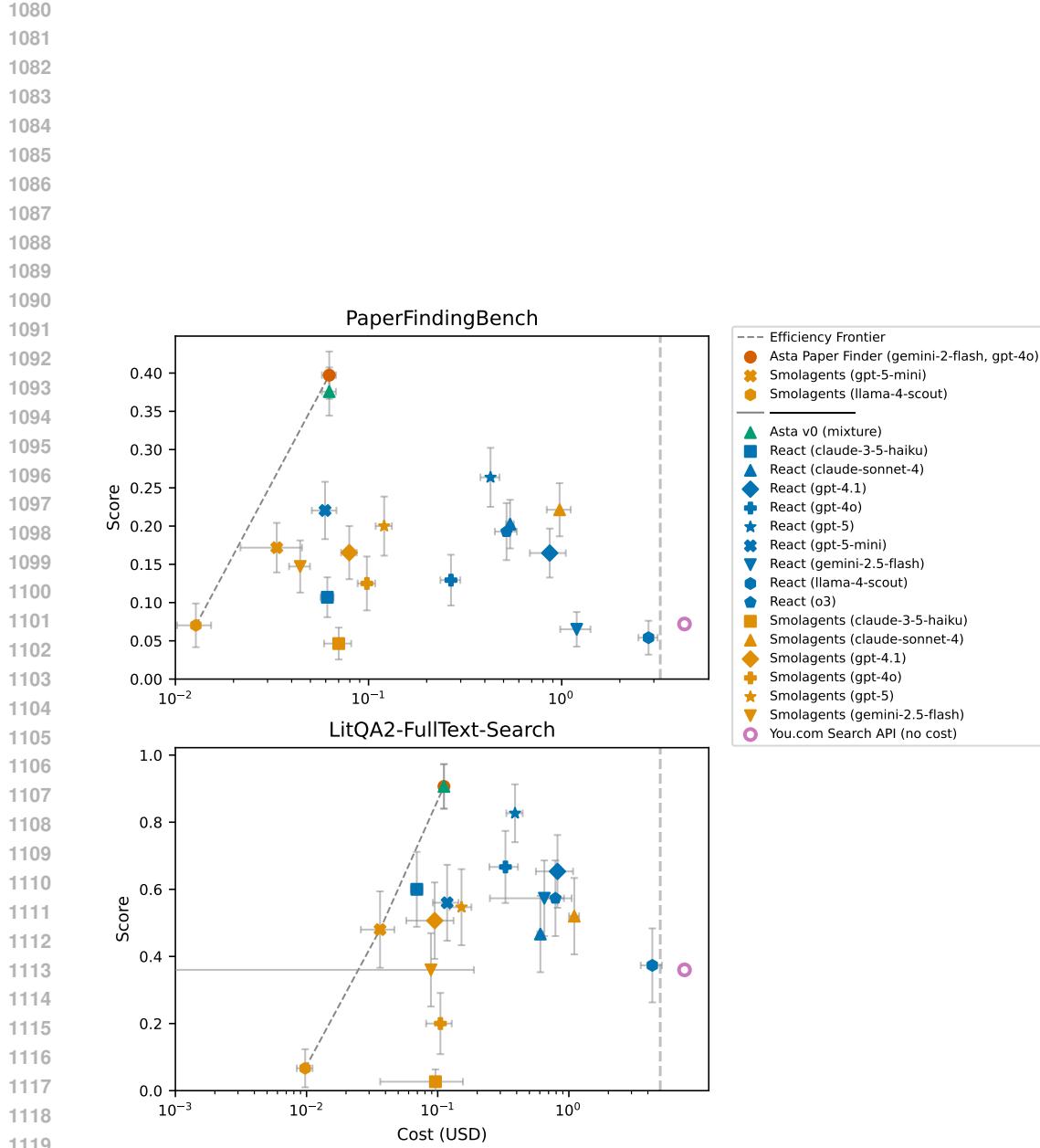
1029

1030 O	1031 T	1032 Agent	1033 Model	1034 Overall		1035 Literature		1036 Understanding		1037 Code		1038 & Execution		1039 Data		1040 Analysis		1041 End-to-End				
				1043 Score	1044 Cost	1045 Score	1046 Cost	1047 Score	1048 Cost	1049 Score	1050 Cost	1051 Score	1052 Cost	1053 Score	1054 Cost	1055 Score	1056 Cost	1057 Score	1058 Cost			
~	✓	ReAct	claude-3-5-	21.9	1.6	0.04		36.2	2.3	0.03		22.4	3.0	0.05		24.3	4.7	0.01		4.6	2.2	0.04
			haiku																			
~	✓	ReAct	claude-	40.1	2.4	0.40		45.4	2.3	0.36		46.2	6.6	0.33		23.2	4.1	0.13		45.7	4.8	0.79
			sonnet-4																			
~	✓	ReAct	gpt-4.1	31.6	2.3	0.20		46.4	2.3	0.54		32.4	5.1	0.09		30.5	5.1	0.02		17.1	5.0	0.14
			gpt-4o	16.2	1.4	0.12		31.8	2.2	0.15		18.3	3.5	0.15		13.2	3.7	0.04		1.5	1.3	0.15
~	✓	ReAct	gpt-5-mini	31.6	2.7	0.04		36.5	2.9	0.05		50.5	7.1	0.05		26.9	4.8	0.01		12.6	5.6	0.03
			gpt-5	44.0	3.0	0.31		54.6	2.2	0.30		55.0	7.0	0.35		30.5	4.8	0.09		36.1	8.3	0.49
~	✓	ReAct	gemini-2.5-	15.3	1.4	0.71		32.8	3.0	0.46		26.0	4.1	0.45		1.9	1.7	0.10		0.5	1.1	1.83
			flash																			
✓	✓	ReAct	llama-4-	7.9	1.1	0.68		19.8	2.5	1.60		4.8	1.9	0.10		5.9	2.6	0.19		1.4	1.2	0.82
			scout																			
~	✓	ReAct	o3	39.4	2.6	0.16		46.8	2.3	0.35		49.3	6.3	0.19		33.7	5.1	0.04		28.0	6.3	0.07
~	~	Smolagents	claude-3-5-	12.7	1.5	0.30		20.9	1.9	0.05		8.9	3.3	0.39		16.5	4.1	0.02		4.5	2.0	0.73
			Coder																			
~	~	Smolagents	claude-	38.1	2.3	1.02		42.7	2.4	0.71		39.6	5.8	1.96		28.8	4.8	0.24		41.5	4.9	1.19
			sonnet-4																			
~	~	Smolagents	gpt-4.1	32.8	2.4	0.32		43.9	2.3	0.07		25.6	5.2	0.11		28.4	4.9	0.05		33.3	6.0	1.07
			Coder																			
~	~	Smolagents	gpt-4o	13.6	1.6	0.36		22.7	2.1	0.08		8.7	3.1	0.64		17.8	4.2	0.05		5.3	2.6	0.67
			Coder																			
~	~	Smolagents	gpt-5-mini	29.1	2.3	0.06		38.5	2.7	0.02		28.3	4.0	0.09		27.7	4.9	0.07		22.0	6.1	0.08
			Coder																			
~	~	Smolagents	gpt-5	37.5	2.5	0.13		46.0	2.5	0.12		30.9	4.2	0.10		26.7	4.7	0.08		46.5	7.2	0.22
			Coder																			
~	~	Smolagents	gemini-2.5-	26.4	2.3	0.71		35.6	2.5	0.05		16.6	4.3	0.56		24.7	4.7	0.02		28.6	6.4	2.21
			flash																			
✓	~	Smolagents	llama-4-	11.1	1.4	0.11		20.0	2.2	0.03		3.6	2.4	0.12		20.2	4.5	0.01		0.5	0.4	0.27
			scout																			
~	✗	Asta v0	mixture	53.0	2.4	3.40		62.2	2.0	0.58		47.6	6.5	0.19		33.2	5.1	0.25		68.8	4.1	12.57

D FULL EXPERIMENTAL RESULTS

Section 5 presented results for the best agents (i.e., agents running with the best underlying model), plus a few additional important data points. Here we show the full set of results for all configurations of agents that were tested (a superset of the results in Section 5). We also show plots of scores vs. costs, including the Pareto frontier (showing the best agent for a given cost). In the Tables, “O” denotes Openness, with values \checkmark (Open-source, open-weight), \sim (Open-source, closed-weight), and \times (Closed & UI only). “T” denotes Tooling, with values \checkmark (Standard), \sim (Custom interface), and \times (Fully custom). “ \pm ” denote 95% confidence intervals.

Statistical Methodology All confidence intervals shown are 95% CIs computed as $\pm 1.96 \times \text{SE}$, where SE is the standard error. For individual benchmarks, standard errors are calculated from the variance across evaluation samples within each task. For category-level aggregations, standard errors are propagated analytically using weighted averaging: $\text{SE}_{\text{category}} = \sqrt{\sum w_i^2 \cdot \text{SE}_i^2 / \sum w_i}$, where w_i are the task weights (uniform at 1.0 except for the two LitQA tasks which each have weight 0.5). This propagation assumes independence between tasks, which could slightly underestimate uncertainty.



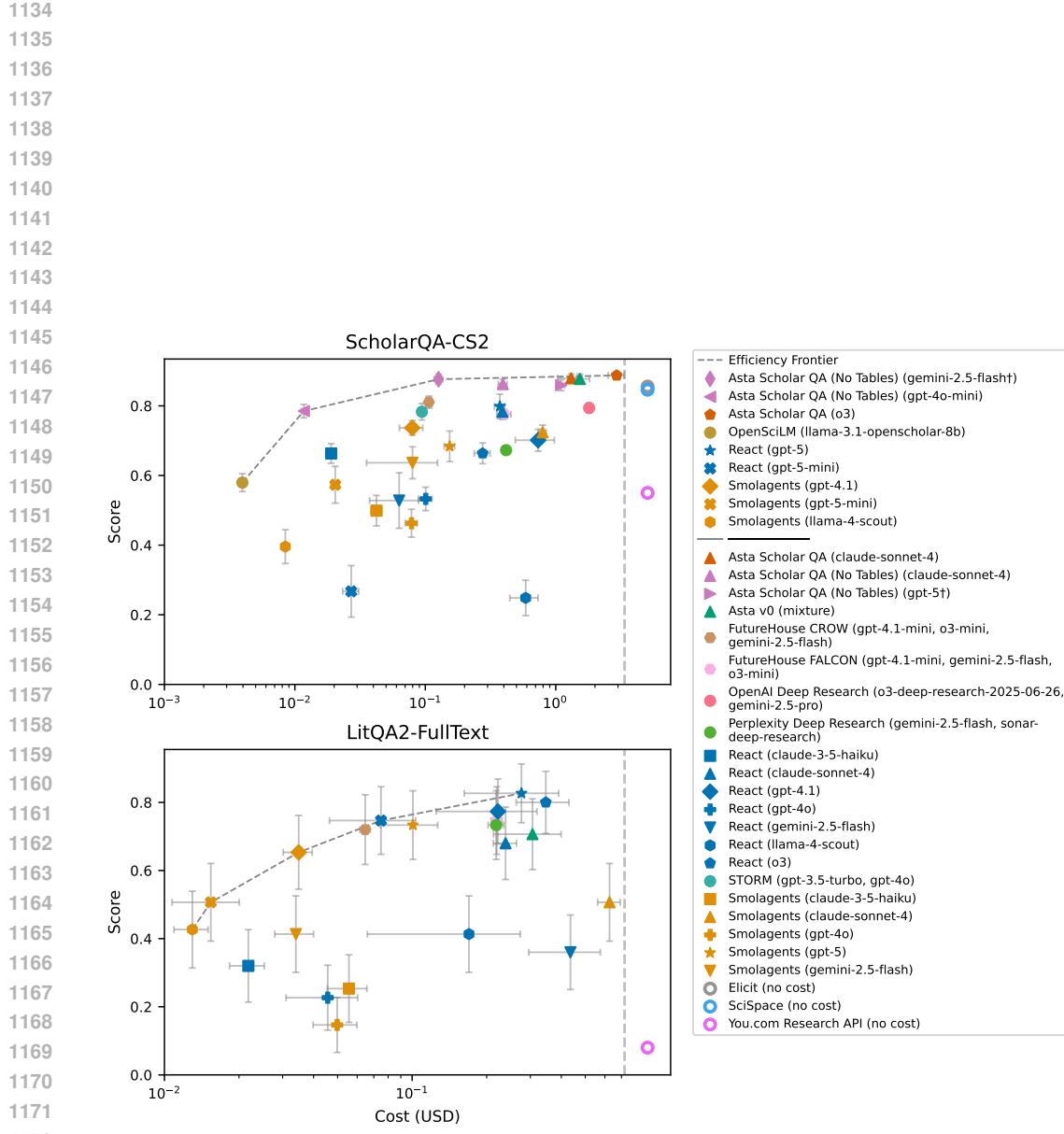


Figure 4: Score vs. cost analysis for Literature Understanding QA benchmarks (Table 13). Points indicate means; error bars denote 95% confidence intervals. Points on the Pareto frontier are connected with dotted lines, representing optimal quality-cost trade-offs for each eval (ScholarQA-CS2, LitQA2-FullText). Note: the x-axis (cost) uses a log scale. † denotes models not pinned to a date-stamped version.

1188
 1189 Table 12: Literature Understanding search benchmarks results. \dagger denotes models not pinned to a
 1190 date-stamped version.

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213	O T	Agent	Model	PaperFindingBench		LitQA2-FullText-Search	
				Score	Cost	Score	Cost
~	✓	ReAct	claude-3-5-haiku	10.7 \pm 2.6	0.061 \pm 0.005	60.0 \pm 11.2	0.069 \pm 0.007
~	✓	ReAct	claude-sonnet-4	20.3 \pm 3.2	0.541 \pm 0.025	46.7 \pm 11.4	0.606 \pm 0.031
~	✓	ReAct	gpt-4.1	16.5 \pm 3.2	0.867 \pm 0.183	65.3 \pm 10.8	0.819 \pm 0.258
~	✓	ReAct	gpt-4o	12.9 \pm 3.3	0.267 \pm 0.032	66.7 \pm 10.7	0.328 \pm 0.081
~	✓	ReAct	gpt-5-mini	22.0 \pm 3.7	0.060 \pm 0.009	56.0 \pm 11.3	0.118 \pm 0.026
~	✓	ReAct	gpt-5	26.4 \pm 3.9	0.428 \pm 0.048	82.7 \pm 8.6	0.389 \pm 0.055
~	✓	ReAct	gemini-2.5-flash	6.5 \pm 2.3	1.196 \pm 0.214	57.3 \pm 11.3	0.650 \pm 0.400
✓	✓	ReAct	llama-4-scout	5.4 \pm 2.2	2.816 \pm 0.319	37.3 \pm 11.0	4.326 \pm 0.795
~	✓	ReAct	o3	19.3 \pm 3.7	0.518 \pm 0.067	57.3 \pm 11.3	0.790 \pm 0.127
~	~	Smolagents Coder	claude-3-5-haiku	4.6 \pm 2.1	0.070 \pm 0.011	2.7 \pm 3.7	0.096 \pm 0.060
~	~	Smolagents Coder	claude-sonnet-4	22.1 \pm 3.5	0.975 \pm 0.139	52.0 \pm 11.4	1.100 \pm 0.097
~	~	Smolagents Coder	gpt-4.1	16.5 \pm 3.5	0.080 \pm 0.007	50.7 \pm 11.4	0.095 \pm 0.037
~	~	Smolagents Coder	gpt-4o	12.5 \pm 3.5	0.098 \pm 0.010	20.0 \pm 9.1	0.105 \pm 0.023
~	~	Smolagents Coder	gpt-5-mini	17.2 \pm 3.2	0.034 \pm 0.012	48.0 \pm 11.4	0.036 \pm 0.010
~	~	Smolagents Coder	gpt-5	20.0 \pm 3.9	0.121 \pm 0.012	54.7 \pm 11.3	0.152 \pm 0.029
~	~	Smolagents Coder	gemini-2.5-flash	14.7 \pm 3.4	0.044 \pm 0.006	36.0 \pm 10.9	0.089 \pm 0.100
✓	~	Smolagents Coder	llama-4-scout	7.0 \pm 2.9	0.013 \pm 0.003	6.7 \pm 5.7	0.010 \pm 0.001
~	x	Asta v0	mixture	37.6 \pm 3.1	0.063 \pm 0.005	90.7 \pm 6.6	0.112 \pm 0.007
~	~	Asta Paper Finder	gemini-2-flash, gpt-4o	39.7 \pm 3.1	0.063 \pm 0.005	90.7 \pm 6.6	0.112 \pm 0.007
A	x	You.com Search API	?	7.2 \pm 2.0	?	36.0 \pm 10.9	?

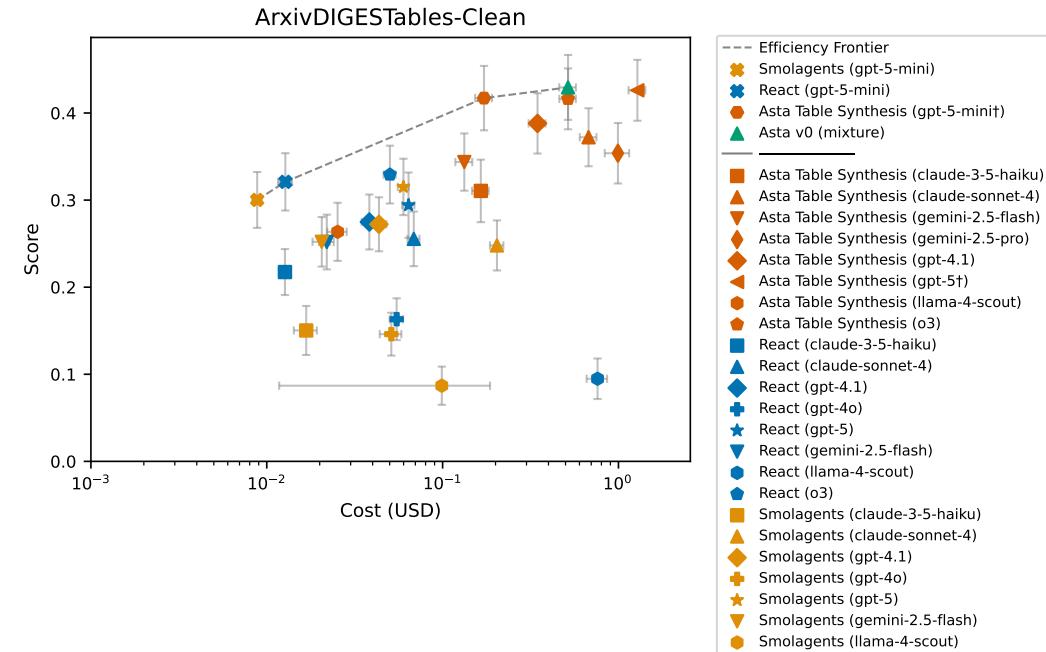


Figure 5: Score vs. cost analysis for the Literature Understanding ArxivDIGESTables-Clean benchmark (Table 14). Points indicate means; error bars denote 95% confidence intervals. Points on the Pareto frontier are connected with dotted lines, representing optimal quality-cost trade-offs for each eval. Note: the x-axis (cost) uses a log scale. \dagger denotes models not pinned to a date-stamped version.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

Table 13: Literature Understanding QA benchmarks results. Agents without an API could not be evaluated on LitQA2-FT. Models in parentheses indicate self-reported models. \dagger denotes models not pinned to a date-stamped version.

O	T	Agent	Model	ScholarQA-CS2		LitQA2-FullText	
				Score	Cost	Score	Cost
~	✓	ReAct	claude-3-5-haiku	66.3 \pm 2.8	0.019 \pm 0.001	32.0 \pm 10.6	0.022 \pm 0.004
~	✓	ReAct	claude-sonnet-4	78.3 \pm 2.2	0.390 \pm 0.019	68.0 \pm 10.6	0.238 \pm 0.026
~	✓	ReAct	gpt-4.1	70.1 \pm 3.2	0.733 \pm 0.243	77.3 \pm 9.5	0.222 \pm 0.097
~	✓	ReAct	gpt-4o	53.3 \pm 3.4	0.101 \pm 0.012	22.7 \pm 9.5	0.046 \pm 0.015
~	✓	ReAct	gpt-5-mini	26.7 \pm 7.4	0.027 \pm 0.004	74.7 \pm 9.9	0.075 \pm 0.029
~	✓	ReAct	gpt-5	79.8 \pm 3.5	0.373 \pm 0.034	82.7 \pm 8.6	0.276 \pm 0.114
~	✓	ReAct	geminii-2.5-flash	52.8 \pm 8.0	0.063 \pm 0.026	36.0 \pm 10.9	0.436 \pm 0.140
✓	✓	ReAct	llama-4-scout	24.8 \pm 5.1	0.588 \pm 0.144	41.3 \pm 11.2	0.170 \pm 0.104
~	✓	ReAct	o3	66.4 \pm 3.0	0.275 \pm 0.039	80.0 \pm 9.1	0.347 \pm 0.083
~	~	Smolagents Coder	claude-3-5-haiku	49.9 \pm 4.4	0.042 \pm 0.004	25.3 \pm 9.9	0.056 \pm 0.010
~	~	Smolagents Coder	claude-sonnet-4	72.4 \pm 2.1	0.794 \pm 0.052	50.7 \pm 11.4	0.627 \pm 0.066
~	~	Smolagents Coder	gpt-4.1	73.7 \pm 2.1	0.080 \pm 0.016	65.3 \pm 10.8	0.035 \pm 0.005
~	~	Smolagents Coder	gpt-4o	46.3 \pm 4.0	0.078 \pm 0.008	14.7 \pm 8.1	0.050 \pm 0.010
~	~	Smolagents Coder	gpt-5-mini	57.3 \pm 5.3	0.020 \pm 0.002	50.7 \pm 11.4	0.015 \pm 0.005
~	~	Smolagents Coder	gpt-5	68.4 \pm 4.4	0.154 \pm 0.014	73.3 \pm 10.1	0.101 \pm 0.026
~	~	Smolagents Coder	geminii-2.5-flash	63.7 \pm 4.6	0.080 \pm 0.044	41.3 \pm 11.2	0.034 \pm 0.006
✓	~	Smolagents Coder	llama-4-scout	39.6 \pm 4.8	0.008 \pm 0.001	42.7 \pm 11.3	0.013 \pm 0.002
~	✗	Asta v0	mixture	87.7 \pm 1.4	1.529 \pm 0.291	70.7 \pm 10.4	0.306 \pm 0.093
~	~	Asta Scholar QA (w/ Tables)	o3	88.7 \pm 1.2	2.932 \pm 0.408	–	–
~	~	Asta Scholar QA (w/ Tables)	claude-sonnet-4	87.9 \pm 1.2	1.314 \pm 0.281	–	–
~	~	Asta Scholar QA	claude-sonnet-4	86.2 \pm 1.4	0.393 \pm 0.030	–	–
~	~	Asta Scholar QA	geminii-2.5- flash \dagger	87.7 \pm 1.4	0.126 \pm 0.010	–	–
~	~	Asta Scholar QA	gpt-4o-mini	78.5 \pm 1.9	0.012 \pm 0.001	–	–
~	~	Asta Scholar QA	gpt-5 \dagger	85.9 \pm 1.6	1.099 \pm 0.074	–	–
✗	✗	Elicit	–	85.5 \pm 1.6	–	–	–
✗	✗	Perplexity Sonar Deep Research	geminii-2.5-flash, sonar-deep- research	67.3 \pm 1.2	0.416 \pm 0.019	73.3 \pm 10.1	0.219 \pm 0.016
✗	✗	You.com Research API	–	55.0 \pm 2.2	–	8.0 \pm 6.2	–
✗	✗	SciSpace Deep Review	claude-sonnet-4	84.6 \pm 1.3	–	–	–
✓	~	OpenSciLM	llama-3.1- openscholar-8b	58.0 \pm 2.6	0.004 \pm 0.000	–	–
✗	✗	OpenAI Deep Research	o3-/o4-mini- deep-research, geminii-2.5-pro	79.4 \pm 1.4	1.803 \pm 0.039	–	–
✗	✗	FutureHouse Crow	gpt-4.1-mini, o3-mini, geminii-2.5-flash	81.1 \pm 1.7	0.107 \pm 0.004	72.0 \pm 10.2	0.065 \pm 0.003
✗	✗	FutureHouse Falcon	gpt-4.1-mini, geminii-2.5-flash, o3-mini	77.6 \pm 1.3	0.403 \pm 0.051	74.7 \pm 9.9	0.220 \pm 0.011
~	✗	STORM	gpt-3.5-turbo, gpt-4o	78.3 \pm 2.4	0.094 \pm 0.002	–	–

1288
1289
1290
1291
1292
1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Table 14: Literature Understanding ArxivDIGESTables-Clean task benchmark results.

O	T	Agent	Model	ArxivDIGESTables-Clean	
				Score	Cost
~	✓	ReAct	claude-3-5-haiku	21.7 ± 2.6	0.013 ± 0.001
~	✓	ReAct	claude-sonnet-4	25.5 ± 3.1	0.069 ± 0.005
~	✓	ReAct	gpt-4.1	27.5 ± 3.2	0.038 ± 0.004
~	✓	ReAct	gpt-4o	16.3 ± 2.4	0.055 ± 0.005
~	✓	ReAct	gpt-5-mini	32.1 ± 3.3	0.013 ± 0.001
~	✓	ReAct	gpt-5	29.4 ± 3.7	0.064 ± 0.005
~	✓	ReAct	gemini-2.5-flash	25.2 ± 3.1	0.022 ± 0.002
✓	✓	ReAct	llama-4-scout	9.5 ± 2.3	0.760 ± 0.102
~	✓	ReAct	o3	32.9 ± 3.3	0.050 ± 0.004
~	~	Smolagents Coder	claude-3-5-haiku	15.0 ± 2.8	0.017 ± 0.003
~	~	Smolagents Coder	claude-sonnet-4	24.8 ± 2.9	0.204 ± 0.018
~	~	Smolagents Coder	gpt-4.1	27.2 ± 3.1	0.044 ± 0.005
~	~	Smolagents Coder	gpt-4o	14.6 ± 2.5	0.051 ± 0.007
~	~	Smolagents Coder	gpt-5-mini	30.0 ± 3.2	0.009 ± 0.001
~	~	Smolagents Coder	gpt-5	31.5 ± 3.2	0.060 ± 0.004
~	~	Smolagents Coder	gemini-2.5-flash	25.2 ± 2.8	0.021 ± 0.002
✓	~	Smolagents Coder	llama-4-scout	8.7 ± 2.2	0.099 ± 0.087
~	✗	Asta v0	mixture	42.9 ± 3.7	0.517 ± 0.056
~	~	Asta Table Synthesis	gpt-4.1	38.8 ± 3.5	0.347 ± 0.038
~	~	Asta Table Synthesis	claude-3-5-haiku	31.1 ± 3.6	0.165 ± 0.018
~	~	Asta Table Synthesis	claude-sonnet-4	37.2 ± 3.3	0.676 ± 0.074
~	~	Asta Table Synthesis	gemini-2.5-flash	34.4 ± 3.3	0.133 ± 0.015
~	~	Asta Table Synthesis	o3	41.6 ± 3.5	0.517 ± 0.056
~	~	Asta Table Synthesis	gemini-2.5-pro	35.4 ± 3.5	0.993 ± 0.158
✓	~	Asta Table Synthesis	llama-4-scout	26.4 ± 3.3	0.025 ± 0.003
~	~	Asta Table Synthesis	gpt-5 [†]	42.6 ± 3.5	1.281 ± 0.140
~	~	Asta Table Synthesis	gpt-5-mini [†]	41.7 ± 3.7	0.172 ± 0.019

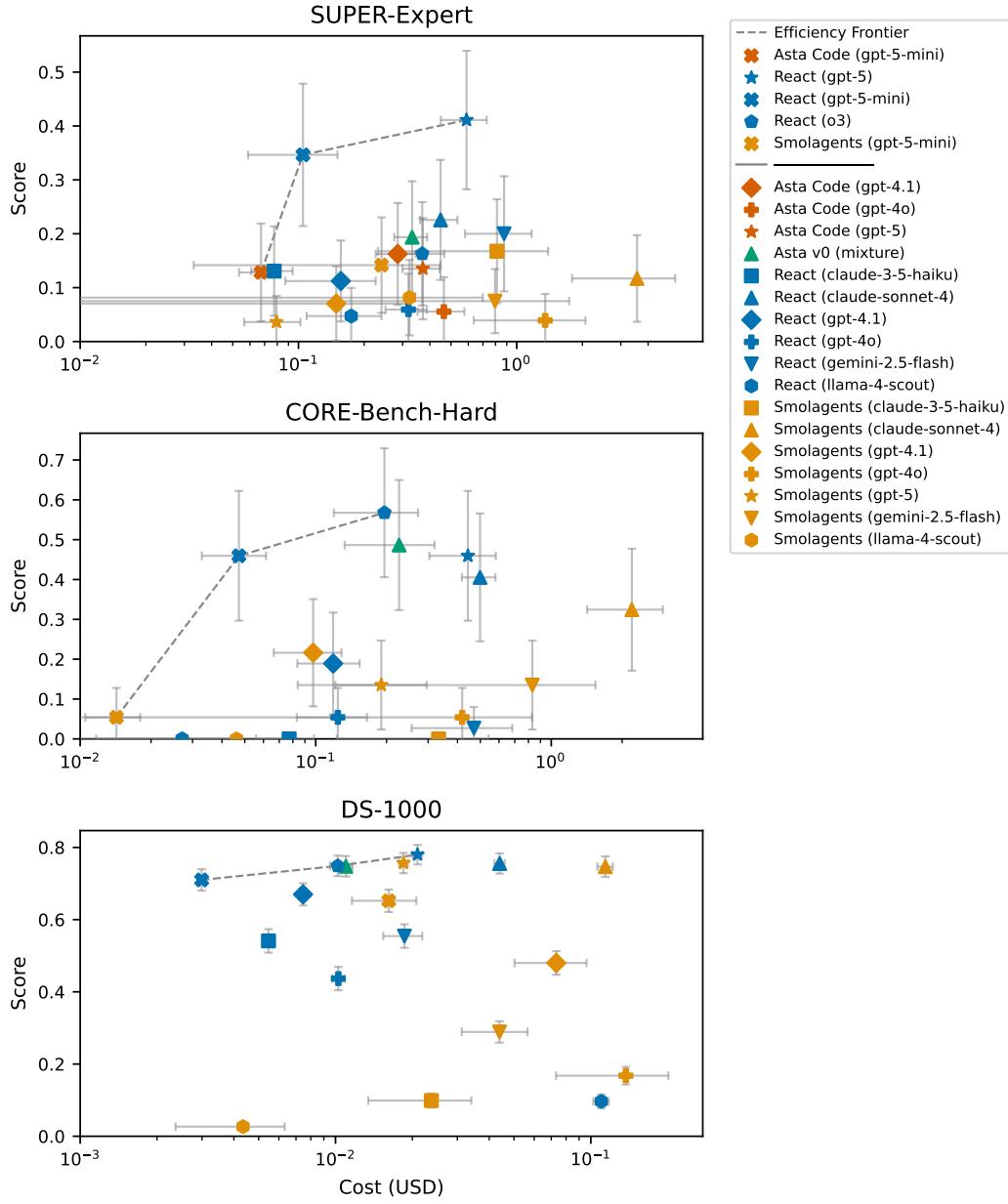
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

Table 15: Code & Execution category results.

O	T	Agent	Model	SUPER-Expert		CORE-Bench-Hard ⁻		DS-1000	
				Score	Cost	Score	Cost	Score	Cost
1365			~ ✓ ReAct	claude-3-5- haiku	13.1 ± 8.3 0.077 ± 0.017	0.0000	0.077 ± 0.021	54.1 ± 3.3	0.006 ± 0.0002
1366			~ ✓ ReAct	claude- sonnet-4	22.6 ± 11.1 0.448 ± 0.087	40.5 ± 16.0	0.499 ± 0.081	75.6 ± 2.8	0.044 ± 0.0020
1367			~ ✓ ReAct	gpt-4.1	11.2 ± 7.5 0.156 ± 0.069	18.9 ± 12.8	0.119 ± 0.035	67.0 ± 3.1	0.008 ± 0.0003
1368			~ ✓ ReAct	gpt-4o	5.9 ± 6.7 0.319 ± 0.069	5.4 ± 7.4	0.124 ± 0.041	43.7 ± 3.2	0.010 ± 0.0006
1369			~ ✓ ReAct	gpt-5-mini	34.6 ± 13.2 0.105 ± 0.046	45.9 ± 16.3	0.047 ± 0.014	71.0 ± 3.0	0.003 ± 0.0001
1370			~ ✓ ReAct	gpt-5	41.1 ± 12.9 0.589 ± 0.140	45.9 ± 16.3	0.443 ± 0.139	78.0 ± 2.7	0.021 ± 0.0009
1371			~ ✓ ReAct	gemini-2.5- flash	20.0 ± 10.7 0.875 ± 0.295	2.7 ± 5.3	0.470 ± 0.214	55.4 ± 3.2	0.019 ± 0.0032
1372			✓ ✓ ReAct	llama-4- scout	4.7 ± 5.2 0.175 ± 0.066	0.0000	0.027 ± 0.018	9.7 ± 1.9	0.110 ± 0.0077
1373			~ ✓ ReAct	o3	16.3 ± 9.6 0.369 ± 0.097	56.8 ± 16.2	0.196 ± 0.076	74.9 ± 2.8	0.010 ± 0.0007
1374			~ ~ Smolagents Coder	claude-3-5- haiku	16.8 ± 9.6 0.812 ± 0.581	0.0000	0.332 ± 0.210	9.9 ± 2.0	0.024 ± 0.0103
1375			~ ~ Smolagents Coder	claude- sonnet-4	11.7 ± 8.0 3.559 ± 1.766	32.4 ± 15.3	2.199 ± 0.780	74.7 ± 2.8	0.114 ± 0.0079
1376			~ ~ Smolagents Coder	gpt-4.1	7.0 ± 6.9 0.149 ± 0.166	21.6 ± 13.4	0.098 ± 0.031	48.0 ± 3.3	0.073 ± 0.0230
1377			~ ~ Smolagents Coder	gpt-4o	3.9 ± 4.9 1.351 ± 0.715	5.4 ± 7.4	0.419 ± 0.410	16.8 ± 2.4	0.137 ± 0.0642
1378			~ ~ Smolagents Coder	gpt-5-mini	14.2 ± 8.9 0.240 ± 0.207	5.4 ± 7.4	0.014 ± 0.004	65.2 ± 3.1	0.016 ± 0.0046
1379			~ ~ Smolagents Coder	gpt-5	3.6 ± 4.8 0.079 ± 0.023	13.5 ± 11.2	0.190 ± 0.106	75.7 ± 2.8	0.019 ± 0.0007
1380			~ ~ Smolagents Coder	gemini-2.5- flash	7.5 ± 6.0 0.796 ± 0.945	13.5 ± 11.2	0.832 ± 0.710	28.9 ± 3.0	0.044 ± 0.0127
1381			✓ ~ Smolagents Coder	llama-4- scout	8.1 ± 7.0 0.323 ± 0.377	0.0000	0.046 ± 0.034	2.7 ± 1.1	0.004 ± 0.0020
1382			~ × Asta v0	mixture	19.4 ± 10.4 0.332 ± 0.057	48.6 ± 16.3	0.226 ± 0.093	74.8 ± 2.8	0.011 ± 0.0007
1383			~ ~ Asta Code	gpt-4.1	16.3 ± 9.4 0.285 ± 0.059	—	—	—	—
1384			~ ~ Asta Code	gpt-4o	5.6 ± 6.4 0.464 ± 0.113	—	—	—	—
1385			~ ~ Asta Code	gpt-5	13.5 ± 9.4 0.372 ± 0.072	—	—	—	—
1386			~ ~ Asta Code	gpt-5-mini	12.8 ± 9.1 0.067 ± 0.014	—	—	—	—

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405
1406
1407
1408
1409



1449 Figure 6: Score vs. cost analysis for Code & Execution benchmarks (Table 15). Points indicate
1450 means; error bars denote 95% confidence intervals. Points on the Pareto frontier are connected
1451 with dotted lines, representing optimal quality-cost trade-offs for each eval (CORE-Bench-Hard⁺,
1452 SUPER-Expert, DS-1000). Note: the x-axis (cost) uses a log scale. † denotes models not pinned to
1453 a date-stamped version.

1454
1455
1456
1457

1458
1459
1460 Table 16: Data Analysis DiscoveryBench results.
1461
1462

O	T	Agent	Model	DiscoveryBench	
				Score	Cost
~	✓	ReAct	claude-3-5-haiku	24.3 ± 4.7	0.012 ± 0.001
~	✓	ReAct	claude-sonnet-4	23.2 ± 4.1	0.132 ± 0.009
~	✓	ReAct	gpt-4.1	30.5 ± 5.1	0.025 ± 0.003
~	✓	ReAct	gpt-4o	13.2 ± 3.7	0.040 ± 0.010
~	✓	ReAct	gpt-5-mini	26.9 ± 4.8	0.011 ± 0.001
~	✓	ReAct	gpt-5	30.5 ± 4.8	0.092 ± 0.009
~	✓	ReAct	gemini-2.5-flash	1.9 ± 1.7	0.101 ± 0.007
✓	✓	ReAct	llama-4-scout	5.9 ± 2.6	0.192 ± 0.021
~	✓	ReAct	o3	33.7 ± 5.1	0.039 ± 0.004
~	~	Smolagents Coder	claude-3-5-haiku	16.5 ± 4.1	0.024 ± 0.007
~	~	Smolagents Coder	claude-sonnet-4	28.8 ± 4.8	0.237 ± 0.019
~	~	Smolagents Coder	gpt-4.1	28.4 ± 4.9	0.045 ± 0.018
~	~	Smolagents Coder	gpt-4o	17.8 ± 4.2	0.054 ± 0.004
~	~	Smolagents Coder	gpt-5-mini	27.7 ± 4.9	0.071 ± 0.041
~	~	Smolagents Coder	gpt-5	26.7 ± 4.7	0.077 ± 0.006
~	~	Smolagents Coder	gemini-2.5-flash	24.7 ± 4.7	0.017 ± 0.007
✓	~	Smolagents Coder	llama-4-scout	20.2 ± 4.5	0.008 ± 0.002
~	✗	Asta v0	mixture	33.2 ± 5.1	0.246 ± 0.071
~	~	Asta DataVoyager	gpt-4.1 [†] , gpt-4o [†]	29.9 ± 5.0	0.147 ± 0.020
~	~	Asta DataVoyager	claude-sonnet-4, gpt-4o [†]	25.7 ± 4.6	0.523 ± 0.050
~	~	Asta DataVoyager	o3 [†] , gpt-4o [†]	31.1 ± 5.0	0.234 ± 0.061
~	~	Asta DataVoyager	gpt-5 [†] :effort=minimal, gpt-4o [†]	27.0 ± 4.7	0.215 ± 0.029
~	~	Asta DataVoyager	gpt-5 [†] , gpt-4o [†]	29.6 ± 4.9	0.354 ± 0.075

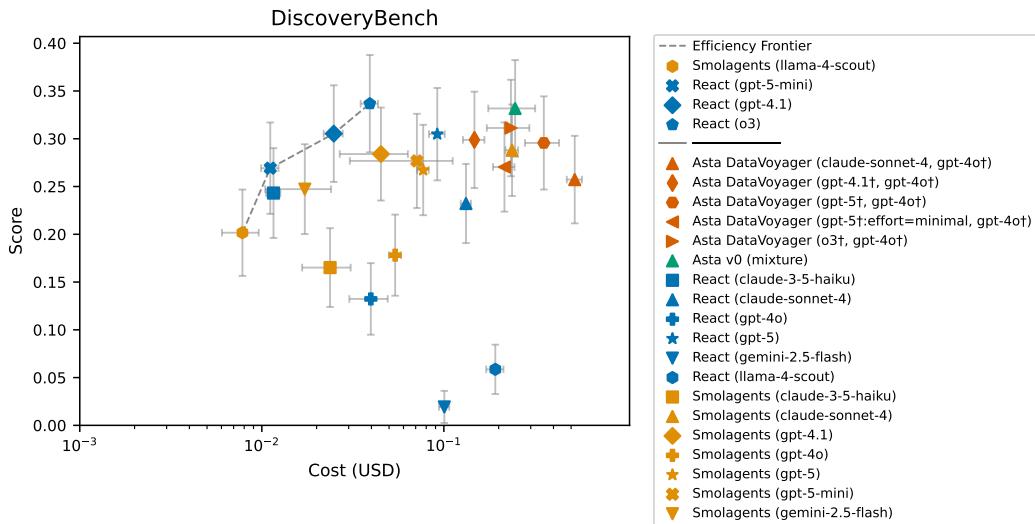


Figure 7: Score vs. cost analysis for Data Analysis sub-benchmarks. Points indicate means; error bars denote 95% confidence intervals. Points on the Pareto frontier are denoted with red triangle markers, representing optimal quality-cost trade-offs for each eval (DiscoveryBench). [†] denotes models not pinned to a date-stamped version.

Table 17: End-to-End Discovery category results.

O	T	Agent	Model	E2E-Bench		E2E-Bench-Hard	
				Score	Cost	Score	Cost
~	✓	ReAct	claude-3-5- haiku	4.5 ± 2.8	0.042 ± 0.011	4.8 ± 3.4	0.048 ± 0.011
~	✓	ReAct	claude- sonnet-4	52.5 ± 6.8	0.749 ± 0.072	38.9 ± 6.9	0.836 ± 0.057
~	✓	ReAct	gpt-4.1	19.3 ± 7.3	0.132 ± 0.024	14.8 ± 6.8	0.139 ± 0.034
~	✓	ReAct	gpt-4o	1.6 ± 1.7	0.157 ± 0.035	1.4 ± 1.9	0.135 ± 0.028
~	✓	ReAct	gpt-5-mini	9.5 ± 7.6	0.030 ± 0.006	15.7 ± 8.3	0.040 ± 0.008
~	✓	ReAct	gpt-5	30.0 ± 11.9	0.403 ± 0.053	42.1 ± 11.4	0.584 ± 0.072
~	✓	ReAct	gemini-2.5- flash	0.0000	2.401 ± 1.149	1.1 ± 2.1	1.263 ± 0.672
✓	✓	ReAct	llama-4- scout	1.9 ± 2.1	0.818 ± 0.135	0.9 ± 1.1	0.813 ± 0.144
~	✓	ReAct	o3	34.9 ± 10.1	0.065 ± 0.010	21.0 ± 7.6	0.075 ± 0.019
~	~	Smolagents Coder	claude-3-5- haiku	5.3 ± 3.1	0.946 ± 0.560	3.7 ± 2.4	0.505 ± 0.538
~	~	Smolagents Coder	claude- sonnet-4	47.2 ± 6.1	0.873 ± 0.110	35.8 ± 7.8	1.512 ± 0.307
~	~	Smolagents Coder	gpt-4.1	36.6 ± 9.3	0.178 ± 0.146	30.0 ± 7.7	1.955 ± 1.773
~	~	Smolagents Coder	gpt-4o	5.4 ± 3.9	0.473 ± 0.347	5.1 ± 3.3	0.866 ± 0.757
~	~	Smolagents Coder	gpt-5-mini	22.3 ± 9.6	0.076 ± 0.114	21.6 ± 7.5	0.076 ± 0.108
~	~	Smolagents Coder	gpt-5	62.8 ± 9.8	0.205 ± 0.025	30.3 ± 10.5	0.232 ± 0.043
~	~	Smolagents Coder	gemini-2.5- flash	34.0 ± 10.2	1.877 ± 0.830	23.2 ± 7.8	2.541 ± 1.203
✓	~	Smolagents Coder	llama-4- scout	0.2 ± 0.3	0.283 ± 0.152	0.7 ± 0.7	0.251 ± 0.181
~	×	Asta v0	mixture	70.4 ± 6.3	10.643 ± 0.717	67.3 ± 5.3	14.487 ± 1.050
~	✓	Faker	gpt-4.1 [†]	39.2 ± 6.9	0.026 ± 0.001	25.4 ± 4.5	0.029 ± 0.001
~	×	Asta Panda	gpt-4.1 [†]	36.6 ± 7.7	7.610 ± 1.650	39.3 ± 7.0	9.319 ± 1.243
~	×	Asta Panda	claude- sonnet-4	70.5 ± 6.2	10.643 ± 0.717	68.2 ± 4.4	14.487 ± 1.050
~	×	Asta CodeScientist	claude-3-7- sonnet	65.3 ± 7.1	2.760 ± 0.510	64.5 ± 5.5	3.549 ± 0.692

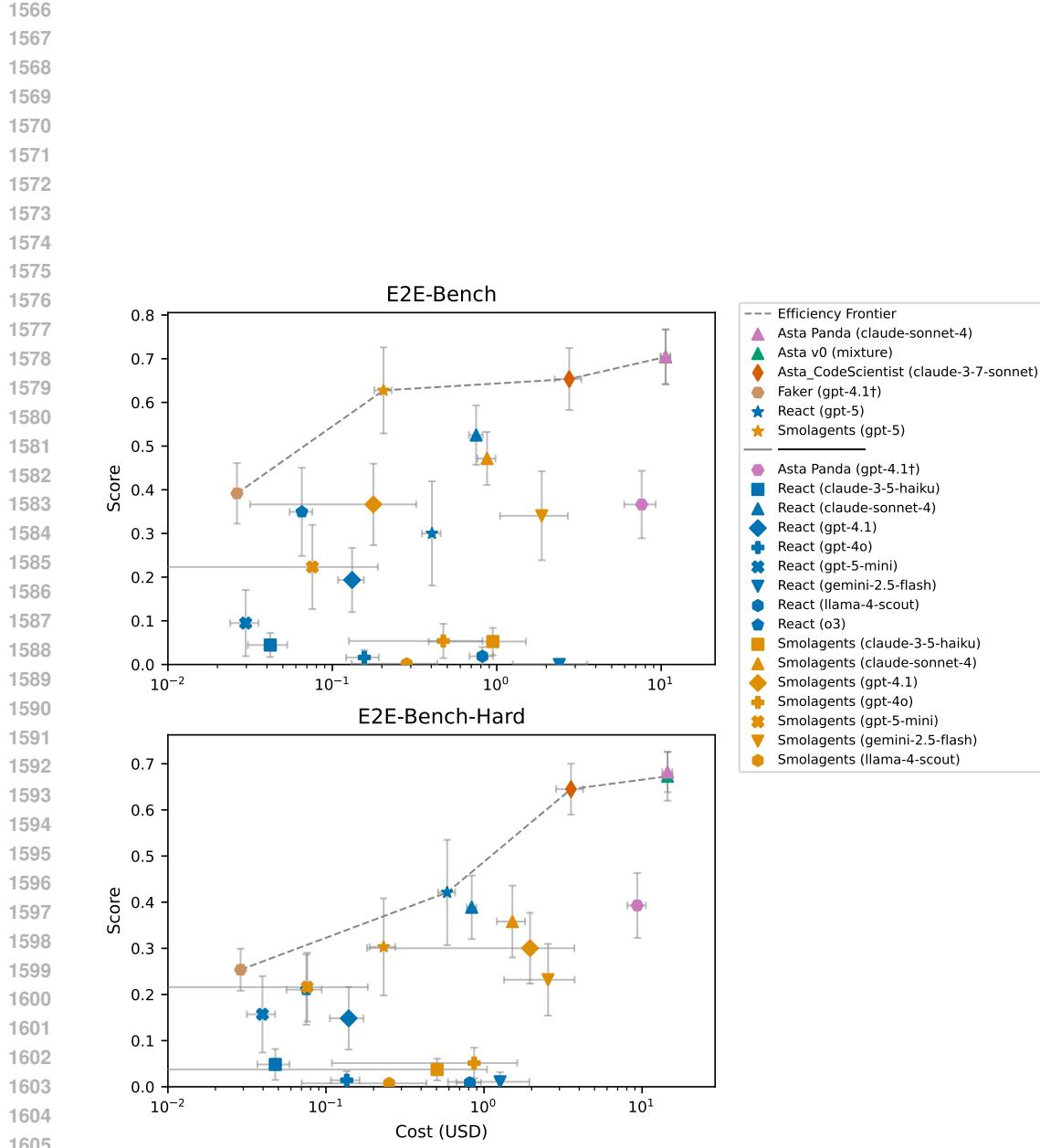


Figure 8: Score vs. cost analysis for End-to-End Discovery benchmarks (Table 17). Points indicate means; error bars denote 95% confidence intervals. Points on the Pareto frontier are connected with dotted lines, representing optimal quality-cost trade-offs for each eval (E2E-Bench, E2E-Bench-Hard). Note: the x-axis (cost) uses a log scale. † denotes models not pinned to a date-stamped version.

1620 **E EVALUATIONS**
1621

1622 **E.1 SHORT DESCRIPTIONS**
1623

1624 **PaperFindingBench** PaperFindingBench tests an agent’s ability to handle challenging scientific search queries. Given a textual query string, the task is to return a ranked list of papers that satisfy the query. This new benchmark is a subset of our own internal evaluation for our literature-search agent (Asta Paper Finder). Unlike existing paper-finding benchmarks, which are restricted to semantic search queries, our dataset includes metadata and navigational queries along with a diverse mix of semantic queries. The queries are sourced from PaperFinder¹⁵ and OpenSciLM¹⁶ user logs and the LitSearch (Ajith et al., 2024) and PaSa (He et al., 2025) datasets. Evaluating retrieval tasks is challenging, and our chosen evaluation metrics along with other benchmark details are discussed in appendix E.2. Briefly, navigational and metadata queries are evaluated in terms of F1 over the result set, and semantic queries use the harmonic mean of *estimated* recall and nDCG. The final evaluation metric is an average of per-query scores.
1634

1635 **LitQA2-FullText/LitQA2-FullText-Search** These two benchmarks measure an agent’s ability to answer questions and retrieve papers within the biomedical domain. They are based on the LitQA2 dataset (Skarlinski et al., 2024), which contains 199 multiple-choice questions, each associated with a target paper whose full-text can potentially answer the question. To enable fair comparison for agents using our standard retrieval tools, we filter the original dataset to a subset of 85 questions where the associated relevant paper is available in our Asta Scientific Corpus snippet search index within the specified cutoff date (see Table 2). Following Skarlinski et al. (2024), LitQA2-FullText evaluates in terms of *accuracy*, the fraction of questions with a correct answer. LitQA2-FullText-Search isolates the retrieval task aimed at finding K papers such that one of them is the target paper for the question, and evaluates on recall@30 (as used in Skarlinski et al. (2024)). To avoid double-counting this benchmark when computing aggregate macro-averaged Literature Understanding scores (compared to other benchmarks in that category), we weight each of these two evals by 0.5 in the macro-average. For additional details and comparisons, see appendix G.2.
1647

1648 **ScholarQA-CS2** The ScholarQA-CS2 benchmark tests an agent’s ability to answer long-form scientific questions. Given a complex scientific question like “How is diversity typically evaluated in recommendation systems?” the task is to identify relevant prior work and compose a long-form answer report that appropriately cites sources. ScholarQA-CS2 is a new benchmark that builds upon the recent ScholarQA-CS (Asai et al., 2024) by incorporating real scientific queries and introducing four facets for coverage and precision evaluation of both answers and their attributions, using LLM-as-judge. The average of these four facet scores is the final evaluation metric. For more detail, see appendix E.3.
1655

1656 **ArxivDIGESTables-Clean** The ArxivDIGESTables-Clean benchmark tests an agent’s ability to create a literature review table—one whose rows are publications and whose columns consist of aspects used to compare and contrast a set of papers. Given a set of related papers and a caption describing the table’s intent (e.g., “Overview of LLM pretraining benchmarks”), the task is to automatically output a complete literature review table. We release a new benchmark that builds on ArxivDIGESTables, the first high-quality dataset for literature review table generation created by Newman et al. (2024) by extracting review tables from ArXiv papers. Our evaluation includes two key improvements: (i) we curate a small clean subset of instances from the original test set, and (ii) we introduce an end-to-end evaluation methodology for the task. Tables are scored by prompting an LLM to “unroll” them into statements. The evaluation metric is the proportion of ground truth statements from the reference table that are entailed (according to an LLM judge) by the unrolled generated table. For more detail, see appendix E.4.
1667

1668 **SUPER-Expert** The SUPER-Expert benchmark (Bogin et al., 2024) (Setting UP and Executing
1669 tasks from Research repositories) tests the ability of code agents to set up and execute Python machine
1670 learning experiments reported in ML and NLP papers. It targets the common yet often non-trivial
1671 and time-consuming task of setting up and running code from sparsely documented repositories
1672

1673 ¹⁵URL redacted for blind review

1673 ¹⁶URL redacted for blind review

1674 accompanying published papers. Given a natural language instruction along with a GitHub repository
1675 pointer (e.g., asking to train a model following a paper’s code at a given URL), the task is to clone
1676 the repository, install any needed dependencies, configure, run the requested training/evaluation, and
1677 report the outcome (e.g., model accuracy). In contrast to other repository-centered code execution
1678 tasks, the particular focus here is on *low-resource* research repositories on GitHub—like those
1679 researchers often encounter when validating and expanding upon prior published work. For more
1680 detail, see appendix E.5.

1681

1682 **CORE-Bench-Hard[–]** The CORE-Bench-Hard[–] benchmark (Siegel et al., 2025) tests an agent’s
1683 ability to reproduce experiments and analyses from papers. The input is a “capsule” from CodeO-
1684 cean.com containing code and data released alongside a published paper, as well as a set of instructions
1685 indicating specific analyses to perform with the capsule (full example in appendix H.7.1). The task is
1686 to perform these analyses and write answers in a `report.json` file. The capsules in CORE-Bench-
1687 Hard[–] are chosen to be highly reproducible and span a variety of domains, including computer
1688 science, social science, and medicine, and use Python and R programming languages. For more
1689 detail, see appendix E.6.

1690

1691 **DS-1000** The DS-1000 benchmark (Lai et al., 2023) tests the ability of code models on routine data
1692 science tasks encountered in everyday research. The input is a coding question and an incomplete code
1693 snippet that the agent must fill in to answer the question (see example in appendix H.8.1). The output
1694 code snippet is graded by running it against a (problem-specific) test case. This benchmark contains
1695 1000 problems involving 7 Python libraries that were originally collected from StackOverflow and
1696 perturbed to avoid training leakage. We use the task implementation provided in Inspect evals (UK
1697 AI Safety Institute and Arcadia Impact and Vector Institute, 2025) and report the accuracy of the
1698 proposed code passing the target test cases. For more detail, see appendix E.7.

1699

1700 **DiscoveryBench** The DiscoveryBench (Majumder et al., 2025) benchmark aims to test whether
1701 the agent can automatically find and verify hypotheses from given dataset(s), performing data-driven
1702 analysis. The input to the task is a discovery goal and a collection of datasets and their respective
1703 metadata, and the output is a hypothesis addressing the goal with the highest specificity for the
1704 context, variables, and relationship supported by the dataset(s). Optionally, a workflow for deriving
1705 a hypothesis can be output to augment information already present in the hypothesis. This is the
1706 *first* comprehensive benchmark to test agents’ or language models’ ability to perform data analysis—
1707 including data preparation, basic statistical analysis, complex data transformation, and modeling—on
1708 datasets from 6 diverse domains, such as sociology and engineering. We collect task datasets from
1709 open public repositories made available by already published works from the 6 domains. The
1710 discovery goals are extracted from the associated papers to the datasets, or human-annotated, where
1711 each gold output (i.e., the hypothesis) is rigorously verified by data analysis experts. The performance
1712 on the benchmark is measured as the alignment of the predicted and gold hypotheses. The final
1713 metric, Hypothesis Matching Score, is a product of three LLM-as-judge scores that measure the
1714 alignment of the predicted and the gold hypotheses in the dimensions of their context, associated
1715 variables, and the relationship among them. For more detail, see appendix E.8.

1716

1717 **E2E-Bench** The E2E-Bench task aims to test whether agents can perform the full research pipeline
1718 of ideation, planning, (software) experiment design, implementation, execution, analysis, and produc-
1719 ing a final report, i.e., a complete research cycle. The input to the task is a research question in the
1720 domain of AI/NLP and a detailed description of the steps to investigate it, and the output is a technical
1721 report, a trace of the agent’s reasoning, and any code or artifacts (e.g., datasets) generated. This is
1722 a new release and forms the first agent-neutral benchmark (i.e., a benchmark that isn’t designed to
1723 highlight the strengths and scope of a particular agent) designed to compare automatic scientific
1724 discovery (ASD) agents. It fills a gap in the current research landscape where there are many such
1725 agents, e.g., AI Scientist (Lu et al., 2024), AgentLab (Schmidgall et al., 2025), and CodeScientist
1726 (Jansen et al., 2025), but no systematic way to compare them. In practice, to allow more controlled
1727 system-to-system comparisons, the problems are specified in considerable detail and hence only
1728 weakly test the ideation and planning steps. At the same time, these problems are not as prescriptive
1729 as typical ML coding problems, e.g., in MLAGentBench (Huang et al., 2024). The problems are
1730 created via a mixture of machine generation and human review, and include a detailed task description
1731 and a problem-specific evaluation rubric. The final score is an overall LLM-as-judge assessment

1728 based on three LLM-as-judge scores obtained by evaluating each relevant agent output (report, code,
1729 and artifacts) against the rubric. For more detail, see appendix E.9.
1730

1731 **E2E-Bench-Hard** This task is similar to E2E-Bench, except the problems are generally harder. It
1732 follows the same task definition, evaluation, baselines, and environment as E2E-Bench, however the
1733 data collection method is different. For more detail, see appendix E.10.
1734

1735 E.2 PAPERFINDINGBENCH 1736

1737 In the rise of LLM-based agentic workflows, the ability to answer **challenging** scientific search
1738 queries, across a wide range of searching criteria, have become possible. However, current paper
1739 finding benchmarks largely confine themselves to a small subset of search query kinds (e.g. LitSearch
1740 (Ajith et al., 2024), PaSa (He et al., 2025) and LitQA2 dataset (Skarlinski et al., 2024)). They focus
1741 on purely semantic criteria, not covering metadata or navigational queries, and they are missing a
1742 methodological process to cover the different within-semantic challenging types.
1743

1744 PaperFindingBench is a subset of our own internal evaluation for our literature-search agent (Asta
1745 Paper Finder), which focuses on challenging queries (the internal evaluation also mixes in a bunch
1746 of easier queries, to ensure stability as a product and avoid regressions). PaperFindingBench is
1747 designed to be *challenging* (including things that our system currently does not perform well on) and
1748 *realistic* (based to the extent possible on real-world queries and information needs). It also aims to be
1749 *broad and diverse* in two axes: first, it covers a broader set of information needs. Unlike existing
1750 datasets that focus on semantic queries that search for a set of unknown-to-the-user papers based on
1751 description of their content, our benchmark includes also “navigational” queries that seek a single
1752 known-to-the-user paper based on a short reference (“the alpha-geometry paper”), and queries that
1753 define paper sets based on a wide set of metadata criteria (“acl 2024 papers that cite the transformers
1754 paper”). The second axis of diversity is within the semantic-search category, in which we seek to
1755 include different types of query challenges. The dataset mixes the different categories, and doesn’t
1756 clearly indicate which query belongs to which category (even though a human will very easily tell).
1757 This is following our belief that a literature-search agent should be able to handle all these query
1758 types, even if by merely routing them to different sub-agents.
1759

1760 PaperFindingBench includes 48 navigational queries, 43 metadata queries, and 242 semantic queries.
1761 Some of the metadata queries contain (easy) navigational queries as part of their criteria, but there is
1762 currently a strict separation between metadata and semantic queries (metadata queries do not involve
1763 a semantic component and vice-versa), which may change in future versions.
1764

1765 **Dataset Creation** *The Navigational queries* are based on PaperFinder¹⁷ usage logs, to include
1766 queries that, at least at some point in time, paper-finder failed on.
1767

1768 *The semantic queries* are curated from a mix of sources: PaperFinder usage logs, OpenSciLM¹⁸ usage
1769 logs, and existing literature-search datasets: LitSearch (Ajith et al., 2024) and PaSa (He et al., 2025).
1770 We first identified a subset of queries that were challenging for the PaperFinder system, by looking
1771 for queries that returned few or no results identified by the system as “perfectly relevant”, and for
1772 which we assessed (for query logs) or know (for the annotated dataset) that relevant papers exist.
1773 We then manually inspected a collection of such queries to identify challenge types.¹⁹ Finally, we
1774 created a set in which all challenge types are represented, while prioritizing queries for which running
1775 PaperFinder in an ablation mode with any of its components resulted in fewer perfectly-relevant
1776 papers for the ones that we do find. The set contains a mix of queries for which we assume there are
1777 many relevant results, and queries for which we assume only a handful of results exist. For numerous
1778 queries, assessing the relevance of the paper cannot be done solely based on title and abstract, but
1779 requires evidence from the paper’s full text.
1780

1781 *Metadata queries* These were hand-crafted to achieve broad coverage of semantic-scholar API usage,
1782 as well as interaction between APIs, as well as challenges that are solvable but not directly supported
1783

1784 ¹⁷URL redacted for blind review
1785

1786 ¹⁸URL redacted for blind review
1787

1788 ¹⁹These include, for example, multiple criteria, complex relations between criteria, use of uncommon terms,
1789 use of incorrect jargon, seeking details that are not part of the main claim of the paper, query providing
1790 unnecessary or even distracting background information.
1791

1782 by the APIs, such as negation (“not citing the transformers paper”). The queries include nesting and
1783 recursion of properties, and are inspired by the most complex queries we saw in the dataset, and taken
1784 up a notch or two. We emphasized queries that require combining multiple APIs.
1785

1786 **Evaluation** Evaluating retrieval is challenging, as it ideally requires a gold-set of all relevant
1787 documents in the corpus, which is often not known. Such a gold-set *is* available for the navigational
1788 and the metadata queries (each metadata query is internally associated with python code that uses the
1789 APIs to solve it completely, and whose results we use as the gold set). For the semantic queries, the
1790 full-coverage gold-set does not exist, and we resort to a combination of partial annotation and LLM-
1791 based judgement. Each query is associated with a (potentially empty) small-set of known-to-be-good
1792 matches, as well as with a weighted set of relevance criteria that should be individually verified by the
1793 LLM against evidence from the paper for the paper to be considered a good match. The individual
1794 relevance criteria were automatically generated by an LLM based on a (potentially expanded version
1795 of) the original query. For a fifth of the queries, the relevance criteria were manually verified and
1796 corrected or tweaked. As the tweaks and corrections turned out to be mostly minimal, and as the
1797 LLM-based relevance criteria were proved to be highly effective for the queries for which manual
1798 annotation for some papers is available, we consider all the relevance criteria as reliable, though they
1799 may be further improved in future versions. As we aim to assess retrieval and not the judging-LLM’s
1800 ability to handle long-contexts, we don’t provide the paper’s full-text for relevance judgement but
1801 rather require each result item to be associated with extracted evidence text (either from the paper
1802 itself or from papers citing it), which is then fed to the LLM for relevance judgement.
1803

1803 **Scoring Metrics** We use two different scoring metrics.

1804 *For the navigational and metadata queries*, for which the gold-set is known, we use F1 over the
1805 result-set to score individual queries.

1806 *For the semantic queries*, which are based on LLM judgement, we can compute precision, but not
1807 recall. One potential metric would be simply the number of returned documents that are LLM-judged
1808 to be relevant, however, this number is unbounded and harder to integrate with other scores in
1809 AstaBench. We thus opted to compute recall over an *estimated* set size for each query (that is, we
1810 divide by an estimated set size and not a definitive one), to bound the numbers between 0 and 1.
1811 The estimated set size is determined by running multiple variations of PaperFinder with very lenient
1812 threshold, taking the union of the resulting set, and then multiplying it by a factor that ranges from 2
1813 to 10 to estimate an upper bound and allow room for additional papers (smaller initial sets are less
1814 reliable and are multiplied by a larger number). Note that in extreme cases, this may result in a recall
1815 number larger than 1. We bound this by considering the retrieval-adjusted metric of *recall@k* where
1816 we set *k* to be the estimated set size (this corresponds to the established *recall@R* metric, but we
1817 compute *estimated – recall@estimated*). Computing recall@k fulfills two purposes: it bounds
1818 the score in 1, and also discourages submission of “junk” results.

1819 We balance recall@k not by precision, but by nDCG, as it provides a more relevant signal (favoring
1820 ranking relevant documents over irrelevant ones). The combination of nDCG and recall@estimated
1821 makes precision mostly redundant. To provide a single score for each individual query, we combine
1822 the recall and nDCG numbers using an harmonic mean (F1 over estimated-recall and nDCG).

1823 To provide a single unified score for the entire dataset, we average the individual query scores, overall
1824 queries regardless of their type.

1825 **Tools Cutoff Date** We encourage participants to use the keyword and snippet search functionalities
1826 provided in Asta Scientific Corpus. In any case we expect submissions to follow the same
1827 cutoff date as the corpus cutoff date for both these tools which is set to June 1st 2025.
1828

1830 **Example Input** An example input can be found in appendix H.1.1.
1831

1832 E.3 SCHOLARQA-CS2

1833 Scientific literature reviews are a longstanding component of scientific workflows, and today are
1834 increasingly automated by commercial and open long-form QA services, such as OpenAI Deep
1835 Research, ScholarQA (Singh et al., 2025), Elicit, Perplexity, Paper QA (Skarlinski et al., 2024),

1836 and many others. Evaluating long-form answers to literature review questions is a challenging
1837 problem in natural language processing. Many acceptable long-form answers exist for any given
1838 question, and even with a dataset of “gold” answers, it is difficult to define how to score a given
1839 answer across the relevant dimensions of quality (coverage, correctness, attribution, etc.). The task
1840 is especially challenging in the scientific domain, where assessing an answer requires deep subject-
1841 matter expertise and can change over time. Asai et al. (2024) introduced ScholarQABench, which
1842 consists of multiple datasets to evaluate scientific QA systems over several dimensions. Only one of
1843 its datasets—ScholarQA-CS, which we build on in our work—evaluates answer coverage based on a
1844 set of target key *ingredients* (necessary points to cover in a comprehensive answer, manually annotated
1845 in that work) for each question. The authors of ScholarQA-CS identify several limitations of their
1846 dataset, including that the annotated key ingredients could be subject to “gaming” because they reflect
1847 specific preferences of the two annotators, and that the full evaluation relies on heuristically set
1848 weight terms. In our new dataset, we instead collect a diverse set of key ingredients from a variety of
1849 candidate system responses, and also develop new LLM-as-judge approaches for answer relevance
1850 and improved citation evaluation.

1851 **Evaluation** Our ScholarQA-CS2 evaluation takes in an answer to a question and outputs a score
1852 which is an average of four constituent measures of answer quality: *citation recall* (whether each
1853 claim in the answer is fully supported by its citations), *citation precision* (whether each citation in the
1854 answer supports its associated claim, at least partially), *answer relevance* (whether each paragraph of
1855 the answer addresses the question) and *answer coverage* (the fraction of necessary points covered in
1856 the answer).

1857 All four evaluations rely on an LLM as judge, and the prompts are given in appendix H.3.3. To enable
1858 accurate assessment of citation recall and citation precision, we leverage a feature of many evaluated
1859 systems: they provide quotes from each cited article intended to support the associated claim. For
1860 each claim, if the LLM judge assesses that the claim is fully supported by any combination of its
1861 citations and they include at least one supporting quote, that claim receives a citation recall score of
1862 1.0. If the LLM judge assesses support based on the cited paper’s title but there are no supporting
1863 quotes (this can happen because the system lacks the quote feature or because the particular sources’
1864 texts are unavailable to the system e.g. for copyright reasons), the claim receives a score of 0.5.
1865 Otherwise, the claim receives a score of 0. Our final citation recall measure is an average over claims.
1866 To compute citation precision, we use the LLM judge assessments of whether a citation provides at
1867 least partial support for its associated claim. If yes, the citation receives a score of 1 (or 0.5 if it lacks
1868 a quote), otherwise it gets a score of 0. Our final citation precision is the average of these scores
1869 macro-averaged by claim. For answer relevance, we instruct the LLM judge to evaluate the answer,
1870 one paragraph at a time, and instruct it to return a list of paragraphs that are not directly relevant for
1871 answering the query. Our final answer relevance score is the proportion of relevant paragraphs.

1872 The fourth measure, answer coverage, is more challenging to assess because it requires not only
1873 evaluating the answer itself, but also identifying the key elements that a correct answer to the question
1874 must include. Inspired by the approach taken in TREC information retrieval competitions (Craswell
1875 et al., 2021), for each question we gather a pool of candidate ingredients from the systems we
1876 are evaluating,²⁰ and assess the ingredients using an LLM judge. Specifically, for each evaluation
1877 question, we ask the LLM judge to extract key ingredients from each system’s answer, identify
1878 specific details associated with each ingredient, and classify each ingredient’s importance as “answer
1879 critical” (must-haves for answering the question) or “valuable” (nice to have, but not critical). We
1880 then cluster the extracted ingredients by instructing the LLM judge to group semantically similar
1881 ingredients together while retaining the importance label. This process results in question-specific
1882 rubrics of ingredient clusters. The ingredient extraction prompts are given in appendix H.3.5.

1883 The rubric ingredients are used at answer evaluation-time to measure coverage. For each ingredient
1884 cluster, the LLM judge gives a score of 0 (does not meet the criterion described in the rubric
1885 ingredient), 1 (somewhat meets the criterion) or 2 (perfectly meets the criterion). The final answer
1886 coverage score is a weighted average of the individual ingredient scores, with ingredient importance
1887 determining the weight (with “answer critical” ingredients counting twice as much as the “valuable”

1888 ²⁰Specifically, we source from the eight “QA-long” systems listed in Table 3 plus two baseline LLMs without
1889 retrieval—Claude Sonnet 4.0 without thinking and Google’s Gemini 2.5 Pro. All reports sourced were obtained
before the cutoff date of June 24, 2025.

1890 ingredients). The answer coverage prompt is shown in appendix H.3.3, with a sample rubric in
1891 appendix H.3.2.

1892
1893
1894 **Data Collection** As our test set, we gather 100 user questions issued to OpenSciLM (Asai et al.,
1895 2024), filtered for language, quality and topic (we select questions from the computer science domain).
1896 The details of the selection process are given in appendix E.3.1. As a development set, we retain
1897 the previously published ScholarQA-CS dataset (Asai et al., 2024) of 100 questions and update its
1898 ingredient lists using the same methodology described above.

1899
1900 **Choice of LLM Judge** Since our evaluation is based upon LLM as a judge, we selected an LLM
1901 that can handle long input contexts for processing long-form answers and also follow the various
1902 constraints described in our prompts. We choose to use gemini-2.5 models. We correlated the
1903 performance of gemini-2.5-flash and gemini-2.5-pro as the judge on the task optimized
1904 systems Section 4.3 evaluated on ScholarQA-CS2, and found that the Pearson correlation was 0.995.
1905 We therefore use gemini-2.5-flash as the official evaluator given its lower usage cost.

1906
1907 **Validation of ScholarQA-CS2** We empirically validate our evaluation by measuring how well its
1908 ranked scores correlate with expert annotator judgments. Specifically, the annotators are presented
1909 with a query and answers from three models and are asked to rank them based on answer quality,
1910 taking into account the quality of citations, the relevance of the text, as well as, other more subjective
1911 preferences like the flow, organization, and structure. We conduct this three-way comparison over
1912 all eval test questions, selecting at random answers from a pool of six agents—Asta Scholar
1913 QA (w/ Tables), OpenAI Deep Research, Elicit, Perplexity Sonar Deep Research,
1914 STORM, and a Qwen3-8B model finetuned on QA pairs collected from production Asta Scholar QA,
1915 and calculate win rates. At the system level, we find moderate human–model agreement (Kendall
1916 $\tau = 0.467$), which rises substantially to 0.800 when excluding Elicit outputs for which experts
1917 show systematic dispreference. At instance-level, we observe an overall agreement of 68.1% (τ of
1918 0.369) for instances with a clear winner (i.e., human agreement). This agreement is higher than the
1919 agreement with individual metrics (38.7%–63.5%), which suggests that the metrics may be working
1920 in concert to more accurately capture human judgment—complementing one another in ways that
1921 counterbalance their individual weaknesses and collectively achieving more than any single metric
1922 can on its own.

1923 For rubric validation, we additionally investigate the concern of bias arising out of sourcing our
1924 candidate ingredients from the systems we evaluate. In particular, we examine how the answer
1925 coverage scores change for systems when they are held out of the ingredient extraction stage. Specif-
1926 ically, we select systems with competitive answer coverage scores (Asta Scholar QA (w/ Ta-
1927 bles), OpenAI Deep Research, Elicit, Perplexity Sonar Deep Research, SciSpace
1928 Deep Review) and create five different sets of rubrics for our test questions, where each set holds
1929 out one of the five systems and sources ingredients from the remaining nine systems. We recalculate
1930 the answer coverage scores using the held-out rubrics and compare them against the answer coverage
1931 scores from our full (10-system) reported results. The results show that the effect of being held
1932 out varies across systems, with three (Asta Scholar QA (w/ Tables), Elicit, and SciSpace
1933 Deep Review) experiencing significant drops in performance in the held-out condition (average
1934 2.5 point drop; $p \leq 0.01$) and two (OpenAI Deep Research and Perplexity Sonar Deep
1935 Research) with insignificant drops (< 1 point drop; $p > 0.16$). The degree of held-in bias decreases
1936 as we add more systems: separate hold-out experiments with a 4-system rubric shows a 5 point
1937 average drop across all evaluated systems. This suggests that including more systems for rubric
1938 creation is helpful for mitigating bias. However, more investigation is necessary to determine the
1939 reasons for bias and how to most fairly evaluate systems that we not used for rubric creation.

1940 **Tools Cutoff Date** Our long-form QA task relies on access to the keyword and snippet search
1941 functionalities provided in Asta Scientific Corpus. The corpus cutoff date for both these tools
1942 is set to May 1st 2025 for this task.

1943 **Example Input** An example input can be found in appendix H.3.1.

	Field of Study	# Papers
1944	Computer Science	94.3%
1945	Mathematics	21.3%
1946	Engineering	9.1%
1947	Medicine	5.8%
1948	Physics	4.2%
1949	Biology	1.3%
1950	Other	0.8%
1951		
1952		

1953 Table 18: Distribution of fields of study (FoS) among papers in the ArxivDIGESTables-Clean
 1954 validation and test sets. Note that a paper can have multiple FoS tags. Tags with fewer than five
 1955 papers are grouped into the “Other” category, which includes Geology, Sociology, Materials Science,
 1956 History, Political Science, Environmental Science and Chemistry.

1957 **E.3.1 QUERY SELECTION**

1958 Here we outline the procedure for collecting 100 test set queries. We obtained from OpenScholar
 1959 on Feb 21, 2025 8K random input queries with three words or more, and used an LLM (Claude
 1960 Sonnet 3.5) to annotate them over five dimensions: language, field of study, clarity, completeness,
 1961 and query type.²¹ Based on the generated annotations, we down select to English, Computer Science
 1962 queries that express clear research request, for a total of 3.5K queries. We then random sample 200
 1963 instances, which are then manually examined by four of our authors for question clarity, quality, and
 1964 answerability to obtain our final 100 test queries. For detailed prompts, see appendix H.3.4.

1965 **E.4 ARXIVDIGESTABLES-CLEAN**

1966 **Data Collection** Padmakumar et al. (2025) identify that instances in ArxivDIGESTables
 1967 sometimes contain one of the following issues:

1968

- 1969 • *Generic* columns (e.g., year of publication, research focus etc.)
- 1970 • *Unrecoverable* columns containing information that cannot be obtained from full-texts of
 1971 papers in the table (e.g., dataset instances)

1972 Generic columns are trivially easy to generate (over-optimistic performance estimates), while unre-
 1973 coverable columns are impossible to generate (under-optimistic estimates). Therefore, evaluating
 1974 on a subset free from these issues ensures that we obtain a realistic estimate of model performance.
 1975 Since filtering such instances automatically is non-trivial, Padmakumar et al. (2025) manually curate
 1976 ArxivDIGESTables-Clean, a subset of 170 instances free of these issues. We use this subset,
 1977 randomly sampling 100 instances to create the test set and using the remaining as a validation set.
 1978 Table 18 presents the distribution of fields of study in ArxivDIGESTables-Clean.

1979 **Evaluation** Newman et al. (2024) originally proposed a reference-based automated evaluation pro-
 1980 cedure for the task of literature review table generation. Their procedure consists of two components:
 1981 evaluating the schema (columns) and values (cells) for a generated table. However, this decomposed
 1982 evaluation has two disadvantages. First, it requires agents evaluated on this task to expose the same
 1983 set of components (column generation and cell value generation), instead of allowing flexibility in
 1984 agent design. Second, cell value evaluation is conducted by providing agents with the set of “gold”
 1985 columns from the reference table and assessing how well generated cell values match the cell values
 1986 in the reference table. Therefore, this evaluation component effectively just measures the ability
 1987 of agents to perform question answering over a single paper. To address these disadvantages, we
 1988 develop an end-to-end evaluation methodology inspired by TABEVAL (Ramu et al., 2024). The
 1989 TABEVAL protocol first represents a generated table’s semantics by breaking it down into a list of
 1990 natural language atomic statements, a process referred to as *table unrolling*. Then, it compares these
 1991

1992 ²¹For query type, we instruct the model to distinguish between queries that contain an identifiable request,
 1993 queries that resemble search terms, and queries that seek to test the capability of the agent (e.g., “can u write ?”
 1994 or “can i speak chinese?”[sic]).

1998 statements against ground truth statements produced from a reference table using entailment-based
1999 measures. We adopt the same approach, prompting GPT-4o to perform unrolling on generated tables,
2000 and then reporting the proportion of ground truth statements from the reference table that are entailed
2001 by the unrolled generated table (judged by GPT-4o) as recall. The prompts for table unrolling and
2002 assessing entailment are provided in appendix H.5.2 and appendix H.5.3.
2003

2004 **Example Input** An example input can be found in appendix H.5.1.
2005

2006 E.5 SUPER-EXPERT 2007

2008 **Task** Each input in SUPER-Expert consists of (a) a question specifying a particular research
2009 task to execute within a code repository (see example in appendix H.6.1), (b) a specification of a
2010 particular output result to produce, and (c) and details of the corresponding GitHub repository. The
2011 goal then is for the agent to download the target repository, and perform all of the necessary setup and
2012 configuration needed for running the repository code, modify specific details in the code as needed
2013 for the task (e.g., dataset name or location), execute the target task, and finally report the result in the
2014 desired format.
2015

2016 **Annotation** What makes SUPER-Expert challenging is that such repositories are not well-
2017 documented, each repository has its own set of issues, and while it's sometimes possible to make a
2018 high-level solution plan, it is very difficult to predict what specific error will one encounter during the
2019 setup and execution process. Gold solution annotations for these tasks were therefore obtained using
2020 high skilled annotators familiar with running ML and NLP experiments, hired through Upwork.²².
2021 They produced solutions in the form of Jupyter notebooks,²³ which are also available as part of the
2022 benchmark.
2023

2024 **Evaluation** AstaBench includes two of the original splits from Bogin et al. (2024): the *Expert* split
2025 containing 45 end-to-end problems as our test set and the *Auto* split containing 50 auto-generated
2026 problems (generated based on the README file of repositories that pass a certain filter) as our
2027 development set. Scoring for the Expert split is done by computing the exact match metric between
2028 the produced solution and the annotated gold solution (often a JSON dictionary containing output
2029 experiment metrics such as loss values).
2030

2031 **Example Input** An example input can be found in appendix H.6.1.
2032

2033 E.6 CORE-BENCH-HARD⁻ 2034

2035 The version of CORE-Bench-Hard⁻ that we include in AstaBench is adapted in a few ways:
2036

- 2037 • The original task comes with three difficulty levels (Easy, Medium, and Hard). We use the
2038 Hard version, which makes the task more challenging by removing several files from the
2039 capsule (such as the `run` script and the pre-computed result files), so the agent has to figure
2040 out how to install and run the code before it can do its analyses.
- 2041 • We remove instances that would require a GPU to run, to keep the resource requirements in
2042 line with the rest of the tasks. This reduces the dataset to 37 samples instead of the original
2043 45.
- 2044 • Though not mentioned in the paper, the original benchmark code includes a standard
2045 prompt²⁴ that describes the general task requirements and expected format of the output
2046 report. We always include these instructions in the task input to ensure that the task is
2047 self-contained.
- 2048 • We use the train split of the original dataset as the validation split in AstaBench.

2049 ²²<https://www.upwork.com>

2050 ²³<https://jupyter.org>

2051 ²⁴https://github.com/siegelz/core-bench/blob/db8a3d00c25fc30cf091f6310203b7c715268084/benchmark/benchmark_prompts.json

2052 The field of study distribution in the test set is 14 Social Sciences problems (37.8%), 12 Medical
2053 Sciences (32.4%), and 11 CS (29.7%).
2054

2055 **Example Input** An example input can be found in appendix H.7.1.
2056

2057 **E.7 DS-1000**
2058

2059 We use the original version of DS-1000 from Lai et al. (2023) and the task implementation from
2060 Inspect evals (UK AI Safety Institute and Arcadia Impact and Vector Institute, 2025). In contrast
2061 to the original test set, we reserve 100 examples from the original set for validation and system
2062 development.
2063

2064 **Example Input** An example input can be found in appendix H.8.1.
2065

2066 **E.8 DISCOVERYBENCH**
2067

2068 (Majumder et al., 2024) provide initial evidence for the automated scientific discovery paradigm
2069 within the setting of *data-driven discovery*, where both search and verification of hypotheses may be
2070 carried out using a dataset alone (i.e., after physical experiments and data collection, but the extent of
2071 this ability remains unclear. We, therefore, aim to systematically evaluate the following question:
2072 *How capable are current state-of-the-art LLMs at automated data-driven discovery?*

2073 Answering this question is hard, as data-driven discovery in the wild (real-world) is diverse across
2074 domains and subject areas, which in turn makes it difficult to build a robust evaluation framework to
2075 measure progress. We address this using a pragmatic formalization of data-driven discovery, namely
2076 the search for a *relationship* that may hold between *variables* in a *context*, where (importantly) the
2077 description of those facets may not be in the language of the dataset. A data-driven discovery task
2078 then has one of these components missing, e.g., *“How did urban land use affect the invasion of*
2079 *introduced plants in Catalonia?”*. Importantly, this formalization allows for systematic, reproducible
2080 evaluation over a wide variety of real-world problems, by leveraging these facets.
2081

2082 **Task** DiscoveryBench (Majumder et al., 2025) is a novel benchmark for discovering data-driven
2083 hypotheses. In this benchmark, a *data-driven discovery task* is defined as follows: Given one or
2084 more task dataset(s) and a discovery goal, derive a hypothesis addressing the goal with the highest
2085 specificity for the context, variables, and relationship supported by the dataset(s). Optionally, a
2086 workflow for deriving a hypothesis can be output to augment information already present in the
2087 hypothesis. Each hypotheses have to be verified programmatically (e.g., using Python) through a data
2088 analysis workflow.
2089

2090 **Data Collection** Our goal is to replicate the scientific process undertaken by researchers to search
2091 for and validate a hypothesis from one or more datasets. We focus on six scientific domains
2092 where data-driven research is the cornerstone of scientific progress: sociology, biology, humanities,
2093 economics, engineering, and meta-science. Our gold trajectories to solve a discovery task carefully
2094 follow the published papers’ workflows in respective domains. As most of the papers are highly
2095 cited, peer-reviewed, and from top venues in the domains, it is reasonable to assume the published
2096 workflows are scientifically valid.
2097

2098 The domain distribution in DiscoveryBench is shown in Table 19.
2099

2100 **Evaluation** We evaluate task performance by measuring the alignment of the predicted and gold
2101 hypotheses in natural language. We designed a model-based evaluation strategy using `gpt-4-`
2102 `preview-0125` as the *evaluator*, conditioned on our structured formalism of data-driven hypothe-
2103 ses, i.e., a hypothesis is composed of a context, variables, and a relationship between interacting
2104 variables. Critically, the evaluator assesses entailments/equivalences between linguistic elements of a
2105 predicted and gold hypothesis pair, following several LM-based language entailment as automatic
2106 tools for scientific claim verification.
2107

2108 **Example Input** An example input can be found in appendix H.9.1.
2109

Domain	Percentage
Meta-science	41.8%
Sociology	24.3%
Humanities	15.9%
Biology	6.7%
Engineering	6.3%
Economics	5.0%

2114 Table 19: Distribution of domains in *DiscoveryBench*.
2115

Agent	Model	E2E-Bench	E2E-Bench-Hard
Faker	gpt-4.1 [†]	0.00	0.00
Asta CodeScientist	claude-3-7-sonnet	0.05	0.03
Asta Panda	claude-sonnet-4	0.00	0.03

2116 Table 20: Overall end-to-end task completion rates (*all* required steps completed successfully).
2117 While individual step completion accuracy is reasonable (up to $\sim 70\%$, Table 10), the likelihood of
2118 completing *all* (typically 10-15) steps remains near zero due to compounding.
2119

2124
2125 **E.9 E2E-BENCH**

2126 **Data and Data Collection** Each example is a research task in the domain of AI/NLP, for example:

2127 *“Test whether effective prompts discovered for large language models can directly
2128 improve smaller models’ performance on classification tasks.”*

2129 followed by a detailed description of the steps to perform this test. Tasks were created using a mixture
2130 of machine generation (using Asta CodeScientist’s ideator tool) and human review and editing
2131 as follows: First, we collected all *ACL conference papers from 2021 or later with at least 100
2132 citations and available on arXiv (288 papers). The ideator tool then picks two at random and uses
2133 these to LLM-generate up to five research ideas from the combination, repeated until we have ~ 400
2134 ideas, which are then automatically simplified, filtered, and ranked. Finally human expert raters
2135 reviewed the top ideas, discarding infeasible/impossible ideas or making small edits to repair them (if
2136 possible). The top 50 were used for the final dataset.

2137 **Evaluation** During idea generation, an example-specific scoring rubric is also auto-generated,
2138 asking whether all the necessary stages of research were conducted. Each rubric item is scored using
2139 LLM-as-judge against three facets of the ASD outputs separately (report, code, artifacts), to provide
2140 an overall score. More details a given in appendix F.9.

2141 While we primarily report the average research-step completion rate (Table 10), Table 20 shows the
2142 *overall* task completion scores (when *all* required rubric items are met). These overall scores are near
2143 zero, due to compounding, reflecting the continuing challenge of full end-to-end research.

2144 **Environment** Given the complexity and time/dollar cost of ASD agents, ASTABench supports
2145 cache-based agents where (a) answers to all examples are precomputed offline, then (b) a run-
2146 time cache-based agent simply retrieves cached answers to each question, allowing scoring in the
2147 ASTABench environment.

2148 **Example Input** An example input can be found in appendix H.10.1.

2149
2150 **E.10 E2E-BENCH-HARD**

2151 **Data Collection** Rather than using Asta CodeScientist’s ideator, we instead use the HypER
2152 hypothesis generation system (Vasu et al., 2025). HypER first identifies a research trend starting
2153 from each of the highly cited ACL papers from the above collection. For each research trend it then
2154 generates an initial idea, which is then refined further based on relevant paper excerpts to propose
2155 novel, underexplored tasks. Unlike E2E-Bench, we do not apply a task simplification step, but keep

2160 the initial proposals unchanged. Next, the proposed tasks are automatically ranked and manually
2161 reviewed by human expert raters, who discard or fix infeasible tasks. Finally the top 50 tasks were
2162 used for the final dataset.
2163

2164 **Example Input** An example input can be found in appendix H.11.1.
2165

2166 F AGENTS 2168

2169 We describe the evaluated agents in two parts: (1) the Asta agents that we optimized for scientific
2170 research tasks, and (2) numerous baseline agents—both general and science-specific—that we provide
2171 access to through the suite.
2172

2173 F.1 ASTA AGENTS 2174

2175 We release nine scientific research-optimized agent classes, including `Asta v0`, an orchestrator agent
2176 that automatically detects the type of task and dispatches to an appropriate task-specific sub-agent:
2177

2178 **Asta Paper Finder** is our paper-seeking agent, which is intended to assist in locating sets
2179 of papers according to content-based and metadata criteria. It is implemented as a pipeline of
2180 manual-coded components which involve LLM decisions in several key-points, as well as LLM-based
2181 relevance judgments of retrieved abstracts and snippets. At a high-level, a query is analyzed and
2182 transformed into a structured object which is then fed to an execution planner that routes the analyzed
2183 query to one of several workflows, each covering a particular paper-seeking intent. Each workflow
2184 may involve multiple steps, and returns a relevance-judged set of papers, which is then ranked
2185 while weighting content relevance together with other criteria which may appear in the query (e.g.,
2186 "early works on", "influential" etc). This agent is a frozen-in-time and simplified version of our live
2187 paper-finding agent available to use in Asta, which is restricted to single-turn interactions, does not
2188 ask for clarifications nor refuses queries, and which is using only the tools exposed in the AstaBench
2189 public APIs. It is described in more details in appendix F.3.
2190

2191 **Asta Scholar QA** is a previously published scientific long-form question answering system.
2192 It is composed of three components: retrieval to identify relevant passages from two Semantic
2193 Scholar corpora; a re-ranker to select the most relevant of the retrieved passages; and a multi-step
2194 LLM pipeline to create the final comprehensive report, including in-line citations. We experiment
2195 with several LLMs (including `gpt-5†`) as part of the pipeline and report the best results with
2196 `claude-sonnet-4-20250514`. We further report results with `gpt-4o-mini`, and `gemini-2.5-`
2197 `flash-preview-05-20` to compare the performance and cost against a smaller LLM. See Singh
2198 et al. (2025) for complete details on the system.
2199

2200 **Asta Scholar QA (w/ Tables)** is a variant of Asta Scholar QA that includes literature
2201 review tables. The Scholar QA system generates answers with sections each of which is either a long
2202 form paragraph or a list of items and their descriptions. In the latter case, the corresponding section
2203 also includes a literature review table comparing the cited papers across multiple dimensions relevant
2204 to the query. The creation of tables leads to more LLM calls resulting in higher costs as well. We
2205 report our best results with this variant with `claude-sonnet-4-20250514` as the backbone LLM.
2206

2207 **Asta Table Synthesis** is a previously published literature review table generation system. It
2208 follows a two-step prompting workflow. Step 1 retrieves titles and abstracts of all input papers from
2209 the Semantic Scholar database and provides this information alongside the table's caption to an LLM
2210 to generate suggestions for columns/aspects along which papers can be compared. Step 2 rephrases
2211 each column as a natural language query and prompts an LLM to generate cell values per paper
2212 conditioned on snippets relevant to the column retrieved from the paper full-text. We report results
2213 with the following backbone LLMs in this two-step workflow: `gpt-4.1, o3, gpt-5-mini†, gpt-5†,`
2214 `claude-3-5-haiku, claude-sonnet-4, gemini-2.5-flash-preview-05-20 gemini-2.5-`
2215 `pro, and llama-4-scout`. See Singh et al. (2025) for complete details.
2216

2214 **Asta Code** is an implementation of the React-style code agent in Bogin et al. (2024) that was
2215 originally designed for the SUPER-Expert evaluation. In addition to implementing a standard
2216 ReACT think-act-observe-submit loop, it also has a built-in tool for file editing and a custom
2217 trajectory representation that facilitates fine grained trajectory evaluation. This includes evaluating
2218 whether certain landmarks (i.e., expected points in the trajectory trace) have been reached by the
2219 agent to measure partial success, as well as the ability to run code agents with partially filled-in
2220 gold trajectories. While these evaluation features are currently limited to SUPER-Expert, this solver
2221 allows for other code tasks to be extended to facilitate this kind of intermediate evaluation, and has
2222 an abstract structure that allows for the implementation of other agent workflows beyond ReACT.
2223

2224 **Asta DataVoyager** is a role-based multi-agent system powered by a large generative model from
2225 (Majumder et al., 2024). Asta DataVoyager can semantically understand a dataset, programmatically
2226 explore verifiable hypotheses using the available data, run basic statistical tests (e.g., correlation
2227 and regression analyses) by invoking pre-defined functions or generating code snippets, and finally
2228 analyze the output with detailed analyses. The core components of the system consist of specialized
2229 agents that are designed to manage different aspects of the data-driven discovery process—planning,
2230 programming and code execution, and data analysis. Additionally, to interpret plots generated during
2231 analyses, upon generation, we run a multi-modal generative model (here, `gpt-4o`) to produce
2232 a natural language summary of such figures so that other subagents can access that information
2233 as additional context. We employ the AutoGen framework²⁵ that allows agents to communicate
2234 in arbitrary order, dependent on the context, which is maintained by an Orchestrator agent. See
2235 Majumder et al. (2024) for complete details.
2236

2237 **Asta Panda** performs research via a LLM-based plan-and-act (hence "Panda") cycle. Given a
2238 research task, it first generates a natural language plan, then systematically performs each plan step in
2239 turn, then writes a report on the outcome. Each plan step is performed using a ReAct/CodeAct-style
2240 loop of (a) write Python code (b) execute it (c) reflect, and either recode (if step failed/incomplete)
2241 or move to the next plan step depending on the outcome. If there are too many failures the system
2242 replans from the failed step. Since the **Asta Panda** source code²⁶ has not yet been integrated, we
2243 grade the cached results.
2244

2245 **Asta CodeScientist** is an autonomous scientific discovery system for domains comprising
2246 computational experiments (e.g., machine learning or NLP) (Jansen et al., 2025). **Asta CodeSci-**
2247 **entist** implements idea creation and experiment construction through a joint genetic search over
2248 combinations of research articles and pre-specified codeblocks, which define common actions in the
2249 investigative domain (e.g., prompting a language model). Since the **Asta CodeScientist** source
2250 code²⁷ has not yet been integrated, we grade the cached results.
2251

2252 **Asta v0** is an orchestrator agent that automatically detects the type of task and dispatches to
2253 an appropriate task-specific sub-agent. It uses a simple but effective text similarity approach, that
2254 achieves 100% routing accuracy on the validation set. Once the task type is identified, **Asta v0**
2255 hands off control to a specialized solver for that task category, chosen for best expected performance
2256 based on our preliminary experiments. The full routing table can be found in appendix F.7.
2257

2258 F.2 BASELINE AGENTS 2259

2260 For the set of baseline agents, we provide two general agent classes and 11 scientific research-
2261 optimized agent classes:
2262

2263 **ReAct** is a minimum-viable baseline solver that serves to measure the capabilities of LLMs without
2264 adding a sophisticated agentic architecture or task-optimized prompt. It is a simple ReAct loop: a
2265 chat-LLM is given a message history (initially just containing its system prompt (see appendix F.5)
2266 and the task instance input) and provided tools, it generates an output message with some reasoning
2267 and attached tool calls, then the results of the tool calls are appended to the message history and the
2268

²⁵<https://microsoft.github.io/autogen/>

²⁶URL redacted for blind review

²⁷URL redacted for blind review

2268 LLM is called again. This continues until the `submit(answer)` tool is called, which breaks the
2269 loop and returns the final answer.
2270

2271 The tool calls and responses are written with the native tool-calling format of the LLM (i.e., tool-call
2272 JSON objects attached to LLM output messages and special `tool` message types for responses).²⁸
2273 The agent truncates tool call outputs to at most 16,384 bytes to prevent long outputs from causing
2274 errors in the LLM.
2275

2276 **Smolagents Coder** is the reference `CodeAgent` from the `smolagents` library (Roucher et al.,
2277 2025). It is a ReAct agent, and as with the `ReAct` agent, the input at each step is a message history;
2278 however, the actions for `Smolagents Coder` are represented as code rather than via the native
2279 tool-calling format of the LLM. Previous work has found that code-based tool calling can outperform
2280 other formats in practice (Wang et al., 2024), and it has the theoretical advantages of being able
2281 to manipulate values by reference and represent logic structures such as loops in a single step, as
2282 opposed to the LLM having to simulate these structures over a long sequence of calls. `Smolagents`
2283 `Coder` is instructed to produce a Python code block to take actions (see appendix F.6 for prompt
2284 details); the code block is executed in the stateful Python environment (Section 4.1), and all of
2285 the agent’s tools are made available as callable Python functions. In addition, the agent can call a
2286 `final_answer` function to submit its final answer. The agent’s next input includes both the return
2287 value of the final statement in the code block as well as any printed output, up to a maximum of
2288 20,000 characters.
2289

2290 **You.com Search API** is a commercial Web and News Search API, which we accessed to obtain
2291 their responses.
2292

2293 **Elicit** is a commercial AI research platform for finding, summarizing, and extracting insights
2294 from scientific papers, such as in systematic reviews. Elicit searches the Semantic Scholar database
2295 and draws on all major large language model providers to provide AI screening, extraction, and deep
2296 research reports with in-line citations. Elicit elected to make a submission to ScholarQA-CS2 on
04-03-2025, which we processed using an offline cached solver.
2297

2298 **FutureHouse Crow** is a general-purpose agent built on PaperQA2 that can search the literature
2299 and provide concise answers to questions (Skarlinski et al., 2024). It uses a combination of OpenAI’s
2300 `gpt-4.1-mini` and `o3-mini` as the backbone LLMs. Although PaperQA2 is open source, it does
2301 not include retrieval. As such, we accessed FutureHouse’s API to obtain Crow responses.
2302

2303 **FutureHouse Falcon** is a closed-source agent for deep literature reviews and hypothesis evalua-
2304 tion, designed for long-form question answering²⁹. Falcon also uses OpenAI’s `gpt-4.1-mini` and
2305 `o3-mini` as the backbone LLM. We accessed FutureHouse’s API to obtain Falcon responses.
2306

2307 **OpenAI Deep Research** is a commercial deep research system that uses Web search and Ope-
2308 nAI’s language models to answer scientific questions. We obtained their reports by querying the
2309 `o3-deep-research` model via the OpenAI API for each question.
2310

2311 **OpenSciLM** is a previously published question answering system based on fine-tuned open models
2312 (Asai et al., 2024). It uses a custom wrapper to the snippet and keywords search functionalities of
2313 `Asta Scientific Corpus` for retrieval and a custom reranker. The `OpenSciLM` paper evaluated
2314 multiple variants of its RAG pipeline, here we evaluate the publicly available demo system which
2315 uses an open 8B-parameter `Llama-3.1` backbone fine-tuned on synthetic data.
2316

2317 **Perplexity Sonar Deep Research** is a commercial deep research system that runs on Per-
2318 perplexity’s proprietary search and closed LLM (Sonar). We accessed `sonar-deep-research` via
2319 Perplexity’s API to obtain their responses.
2320

²⁸E.g. for OpenAI models: <https://platform.openai.com/docs/guides/function-calling>

²⁹<https://futurehouse.gitbook.io/futurehouse-cookbook/futurehouse-client>

2322 **SciSpace Deep Review** is a commercial system that searches Semantic Scholar, AMiner and
2323 OpenAlex, using multiple models across subtasks. Some models are fine-tuned for task-specific
2324 needs (e.g., reranking for relevance). SciSpace elected to make a submission to ScholarQA-CS2
2325 on 06-13-2025, which we processed using a cached solver. In their submission, the LLM was
2326 identified as `claude-sonnet-4-20250514` which we report in Table 6.

2327
2328 **STORM** is an open-source system from Stanford that uses You.com search and synthesizes com-
2329 prehensive, Wikipedia-like articles on given topics or questions (Shao et al., 2024). STORM uses
2330 OpenAI's GPT-4o and GPT-3.5 as LLM backbones in various parts of its pipeline.

2331
2332 **You.com Research API** is a commercial deep research system that runs on You.com's search
2333 and unknown LLM. We accessed You.com's API to obtain their responses.

2334
2335 **Faker** is a baseline agent used to validate the scoring metrics for the End-to-End Discovery tasks.
2336 Faker simply prompts a LM to make up the report, code, and artifacts as best it can, to simulate a
2337 successful piece of research, without actually doing the work.

2338 F.3 ASTA PAPER FINDER
2339

2340 The Asta Paper Finder agent (PaperFinder) is a frozen-in-time subset of the PaperFinder sub-
2341 component of the Asta project ("the PaperFinder Product"). AstaBench PaperFinder follows the
2342 overall paper-finding procedure of the product, but differs from it in the indices and APIs it can
2343 use, and the set of papers available to it. It also differs in some configuration options, and does not
2344 improve over time. Finally, unlike the product, it does not support multi-turn continuations, and is
2345 restricted to a single-turn scenario where the input is a complete query and the response is a ranked
2346 set of matching documents, and the evidence for each one.

2347 PaperFinder is a system designed to locate scientific papers in a large corpus of scientific literature,
2348 while integrating several indices, APIs, search strategies and LLM-based judgments in an intelligent
2349 and effective manner. It handles three kinds of queries: navigational queries, that aim to find a specific
2350 paper known to the user, semantic queries that locate a set of papers based on semantic description
2351 of their content, and metadata queries, that aim to find papers based on metadata criteria. The types
2352 are not fully isolated, and metadata criteria may intersect with navigational or semantic criteria. It
2353 also supports modifiers like "central", "recent" or "early", which influence the ranking of the results
2354 based on metadata information.

2355 The PaperFinder agent works as a pipeline of manual coded steps which involve LLM decisions
2356 in several key-points.³⁰ At a high level, a query enters the *query analyzer* which transforms the
2357 query into a structured object reflecting the structure and semantics of the query. The analyzed query
2358 (which includes a *semantic relevance criteria*) is then sent to an *execution planner* which looks at the
2359 analyzer output and routes it to one of several sub-workflows, each of them dedicated to a particular
2360 kind of search (navigational, looking for a set of papers based on semantic criteria and potential
2361 additional metadata, queries that involve complex metadata criteria, and author-based queries). The
2362 result of each of these workflows is a set of papers and relevance judgments about each of them.
2363 These are then moved to a *ranker* component that orders the papers in an order which is consistent
2364 with the user's request, weighing the relevance scores together with other criteria such as publication
2365 time and number of citations for each work, in particular if this is supported by the query (i.e., explicit
2366 requests for "recent", "early", "classic", "central", "well known", "little known" etc). The ranked
2367 results are then returned.

2368 The PaperFinder agent uses the search APIs available in AstaBench.

2369 F.3.1 QUERY ANALYSIS
2370

2371 The query analyzer is LLM based and extracts a set of predefined properties of the query. The set
2372 of extracted properties is based on manual analysis of user-issued queries, and evolves over time. It

2373 ³⁰We found the manual-coding approach to be more efficient (in terms of number of LLM calls, number of
2374 tokens, and in terms of the ability to parallelize) and more reliable than a more dynamic process that grants more
2375 autonomy to the LLM, allowing it to write code and significantly influence the computation flow and search
process. We do plan to switch at least some component to more dynamic workflows in later versions.

2376 covers primarily properties that are of use to the downstream components (search sub-flows and final
2377 ranker), but also includes some information that is not currently handled but that we would like to be
2378 aware of, for allowing to inform the user that a given query criteria is not supported (for example,
2379 author affiliations).

2380 The query analyzer is implemented as several short prompts running in parallel, each targeting a
2381 different small subset of properties (ranging from 1 to 3). We do not claim this is the optimal way of
2382 structuring such a component, but we found it to be effective and have lower latency compared to a
2383 longer prompt that extracts all of the information pieces.

2384 The query analyzer extracts the following properties:

2385 **Broad vs Navigational** Does the query target a specific paper (e.g., a paper's title, "the olmo
2386 paper", "the vaswani 2017 paper") or a set of papers that matches some criteria? This is similar to the
2387 navigational-vs-information-seeking distinction in traditional search queries.

2388 **Semantic Criteria** Semantic criteria is a constraint or a request about the content or title of the
2389 paper (papers about X, papers that do Y). Papers in academic scientific-literature retrieval benchmarks
2390 focus almost exclusively on this criteria. However, real-world queries may include additional details
2391 such as metadata constraints or other properties, as discussed below. A major role of the query
2392 analyzer is to separate the semantic criteria from the other properties, and populate it in its own
2393 dedicated string. Note that the semantic criteria may be complex and include many sub-criteria
2394 ("papers about X, Y and Z that do not do W"). The query analyzer treats these as a single criteria and
2395 extracts them as a single field. The analysis to sub-criteria happens down the line.

2396 **Relevance Criteria** A main component of the paper-finder is judging the relevance of each individual
2397 candidate result. The query analyzer also breaks the semantic query into multiple sub-criteria
2398 (based on an LLM call), coupled with an importance score and a short description of each one. These
2399 criteria will be used for assessing the relevance of the individual results.

2400 **Metadata Constraints** Simple metadata fields (year, year-range, authors, venues, citation counts)
2401 are extracted at fields. For complex metadata constraints (nested, negated, refer to other papers, etc),
2402 if they exist, are translated into a complex data-structure which is beyond the scope of this paper.

2403 **Explicitly non-supported metadata constraints** These are based on metadata requests that appear
2404 frequently enough in our logs, but for which we do not currently have metadata support in the APIs
2405 and indices. Currently these includes author affiliation information ("papers from AI2 about language
2406 modeling").

2407 **Recency and centrality modifiers** . Common requests that correlate with metadata information,
2408 e.g. "central paper", "classic paper", "highly cited", "recent paper", "early works" etc.³¹

2409 F.3.2 NAVIGATIONAL QUERIES

2410 Specific paper requests are handled using a combination of three strategies that run in parallel:

- 2411 1. The semantic-scholar title API.
- 2412 2. Asking an LLM and then using the semantic-scholar title API to ground the answers to
2413 specific corpus-ids.
- 2414 3. Extracting key terms from the query, searching for sentences containing these terms, looking
2415 for citations within these sentences, and returning the top-cited items as candidates.

2416 Each of these strategies return zero or more results, which are then merged and returned.

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454

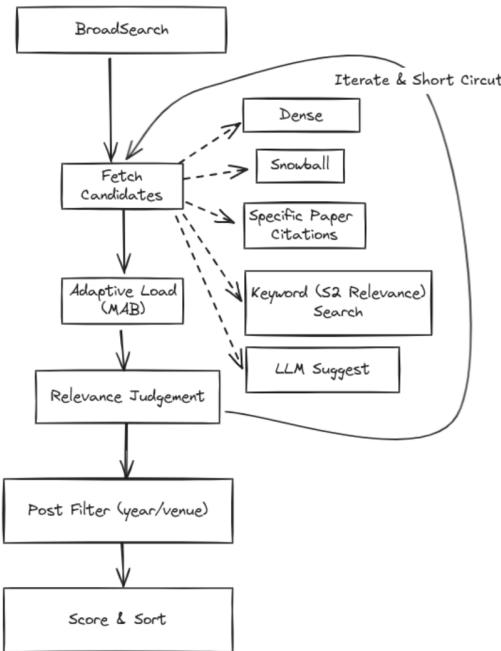


Figure 9: PaperFinder semantic query workflow

F.3.3 SEMANTIC QUERIES

On a high-level, the process works by performing a series of retrieval steps, where each of them is followed by an LLM-based relevance filtering step. Each retrieval step broadens the scope of the previous ones, and is informed based on the relevant documents identified in the preceding steps.

Initial-search. The input to the first retrieval step is the semantic criteria from the user-query, as extracted by the query analyzer. Based on this criteria, an LLM generates k rephrasing of it, and the $k + 1$ queries (rephrasing and initial query) are sent to the semantic search API.

We now move from snippet-level to paper-level by aggregating the returned snippets according to the papers they come from. All snippets from the same paper are consolidated into a single item representing the paper, in which the snippets are ordered by their order of appearance in the paper's text. This aggregation is performed across queries: all the snippets in all the $k + 1$ result sets participate in the aggregation, so that each *paper* item potentially contains matches from multiple sources.

Cited papers. For some queries, a non-negligible number of matching snippets refer to other papers ("Doe et al 2023 show that..."). We extract the set of papers mentioned in each snippet, and associate the snippet also to papers from this set. Thus, each snippet may participate in several paper items: both the paper it came from, and the papers it cites. Some paper items contain only evidence mentioned within them, other paper items contain only evidence from citing papers, and some contain a mix.

We now have a set of potential papers matching the query, each containing evidence snippets from multiple sources. To each of these we add also the title and abstract of the paper.

The following step is *relevance judgment*, in which we filter the candidate paper set using LLM judgment (see below), resulting in a subset containing relevant papers with their relevance judgments. We keep the m most promising papers for the query. The order in which we go over the results matters for efficiency. We model this as a multi-armed bandits problem over the different sources (each query is a source).

³¹Adjectives that do not correlate with metadata information, e.g., "good paper", "high quality paper", "interesting paper", "a good summary of" are currently ignored, though some of them ("a good summary of") may make their way into the semantic criteria in some cases.

2484 **Citation Tracking.** The relevance-judgment groups the papers to categorical tiers, with *highly-*
2485 *relevant* being the perfect matches.
2486

2487 This stage takes the top two categories (highly-relevant and somewhat-relevant), and performs forward
2488 and backward citation searches (a procedure known in the literature as *snowballing*). In forward
2489 snowballing we look for papers that cite the papers in the set, while in backward snowballing we look
2490 for papers cited by the papers in the set. These will then also go through relevance judgment.

2491 **Followup queries** We now formulate new queries based on the returned results. This is done by
2492 considering a subset of papers that were judged as relevant to the query, whose distance from the
2493 query in the embedding space was the largest. Intuitively, these are relevant results which are at the
2494 boundaries of the current search queries. An LLM reformulates a query based on the papers' titles,
2495 abstracts and returned snippets, as well as the original query. These are then handled like in the *initial*
2496 *search* step: issuing queries to the vector-based API, adding cited papers, aggregating the results per
2497 paper, filtering papers that are already known from previous steps, sending to relevance judgment,
2498 and returning a result set, which is then combined with the existing result set.
2499

2500 **Short-circuiting** This process proceeds with iterations of citation tracking and followup queries for
2501 up to a predetermined number of rounds. During the process we keep track of the number of papers
2502 that were sent to relevance judgment, and the number of papers that passed it. The process stops if the
2503 number of found highly-relevant papers is sufficiently high, or if the number of relevance-judgment
2504 grows over a predetermined limit.

2505 **Relevance Judgment** The relevance judgment component is applied separately to each of the
2506 found papers, and judges its relevance based on its information (title, abstract, extracted snippets,
2507 and referring snippets from other papers). The relevance judgment prompt considers each of the
2508 sub-criteria identified in query analysis, as well as the original query. Each sub-criteria is ranked as
2509 perfectly-relevant, somewhat-relevant or not-relevant. These are then combined to return a categorical
2510 relevance judgment (perfectly relevant, highly relevant, somewhat relevant, not-relevant).
2511

2512 F.3.4 METADATA QUERIES

2513 Simple metadata filters (venue, year) on top of semantic queries are handled as post-filters on the
2514 result set, or as ranking criteria (recent, highly cited). Queries that involve only metadata, or queries
2515 that involve a semantic criteria and a complex metadata criteria, are first sent to a dedicated metadata
2516 retrieval component, and then filtered for semantic match using the relevance judgment component.
2517 The metadata component uses LLM calls to analyze the metadata into a structured work-plan, which
2518 is then passed to a manually-coded executor which translates it to a series of API calls.
2519

2520 F.3.5 FINAL RANKING

2521 Finally, we combine the relevance judgements with other criteria, based on the query analysis, using a
2522 heuristic that takes into account number of citations, publication date, and the preferences expressed
2523 in the query if they exist.
2524

2525 F.4 AGENT SOURCE CODE REFERENCES

2527 • Asta Paper Finder³²
2528 • Asta Table Synthesis³³
2529 • Asta Scholar QA³⁴
2530 • Asta Code³⁵
2531 • Asta DataVoyager³⁶

2534 ³²URL redacted for blind review

2535 ³³URL redacted for blind review@tables_solver

2536 ³⁴URL redacted for blind review@sqa_solver

2537 ³⁵URL redacted for blind review@code_agent

2538 ³⁶URL redacted for blind review@datavoyager_solver

2538 • Asta Panda (cached)³⁷
 2539 • Asta CodeScientist (cached)³⁸
 2540 • Asta v0³⁹
 2541 • ReAct⁴⁰
 2542 • Smolagents Coder⁴¹
 2543 • Elicit (cached)⁴²
 2544 • Perplexity Sonar Deep Research⁴³
 2545 • SciSpace Deep Review (cached)⁴⁴
 2546 • OpenSciLM (cached)⁴⁵
 2547 • OpenAI Deep Research (cached)⁴⁶
 2548 • FutureHouse Crow⁴⁷
 2549 • FutureHouse Falcon⁴⁸
 2550 • STORM⁴⁹
 2551 • You.com Research API⁵⁰
 2552 • You.com Search API⁵¹
 2553 • Faker⁵²

2559
 2560 **F.5 REACT PROMPT**
 2561

2562 The ReAct agent uses the system prompt from the InspectAI library's basic agent, constructed
 2563 without knowledge of AstaBench.
 2564

2565 You are a helpful assistant attempting to submit the correct answer. You have
 2566 several functions available to help with finding the answer. Each message may
 2567 may perform one function call. You will see the result of the function right
 2568 after sending the message. If you need to perform multiple actions, you can
 2569 always send more messages with subsequent function calls. Do some reasoning
 2570 before your actions, describing what function calls you are going to use and
 2571 how they fit into your plan.

2572 When you have completed the task and have an answer, call the submit()
 2573 function to report it.

2574
 2575 **F.6 SMOLAGENTS CODER PROMPT**
 2576

2577 We use the default smolagents v1.17.0 system prompt, and additionally add tool definitions in the
 2578 input user message when describing the task (note placeholders for `tool_descriptions` and
 2579 `task_prompt`):

2580 ³⁷URL redacted for blind review@autoasta_cached_solver
 2581 ³⁸URL redacted for blind review@codescientist_cached_solver
 2582 ³⁹URL redacted for blind review@fewshot_textsim_router
 2583 ⁴⁰URL redacted for blind review@instantiated_basic_agent
 2584 ⁴¹URL redacted for blind review@smolagents_coder
 2585 ⁴²URL redacted for blind review@elicit_solver
 2586 ⁴³URL redacted for blind review@formatted_solver
 2587 ⁴⁴URL redacted for blind review@formatted_solver
 2588 ⁴⁵URL redacted for blind review@openscholar_solver
 2589 ⁴⁶URL redacted for blind review@formatted_solver
 2590 ⁴⁷URL redacted for blind review@futurehouse_solver
 2591 ⁴⁸URL redacted for blind review@futurehouse_solver
 2592 ⁴⁹URL redacted for blind review@storm_solver
 2593 ⁵⁰URL redacted for blind review@formatted_solver
 2594 ⁵¹URL redacted for blind review@youcom_solver
 2595 ⁵²URL redacted for blind review@faker_solver

```

2592 You have access to astabench tools in a sandbox environment. You can use
2593   → these tools in your Python code:
2594 {tool_descriptions}
2595
2596 Remember that you have a `final_answer(answer: str)` function that you
2597   → must use to return your final answer and mark the task as completed.
2598   → The answer passed to the `final_answer` function should be a string
2599   → formatted according to the task instructions; depending on the task,
2600   → the string might need to contain structured outputs like JSON or code,
2601   → and there may be other steps (such as writing files) that you need to
2602   → perform in addition to calling `final_answer`.
2603
2604 {task_prompt}
2605
2606 The task_prompt is simply the input from the task itself. Each available tool is represented
2607 in tool_descriptions as a function signature with the tool description and parameters. For
2608 example, for get_paper from Asta Scientific Corpus, we have:
2609
2610     get_paper(paper_id: str,
2611               fields: str = 'title,abstract,corpusId,authors,year,venue,
2612                           citation-
2613                             → Count,referenceCount,influentialCitationCount')
2614
2615     Get details about a paper by its id.
2616
2617     Args:
2618         paper_id: The id of the paper to get. The following types of IDs are
2619           → supported:
2620             <sha> - a Semantic Scholar ID, e.g.
2621               → 649def34f8be52c8b66281af98ae884c09aef38b
2622             CorpusId:<id> - a Semantic Scholar numerical ID, e.g.
2623               → CorpusId:215416146
2624             DOI:<doi> - a Digital Object Identifier, e.g.
2625               → DOI:10.18653/v1/N18-3011
2626             ARXIV:<id> - arXiv.rg, e.g. ARXIV:2106.15928
2627             MAG:<id> - Microsoft Academic Graph, e.g. MAG:112218234
2628             ACL:<id> - Association for Computational Linguistics, e.g.
2629               → ACL:W12-3903
2630             PMID:<id> - PubMed/Medline, e.g. PMID:19872477
2631             PMCID:<id> - PubMed Central, e.g. PMCID:2323736
2632             URL:<url> - URL from one of the sites listed below, e.g.
2633               → URL:https://arxiv.org/abs/2106.15928v1
2634
2635             fields: String of comma-separated fields to include in the response.
2636               → E.g "url,year,authors".
2637             Default is "title". Available fields are: abstract, authors,
2638               → citations, fieldsOfStudy, isOpenAccess,
2639               → journal, publicationDate, references, tlDr, url, venue, year.
2640
2641     Returns:
2642         The paper object.

```

F.7 ASTA v0 ROUTING TABLE

2637 Asta v0's routing approach starts by predicting task type based on the (character-level) lexical
2638 overlap of the input against a set of examples from the validation set. This approach sometimes
2639 confuses highly similar tasks that have the same answer format (e.g. PaperFindingBench and
2640 LitQA2-FullText-Search), but as we want to route such tasks to the same sub-agent anyway, it
2641 achieves 100% routing accuracy on the validation set.

2642 Once the task type is identified, Asta v0 hands off control to a specialized solver for that task
2643 category, chosen for best expected performance based on our preliminary experiments:⁵³

2644 ⁵³Our Asta v0 experiments were started prior to the release of gpt-5, and due to time and the relatively
2645 poor performance of GPT-5 on many specialized solvers, we did not evaluate a gpt-5 version for this work.

- **Paper search tasks** (PaperFindingBench, LitQA2-FullText-Search) → Asta Paper Finder
- **Long-form QA** (ScholarQA-CS2) → Asta Scholar QA (w/ Tables) with claude-sonnet-4
- **Table generation** (ArxivDIGESTables-Clean) → Asta Table Synthesis with o3
- **Data analysis** (DiscoveryBench) → Asta DataVoyager with o3 configuration
- **Code repository replication** (SUPER-Expert) → Asta Code with gpt-4.1
- **End-to-end discovery** (E2E-Bench, E2E-Bench-Hard) → Asta Panda with claude-sonnet-4
- **Other tasks** (DS-1000, CORE-Bench-Hard⁷, LitQA2-FullText) → ReAct with o3

The orchestrator implements a fallback mechanism to enable sub-agents to opt out: if the predicted task-type's sub-agent doesn't produce an output, Asta v0 retries with the next most similar task type (up to 3 attempts).

F.8 VALIDATION OF LITERATURE UNDERSTANDING AGENTS

Some scientific QA agents are not capable of outputting structured data that conforms to a given schema. Accordingly, we take the plain text output of these QA agents and pass them through a "formatting" step. This formatting step uses an LLM (gemini-2.5-flash) to split the plain text report into sections, identifying the inline citations and returns a structured output that conforms to our *SQAResponse* schema. There are also some agents that proportion to have structured output capabilities but whose output quality drops dramatically when it is enabled. We also use the formatting step for these agents. The list of agents for which we use a formatting step are: You.com, Perplexity DR, OpenAI DR, and FutureHouse Crow and Falcon.

For Asta Paper Finder, an expanded and continuously developed version of the agent—including a user interface and additional infrastructure—is actively used by a growing number of users. Throughout the extended period of development and real-world usage, we have validated the agent repeatedly using an internal eval set (which is a superset of the benchmark we now release including some additional simpler regression-testing queries). Although this internal set is not an established benchmark it has been proven useful to monitor retrieval quality and detect any regressions in recall or ranking performance. The increasing adoption among users serves as additional corroboration of both the effectiveness of the agent and the correctness of our internal evaluation methodology.

For LitQA2-FullText specifically, since it's a multiple-choice QA task, we evaluate the FutureHouse (creators of the original LitQA dataset) agents, and You.com and Perplexity DR because of api availability and their suitability to the task of short-form QA. The system can respond with only the correct choice or a short description with the correct choice as a json to be considered valid. For a handful of samples, we ensure the baseline systems can respond in the required format by issuing the same input prompt to their UI chat interfaces. Since LitQA2-FullText is a subset of the original, direct comparison with results in (Skarlinski et al., 2024) is difficult. Further, at the time, PaperQA2 used gpt-4-turbo as the backbone LLM, while FutureHouse Crow, which is based on PaperQA2 uses gpt-4.1-mini. For sanity, we look at the difference between the average accuracy result reported for PaperQA2 (66.0) and FutureHouse Crow (72.0) and conclude that evaluating on fewer questions and with better SOTA models explains it.

For Asta Table Synthesis, we expect scores on our new end-to-end evaluation metric to generally be in the same range as the results reported by Newman et al. (2024).

For Perplexity Sonar Deep Research, we set “reasoning_effort=high” and “search_context_size=high”, maximizing the model’s compute and offering it the best possible performance on our datasets. The Perplexity API also provides a “search_mode” parameter which can be set to “academic” to only retrieve academic sources. However, at the time of running the system (August 3rd–7th, 2025), this disabled web search entirely, so we did not set this parameter. Finally, while we found it may be possible to prompt Perplexity Sonar Deep Research to extract quotes in each of its

⁷We also note that Asta Code was chosen based on very early experiments with relatively old models, despite the final results showing better SUPER-Expert performance from ReAct with o3.

Figure 10: Graphical presentation of scoring a single end-to-end answer. Each row is a different rubric item, columns 3, 4, and 5 show whether that rubric item was met (green), not met (red), or unknown (yellow) by the generated paper, code, and artifacts respectively. Column 6 indicates whether 3-5 are consistent (green) or not (red), with the overall verdict in the last column 7. The overall score is the average of the final column cells (green = 1, red = 0).

cited sources, the API does not explicitly return these snippets; thus, we evaluate the model as if it only cites the title and URL of each page.

F.9 VALIDATION OF END-TO-END DISCOVERY AGENTS

To score and validate agents on end-to-end tasks, the E2E scorer uses a task-specific scoring rubric for each task, listing the key required facets of a valid result (e.g., downloads the right dataset, selects the right baseline, etc.). The rubrics were checked manually (and updated where needed) by human annotators. To apply these, the scorer uses LLM-as-judge to score each rubric item on each of three classes of artifact generated by the agent, namely: the generated report, the generated code, and the produced artifacts (e.g., datasets). Scores are easily viewed in a generated HTML page (Fig. 10). Each facet is scored for “meets criterion” (green), “fails criterion” (red), “no evidence either way” (yellow). Only if all three facets are consistent and include a “met” is the overall criterion considered “met”. This three-facet approach adds substantial robustness to scoring, in particular helping avoid false positives (FP), e.g., the report states an experiment was run, but the code shows otherwise, and recover from false negatives (FN), e.g., paper doesn’t mention a criterion, but code shows it was indeed implemented, see Table 21. The rubric scores were validated using spot-check sampling and verification by a human (judged 92% correct on a dev set sample of 50 rubric items). Failures include occasional over-optimistic scoring (e.g., the paper only vaguely mentions a rubric item, but is still scored 1), or failures in the details (e.g., the required code has been implemented, scoring 1, but the implementation misses an important conceptual nuance of the experiment).

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

G.1 EXPERIMENTAL DESIGN

Table 22 provides a list of models run in our experiments.

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

		Facets		
		Paper	Code	Artifacts
TP: Meets criterion, and met elsewhere (overall score: 1)		0.44	0.32	0.48
FP*: Meets criterion, but failed elsewhere (overall score: 0)		0.16	0.03	0.03
FN*: No evidence either way, but met elsewhere (overall score: 1)		0.03	0.16	0.00
TN: No evidence either way, and failed elsewhere (overall score: 0)		0.02	0.24	0.01
TN: Fails criterion (overall score 0)		0.35	0.26	0.48

Table 21: Different ways that the three facets combine (fractions) for scoring an end-to-end rubric criterion, in particular how items that would have been false positives (FP*) or false negatives (FN*) based on a single facet are corrected. For example, for 16% of the answers, the produced paper suggested a rubric criterion was met, but the code and/or artifacts showed it was actually not, (desirably) resulting in an overall score of 0 for that criterion, correcting what would have otherwise been a false positive based on the paper alone.

Table 22: Models run in our study. Model names are mapped to the model identifiers used during API calls, with \dagger used to disambiguate models that were called without their date identifiers for full transparency.

Name	Model ID	Organization	Open-Weight	Inference Provider
gpt-3.5-turbo	gpt-3.5-turbo-0125	OpenAI	✗	OpenAI
gpt-4o-mini	gpt-4o-mini	OpenAI	✗	OpenAI
gpt-4o	gpt-4o-2024-08-06	OpenAI	✗	OpenAI
gpt-4o \dagger	gpt-4o	OpenAI	✗	OpenAI
gpt-4.1	gpt-4.1-2025-04-14	OpenAI	✗	OpenAI
gpt-4.1 \dagger	gpt-4.1	OpenAI	✗	OpenAI
gpt-4.1-mini	gpt-4.1-mini	OpenAI	✗	OpenAI
gpt-5-mini	gpt-5-mini-2025-08-07	OpenAI	✗	OpenAI
gpt-5-mini \dagger	gpt-5-mini	OpenAI	✗	OpenAI
gpt-5	gpt-5-2025-08-07	OpenAI	✗	OpenAI
gpt-5 \dagger	gpt-5	OpenAI	✗	OpenAI
o3-mini	o3-mini	OpenAI	✗	OpenAI
o3	o3-2025-04-16	OpenAI	✗	OpenAI
o3 \dagger	o3	OpenAI	✗	OpenAI
claude-3-5-haiku	claude-3-5-haiku-20241022	Anthropic	✗	Anthropic
claude-3-7-sonnet	claude-3-7-sonnet-20250219	Anthropic	✗	Anthropic
claude-sonnet-4	claude-sonnet-4-20250514	Anthropic	✗	Anthropic
gemini-2-flash	gemini-2.0-flash	Google	✗	Google Vertex AI
gemini-2.5-flash	gemini-2.5-flash-preview-05-20	Google	✗	Google Vertex AI
gemini-2.5-flash \dagger	gemini-2.5-flash	Google	✗	Google Vertex AI
gemini-2.5-pro	gemini-2.5-pro	Google	✗	Google Vertex AI
sonar-deep-research	sonar-deep-research	Perplexity	✗	Perplexity
llama-4-scout	Llama-4-Scout-17B-16E-Instruct	Meta	✓	Together AI
llama-3.1-openscholar-8b	llama-3.1-openscholar-8b	Meta / Allen AI	✓	Self-hosted

2807

2808 **G.2 EVALUATION ON FULL SET OF LITQA2 DATASET**
2809

2810 This section presents additional details on evaluating on the LitQA2 dataset. When evaluating on
2811 our own literature search agent (PaperFinder), we provide it with the question text as is, without
2812 including the multiple choices and without attempting to translate the question into a paper-finding
2813 query-form. We did not do any task-specific modifications or tuning of PaperFinder for this task.

2814 As LitQA2 was designed as a full-text search benchmark, our main results are on the LitQA2-
2815 FullText-Search subset, for which our corpus contains full-text to all papers. Here we report
2816 results also on the original LitQA2 dataset of Skarlinski et al. (2024), in which 114 out of the 199
2817 queries have only their abstracts, and not full text, represented in our search index. The results in
2818 Table 23 show that PaperFinder agent obtains very similar results to the agent of Skarlinski et al.
2819 (2024) despite having access to only abstracts for over half the papers, and scores significantly higher
2820 on the subsets where full text is available.

2821 **Table 23: Retrieval scores on full set of LitQA2 dataset**
2822

Name	original-set portion	full-text percentage	recall	recall @30
PaperQA2 (Skarlinski et al. (2024))	full (199)	100%	69.9	62.8
PaperFinder (ours)	full (199)	<50%	70.3	64.3
PaperFinder (ours)	LitQA2-FullText- Search Test (75)	100%	93.3	90.7
PaperFinder (ours)	LitQA2-FullText- Search Val (10)	100%	80	80

2833 **H EVALUATION TASK SAMPLES AND PROMPTS**
2834

2835 This section provides a higher level of detail for evaluation tasks through example problems and
2836 rubrics, plus detailed prompts.

2837 **H.1 PAPERFINDINGBENCH**
2838

2839 **H.1.1 EXAMPLE PROBLEM**
2840

2841 Find papers relevant to the following query: Could you suggest research
2842 → that investigates a clustering-based efficient attention mechanism
2843 → within Transformer models?
2844 Try to be comprehensive in your search yet efficient and accurate, i.e.
2845 → find as many highly relevant papers as possible, but try to keep
2846 → efficiency in mind. You may submit up to 250 papers.
2847 If the query asks for a specific paper known to the user, i.e. "the
2848 → Transformer paper", "the BERT paper", "the GPT-3 paper" etc, try to
2849 → find that specific paper and only return that one. This does not
2850 → apply to any query phrased in singular "paper" or "article" - those
2851 → can be general queries and should return multiple relevant papers,
2852 → e.g. "which paper introduced a transformer-based generative model for
2853 → text generation".
2854

2855 Return your answer as JSON with the following structure, results should
2856 → be ordered by most relevant first:

```
2857    ````json
2858    {
2859     "output": {
2860       "results": [
2861         {
2862           "paper_id": "string; the semantic scholar corpus_id of
2863           → the paper",
```

```

2862     "markdown_evidence": "string; a markdown-formatted
2863     ↳ snippet with verbatim text from the paper that
2864     ↳ supports the relevance of the paper to the query; the
2865     ↳ evidence should be concise and limited to the minimum
2866     ↳ needed to support the paper's relevance"
2867     },
2868     ...
2869   },
2870 },
2871 ...
2872
2873
2874
2875
2876
2877
2878
2879
2880 H.2 LITQA2-FULLTEXT-SEARCH
2881
2882
2883
2884 H.2.1 EXAMPLE PROBLEM
2885
2886
2887
2888
2889 Find papers relevant to the following query: Active olfactory receptor
2890 ↳ genes increase their contacts with greek island regions by what
2891 ↳ factor in mouse olfactory neurons?
2892 Try to be comprehensive in your search yet efficient and accurate, i.e.
2893 ↳ find as many highly relevant papers as possible, but try to keep
2894 ↳ efficiency in mind. You may submit up to 250 papers.
2895 If the query asks for a specific paper known to the user, i.e. "the
2896 ↳ Transformer paper", "the BERT paper", "the GPT-3 paper" etc, try to
2897 ↳ find that specific paper and only return that one. This does not
2898 ↳ apply to any query phrased in singular "paper" or "article" - those
2899 ↳ can be general queries and should return multiple relevant papers,
2900 ↳ e.g. "which paper introduced a transformer-based generative model for
2901 ↳ text generation".
2902
2903 Return your answer as JSON with the following structure, results should
2904 ↳ be ordered by most relevant first:
2905 ...
2906 json
2907 {
2908   "output": {
2909     "results": [
2910       {
2911         "paper_id": "string; the semantic scholar corpus_id of
2912         ↳ the paper",
2913         "markdown_evidence": "string; a markdown-formatted
2914         ↳ snippet with verbatim text from the paper that
2915         ↳ supports the relevance of the paper to the query; the
2916         ↳ evidence should be concise and limited to the minimum
2917         ↳ needed to support the paper's relevance"
2918       },
2919       ...
2920     ]
2921   }
2922 }

```

2916 **H.3 SCHOLARQA-CS2**
 2917
 2918 **H.3.1 EXAMPLE PROBLEM**
 2919
 2920 Generate a report answering the following research question. Be sure to
 2921 → include inline citations for each claim. Return your result as valid
 2922 → JSON with a single key `sections` which is a list of sections, each
 2923 → having keys `title`, `text`, and `citations`. Each entry in
 2924 → `citations` should have a JSON list of `snippets` extracted from the
 2925 → reference document and an `id`, each of which appears exactly in the
 2926 → text. Each `id` should be an inline citation as it appears in the
 2927 → text (with wrapping parentheses or square brackets if appropriate).
 2928 → Each citation should have a `title` if one is available. Any
 2929 → additional information about the citation should go under `metadata`.
 2930 → Do not create a References section.
 2931
 2932 Here is an example `section` to help you with formatting:
 2933
 2934 {
 2935 "title": "Background",
 2936 "text": "Convolutional neural networks (CNNs) have achieved
 2937 → state-of-the-art results in image classification [1][2].",
 2938 "citations": [
 2939 {
 2940 "id": "[1]",
 2941 "snippets": [
 2942 "CNNs have become the standard for many visual tasks."
 2943],
 2944 "title": "ImageNet Classification with Deep Convolutional
 2945 → Neural Networks",
 2946 "metadata": {
 2947 "authors": "Krizhevsky, A. et al.",
 2948 "year": 2012,
 2949 "arxiv": "1207.0580"
 2950 }
 2951 },
 2952 {
 2953 "id": "[2]",
 2954 "snippets": [
 2955 "Significant improvements in image recognition have been
 2956 → observed with CNNs."
 2957],
 2958 "title": "Very Deep Convolutional Networks for Large-Scale
 2959 → Image Recognition",
 2960 "metadata": {
 2961 "authors": "Simonyan, K. & Zisserman, A.",
 2962 "year": 2014,
 2963 "arxiv": "1409.1556"
 2964 }
 2965 }
 2966 }
 2967 Question: Apart from preventing overfitting, are there any side
 2968 → effects (desirable or otherwise) of applying dropout in deep
 2969 → neural networks?
 2970
 2971 **H.3.2 EXAMPLE RUBRIC**
 2972
 2973 {
 2974 "question": "how the AI hallucination is linked to the AI bias",
 2975 "ingredients": [
 2976 {
 2977 "name": "answer_critical_0",
 2978 "criterion": "Define AI hallucination and AI bias",
 2979 "weight": 0.14285714285714285,

```
2970     "examples": [
2971         "factually incorrect, nonsensical, or misleading outputs
2972         ↳ despite appearing confident in their responses",
2973         "when an LLM generates content that does not correspond to
2974             ↳ reality, producing outputs that are coherent and
2975             ↳ grammatically correct but factually incorrect or
2976             ↳ nonsensical",
2977         "AI systems generate outputs that are misleading, biased, or
2978             ↳ entirely fabricated, despite appearing convincingly real",
2979         "systematic errors or skewed outputs stemming from imbalances
2980             ↳ in training data, model architecture, or deployment
2981             ↳ context",
2982         "an inclination or prejudice for or against a person or group,
2983             ↳ especially in a way considered unfair",
2984         "prejudiced or unfair outcomes due to skewed training data or
2985             ↳ flawed algorithmic design"
2986     ],
2987 },
2988 {
2989     "name": "answer_critical_1",
2990     "criterion": "Explain shared root causes linking hallucination
2991         ↳ and bias, particularly training data issues",
2992     "weight": 0.14285714285714285,
2993     "examples": [
2994         "biased training data",
2995         "Both originate from the inherent reliance on statistical
2996             ↳ pattern matching over true semantic understanding",
2997         "Incomplete or biased data can lead to AI models learning
2998             ↳ incorrect patterns, resulting in hallucinations",
2999         "Data-related hallucinations generally emerge as a byproduct of
3000             ↳ biases, misinformation, and knowledge gaps, which are
3001             ↳ fundamentally rooted in the training data",
3002         "If the training data is biased, incomplete, or flawed, the AI
3003             ↳ model may learn incorrect patterns, leading to inaccurate
3004             ↳ predictions and hallucinations",
3005         "Both phenomena emerge from datasets that are either incomplete,
3006             ↳ noisy, or imbalanced"
3007     ],
3008 },
3009 {
3010     "name": "answer_critical_2",
3011     "criterion": "Explain how bias directly contributes to
3012         ↳ hallucination",
3013     "weight": 0.14285714285714285,
3014     "examples": [
3015         "biases manifest themselves as hallucinations in summarization
3016             ↳ tasks, leading to factually incorrect summaries",
3017         "correlation coefficients reaching 0.81-0.83 between intrinsic
3018             ↳ bias and extrinsic hallucination rates",
3019         "Language models may generate stereotypical or harmful content
3020             ↳ about marginalized groups when trained on internet text
3021             ↳ containing systemic biases",
3022         "bias in medical training data leads to models generating
3023             ↳ plausible but incorrect medical information",
3024         "If an AI model is trained on data that underrepresents certain
3025             ↳ groups or overrepresents particular viewpoints, it may
3026             ↳ generate hallucinatory content that reflects these
3027             ↳ imbalances",
3028         "a language model might assume a nurse is female without any
3029             ↳ gender cue, hallucinating that detail based on gender-role
3030             ↳ stereotype"
3031     ],
3032 },
3033 {
3034     "name": "answer_critical_3",
```

```
3024     "criterion": "Explain how hallucination propagates and amplifies
3025         ↳ bias",
3026     "weight": 0.14285714285714285,
3027     "examples": [
3028         "When an AI model hallucinates, the nonsensical or incorrect
3029             ↳ information it generates may inadvertently reveal the
3030                 ↳ prejudiced assumptions it has learned from biased data",
3031         "The very act of hallucination, being a deviation from factual
3032             ↳ grounding, can sometimes be a manifestation of the system's
3033                 ↳ internal biases, where the 'made-up' information aligns
3034                     ↳ with these learned prejudices",
3035         "Confidence in Flawed Outputs: Hallucinations presented
3036             ↳ confidently by AI can reinforce existing biases",
3037         "Data Pollution: Biased or hallucinated outputs fed back into
3038             ↳ training data create self-reinforcing cycles of inaccuracy
3039                 ↳ and prejudice",
3040         "When AI systems hallucinate, they often draw upon learned
3041             ↳ patterns and associations from their training data that
3042                 ↳ include societal biases",
3043         "AI hallucinations can amplify existing biases in the data,
3044             ↳ leading to discriminatory outcomes"
3045     ],
3046 },
3047 {
3048     "name": "answer_critical_4",
3049     "criterion": "Describe the interconnected and bidirectional
3050         ↳ nature of the relationship",
3051     "weight": 0.14285714285714285,
3052     "examples": [
3053         "they represent different manifestations of fundamental
3054             ↳ limitations in current AI systems",
3055         "addressing one without the other provides incomplete
3056             ↳ solutions",
3057         "both stem from systemic issues in data quality, model
3058             ↳ architecture, and training processes",
3059         "AI bias manifests as hallucinations when models are trained on
3060             ↳ unrepresentative or imbalanced data and combined with
3061                 ↳ specific architectural designs"
3062     ],
3063 },
3064 {
3065     "name": "valuable_0",
3066     "criterion": "Provide real-world examples demonstrating the
3067         ↳ link",
3068     "weight": 0.07142857142857142,
3069     "examples": [
3070         "Healthcare Diagnostics: AI systems hallucinated symptoms for
3071             ↳ Black patients 34% more often than for white patients,
3072                 ↳ correlating with underrepresentation in training data",
3073         "Recruitment Tools: Amazon's scrapped hiring algorithm
3074             ↳ downgraded resumes containing the word 'women's' while
3075                 ↳ inventing irrelevant skill requirements for male
3076                     ↳ candidates",
3077         "Mata v. Avianca legal case where ChatGPT produced nonexistent
3078             ↳ legal opinions",
3079         "ChatGPT's 'Inner Racist' Incident where the model hallucinated
3080             ↳ a hateful rant laced with stereotypes",
3081         "In healthcare: factual hallucinations leading to logical
3082             ↳ hallucinations and diagnostic errors that can jeopardize
3083                 ↳ patient safety"
3084     ],
3085 },
3086 {
3087     "name": "valuable_1",
3088     "criterion": "Discuss mitigation strategies that address both
3089         ↳ issues",
```

```

3078     "weight": 0.07142857142857142,
3079     "examples": [
3080         "data preprocessing, algorithm selection, and model
3081         ↳ evaluation",
3082         "Training AI models on large, diverse, and high-quality
3083         ↳ datasets",
3084         "The research community is increasingly advocating for
3085         ↳ integrated evaluation frameworks that simultaneously assess
3086         ↳ factual accuracy and fairness",
3087         "Data deduplication, improved data curation, and augmentation
3088         ↳ to reduce memorization artifacts and balance
3089         ↳ representation",
3090         "External fact-checking layers and retrieval-augmented
3091         ↳ generation (RAG) frameworks"
3092     ],
3093 },
3094 {
3095     "name": "valuable_2",
3096     "criterion": "Explain specific mechanisms connecting bias and
3097     ↳ hallucination",
3098     "weight": 0.07142857142857142,
3099     "examples": [
3100         "LVLMs struggle with object hallucinations due to their
3101         ↳ reliance on text cues and learned object co-occurrence
3102         ↳ biases",
3103         "RLHF is vulnerable to the biases inherent in the human
3104         ↳ annotators' judgments",
3105         "object hallucinations in vision-language models stem from
3106         ↳ overconfidence problems closely related to statistical
3107         ↳ bias",
3108         "Models rely on token probabilities and learned correlations
3109         ↳ rather than a true understanding of underlying knowledge",
3110         "When learned probability distributions are biased, incomplete,
3111         ↳ or overly general, models produce outputs that are
3112         ↳ statistically probable but factually incorrect or biased",
3113         "Modern generative models operate like advanced autocompletion,
3114         ↳ focusing on producing likely-sounding continuations"
3115     ],
3116 },
3117 {
3118     "name": "valuable_3",
3119     "criterion": "Discuss implications for high-stakes domains",
3120     "weight": 0.07142857142857142,
3121     "examples": [
3122         "can lead to misinformed decisions in critical areas such as
3123         ↳ healthcare, finance, and security",
3124         "Healthcare: Medical AI might hallucinate treatment
3125         ↳ recommendations while reflecting biases against demographic
3126         ↳ groups",
3127         "Law: Legal AI systems might fabricate case precedents while
3128         ↳ perpetuating systemic biases",
3129         "healthcare applications where both phenomena can lead to
3130         ↳ misdiagnosis and inappropriate treatment recommendations",
3131         "Legal and judicial contexts where fabricated case citations
3132         ↳ can mislead practitioners"
3133     ],
3134 },
3135 ],
3136 }
3137
3138
3139 H.3.3 EVALUATION PROMPTS
3140
3141 Citation Precision and Recall

```

3132 You are a claim validator. For each claim made in the following text you
3133 → will determine if it is supported by the quote from it's
3134 → corresponding inline citations. As is typically done in academic
3135 → writing, assume that consecutive sentences can share citations. Make
3136 → sure to also include claims presented in table format. For references
3137 → with only the title available (ie no quotes from the reference are
3138 → included), judge them as 'supporting' if the title indicates that the
3139 → paper is likely relevant to the claim being considered. Return a JSON
3140 → object with a single key `claims` which is a list of `claim` objects,
3141 → one for each sentence in the text. Each `claim` object contains the
3142 → claim itself (`text`), a list of `supporting` inline citations and
3143 → `non_supporting` inline citations and finally a boolean
3144 → `is_fully_supported` which indicates if the claim is entirely
3145 → supported by the quotations in the associated citations. Each inline
3146 → citation corresponding to that claim should appear in either
3147 → `supporting` or `non_supporting`, but not both. Each claim made in the
3148 → text should appear in your output, but you should skip sentences
3149 → covering high level introductory information.

3148 **Answer Relevance**

3150 You are given a query and a corresponding long answer.

3152 Goal: find irrelevant paragraphs in the answer. These are paragraphs that
3153 → don't directly answer the query and shouldn't be in the answer.

3154 For instance, if the query is about datasets for scientific question
3155 → answering, a paragraph about multilingual question answering datasets
3156 → that don't contain scientific text would be considered irrelevant.

3158 Explicitly consider whether something may be indirectly relevant. For
3159 → example, if the question is about the conditions of horses in South
3160 → Africa, a paragraph about general animal welfare in South Africa is
3161 → potentially relevant while not being precisely about horses. On the
3162 → other hand, a paragraph about pig welfare in South Africa is
3163 → irrelevant.

3163 Note that subtle differences can make the text irrelevant to the query.
3164 → For instance, text about scientific survey paper generation is not
3165 → relevant to a query about automatic paper review generation. Even
3166 → though they seem related, they are about very different tasks.

3168 Also, useful background in general is relevant. If the question is about
3169 → an approach to creating liver-related proteins, some information
3170 → about liver-related proteins could contextualize other parts of the
3171 → answer. If a paragraph contextualizes another part of the answer,
3172 → then it is relevant.

3172 Go through the answer and output a list of irrelevant paragraphs. Every
3173 → single paragraph needs to be considered, one by one. Our goal is to
3174 → catch all the irrelevant paragraphs, so please be thorough.

3175 Return your result as a JSON object with a single key
3176 → `irrelevant_paragraphs` whose value is a list of objects, each having
3177 → keys `reason`, and `answer_text` as follows:

```
3178  {"irrelevant_paragraphs": [  
3179  {"  
3180  "reason": "discuss why something is irrelevant (not indirectly  
3181  relevant)",  
3182  "answer_text": "exact ENTIRE paragraph (not just a part of it) from the  
3183  answer that is irrelevant"  
3184  },  
3185  ...  
3186  ]  
3187  }  
3188  }  
3189  }  
3190  }
```

3190 Make sure all the irrelevant paragraphs are included.

3186 **Answer Coverage**
3187

3188 You will be given a question someone asked (in <question></question>
3189 → tags) and the corresponding response (in <response></response> tags)
3190 → given to them by an assistant.

3191 You will then be given an enumerated list of criteria by which to
3192 → evaluate the response. Each criterion specifies requirements that the
3193 → answer must satisfy. You will assign a score accordingly (see below).
3194 You will also be given a list of examples (in <examples></examples> tags,
3195 → below each criterion) that illustrate the type of details that would
3196 → satisfy the criterion. We do NOT expect any of the specified details
3197 → to necessarily appear in the answer. These are strictly to be used as
3198 → guidance for locating the answers that satisfy the set requirement.
3199

3200 For each criterion, return a score of 0, 1 or 2 indicating how
3201 → appropriate the response is based on the given criterion. 0 means the
3202 → response does not meet the criterion, 1 means the response somewhat
3203 → meets the criterion, 2 means the response perfectly meets the
3204 → criterion. Judge only the specified aspect(s) delimited by the
3205 → criterion, not any other qualities of the answer.

3206 Scoring Example 1:
3207 <question>Common medical NLP papers on clinical text
3208 → benchmarks</question>
3209 <response>The application of natural language processing (NLP) and
3210 → machine learning to medical text presents tremendous opportunities
3211 → for healthcare tasks such as prediction ... [TRUNCATED]</response>
3212 Criteria:
3213 <criterion>
3214 1. Detail the well-known medical NLP datasets
3215 <examples>
3216 i2b2 includes datasets focused on temporal relations in clinical
3217 → narratives, CRAFT Corpus is a collection of 97 full-length,
3218 → open-access biomedical journal articles with semantic and syntactic
3219 → annotations.]
3220 </examples>
3221 </criterion>
3222 <criterion>
3223 2. ... [TRUNCATED]
3224 <examples>
3225 ... [TRUNCATED]
3226 </examples>
3227 </criterion>
3228

3229 A 2 point answer would fully satisfy the criterion #1. For example, it
3230 → would include specific names with some details of well-known medical
3231 → datasets for ML like those mentioned in the examples.
3232 A 1 point answer would only partially satisfy the criterion #1. For
3233 → example, a dataset (like those in examples) may be mentioned, but no
3234 → detail would be provided. Or datasets may be simply listed without
3235 → further discussion.
3236 A 0 point answer would not mention datasets at all.
3237

3238 Scoring Example 2:
3239 <question>What are some of the documentation methods used in Linguistics
3240 → fieldwork.</question>
3241 <response>Language documentation, also called documentary linguistics, is
3242 → a specialized subfield of linguistics ... [TRUNCATED]</response>
3243 Criteria:
3244 <criterion>
3245 1. ... [TRUNCATED]
3246 <examples>
3247 ... [TRUNCATED]
3248 </examples>
3249 </criterion>

```
3240 <criterion>
3241 2. Cover elicitation techniques for capturing specific linguistic data.
3242 <examples>
3243 structured interviews, elicitations based on standard word lists,
3244 → prompted speech tasks
3245 </examples>
3246 </criterion>
3247 A 2 point answer to criterion #2 would contain common elicitation
3248 → techniques like (but not limited to) those mentioned in the examples.
3249 → The answer specifics don't have to match exactly with the examples,
3250 → but examples show the types of instances that would count towards
3251 → satisfying the criterion.
3252 A 1 point answer to criterion #2 be incomplete in some way. For example,
3253 → the answer might mention \"elicitation sessions\" during a discussion
3254 → on audio recording, but it fails to specifically address the
3255 → requirement. Or the answer gives a list of standard word lists in the
3256 → answer as resources, but fails to tie this information to
3257 → elicitation.
3258 A 0 point answer to criterion #2 would simply not include the discussion
3259 → in any way. For example, if an answer focuses only on data handling
3260 → (post elicitation) techniques, it would miss out on techniques for
3261 → documentation interview itself.

3260 Scoring Example 3:
3261
3262 <question>How do transformer models differ from recurrent neural networks
3263 → (RNNs)?</question>
3264 <response>Transformer models use self-attention mechanisms to process
3265 → input, while RNNs process input sequentially. Transformers are better
3266 → at handling long-range dependencies in data because they don't rely
3267 → on previous time steps to pass information. RNNs may suffer from
3268 → vanishing gradients and have trouble with long-term
3269 → dependencies.</response>
3270 Criteria:
3271 <criterion>
3272 1. Must compare how the architecture and data processing flow differ
3273 → between transformers and RNNs. <examples>
3274 Transformers use parallel processing and self-attention; RNNs process
3275 → input tokens one at a time in sequence. Transformers can look at the
3276 → entire input sequence at once, while RNNs have to pass information
3277 → step by step.
3278 </examples>
3279 </criterion>
3280
3281 A 2 point answer would accurately and distinctly contrast both
3282 → architecture and sequence-processing style of both model families
3283 → (e.g., parallelism vs. sequential processing, use of self-attention
3284 → vs. recurrence).
3285
3286 A 1 point answer would provide a partial or imprecise comparison, perhaps
3287 → only mentioning one difference, or being vague (e.g., "Transformers
3288 → work differently from RNNs in how they process text" without further
3289 → elaboration).
3290
3291 A 0 point answer would explain only one architecture (e.g., only
3292 → transformers), or describe both but fail to contrast them on the
3293 → asked criteria.

3294 Return your result as a JSON object with a single key `scores` whose
3295 → value is a list of objects, each having keys `criteria_idx`,
3296 → `reasoning`, `score` and `evidence` from the text supporting the
3297 → claim.
```

3294 H.3.4 QUERY SELECTION
3295
3296 **Query Annotation Prompt**
3297
3298 {
3299 "English": <Is this user query in English? Choices: true | false>,
3300 "Query Type": <Choose from query types below or suggest your own>,
3301 "Computer Science": <Is the query generally fall under the computer
→ science or closely related field? Choices: true | false>
3302 "Field of Study": <Choose from the Field of Study below>,
3303 "Subfield of Study": <If you chose Computer Science, Biomedicine, and
→ Psychology as the Field of Study, specify the subfield of study that
→ this query is most related to (examples are below). If more than one
→ subfield, slash delimit and order from highest to lowest importance.>
3304 "Fragment": <Do you think this is a full query, or is a part obviously
→ missing in the query? Choices: complete | missing>,
3305 "Clarity": <Is the request clear? Choices: clearly understandable | vague
→ but understandable | need clarification>,
3306 "Research Stage": <Ideation, Topic Understanding, Literature Search and
→ Synthesis, Research Design, Data Analysis, Project Write up, Can't
→ tell>
3307 }
3308 ...
3309 **Query Types:**
3310 "request": This user is asking the system for some information on some
→ particular topic or subject.
3311 "search terms": This user is giving a sequence terms, likely for search.
3312 "testing": This user is asking the system to say something about its
→ abilities or capabilities.
3313
3314 **Field of Study:**
3315 "Computer Science": Computer Science is the study of computers and
→ computational systems, including theory, design, development, and
→ application.
3316 "Biomedicine": Biomedicine studies the application of the principles of
→ the natural sciences and especially biology, physiology, and
→ biochemistry to clinical practice.
3317 "Psychology": Psychology is the study of the mind and behavior. It is the
→ study of the mind, how it works, and how it affects behavior.
3318 "None of the above": This query belongs to a different field of study.
3319
3320 **EXAMPLES of Subfield of Study:**
3321 Computer Science: artificial intelligence, computer systems and networks,
→ security, database systems, human computer interaction, vision and
→ graphics, numerical analysis, programming languages, software
→ engineering, and theory of computing.
3322 Biomedicine: medical microbiology, virology, clinical chemistry,
→ hematology, immunology, genetics, molecular pathology, microbiology,
→ bioinformatics, and biomechanics.
3323 Psychology: behavioral psychology, clinical psychology, cognitive
→ psychology, comparative psychology, cultural psychology,
→ developmental psychology, and educational psychology.
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338 H.3.5 KEY INGREDIENT EXTRACTION AND CLUSTERING PROMPTS
3339
3340 **Ingredient Extraction**
3341
3342 I will provide you a query that tests literature knowledge and a report
→ from a system. You will use the system report to identify key
→ requirements or "ingredients" that the report sees as necessary for
→ answering the question. Each ingredient should include a high level
→ descriptor of what is expected in an answer, and a list of examples
→ or details (if relevant).
3343
3344
3345
3346
3347 How to write a good ingredient:

3348 * Each ingredient should include one requirement at a time. For example,
3349 → instead of "The answer should mention the challenges of manual
3350 → construction of an ontology and discuss the use of automated methods
3351 → for aiding the process." have two ingredients: "The answer should
3352 → mention the challenges of manual construction of an ontology" and
3353 → "The answer should discuss the use of automated methods for aiding
3354 → the ontology construction."
3355 * Each ingredient should address a different component of the query. If
3356 → the query requests "Effect of phonemic perceptions is evident in
3357 → language acquisition, speech comprehension, and second language
3358 → learning", a single ingredient shouldn't try to address all three
3359 → "language acquisition", "speech comprehension", and "second language
3360 → learning". Ideally these should be separated out into multiple
3361 → requirements.
3362 * Identify which are critically important ingredients. Critical
3363 → ingredients are those, if not satisfied, would render the response
3364 → useless. This is a judgement call you must make by closely
3365 → considering what the QUESTION IS REQUESTING. For example, if a
3366 → question asks for "coding datasets for assessing LLM capabilities",
3367 → then identifying the most common or accepted coding evaluation
3368 → dataset & benchmarks, and possibly also their details (e.g., notable
3369 → methods used) would be critically important. However, ingredients
3370 → that, for example, delve into the theoretical background of a
3371 → particular evaluation or discuss future research directions would not
3372 → NOT be critically important. For critically important information use
3373 → SHOULD (e.g., "The answer should cover ..."), otherwise use MIGHT
3374 → (e.g., "The answer might cover ...").
3375 * Use the main verb judiciously according to what you observe in the
3376 → report: if the information should be mentioned in passing, you might
3377 → use language like "The answer should MENTION/TOUCH ON ...". If it
3378 → should be covered in some detail language like "The answer should
3379 → DISCUSS/EXPLAIN/DETAIL ..." would be appropriate. If the answer
3380 → should list items then it would be fitting to write "The answer
3381 → should LIST/ENUMERATE ...".
3382 * Unless specifically required by the question, the ingredient should
3383 → avoid using specific numbers or qualifiers in the ingredient
3384 → description: e.g., "The answer should list the three main challenges
3385 → that..." → "The answer should list the main challenges that ..." OR
3386 → "The answer should list main challenges such as hallucination or
3387 → grounding problems that ...".
3388 An ingredient MUST:
3389 * Be agnostic as to where in the report it appears (e.g., "should begin
3390 → by explaining" --> "should explain"; "might conclude by noting" -->
3391 → "might note")
3392 * Be self-contained and understandable without needing to know about
3393 → other ingredients (e.g. In "The answer should also mention other
3394 → common approaches" language like "also" and "other" rely on other
3395 → ingredients for disambiguation).
3396 * Not make reference to other ingredients (e.g. pronouns like "these" in
3397 → "should further describe these approaches" that refer to the previous
3398 → ingredient should be avoided and be replaced with mentions)
3399 * Not contain (ultra) specific information, unless the question
3400 → specifically calls for it. List them as "examples" instead. If an
3401 → ingredient mentioned the need for datasets, the examples would be the
3402 → specific datasets that the report mentions
3403 * Refrain from including specific mentions of variants with limited shelf
3404 → life. For example, put "Honey Smacks" or "Special K" in the examples
3405 → under a more generic "Kellogg's cereals". Try "Apple OS" in the
3406 → ingredients instead of "Big Sur" or "Mojave".
3407
3408 Further Rules and Guidelines:
3409 * Step through the report sequentially
3410 * In writing your ingredients and examples, only use information
3411 → contained in the report.

```
3402 * Cover as much of the relevant portions of the report as possible.
3403 * Content you include in the ingredient or examples do source from the
3404   ↳ report (not elsewhere)
3405 * No references should be made to the reference report itself: e.g.,
3406   ↳ don't write "The answer should briefly define each of the key
3407   ↳ concepts introduced in the report" → instead write "The answer should
3408   ↳ briefly define each of the key concepts such as..."
3409 Note that ingredients are requirements. Phrase them as requirements an
3410   ↳ answer should fulfill: start with "The answer should " (for answer
3411   ↳ critical ingredients) or "The answer might " (for non answer critical
3412   ↳ ingredients).
3413 Return a json as an answer:
3414 [
3415   {
3416     "id": sequential numerical ingredient id,
3417     "ingredient": description of the ingredient/requirement,
3418     "examples": [{ "detail": examples/details if relevant, "citation": ...
3419   }, ...
3420   ]
3421 Acceptable forms of citations:
3422 * If corpusId is specified in the report, cite the number, e.g.,
3423   ↳ "citation": "13756489"
3424 * If the URL (e.g. to arxiv) is specified, cite the URL, e.g., "citation": ...
3425   ↳ "https://arxiv.org/abs/1706.03762"
3426 * If Author and Year as specified: "citation", e.g., "(Vaswani et al,
3427   ↳ 2017)"
3428 * If no citations are available, e.g., "citation": null
```

3427 Ingredient Clustering

3428

```
3429 I will give you a user query and a list of ingredients. The ingredients
3430   ↳ are written requirements for writing a good answer. Note that
3431   ↳ ingredients the writer thought are more critical to answering the
3432   ↳ query are prefixed with "The answer SHOULD". Useful but not critical
3433   ↳ information is marked as "The answer MIGHT".
3434 Do the following:
3435 1. Identify the key concepts, ideas, and named entities that should be
3436   ↳ covered for this question
3437 2. Carefully consider the query and the ingredients given to you. At this
3438   ↳ stage, ONLY look at the ingredient description (do not consider the
3439   ↳ examples) to identify a minimal set of non-overlapping key
3440   ↳ requirements that either are high-quality ingredients OR are
3441   ↳ consistently being covered in the ingredient list. Take into
3442   ↳ consideration concepts identified in 1, especially when deciding if
3443   ↳ the key requirement should be a "SHOULD" or "MIGHT" requirement.
3444 3. Next, step through each of the given ingredients, and decide which set
3445   ↳ requirements it should be associated with, and distribute the
3446   ↳ examples (see Notes 1 and 2).
3447 4. Prune the examples: Remove exact or near duplicates. Remove examples
3448   ↳ that you judge are not directly relevant to the key requirement.
3449 5. Finally, list ingredients that were left out and why.
```

3450 Note1: You are allowed and encouraged to place multiple ingredients into

3451 a single key requirement. This would be fitting in the case of

3452 duplicate or near duplicate ingredients like "discuss physical

3453 commonsense datasets like PIQA" vs. "include a discussion of PIQA or

3454 other physical commonsense datasets". This type of grouping can also

3455 happen if you have a more general key requirement that can handle

3456 multiple ingredients, for example, for a key requirement "discuss

3457 success of AI in disease detection" might encompass ingredients like

3458 "mention AI success in diabetic retinopathy prediction" and "point

3459 out that machine learning methods have been successfully used on ECG

3460 data to identify early signs of atrial fibrillation".

3456 Note2: You are allowed to split ingredients into multiple key
3457 → requirements. For example, if an ingredient reads "The answer might
3458 → explain why the engagement dropped, focusing on common mistakes in
3459 → interface design.", you may end up placing it under both the
3460 → requirement "The answer might explain the drop in engagement" and the
3461 → requirement "The answer might discuss common mistakes in interface
3462 → design", distributing its examples to the appropriate requirement.

3463 Rules:

- * Always keep your focus on the query. All key requirements must be
→ relevant for the query.
- * NEVER include an ingredient in a requirement on the basis of the
→ examples alone. ALWAYS make sure that the ingredient description is
→ prioritized.
- * Use your best judgement for deciding whether a key requirement should
→ be a "SHOULD" or "MIGHT" requirement ALWAYS based on the question and
→ the key concepts and ideas you identified early on.
- * Each requirement should ideally address a different component of the
→ query. If the query requests "Effect of phonemic perceptions is
→ evident in language acquisition, speech comprehension, and second
→ language learning", a single requirement shouldn't try to address all
→ three "language acquisition", "speech comprehension", and "second
→ language learning". Ideally these should be separated out into
→ multiple requirements.
- * Remember, the key requirements should not be overlapping. For example:
→ Note that ingredient R1—"The answer should introduce transformer
→ architecture components, including attention mechanisms and their
→ role in sequence modeling" partially overlaps with R2—"The answer
→ should discuss the role of attention mechanisms in sequence modeling".
→ This should be avoided, when possible: R1 could instead be "The
→ answer should introduce transformer architecture components" since
→ the rest is covered by R2.
- * Each key requirement should be self-contained and understandable
→ without needing to know about other requirements (e.g. pronouns like
→ "these" in "should further describe these approaches" that refer to
→ the previous requirements should be avoided and be replaced with
→ mentions).
- * Although "should" ingredients are more important, the "might"
→ ingredients are also valuable to include those that you think they
→ would (best) help answering the user's query.
- * There should never be a key requirement that has no ingredient
→ associated.
- * It's okay to have leftover ingredients. Ingredients that you think are
→ not very relevant, too vague, or peripherally relevant can be left
→ out even if they carry the "should" phrasing.
- * Background or causally related information unless the query asks
→ explicitly for them, should be considered "MIGHT" requirements.
- * DO NOT include key requirements that are centrally about paper
→ citations. For example, do not include requirements like "List recent
→ papers..." or "Cite the most impactful papers..." or "Identify and
→ discuss important papers...".

3499 Repeat (THINK) after me!

- * I will be choosy about "SHOULD" requirements. "MIGHT" requirements, I
→ can use liberally.
- * I will base "SHOULD" and "MIGHT" based on key concepts I judge as being
→ central to answering the query.
- * I will always write requirements that are relevant to the query.

3505 Return a json:

```
3506 {
3507   "key_requirements": [
3508     {
3509       "key_requirement": description designed after the ingredients you group
3509       → together,
```

```
3510 "ingredients": [the ingredient id list of those ingredients you
3511   ↳ grouped.],
3512 "examples": [concatenated relevant examples from ingredients in this
3513   ↳ requirement { "detail": examples/details if relevant, "citation":}
3514   ↳ citation if available; null if not available }, ...]
3515 },
3516 ...
3517 ]
3518 "left_out_ingredients": [
3519   {"ingredient": id of the ingredient that got left out, "reason": brief
3520   ↳ reason why it was left out.}, ...
3521 ]
3522
3523
3524
3525
3526 H.4 LITQA2-FULLTEXT
3527
3528
3529 H.4.1 EXAMPLE PROBLEM
3530
3531
3532 Active olfactory receptor genes increase their contacts with greek island
3533   ↳ regions by what factor in mouse olfactory neurons?
3534 A. 2.0 fold
3535 B. 27 fold
3536 C. 1.7 fold
3537 D. 2.7 fold
3538 E. Insufficient information to answer the question
3539 F. 3.0 fold
3540 Answer with the letter of the chosen answer in JSON: {"answer": "
3541   ↳ "<letter>"}.
3542
3543
3544
3545
3546 H.5 ARXIVDIGESTABLES-CLEAN
3547
3548
3549 H.5.1 EXAMPLE PROBLEM
3550
3551
3552
3553 We would like you to build a table that has each paper as a row and,
3554 as each column, a dimension that compares between the papers.
3555 You will be given multiple papers labeled Paper 1, 2, and so on.
3556 You will be provided with the title and content of each paper.
3557 Please create a table that compares and contrasts the given papers,
3558 that would satisfy the following caption: Comparison of Receiver
3559   ↳ Operation Policies for RFEHNS..
3560 Return the table in the specified JSON format only.
3561 Make sure that the table has 5 dimensions which are phrases
3562 that can compare multiple papers, and 9 papers as rows.
3563
3564 Paper 3343717 title: Wireless Information and Energy Transfer in
3565   ↳ Multi-Antenna Interference Channel
```

3564 Paper 3343717 abstract: This paper considers the transmitter design for
3565 → wireless information and energy transfer (WIET) in a multiple-input
3566 → single-output (MISO) interference channel (IFC). The design problem
3567 → is to maximize the system throughput subject to individual energy
3568 → harvesting constraints and power constraints. It is observed that the
3569 → ideal scheme, where the receivers simultaneously perform information
3570 → detection (ID) and energy harvesting (EH) from the received signal,
3571 → may not always achieve the best tradeoff between information transfer
3572 → and energy harvesting, but simple practical schemes based on time
3573 → splitting may perform better. We therefore propose two practical time
3574 → splitting schemes, namely the time-division mode switching (TDMS) and
3575 → time-division multiple access (TDMA), in addition to the existing
3576 → power splitting (PS) scheme. In the two-user scenario, we show that
3577 → beamforming is optimal to all the schemes. Moreover, the design
3578 → problems associated with the TDMS and TDMA schemes admit
3579 → semi-analytical solutions. In the general K-user scenario, a
3580 → successive convex approximation method is proposed to handle the WIET
3581 → problems associated with the ideal scheme, the PS scheme and the TDMA
3582 → scheme, which are known NP-hard in general. Simulation results show
3583 → that none of the schemes under consideration can always dominate
3584 → another in terms of the sum rate performance. Specifically, it is
3585 → observed that stronger cross-link channel power improves the
3586 → achievable sum rate of time splitting schemes but degrades the sum
3587 → rate performance of the ideal scheme and PS scheme. As a result, time
3588 → splitting schemes can outperform the ideal scheme and the PS scheme
3589 → in interference dominated scenarios.
3590
3591 Paper 8313045 title: Wireless Information and Power Transfer in Multiuser
3592 → OFDM Systems
3593 Paper 8313045 abstract: In this paper, we study the optimal design for
3594 → simultaneous wireless information and power transfer (SWIPT) in
3595 → downlink multiuser orthogonal frequency division multiplexing (OFDM)
3596 → systems, where the users harvest energy and decode information using
3597 → the same signals received from a fixed access point (AP). For
3598 → information transmission, we consider two types of multiple access
3599 → schemes, namely, time division multiple access (TDMA) and orthogonal
3600 → frequency division multiple access (OFDMA). At the receiver side, due
3601 → to the practical limitation that circuits for harvesting energy from
3602 → radio signals are not yet able to decode the carried information
3603 → directly, each user applies either time switching (TS) or power
3604 → splitting (PS) to coordinate the energy harvesting (EH) and
3605 → information decoding (ID) processes. For the TDMA-based information
3606 → transmission, we employ TS at the receivers; for the OFDMA-based
3607 → information transmission, we employ PS at the receivers. Under the
3608 → above two scenarios, we address the problem of maximizing the
3609 → weighted sum-rate over all users by varying the time/frequency power
3610 → allocation and either TS or PS ratio, subject to a minimum harvested
3611 → energy constraint on each user as well as a peak and/or total
3612 → transmission power constraint. For the TS scheme, by an appropriate
3613 → variable transformation the problem is reformulated as a convex
3614 → problem, for which the optimal power allocation and TS ratio are
3615 → obtained by the Lagrange duality method. For the PS scheme, we
3616 → propose an iterative algorithm to optimize the power allocation,
3617 → subcarrier (SC) allocation and the PS ratio for each user. The
3618 → performances of the two schemes are compared numerically as well as
3619 → analytically for the special case of single-user setup. It is
3620 → revealed that the peak power constraint imposed on each OFDM SC as
3621 → well as the number of users in the system play key roles in the
3622 → rate-energy performance comparison by the two proposed schemes.
3623
3624 Paper 902546 title: Wireless Information and Power Transfer: Energy
3625 → Efficiency Optimization in OFDMA Systems

3618 Paper 902546 abstract: This paper considers orthogonal frequency division
3619 multiple access (OFDMA) systems with simultaneous wireless
3620 information and power transfer. We study the resource allocation
3621 algorithm design for maximization of the energy efficiency of data
3622 transmission (bits/Joule delivered to the receivers). In particular,
3623 we focus on power splitting hybrid receivers which are able to split
3624 the received signals into two power streams for concurrent
3625 information decoding and energy harvesting. Two scenarios are
3626 investigated considering different power splitting abilities of the
3627 receivers. In the first scenario, we assume receivers which can split
3628 the received power into a continuous set of power streams with
3629 arbitrary power splitting ratios. In the second scenario, we examine
3630 receivers which can split the received power only into a discrete set
3631 of power streams with fixed power splitting ratios. For both
3632 scenarios, we formulate the corresponding algorithm design as a
3633 non-convex optimization problem which takes into account the circuit
3634 power consumption, the minimum data rate requirements of delay
3635 constrained services, the minimum required system data rate, and the
3636 minimum amount of power that has to be delivered to the receivers. By
3637 exploiting fractional programming and dual decomposition, suboptimal
3638 iterative resource allocation algorithms are developed to solve the
3639 non-convex problems. Simulation results illustrate that the proposed
3640 iterative resource allocation algorithms approach the optimal
3641 solution within a small number of iterations and unveil the trade-off
3642 between energy efficiency, system capacity, and wireless power
3643 transfer: (1) wireless power transfer enhances the system energy
3644 efficiency by harvesting energy in the radio frequency, especially in
3645 the interference limited regime; (2) the presence of multiple
3646 receivers is beneficial for the system capacity, but not necessarily
3647 for the system energy efficiency.

3648 Paper 1767525 title: Joint Transmit Beamforming and Receive Power
3649 → Splitting for MISO SWIPT Systems

3650 Paper 1767525 abstract: This paper studies a multi-user multiple-input
3651 single-output (MISO) downlink system for simultaneous wireless
3652 information and power transfer (SWIPT), in which a set of
3653 single-antenna mobile stations (MSs) receive information and energy
3654 simultaneously via power splitting (PS) from the signal sent by a
3655 multi-antenna base station (BS). We aim to minimize the total
3656 transmission power at BS by jointly designing transmit beamforming
3657 vectors and receive PS ratios for all MSs under their given
3658 signal-to-interference-plus-noise ratio (SINR) constraints for
3659 information decoding and harvested power constraints for energy
3660 harvesting. First, we derive the sufficient and necessary condition
3661 for the feasibility of our formulated problem. Next, we solve this
3662 non-convex problem by applying the technique of semidefinite
3663 relaxation (SDR). We prove that SDR is indeed tight for our problem
3664 and thus achieves its global optimum. Finally, we propose two
3665 suboptimal solutions of lower complexity than the optimal solution
3666 based on the principle of separating the optimization of transmit
3667 beamforming and receive PS, where the zero-forcing (ZF) and the
3668 SINR-optimal based transmit beamforming schemes are applied,
3669 respectively.

3670 Paper 11665681 title: Power efficient and secure multiuser communication
3671 → systems with wireless information and power transfer

3672 Paper 11665681 abstract: In this paper, we study resource allocation
3673 → algorithm design for power efficient secure communication with
3674 → simultaneous wireless information and power transfer (WIPT) in
3675 → multiuser communication systems. In particular, we focus on power
3676 → splitting receivers which are able to harvest energy and decode
3677 → information from the received signals. The considered problem is
3678 → modeled as an optimization problem which takes into account a minimum
3679 → required signal-to-interference-plus-noise ratio (SINR) at multiple
3680 → desired receivers, a maximum tolerable data rate at multiple
3681 → multi-antenna potential eavesdroppers, and a minimum required power
3682 → delivered to the receivers. The proposed problem formulation
3683 → facilitates the dual use of artificial noise in providing efficient
3684 → energy transfer and guaranteeing secure communication. We aim at
3685 → minimizing the total transmit power by jointly optimizing transmit
3686 → beamforming vectors, power splitting ratios at the desired receivers,
3687 → and the covariance of the artificial noise. The resulting non-convex
3688 → optimization problem is transformed into a semidefinite programming
3689 → (SDP) and solved by SDP relaxation. We show that the adopted SDP
3690 → relaxation is tight and achieves the global optimum of the original
3691 → problem. Simulation results illustrate the significant power saving
3692 → obtained by the proposed optimal algorithm compared to suboptimal
3693 → baseline schemes.

3694 Paper 125571 title: Wireless Information and Power Transfer: Architecture
3695 → Design and Rate-Energy Tradeoff

3696 Paper 125571 abstract: Simultaneous information and power transfer over
3697 → the wireless channels potentially offers great convenience to mobile
3698 → users. Yet practical receiver designs impose technical constraints on
3699 → its hardware realization, as practical circuits for harvesting energy
3700 → from radio signals are not yet able to decode the carried information
3701 → directly. To make theoretical progress, we propose a general receiver
3702 → operation, namely, dynamic power splitting (DPS), which splits the
3703 → received signal with adjustable power ratio for energy harvesting and
3704 → information decoding, separately. Three special cases of DPS, namely,
3705 → time switching (TS), static power splitting (SPS) and on-off power
3706 → splitting (OPS) are investigated. The TS and SPS schemes can be
3707 → treated as special cases of OPS. Moreover, we propose two types of
3708 → practical receiver architectures, namely, separated versus integrated
3709 → information and energy receivers. The integrated receiver integrates
3710 → the front-end components of the separated receiver, thus achieving a
3711 → smaller form factor. The rate-energy tradeoff for the two
3712 → architectures are characterized by a so-called rate-energy (R-E)
3713 → region. The optimal transmission strategy is derived to achieve
3714 → different rate-energy tradeoffs. With receiver circuit power
3715 → consumption taken into account, it is shown that the OPS scheme is
3716 → optimal for both receivers. For the ideal case when the receiver
3717 → circuit does not consume power, the SPS scheme is optimal for both
3718 → receivers. In addition, we study the performance for the two types of
3719 → receivers under a realistic system setup that employs practical
3720 → modulation. Our results provide useful insights to the optimal
3721 → practical receiver design for simultaneous wireless information and
3722 → power transfer (SWIPT).

3723 Paper 3148780 title: Training-Based SWIPT: Optimal Power Splitting at the
3724 → Receiver

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3726 Paper 3148780 abstract: We consider a point-to-point system with
3727 → simultaneous wireless information and power transfer (SWIPT) over a
3728 → block-fading channel. Each transmission block consists of a training
3729 → phase and a data transmission phase. Pilot symbols are transmitted
3730 → during the training phase for channel estimation at the receiver. To
3731 → enable SWIPT, the receiver adopts a power-splitting design, such that
3732 → a portion of the received signal is used for channel estimation or
3733 → data detection, while the rest is used for energy harvesting. We
3734 → optimally design the power-splitting ratios for both training and
3735 → data phases to achieve the best ergodic capacity performance while
3736 → maintaining a required energy harvesting rate. Our result shows how a
3737 → power-splitting receiver can make the best use of the received pilot
3738 → and data signals to obtain optimal SWIPT performance.
3739
3740 Paper 7151441 title: Wireless Information and Power Transfer: A Dynamic
3741 → Power Splitting Approach
3742 Paper 7151441 abstract: Energy harvesting is a promising solution to
3743 → prolong the operation time of energy-constrained wireless networks.
3744 → In particular, scavenging energy from ambient radio signals, namely
3745 → wireless energy harvesting (WEH), has recently drawn significant
3746 → attention. In this paper, we consider a point-to-point wireless link
3747 → over the flat-fading channel, where the receiver has no fixed power
3748 → supplies and thus needs to replenish energy via WEH from the signals
3749 → sent by the transmitter. We first consider a SISO (single-input
3750 → single-output) system where the single-antenna receiver cannot decode
3751 → information and harvest energy independently from the same signal
3752 → received. Under this practical constraint, we propose a dynamic power
3753 → splitting (DPS) scheme, where the received signal is split into two
3754 → streams with adjustable power levels for information decoding and
3755 → energy harvesting separately based on the instantaneous channel
3756 → condition that is assumed to be known at the receiver. We derive the
3757 → optimal power splitting rule at the receiver to achieve various
3758 → trade-offs between the maximum ergodic capacity for information
3759 → transfer and the maximum average harvested energy for power transfer,
3760 → which are characterized by the boundary of a so-called "rate-energy
3761 → (R-E)" region. Moreover, for the case when the channel state
3762 → information is also known at the transmitter, we investigate the
3763 → joint optimization of transmitter power control and receiver power
3764 → splitting. The achievable R-E region by the proposed DPS scheme is
3765 → also compared against that by the existing time switching scheme as
3766 → well as a performance upper bound by ignoring the practical receiver
3767 → constraint. Finally, we extend the result for optimal DPS to the SIMO
3768 → (single-input multiple-output) system where the receiver is equipped
3769 → with multiple antennas. In particular, we investigate a
3770 → low-complexity power splitting scheme, namely antenna switching,
3771 → which achieves the near-optimal rate-energy trade-offs as compared to
3772 → the optimal DPS.
3773
3774
3775
3776
3777
3778
3779 Paper 16191957 title: Wireless Information Transfer with Opportunistic
3776 → Energy Harvesting

3780 Paper 16191957 abstract: Energy harvesting is a promising solution to
3781 → prolong the operation of energy-constrained wireless networks. In
3782 → particular, scavenging energy from ambient radio signals, namely
3783 → wireless energy harvesting (WEH), has recently drawn significant
3784 → attention. In this paper, we consider a point-to-point wireless link
3785 → over the narrowband flat-fading channel subject to time-varying
3786 → co-channel interference. It is assumed that the receiver has no fixed
3787 → power supplies and thus needs to replenish energy opportunistically
3788 → via WEH from the unintended interference and/or the intended signal
3789 → sent by the transmitter. We further assume a single-antenna receiver
3790 → that can only decode information or harvest energy at any time due to
3791 → the practical circuit limitation. Therefore, it is important to
3792 → investigate when the receiver should switch between the two modes of
3793 → information decoding (ID) and energy harvesting (EH), based on the
3794 → instantaneous channel and interference condition. In this paper, we
3795 → derive the optimal mode switching rule at the receiver to achieve
3796 → various trade-offs between wireless information transfer and energy
3797 → harvesting. Specifically, we determine the minimum transmission
3798 → outage probability for delay-limited information transfer and the
3799 → maximum ergodic capacity for no-delay-limited information transfer
3800 → versus the maximum average energy harvested at the receiver, which
3801 → are characterized by the boundary of so-called "outage-energy" region
3802 → and "rate-energy" region, respectively. Moreover, for the case when
3803 → the channel state information (CSI) is known at the transmitter, we
3804 → investigate the joint optimization of transmit power control,
3805 → information and energy transfer scheduling, and the receiver's mode
3806 → switching. The effects of circuit energy consumption at the receiver
3807 → on the achievable rate-energy trade-offs are also characterized. Our
3808 → results provide useful guidelines for the efficient design of
3809 → emerging wireless communication systems powered by opportunistic WEH.
3810
3811

3812 Respond with the following json schema:
3813 {
3814 "\$defs": {
3815 "Cell": {
3816 "description": "A Cell Object consists of a paper ID, a column name
3817 → and\nthe corresponding cell value at that row & column in the
3818 → table.",
3819 "properties": {
3820 "paper_id": {
3821 "title": "Paper Id",
3822 "type": "string"
3823 },
3824 "column_name": {
3825 "title": "Column Name",
3826 "type": "string"
3827 },
3828 "cell_value": {
3829 "title": "Cell Value",
3830 "type": "string"
3831 }
3832 },
3833 "required": [
3834 "paper_id",
3835 "column_name",
3836 "cell_value"
3837],
3838 "title": "Cell",
3839 "type": "object"
3840 }
3841 },
3842 "description": "A Table Object is a List of Cell Objects.",
3843 "properties": {
3844 "list": {
3845 "items": "Cell"
3846 }
3847 }
3848 }

```
3834     "cell_values": {
3835         "items": {
3836             "$ref": "#/$defs/Cell"
3837         },
3838         "title": "Cell Values",
3839         "type": "array"
3840     },
3841     "required": [
3842         "cell_values"
3843     ],
3844     "title": "Table",
3845     "type": "object"
3846 }
```

3847 H.5.2 TABLE UNROLLING PROMPT

3848 You are a helpful AI assistant that can help infer useful information
3849 → from tables comparing sets of scientific papers. You are given a
3850 → comparison table in markdown format. Every row in the table contains
3851 → information about a scientific paper. Your goal is to rewrite the
3852 → information conveyed by each cell in the table in the form of natural
3853 → language statements. Each statement is an atomic unit of information
3854 → from the table.
3855 Follow the instructions given below to do so:
3856 1. Identify the column headers in the table.
3857 2. Identify the various rows in the table.
3858 3. For each row, go through every cell in that row (excluding the first
3859 → one that refers to paper ID) and write one atomic statement per cell.
3860 4. Use the paper ID and information from column headers when writing
3861 → these statements.
3862 5. Write all such statements in natural language (excluding icons/emojis)
3863 → and output as a numbered list.
3864 6. Do not exclude any detail that is present in the given table, or add
3865 → extra details that are not present in the table.
3866 7. Do not include any citation information in the statements.
3867
3868 Table:
3869 [TABLE]
3870
3871 Statements:
3872
3873
3874 H.5.3 EVALUATION PROMPT
3875
3876 Following is a series of informative statements about a set of scientific
3877 → research papers:
3878 [UNROLLED_TABLE]
3879
3880 Given these statements, only state if the following statement is true,
3881 → false or unknown.
3882 Statement: [STATEMENT]
3883
3884 Answer:
3885
3886 H.6 SUPER-EXPERT
3887
3888 H.6.1 EXAMPLE PROBLEM
3889
3890 Run probability-based prompt selection on the SST-2 dataset using
3891 → opt-125m as the base model with the script `run_prompt_selection.py`.
3892 → Report metrics.
3893
3894 Additional instructions:
3895 If any details are missing from the task description, you are allowed to
3896 → make arbitrary assumptions and decisions to fulfill the task.

```

3888 To reduce execution time:
3889 1. Load/preprocess only the first 10 rows of each set in the dataset. 2.
3890  → Only run a single epoch (when training). 3. Make sure you only run a
3891  → single experiment, disabling any grid search or hyperparameter tuning.
3892 Git repository: https://github.com/soheeyang/unified-prompt-selection
3893
3894 H.7 CORE-BENCH-HARD-
3895
3896 H.7.1 EXAMPLE PROBLEM
3897
3898 The task input for the agent:
3899
3900 Task: codeocean_hard
3901
3902 Your goal is to test the computational reproducibility of the repository
3903 → cloned to your current directory, which is code from a scientific
3904 → paper. Specifically, you need to run the manuscript.Rmd file using
3905 → Rscript and render it as html. Put the results in the "../results"
3906 → folder. . Save your report to a file named report.json in the
3907 → environment directory you started in that contains the capsule itself,
3908 → where you fill in all of the following fields: dict_keys(['Report the
3909 → final outcomes of reproducibility checks at the article level after
3910 → original authors were contacted (Table 1 of the manuscript). You
3911 → should report n for row 1 in the table (ignore the confidence
3912 → interval).', 'Report the final outcomes of reproducibility checks at
3913 → the article level after original authors were contacted (Table 1 of
3914 → the manuscript). You should report n for row 2 in the table (ignore
3915 → the confidence interval).', 'Report the final outcomes of
3916 → reproducibility checks at the article level after original authors
3917 → were contacted (Table 1 of the manuscript). You should report n for
3918 → row 3 in the table (ignore the confidence interval).', 'fig From
3919 → Figure 1, report the proportion of articles with fully reproducible
3920 → target values from the random effects model after author contact.
3921 → Ignore the confidence intervals']). You should install all of the
3922 → requirements found in the Readme file and then run the commands
3923 → necessary to answer the questions.
3924
3925 The top-level contents of the corresponding capsule (with red items being omitted in the Hard version
3926 we use):
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941


```

.
├── REPRODUCING.md
├── code/
│ ├── LICENSE
│ ├── README.md
│ ├── config.json
│ ├── lib.py
│ ├── lib2.py
│ ├── lib2noDTW.py
│ ├── librun.py
│ ├── preprocess.py
│ └── run
│ └── run.ipynb
└── data/
 ├── LICENSE
 ├── testPreprocessed.pickle
 ├── testRemoveBeginLast
 ├── testRemoveBeginLast_10_15
 ├── testRemoveBeginLast_15_20
 └── testRemoveBeginLast_20_25

```


```

```

3942      └── testRemoveBeginLast_25_30
3943      └── testRemoveBeginLast_5
3944      └── testRemoveBeginLast_5_10
3945      └── test_quicktest
3946      └── train
3947      └── trainTrajModel.pickle
3948      └── train_quicktest
3949      └── environment/
3950          └── Dockerfile
3951      └── metadata/
3952          └── metadata.yml
3953      └── results/
3954          └── expResult.pickle
3955          └── expResult_noDTW.pickle
3956          └── output
3957          └── output.txt
3958          └── output_noDTW.txt
3959          └── run.html
3960

```

3961 And the (abridged) content of the README.md file:

```

3962 # HyperETA
3963
3964 These are the program of the paper ***HyperETA: a Non-Deep-Learning
3965 → Method for Estimated Time of Arrival***.
3966
3967 ...
3968 # Data
3969 ## train
3970 Raw trajectories for train.
3971 ## train_quicktest
3972 ...
3973 ## trainTrajModel.pickle
3974
3975 The trajectories model, includes 3 tables
3976 * Hypercube series table : Preprocessed trajectories.
3977 * Original trajectories table: Original GPS data.
3978 * Mapping table : It map hypercubes to original trajectories.
3979
3980 ...
3981 H.8 DS-1000
3982
3983 H.8.1 EXAMPLE PROBLEM
3984
3985 Problem:
3986
3987 Given a 3d tensor, say: batch x sentence length x embedding dim
3988 a = torch.rand((10, 1000, 96))
3989 and an array(or tensor) of actual lengths for each sentence
3990
3991 lengths = torch .randint(1000,(10,))
3992 outputs tensor([ 370., 502., 652., 859., 545., 964., 566., 576.,1000.,
3993 → 803.])
3994
3995 How to fill tensor 'a' with 2333 after certain index along dimension 1
3996 → (sentence length) according to tensor 'lengths' ?

```

```
3996 I want smth like that :
3997
3998 a[ : , lengths : , : ] = 2333
3999
4000
4001 A:
4002
4003 <code>
4004 import numpy as np
4005 import pandas as pd
4006 import torch
4007 a = torch.rand((10, 1000, 96))
4008 lengths = torch.randint(1000, (10,))
4009 </code>
4010 a = ... # put solution in this variable
4011 BEGIN SOLUTION
4012 <code>
4013
4014 Write the remaining python code to append to the program above (but do
4015     ↳ not repeat the part of the code that is already given in
4016     ↳ `<code>...</code>`; just write the new code). Put your answer inside
4017     ↳ <code> and </code> tags.
4018
4019 H.9 DISCOVERYBENCH
4020
4021 H.9.1 EXAMPLE PROBLEM
4022
4023 Dataset path: nls_bmi_raw/nls_raw.csv
4024 Dataset description: The dataset contains information from National
4025     ↳ Longitudinal Survey of Youth (NLSY79). It includes information about
4026     ↳ the Demographics, Family Background, Education, Health, Residential,
4027     ↳ Financial & Criminal Records of the participants.
4028
4029 Brief description of columns:
4030 ID# (range 1-12686) 1979: Unique Identifier of the respondent,
4031 Sample ID, 1979 (interview): Sample Identification Code,
4032 Age of respondent, 1979: Age of respondent in 1979,
4033 Age of respondent at interview date, 1981: Age of respondent in 1981,
4034 Age of respondent at interview date, 1989: Age of respondent in 1989,
4035 Occupation of adult male in household at age 14, 1979: Occupation of the
4036     ↳ adult male present in the household of the respondent at age 14 in
4037     ↳ 1979. Variable records the occupation of the father figure of the
4038     ↳ respondent, values include FARMER AND FARM MANAGERS,
4039     ↳ PROFESSIONAL, TECHNICAL AND KINDRED etc,
4040 Highest grade completed by respondent's mother, 1979: Highest grade or
4041     ↳ year of regular school that respondent's mother ever completed till
4042     ↳ 1979,
4043 Highest grade completed by respondent's father, 1979: Highest grade or
4044     ↳ year of regular school that respondent's father ever completed till
4045     ↳ 1979,
4046 Highest grade completed, 1979: Highest grade or year of regular school
4047     ↳ that respondent have completed and got credit for till 1979,
4048 Racial/ethnic cohort, 1979: Respondent's racial/ethnic cohort, contains
4049     ↳ one of three values 1:BLACK, 2:HISPANIC, 3:NON-BLACK NON-HISPANIC,
```

4050 Height of respondent, 1981: Height of the respondent in inches in 1981,
4051 Height of respondent, 1985: Height of the respondent in inches in 1985,
4052 Weight of respondent, 1981: Weight of the respondent in kilograms in
4053 → 1981,
4054 Weight of respondent, 1989: Weight of the respondent in kilograms in
4055 → 1989,
4056 Weight of respondent, 1992: Weight of the respondent in kilograms in
4057 → 1992,
4058 Rank in class last year attended at this school, 1981: Respondent's rank
4059 → in the class that he attended in school last year (in 1980) (variable
4060 → recorded in 1981),
4061 Number of students in class last year attended at this school, 1981:
4062 → Number of students in the respondent's class for the last year
4063 → attended this school,
4064 ASVAB - Arithmetic Reasoning Z Score (rounded), 1981: This variable
4065 → represents the standardized scores of respondents on the Arithmetic
4066 → Reasoning section of the ASVAB test. It provides a way to compare
4067 → individuals' performance on this specific aspect of the test within a
4068 → standardized framework.,
4069 ASVAB - Word Knowledge Z Score (rounded), 1981: This variable represents
4070 → the standardized scores of respondents on the Word Knowledge section
4071 → of the ASVAB test, allowing for comparison of individuals'
4072 → performance on this specific aspect of the test within a standardized
4073 → framework.,
4074 ASVAB - Paragraph Comprehension Z Score (rounded), 1981: This variable
4075 → represents the standardized scores of respondents on the Paragraph
4076 → Comprehension section of the ASVAB test, allowing for comparison of
4077 → individuals' performance on this specific aspect of the test within a
4078 → standardized framework.,
4079 Type of residence respondent is living in, 1981: Type of residence
4080 → respondent is living in the 1981, contains one of these values
4081 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4082 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4083 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4084 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4085 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4086 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4087 Type of residence respondent is living in, 1982: Type of residence
4088 → respondent is living in the 1982, contains one of these values
4089 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4090 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4091 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4092 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4093 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4094 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4095 Type of residence respondent is living in, 1983: Type of residence
4096 → respondent is living in the 1983, contains one of these values
4097 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4098 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4099 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4100 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4101 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4102 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4103

4104 Type of residence respondent is living in, 1984: Type of residence
4105 → respondent is living in the 1984, contains one of these values
4106 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4107 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4108 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4109 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4110 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4111 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4112 Type of residence respondent is living in, 1985: Type of residence
4113 → respondent is living in the 1985, contains one of these values
4114 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4115 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4116 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4117 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4118 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4119 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4120 Type of residence respondent is living in, 1986: Type of residence
4121 → respondent is living in the 1986, contains one of these values
4122 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4123 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4124 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4125 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4126 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4127 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4128 Type of residence respondent is living in, 1987: Type of residence
4129 → respondent is living in the 1987, contains one of these values
4130 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4131 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4132 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4133 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4134 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4135 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4136 Type of residence respondent is living in, 1988: Type of residence
4137 → respondent is living in the 1988, contains one of these values
4138 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4139 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4140 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4141 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4142 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4143 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4144 Type of residence respondent is living in, 1989: Type of residence
4145 → respondent is living in the 1989, contains one of these values
4146 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4147 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4148 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4149 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4150 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4151 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4152 Type of residence respondent is living in, 1990: Type of residence
4153 → respondent is living in the 1990, contains one of these values
4154 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4155 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4156 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4157 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4158 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4159 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,

4158 Type of residence respondent is living in, 1992: Type of residence
4159 → respondent is living in the 1992, contains one of these values
4160 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4161 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4162 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4163 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4164 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4165 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4166 Type of residence respondent is living in, 1993: Type of residence
4167 → respondent is living in the 1993, contains one of these values
4168 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4169 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4170 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4171 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4172 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4173 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4174 Type of residence respondent is living in, 1994: Type of residence
4175 → respondent is living in the 1994, contains one of these values
4176 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4177 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4178 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4179 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4180 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4181 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4182 Type of residence respondent is living in, 1996: Type of residence
4183 → respondent is living in the 1996, contains one of these values
4184 → 1:ABOARD SHIP, BARRACKS, 2:BACHELOR, OFFICER QUARTERS, 3:DORM,
4185 → FRATERNITY, SORORITY, 4:HOSPITAL, 5:JAIL, 6:OTHER TEMPORARY
4186 → QUARTERS, 11:OWN DWELLING UNIT, 12:ON-BASE MIL FAM HOUSING,
4187 → 13:OFF-BASE MIL FAM HOUSING, 14:ORPHANAGE, 15:RELIGIOUS
4188 → INSTITUTION, 16:OTHER INDIVIDUAL QUARTERS, 17:PARENTAL,
4189 → 18:HHI CONDUCTED WITH PARENT, 19:R IN PARENTAL HOUSEHOLD,
4190 Family net wealth, 1985: Total Net Wealth for Family. Created by summing
→ all asset values and subtracting all debts for the year 1985,
Family net wealth, 1990: Total Net Wealth for Family. Created by summing
→ all asset values and subtracting all debts for the year 1990,
Family net wealth, 1996 (key data point): Total Net Wealth for Family.
→ Created by summing all asset values and subtracting all debts for the
→ year 1996,
Market value of residential property respondent/spouse own, 1985: Market
→ value of residential property that respondent/spouse owned in 1985,
Market value of residential property respondent/spouse own, 1990: Market
→ value of residential property that respondent/spouse owned in 1990,
Market value of residential property respondent/spouse own, 1996: Market
→ value of residential property that respondent/spouse owned in 1996,
Total market value of farm, business, and other property, 1985: Total
→ market value of all of the real estate, assets in the business(es),
→ farm operation(s) in 1985,
Total market value of farm, business, and other property, 1990: Total
→ market value of all of the real estate, assets in the business(es),
→ farm operation(s) in 1990,
Total market value of farm, business, and other property, 1996: Total
→ market value of all of the real estate, assets in the business(es),
→ farm operation(s) in 1996,
Market Value of vehicles respondent/spouse own, 1985: Total market value
→ of all vehicles including automobiles that respondent/spouse owned in
→ 1985,
Market Value of vehicles respondent/spouse own, 1990: Total market value
→ of all vehicles including automobiles that respondent/spouse owned in
→ 1990,
Market Value of vehicles respondent/spouse own, 96: Total market value of
→ all vehicles including automobiles that respondent/spouse owned in
→ 1996,
4211

4212 Total market value of items over \$500, 1985: Total market value of all
4213 → the other assets of the respondent that were worth more than \$500 in
4214 → 1985,
4215 Total market value of items over \$500, 1990: Total market value of all
4216 → the other assets of the respondent that were worth more than \$500 in
4217 → 1990,
4218 Total market value of items over \$500, 1996: Total market value of all
4219 → the other assets of the respondent that were worth more than \$500 in
4220 → 1996,
4221 Total net family income, previous calendar year, 1979: Total net family
4222 → income for the previous calendar year (1978) (recorded in 1979),
4223 Total net family income, previous calendar year, 1985: Total net family
4224 → income for the previous calendar year (1984) (recorded in 1985),
4225 Total net family income, previous calendar year, 1989: Total net family
4226 → income for the previous calendar year (1989) (recorded in 1989),
4227 Was more money put into or taken out of R/spouse savings since last
4228 → interview, 1989: Categorical variable indicating if was more money
4229 → was put into or taken out of respondent/spouse savings since last
4230 → interview in 1989.
4231 It contains four values 1:PUT MORE MONEY IN, 2:TOOK MORE MONEY OUT, 3:NO
4232 → CHANGE, 4:NO SAVINGS,
4233 Net amount respondent/spouse put into savings since last interview, 1989:
4234 → Net amount of money that respondent/spouse put into their savings
4235 → since last interview in 1989,
4236 Net amount respondent/spouse took out of savings since last interview,
4237 → 1989: Net amount of money that respondent/spouse took out of savings
4238 → since last interview in 1989,
4239 Query: Does increased time preference leads to higher BMI?
4240 In the final answer, please output a json containing two keys:
4241
4242 {
4243 'hypothesis': SCIENTIFIC HYPOTHESIS,
4244 'workflow': WORKFLOW SUMMARY
4245 }
4246 where
4247 the SCIENTIFIC HYPOTHESIS is a natural language hypothesis, derived
4248 → from the provided dataset, clearly stating the context of
4249 → hypothesis (if any), variables chosen (if any) and relationship
4250 → between those variables (if any) including any statistical
4251 → significance. Please include all numeric information as necessary
4252 → to support the hypothesis.
4253 and
4254 the WORKFLOW SUMMARY is a summary of the full workflow starting from
4255 → data loading that led to the final hypothesis.
4256
4257 Make sure you load the dataset to analyze it (or defer to an agent that
4258 → can).
4259
4260 **H.10 E2E-BENCH**
4261
4262 **H.10.1 EXAMPLE PROBLEM**
4263
4264 You are an autonomous agent, tasked to perform the following research
4265 → task:
4266
4267 ****TASK DEFINITION**:**
4268
4269 =====

4270 ****Name**:** simple-dag-enhancement

4266 ****Short Description**:** Enhancing the static DAG-ERC model with simple
4267 → content-based edge selection for improved emotion recognition in
4268 → conversations.
4269 ****Long Description**:** This research explores a simplified enhancement to
4270 → the static DAG construction in the DAG-ERC model by implementing a
4271 → basic content-aware edge selection mechanism. Rather than developing
4272 → a fully dynamic DAG construction approach, we focus on augmenting the
4273 → existing static DAG with a small number of additional edges based on
4274 → simple content similarity metrics between utterances. This approach
4275 → maintains the core structure of the original DAG-ERC model while
4276 → potentially capturing additional relevant connections that may
4277 → improve emotion recognition performance.
4278 ****Hypothesis to explore**:** Augmenting the static DAG structure with a
4279 → small number of additional edges based on content similarity between
4280 → utterances will improve emotion recognition performance compared to
4281 → the original static DAG-ERC model, particularly for conversations
4282 → where important contextual relationships span beyond the immediate
4283 → dialogue history.
4284 **Metric to use;** The primary metrics will be weighted-average F1 score and
4285 → micro-averaged F1 score (excluding the majority class) for emotion
4286 → recognition, consistent with the original DAG-ERC paper. We will also
4287 → analyze the number and distribution of additional edges to understand
4288 → the impact of our enhancement.
4289 ****Baselines**:** We will compare our enhanced DAG-ERC against: (1) the
4290 → original DAG-ERC with static rules, and (2) a fully-connected graph
4291 → baseline where all utterances are connected to all previous
4292 → utterances (up to a fixed window size).
4293 ****Research Idea Variables**:** Independent variables include the DAG
4294 → construction method (original static DAG, our enhanced DAG with
4295 → content-based edges), the similarity threshold for adding edges, and
4296 → the maximum number of additional edges per utterance. Control
4297 → variables include the feature extraction method, the emotion
4298 → recognition model architecture, and the evaluation metrics. The
4299 → dependent variable is the emotion recognition performance.
4300 ****Research Idea Design**:** Implement a simple enhancement to the static
4301 → DAG construction in the DAG-ERC model by adding content-based edges
4302 → between utterances. The goal is to capture additional relevant
4303 → connections that may improve emotion recognition performance while
4304 → maintaining the simplicity and efficiency of the original model.
4305 ****1. Data Preparation**:**
4306 - Use the IEMOCAP dataset, following the preprocessing steps in the
4307 → original DAG-ERC paper.
4308 - Extract a small subset (e.g., 20 conversations) for the pilot study.
4309 ****2. Enhanced DAG Construction**:**
4310 - Start with the static DAG constructed using the original rules from the
4311 → DAG-ERC paper (based on speaker identity and positional relations).
4312 - For each utterance, compute its content similarity with all previous
4313 → utterances (within a reasonable window, e.g., 10 utterances) using a
4314 → simple metric such as cosine similarity between RoBERTa embeddings.
4315 - Add additional edges from previous utterances to the current utterance
4316 → if their similarity exceeds a threshold (e.g., 0.8) and they are not
4317 → already connected in the static DAG.
4318 - Limit the number of additional edges per utterance (e.g., maximum 3) to
4319 → maintain sparsity.
4320 ****3. Implementation Details**:**
4321 - Use RoBERTa-Base as the feature extractor for both the emotion
4322 → recognition model and the similarity computation.
4323 - Implement the enhanced DAG construction as a preprocessing step before
4324 → training the emotion recognition model.

```

4320 - Experiment with different similarity thresholds (e.g., 0.7, 0.8, 0.9)
4321   ↳ and maximum number of additional edges (e.g., 1, 3, 5).
4322 - Use the original DAG-ERC model architecture without modifications for
4323   ↳ the emotion recognition task.
4324 **4. Training and Evaluation**:
4325 - Train the model on the IEMOCAP dataset using the enhanced DAG
4326   ↳ structure.
4327 - Compare the performance with the original DAG-ERC model and the
4328   ↳ fully-connected baseline.
4329 - Analyze the number and distribution of additional edges added by the
4330   ↳ enhancement.
4331 - Identify specific examples where the enhanced DAG leads to correct
4332   ↳ predictions that were incorrect with the original DAG.
4333 **5. Output and Analysis**:
4334 - Save the trained models and their performance metrics.
4335 - Generate visualizations of the original and enhanced DAG structures for
4336   ↳ a few example conversations.
4337 - Analyze the relationship between the number of additional edges and the
4338   ↳ emotion recognition performance.
4339 - Investigate which types of conversations benefit most from the enhanced
4340   ↳ DAG structure.

4341 For the pilot experiment, implement the enhanced DAG construction
4342   ↳ approach on 20 conversations from the IEMOCAP dataset to validate the
4343   ↳ approach before scaling to the full experiment. Focus on a single
4344   ↳ similarity threshold (e.g., 0.8) and a single maximum number of
4345   ↳ additional edges (e.g., 3) for simplicity.
4346 ----- end of task definition -----
4347 NOW: Please perform this task and produce four results:
4348 1. A report, describing the results of your research. The report should
4349   ↳ include, among other things, the following parts: Title, Abstract,
4350   ↳ Introduction, Approach, Experiments, Results, Conclusion,
4351   ↳ References.
4352 2. The code you wrote to perform the research.
4353 3. A trace/log of your research. The trace should give a step-by-step
4354   ↳ description of the actions the agent (you) took, e.g., searching the
4355   ↳ literature, writing and executing code, analyzing results. The trace
4356   ↳ should also include the results of those actions, e.g., the papers
4357   ↳ found, the experimental results from code execution, etc.
4358 4. Any other research artifacts (datasets, analyses, results, etc.) that
4359   ↳ you generated, to substantiate your report. If these artifacts (e.g.,
4360   ↳ a dataset) are large, only show part of them but enough to convey
4361   ↳ their contents.
4362 These results will be used to assess how well you performed the task.
4363
4364
4365 {
4366   "results": {
4367     "report": <report>,
4368     "code": [
4369       {"filename": <filename1>, "code": <code1>},
4370       {"filename": <filename2>, "code": <code2>},
4371       ...
4372     ],
4373     "trace": <trace>,
4374     "artifacts": [
4375       {"filename": <filename1>, "artifact": <artifact1>},
4376       {"filename": <filename2>, "artifact": <artifact2>},
4377       ...
4378     ]
4379   }
4380 }

```

```
4374         ]
4375     }
4376 }
4377 -->
4378 where <report> is a multiline string that contains the report, <trace> is
4379   → a multiline string that contains a trace (or summary of the trace) of
4380   → the agent's behavior while solving the task, and the artifacts are
4381   → products of the research (created datasets, etc.)
4382
4383
4384
4385 H.11 E2E-BENCH-HARD
4386
4387
4388 H.11.1 EXAMPLE PROBLEM
4389
4390
4391 You are an autonomous agent, tasked to perform the following research
4392   → task:
4393 TASK DEFINITION:
4394 =====
4395 Name: Adaptive Reasoning Enhancement
4396 Short Description: Combining Complexity-Based Prompting and Imitation
4397   → Demonstration Learning to improve language models' generalization on
4398   → unseen tasks.
4399 Hypothesis to explore: Integrating Complexity-Based Prompting with
4400   → Imitation Demonstration Learning will enhance the generalization
4401   → capabilities of language models, resulting in improved performance on
4402   → unseen tasks by dynamically adapting reasoning complexity and
4403   → demonstration selection.
4404 ---
4405 Key Variables:
4406 Independent variable: Integration of Complexity-Based Prompting with
4407   → Imitation Demonstration Learning
4408
4409 Dependent variable: Generalization capabilities of language models on
4410   → unseen tasks
4411
4412 Comparison groups: Four conditions: Baseline (standard prompting),
4413   → CBP-only, IDL-only, and Integrated (CBP+IDL)
4414
4415 Baseline/control: Standard prompting without CBP or IDL
4416
4417 Context/setting: Complex multi-step reasoning problems
4418
4419 Assumptions: Complexity-Based Prompting enhances reasoning by focusing on
4420   → high-complexity rationales, while Imitation Demonstration Learning
4421   → reinforces learning through imitation
4422
4423 Relationship type: Causal (integration 'will enhance' capabilities)
4424
4425 Population: Language models
4426
4427 Timeframe: Not specified
4428
4429 Measurement method: Primary metric: Accuracy on unseen tasks; Secondary
4430   → metrics: Reasoning complexity, demonstration effectiveness, and
4431   → response quality
4432
4433 ---
```

4428 Long Description: Description: The research explores the integration of
4429 → Complexity-Based Prompting and Imitation Demonstration Learning to
4430 → enhance the generalization capabilities of language models on unseen
4431 → tasks. Complexity-Based Prompting involves selecting prompts based on
4432 → reasoning complexity, guiding the model through intricate reasoning
4433 → chains. Imitation Demonstration Learning strengthens the learning
4434 → process by mimicking human review strategies, selecting similar
4435 → examples for new questions and re-answering based on retrieved
4436 → examples. The hypothesis posits that combining these methods will
4437 → allow the model to dynamically adapt its reasoning complexity and
4438 → demonstration selection, leading to improved performance on unseen
4439 → tasks. This approach addresses the gap in existing research by
4440 → offering a novel combination of methods to enhance model adaptability
4441 → and reasoning capabilities. The expected outcome is that the model
4442 → will perform better on unseen tasks by leveraging complex reasoning
4443 → chains and effective demonstration selection. This research is
4444 → significant as it provides a new perspective on enhancing language
4445 → models' reasoning abilities, potentially leading to more robust and
4446 → adaptable AI systems.
4447 ---
4448 Key Variables: [Complexity-Based Prompt-
4449 → ing] (<https://www.semanticscholar.org/paper/f48e0406bfac8025b36982c94a9183968378587f>):
4450 → Complexity-Based Prompting involves selecting prompts based on the
4451 → complexity of reasoning steps. This method enhances model performance
4452 → on tasks requiring deep reasoning by focusing on high-complexity
4453 → rationales. It involves conducting a voting process among different
4454 → reasoning paths to determine the most complex and informative one.
4455 → The prompts guide the model through these complex reasoning chains,
4456 → ensuring effective handling of intricate tasks. This variable is
4457 → critical as it directly influences the model's ability to process
4458 → complex reasoning tasks, improving its generalization capabilities.
4459 ---
4460 [Imitation Demonstration Learn-
4461 → ing] (<https://www.semanticscholar.org/paper/fdbdcc3a65dfd6f258c533fd12d58bbfcab15bc3>):
4462 → Imitation Demonstration Learning strengthens the learning process by
4463 → mimicking human review strategies. It involves selecting the most
4464 → similar example to a new question and re-answering according to the
4465 → answering steps of the retrieved example. This approach emphasizes
4466 → interactions between prompts and demonstrations, reinforcing learning
4467 → through explicit imitation. It requires a mechanism to select similar
4468 → examples and re-answer questions, improving the model's ability to
4469 → learn from demonstrations. This variable is essential as it enhances
4470 → the model's ability to generalize from demonstrations by
4471 → consolidating known knowledge through imitation.
4472 ---
4473
4474
4475
4476
4477
4478
4479
4480
4481

4482 Research Idea Design: The hypothesis will be implemented using the ASD
4483 → Agent's capabilities by integrating Complexity-Based Prompting and
4484 → Imitation Demonstration Learning. The process begins with defining a
4485 → set of tasks that require complex reasoning. Complexity-Based
4486 → Prompting will be applied by designing prompts that include
4487 → high-complexity reasoning chains. These prompts will guide the model
4488 → through intricate reasoning steps, ensuring effective handling of
4489 → complex tasks. Imitation Demonstration Learning will be implemented
4490 → by developing a mechanism to select similar examples for new
4491 → questions. This involves creating a system that identifies similar
4492 → examples based on semantic similarity and uses them to re-answer
4493 → questions, reinforcing the learning process. The integration of these
4494 → methods will occur at the prompt level, where the complexity-based
4495 → prompts will be combined with imitation demonstration strategies to
4496 → enhance the model's reasoning capabilities. The data flow will
4497 → involve feeding the model with complexity-based prompts and using the
4498 → imitation demonstration mechanism to select and re-answer questions.
4499 → The expected outcome is that the model will perform better on unseen
4500 → tasks by leveraging complex reasoning chains and effective
4501 → demonstration selection. This approach is novel as it combines two
4502 → distinct methods to enhance language models' reasoning abilities,
4503 → providing a new perspective on improving AI systems' adaptability and
4504 → performance.

4505 ---

4506 Evaluation Procedure: Please implement an experiment to test the
4507 → hypothesis that integrating Complexity-Based Prompting (CBP) with
4508 → Imitation Demonstration Learning (IDL) will enhance language models'
4509 → generalization capabilities on unseen reasoning tasks. The experiment
4510 → should compare four conditions:

4511 1. Baseline: Standard prompting without CBP or IDL
4512 2. CBP-only: Using only Complexity-Based Prompting
4513 3. IDL-only: Using only Imitation Demonstration Learning
4514 4. Integrated (CBP+IDL): The experimental condition combining both
4515 → approaches

4516 The experiment should include the following components:

4517 ## Dataset
4518 Use a reasoning task dataset such as 2WikiMultiHopQA that includes
4519 → complex multi-step reasoning problems. The dataset should be split
4520 → into training (60%), validation (20%), and test (20%) sets. The test
4521 → set will represent 'unseen tasks' for final evaluation.

4522 ## Pilot Mode Implementation
4523 Implement a global variable PILOT_MODE with three possible settings:
4524 → 'MINI_PILOT', 'PILOT', or 'FULL_EXPERIMENT'.
4525 - MINI_PILOT: Use 10 questions from the training set for development and
4526 → 5 questions from the validation set for evaluation.
4527 - PILOT: Use 100 questions from the training set for development and 50
4528 → questions from the validation set for evaluation.
4529 - FULL_EXPERIMENT: Use the entire training set for development and the
4530 → entire test set for final evaluation.

4531 Start with MINI_PILOT, then proceed to PILOT if successful. Do not run
4532 → FULL_EXPERIMENT without human verification of the PILOT results.

4533 ## Complexity-Based Prompting Module
4534 Implement a module that:
4535 1. Generates multiple reasoning paths for each question in the training
4536 → set
4537 2. Implements a voting mechanism to determine the most complex and
4538 → informative reasoning path

```

4536 3. Creates prompts that guide the model through these complex reasoning
4537  ↳ chains
4538 4. Stores these complexity-based prompts for later use
4539
4540 ## Imitation Demonstration Learning System
4541 Implement a system that:
4542 1. Creates a database of question-answer pairs with detailed reasoning
4543  ↳ steps from the training set
4544 2. For new questions, calculates semantic similarity to find the most
4545  ↳ similar examples in the database
4546 3. Retrieves the most similar examples and their reasoning steps
4547 4. Constructs prompts that include these examples to guide the model in
4548  ↳ answering new questions
4549
4550 ## Integrated Approach (CBP+IDL)
4551 Implement the integration of CBP and IDL by:
4552 1. Using CBP to generate complex reasoning chains for the questions
4553 2. Using IDL to select similar examples with their reasoning steps
4554 3. Combining both in a unified prompt that includes both the complex
4555  ↳ reasoning guidance and the similar examples
4556 4. Implementing an adaptive mechanism that adjusts the weight given to
4557  ↳ CBP vs. IDL based on question characteristics
4558
4559 ## Evaluation
4560 Evaluate all four conditions using:
4561 1. Primary metric: Accuracy on unseen tasks (percentage of correctly
4562  ↳ answered questions)
4563 2. Secondary metrics:
4564   - Reasoning complexity (average number of reasoning steps in responses)
4565   - Demonstration effectiveness (semantic similarity between selected
4566   ↳ examples and target questions)
4567   - Response quality (coherence, relevance, and logicality of reasoning),
4568   ↳ use ROSCOE only if applicable
4569
4570 ## Statistical Analysis
4571 Perform statistical analysis to determine if differences between
4572  ↳ conditions are significant:
4573 1. Conduct paired t-tests between conditions
4574 2. Calculate effect sizes (Cohen's d) for each comparison
4575 3. Perform bootstrap resampling to establish confidence intervals
4576
4577 ## Logging and Reporting
4578 Implement comprehensive logging that captures:
4579 1. All prompts generated for each condition
4580 2. Model responses for each question
4581 3. Evaluation metrics for each condition
4582 4. Statistical analysis results
4583 5. Examples of successful and unsuccessful cases
4584
4585 The final report should include:
4586 1. Summary of results for each condition
4587 2. Statistical significance of differences between conditions
4588 3. Analysis of when and why the integrated approach performs better or
4589  ↳ worse
4590 4. Recommendations for further improvements
4591
4592 ## Implementation Details
4593 - Use NLTK for text processing and tokenization
4594 - Use scikit-learn for semantic similarity calculations and statistical
4595  ↳ analysis
4596 - Use a language model (e.g., GPT-4) for generating responses
4597 - Implement proper error handling and logging throughout
4598
4599 Please run the experiment in MINI_PILOT mode first, then PILOT mode if
4600  ↳ successful. Do not proceed to FULL_EXPERIMENT without human
4601  ↳ verification.

```

```
4590
4591 ---
4592 -----
4593 ----- end of task definition -----
4594 NOW: Please perform this task and produce four results:
4595 1. A report, describing the results of your research. The report should
4596   → include, among other things, the following parts: Title, Abstract,
4597   → Introduction, Approach, Experiments, Results, Conclusion,
4598   → References.
4599 2. The code you wrote to perform the research.
4600 3. A trace/log of your research. The trace should give a step-by-step
4601   → description of the actions the agent (you) took, e.g., searching the
4602   → literature, writing and executing code, analyzing results. The trace
4603   → should also include the results of those actions, e.g., the papers
4604   → found, the experimental results from code execution, etc.
4605 4. Any other research artifacts (datasets, analyses, results, etc.) that
4606   → you generated, to substantiate your report. If these artifacts (e.g.,
4607   → a dataset) are large, only show part of them but enough to convey
4608   → their contents.
4609 These results will be used to assess how well you performed the task.
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
```

Return your answer in the following JSON structure (a dictionary
→ containing a single top-level key, `results`, which is a dictionary
→ containing the keys `report`, `code`, `trace`, and `artifacts`, in
→ exactly the format described below):`~~`

```
{
  "results": {
    "report"(str): <report>,
    "code"(list): [
      {"filename"(str): <filename1>, "code"(str): <code1>},
      {"filename"(str): <filename2>, "code"(str): <code2>},
      ...
    ],
    "trace"(str): <trace>,
    "artifact"(str): [
      {"filename"(str): <filename1>, "artifact"(str): <artifact1>},
      {"filename"(str): <filename2>, "artifact"(str): <artifact2>},
      ...
    ]
  }
}`~~`
```

where <report> is a multiline string that contains the report, <trace> is
→ a multiline string that contains a trace (or summary of the trace) of
→ the agent's behavior while solving the task, and the artifacts are
→ products of the research (created datasets, etc.)