
ll
OPEN ACCESS
iScience

Article
Tailoring Echo State Networks for Optimal
Learning
Pau Vilimelis

Aceituno, Gang

Yan, Yang-Yu Liu

yyl@channing.harvard.edu

HIGHLIGHTS
Adapting the frequency

response of a reservoir

improves its performance

The frequency response of

a reservoir can be tuned

by adding or removing

cycles

The memory of a reservoir

network is controlled by

the correlations between

neurons

The correlations between

neurons are controlled by

the spectra of the network

Aceituno et al., iScience 23,
101440
September 25, 2020 ª 2020
The Author(s).

https://doi.org/10.1016/

j.isci.2020.101440

mailto:yyl@channing.harvard.edu
https://doi.org/10.1016/j.isci.2020.101440
https://doi.org/10.1016/j.isci.2020.101440
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101440&domain=pdf

ll
OPEN ACCESS
iScience
Article
Tailoring Echo State Networks
for Optimal Learning

Pau Vilimelis Aceituno,1,2 Gang Yan,3 and Yang-Yu Liu1,4,*
1Channing Division of
Network Medicine, Brigham
and Women’s Hospital,
Harvard Medical School,
Boston, MA 02115, USA

2Max Planck Institute for
Mathematics in the Sciences,
04103 Leipzig, Germany

3School of Physics Science
and Engineering, Tongji
SUMMARY

As one of the most important paradigms of recurrent neural networks, the echo
state network (ESN) has been applied to a wide range of fields, from robotics to
medicine, finance, and language processing. A key feature of the ESN paradigm is
its reservoir—a directed andweighted network of neurons that projects the input
time series into a high-dimensional space where linear regression or classification
can be applied. By analyzing the dynamics of the reservoir we show that the
ensemble of eigenvalues of the network contributes to the ESN memory capac-
ity. Moreover, we find that adding short loops to the reservoir network can tailor
ESN for specific tasks and optimize learning.We validate our findings by applying
ESN to forecast both synthetic and real benchmark time series. Our results pro-
vide a simple way to design task-specific ESN and offer deep insights for other
recurrent neural networks.

INTRODUCTION

As a promising paradigm of recurrent neural networks, echo state network (ESN) has a reservoir of neurons

with randomly assigned and fixed synaptic connections (Jaeger 2001a, 2001b, 2002; Jaeger and Haas,

2004). For the ESN to model and predict specific temporal patterns, only the weights of output neurons

need to be learned from training data. Owing to its simplicity, ESN and its variants have been applied

to many different tasks such as electric load forecasting (Deihimi and Showkati, 2012), robotic control (Plö-

ger et al., 2003), epilepsy forecasting (Buteneers et al., 2008), stock price prediction (Lin et al., 2009),

grammar processing (Tong et al., 2007), and many others (Coulibaly, 2010; Newton and Smith, 2012; Pathak

et al., 2018; Verplancke et al., 2010).

Over the last decade, a plethora of studies have focused on finding good reservoirs. Those studies fall

broadly into two categories. The first is systematical parameter search. For specific tasks, this outperforms

the classical Monte Carlo reservoir selection (Deng and Zhang, 2006; Ferreira and Ludermir, 2011; Jiang

et al., 2008; Liebald, 2004; Rodriguez et al., 2019). Yet, this systematical parameter search is very time

consuming and does not offer a significant performance improvement or better mechanistic understand-

ing. The second is particular reservoir characteristics. Many studies have explored reservoirs with some

particular characteristics that make them desirable, typically with long memory (Farka�s et al., 2016; Rodan

and Ti�no, 2012; Strauss et al., 2012) or ‘‘rich’’ dynamics (Boedecker et al., 2012; Ozturk et al., 2007). However,

the desirability of those reservoir characteristics is typically task-specific, rather than applicable to general

tasks. Here, we propose a new strategy. We first focus on a general mechanistic understanding of the reser-

voir dynamics, which then helps us optimize or tailor reservoirs in a task-specific manner. We find that the

idea of tailoring reservoirs is applicable to general tasks.

Formally, the discrete-time dynamics of the simplest ESN (as shown in Figure 1 and in Supplemental Infor-

mation Section I) with N neurons, one input, and one output is governed by

xðtÞ = f ðW xðt� 1Þ + win uðtÞ + wofb yðt� 1ÞÞ; (Equation 1)
u

University, 200092 Shanghai,
China

4Lead Contact

*Correspondence:
yyl@channing.harvard.edu

https://doi.org/10.1016/j.isci.
2020.101440
yðtÞ = wout ½xðtÞ; uðtÞ� : (Equation 2)

Here the state vector xðtÞ = ½x1ðtÞ; x2ðtÞ;.; xNðtÞ�u˛RNdenotes the state of the N neurons at time t, uðtÞ˛
Ris the input signal at time t, and yðtÞ˛R is the output at time t. The extended state vector ½xðtÞ; uðtÞ�u˛
RN+ 1 is just the concatenation of xðtÞ and uðtÞ. There are various possibilities for the nonlinear function

f, and here we take the hyperbolic tangent, as it is often done in ESN literature (Jaeger, 2002; Jaeger

and Haas, 2004). The matrixW˛RN3N is the weighted adjacency matrix of the reservoir network describing
iScience 23, 101440, September 25, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:yyl@channing.harvard.edu
https://doi.org/10.1016/j.isci.2020.101440
https://doi.org/10.1016/j.isci.2020.101440
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101440&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

input

win

woutwofb

W

input
output

u(t)

u(t)
y(t)

Figure 1. The Basic Schema of an ESN

The input signal u(t) goes to each neuron in the reservoir with input weights win, the neurons send their states to their

neighbors according to the matrix W, and the contribution of each neuron to the output y(t) is collected by wout. The

reservoir network may have self-loops, and can have both excitatory (yellow) and inhibitory (gray) synaptic connections.

ll
OPEN ACCESS

iScience
Article
the fixed wiring diagram of N neurons in the reservoir. There is a rich literature on the conditions that the

matrix W must fulfill (Buehner and Young, 2006; Gandhi et al., 2012; Jaeger, 2007; Yildiz et al., 2012). Here

we adopt a conservative and simple condition that the reservoir must represent a stable dynamic system.

The vector win˛RN captures the fixed weights of the input connections, which were drawn from a uniform

distribution U½� 1; 1�. The vector wofb˛RN denotes the fixed weights of the feedback connections from the

output to the N neurons, which can induce instabilities if chosen carelessly and may be zero in some tasks

(Jaeger, 2002). Finally, the row vector wout˛R13ðN+ 1Þ represents the trainable weights of the readout con-

nections from the N neurons and the input to the output.

A key feature of ESN is that W, win, and wofbare all fixed, and only woutis trainable: w�
out =

argminwout

Pt0 +T
t = t0

ðyðtÞ � byðtÞÞ2, where t0is the starting time, T is the training interval, and byðtÞ is the target

output obtained from the training data (see Supplemental Information Section I for details). In other words,

w�
out is the linear regression weights approximating the desired output byðtÞ from the extended state vector

½xðtÞ;uðtÞ�u, which can be easily solved. Hence, w�
out captures the underlying mechanism of the dynamic

system that produces the training data. Indeed, the right choice of w�
out can be used to forecast, recon-

struct, or filter nonlinear time series.

It is worth noticing that although ESN is easy to train and very flexible, it is often outperformed by more

sophisticated methods requiring larger training dataset and longer training time (Hammami and Bedda,
2 iScience 23, 101440, September 25, 2020

ll
OPEN ACCESS

iScience
Article
2010), or ad hoc architectures (Wan, 1993). The reason why we focus on ESN in this work is because of its

simplicity, which allows us to perform analytical calculations. Moreover, we want to explore how simple

ideas from classical signal processing and network science can be applied to dissect ESN—a prototypical

paradigm of recurrent neural networks.
RESULTS

ESN Performance Captured by Reservoir Spectrum

The success of ESN in tasks such as forecasting time series comes from the ability of its reservoir to retain

memory of previous inputs (Cui et al., 2012). In ESN literature, this is quantified by the memory capacity

(Jaeger, 2001a, 2001b):

M =
XN
t =1

Mt; (Equation 3)

2

Mt = maxwt
out

cov ðrðt � tÞ; ytðtÞÞ
varðrðt � tÞÞvarðytðtÞÞ

Here r(t)is a random variable drawn from a normal distribution Nð0; 1Þ, serving as a random input; ‘‘cov’’

represents the covariance; yt(t) is the output as described in Equation 2; andwt
out is obtained as a minimizer

of the difference between yt(t) and r(t�t).

To quantify the relationship between the reservoir dynamics and the memory capacity, we note that the

extraction of information from the reservoir is made through a linear combination of the neurons’ states.

Hence, more linearly independent neurons would offer more variable states, and thus longer memory

(Jaeger, 2005; Luko�sevi�cius and Jaeger, 2009). To bemore precise, we hypothesize that the memory capac-

ity M strongly depends on the average correlations among neuron states, which can be quantified as fol-

lows: S = CP2
ij Dwith Pij =

covðxiðtÞ;xjðtÞÞ
stdðxiðtÞÞstdðxjðtÞÞ, the Pearson correlation coefficient between the states of neurons i

and j, and std(xi(t)) the standard deviation of the states of neuron i. Indeed, Figure 2A shows that for various

network topologies there is a strong correlation between S and M, which can also be justified analytically

(see Supplemental Information Section VI). Thus, hereafter we only need to understand how the reservoir

structure affects the neuron correlations.

For linear dynamical systems, the correlations between state variables depend on all the eigenvalues of the

adjacency matrix (Boccaletti et al., 2006), with larger mean eigenvaluemeaning lower correlations (see Sup-

plemental Information Section VII for details). Our system (Equation 1) is nonlinear, but its first-order

approximation is the identity function f(z) = z. Hence we can use the eigenvalues {li} of matrixW to approx-

imately quantify how fast the input decays in the reservoir, and hence how poorly the ESN remembers. In

other words, the eigenvalues of matrixW should be related to the memory capacity of the ESN. Indeed, we

find that the average eigenvalue moduli:

CjljD = 1=N
XN
i = 1

jli j; (Equation 4)

strongly correlates with S (Figure 2B) and therefore with M as well.

Note that, as opposed toM and S, CjljD is much easier to compute and is solely determined by the reservoir

network. This offers us a simple measure to quantify the ESN memory capacity and hence its performance.

For example, this explains two recent studies in which it was found that ring networks and orthogonalized

networks have high memory capacities (Farka�s et al., 2016; Rodan and Ti�no, 2012), as both networks have

large eigenvalues with respect to their spectral radii. Similarly, the modularity of the network can have an

effect on its memory capacity (Rodriguez et al., 2019), which is explained by the effect of modularity in the

eigenvalue distribution (Newman and Girvan, 2004). Moreover, CjljD is consistent with the effects of scaling

the adjacency matrix to tune the spectral radius (Jaeger et al., 2007) and it extends to network topologies

with a fixed spectral radius (see Supplemental Information Figures S1 and S2). Our result is also consistent

with studies on Intrinsic Plasticit y, where the memory of the reservoir is increased by growing its entropy

(Boedecker et al., 2009; Schrauwen et al., 2008), which is negatively correlated with its correlations. Finally, it

suggests that M can be maximized by using networks with large eigenvalues, the simplest one being a

circulant network with degree 1 (Aceituno et al., 2019), which achieves M = 20, whereas the others go

only up to M = 17 (see the example in Supplemental Information Section VIII).
iScience 23, 101440, September 25, 2020 3

0.4 0.5 0.6 0.7 0.8 0.9
9

12

15

18

0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

M

SF
PL
ER
RR

S

S

SF
PL
ER
RR

<|λ|>

A B

Figure 2. Relations between Memory Capacity, Neuron Correlations, and Network Spectrum

(A) Memory capacity M versus average correlation of neuron states S.

(B) Average correlation of neuron states S versus average eigenvalue modulus CjljD. ESNs were created using reservoirs of

N = 400 neurons and sequences of 4,000 random inputs chosen from U½ � 1; 1�, and the error bars represent the standard

deviation. ER represents reservoirs with structure generated by the classical Erdös-Rény (ER) random graphs, with edge

weights drawn from a normal distribution and varying spectral radii. PL represents reservoirs with structures generated

from Erdös-Rény random graphs, but the edge weights are drawn from a power-law (PL) distribution with varying

exponent b˛[2,5] and then normalized to have a spectral radius a = 1. Lower b renders lower M, higher S, and lower CjljD.
SF represents reservoirs with scale-free (SF) network structures with degree exponent g˛[2,6], and the edge weights are

drawn from a normal distribution and then normalized to have a spectral radius a = 1. More degree-heterogeneous

networks render lower M, higher S, and lower CjljD. RR represents reservoirs with structure generated by random regular

(RR) graphs, with varying degrees and a spectral radius a = 1. See Supplemental Information Sections III and V for more

details. It is worth noticing that although the theoretical upper bound for the memory capacity of a reservoir is M = N

(Jaeger, 2001a, 2001b) and small input scalings (Farka�s et al., 2016) do achieve similar values, in our case the input scaling

is large and thus the nonlinearity of the reservoir limitsM to be lower than 18. Amore detailed numerical exploration of the

dependency between the various network parameters andM, and between the network parameters and CjljD, is presented
in the Supplemental Information Section V. The network generation algorithms are presented in Supplemental

Information Section III. All networks have a spectral radius a = 1, except the ER random graphs where each point

corresponds to a spectral radius in the range [0.2,1] to show the impact of spectral radius. It is worth noticing that although

the theoretical upper bound for the memory capacity of a reservoir is M=N (Jaeger, 2001a, 2001b) and small input

scalings (Farka�s et al., 2016) do achieve similar values, in our case input scaling is large and thus the nonlinearity of the

reservoir limits M to be less than 18.

See also Figures S1–S3.

ll
OPEN ACCESS

iScience
Article
To further demonstrate the validity of CjljD as a proxy measure for the ESN performance, we consider the

following tasks (Figures 3A–3C): (1) forecasting the chaotic Mackey-Glass time series (Mackey and Glass,

1977), which is a benchmark task to evaluate the performance of ESN (Jaeger and Haas, 2004; Luko�sevicius

and Jaeger, 2007); (2) forecasting the Laser Intensity time series (Hübner et al., 1989) downloaded from the

Santa Fe Institute; and (3) classifying Spoken Arabic Digits (Hammami and Bedda, 2010) downloaded from

the UCIMachine Learning Repository (Lichman, 2013). For each task, we consider ESNs with a wide range of

reservoir topologies and parameters, and plot the ESN performance (in terms of forecasting error or failure

rate) as a function of CjljD (Figures 3D–3F). We find that the optimal parameters for all reservoir networks are

within a consistent range of CjljD (highlighted in pink). In other words, the performance of ESN is indeed

captured by CjljD, rather than by other reservoir characteristics networks.

Adapting ESN in the Frequency Domain

Intuitively, a reservoir can be understood as a set of coupled filters that extract features from the input

signal, and the readout simply selects the right combination of those features. Hence, the reservoir should

be designed to extract the features that are relevant for the problem at hand, and these features can be

expressed in the Fourier domain. This idea can be translated to machine learning terms through a geomet-

ric argument (Figure 4), which was made rigorous in Supplemental Information Section IX. In particular, we

derived an upper bound for the forecasting error
4 iScience 23, 101440, September 25, 2020

200 300 400
-0.6

-0.4

-0.2

0.0

0.2

0.4

500 550 600 650 700

0

50

100

150

200

250

0 10 20 30 40
-3

-2

-1

0

1

2

0.2 0.3 0.4 0.5 0.6 0.7
-5

-4

-3

-2

-1

0.1 0.2 0.3 0.4 0.5 0.6

-1.4

-1.3

-1.2

0.2 0.3 0.4 0.5 0.6

0.30

0.32

0.34

0.36

Spoken Digits Time SeriesLaser Intensity Time Series

time time

Mackey-Glass Time Series

Digit 0
Digit 1

M
FC

C
C
ha
nn
el
1

time

lo
g 1

0(σ
)

SF α=1.0
SF α=0.9
PL α=1.0
PL α=0.9
ER

<|λ|>

lo
g 1

0(σ
)

SF α=0.8
SF α=0.7
SF α=0.6
PL α=0.8
PL α=0.7
PL α=0.6
ER

<|λ|>

SF α=1.0
SF α=0.9
SF α=0.8
PL α=1.0
PL α=0.9
PL α=0.8
ER

<|λ|>

fa
ilu
re
ra
te

A

D E F

B C

Figure 3. Time Series Analyzed in This Work and the ESN Performance Explained byCjljD
(A) The classical Mackey-Glass time series (Mackey and Glass, 1977) with 500 data points.

(B) The Laser Intensity time series (Hübner et al., 1989) with 300 data points.

(C) The average value of the first mel-frequency cepstral coefficient (MFCC) Channel of the first Spoken Arabic Digit

(Hammami and Bedda, 2010); the error bars represent standard deviations over the training dataset.

(D) The ESN forecasting performance for the Mackey-Glass time series.

(E) The ESN forecasting performance for Laser Intensity time series.

(F) The ESN failure classification rate for Spoken Arabic Digits. For each task, we use scale-free (SF) networks, Erd}os-Rényi

(ER) random graphs with homogeneous link weights, and ER random graphs with heterogeneous link weights following a

power-law distribution (PL) as reservoirs (see Supplemental Information Section III for more details on reservoir

generations). The SF and PL reservoirs have various spectral radii a, chosen to be around the optimal value of a for the ER

reservoirs. For each parameter set of each network type we created 200 ESN realizations, and then all the points obtained

were grouped in 10 bins containing the same number of points. For each bin, we plotted the median CjljD against the
median performance: log(s) from Equation S5 for (D) and (E); and the failure rate for (F), with the error bars being the upper

and lower quartiles, respectively. See Supplemental Information Section II for an expanded description of the three time

series and the performance measurement.

ll
OPEN ACCESS

iScience
Article
s%

PN
i = 1jF ½xi�3F½by �jPN
i = 1jCF½xi�;F½by �Dj; (Equation 5)

where F½ ,� stands for the Fourier Transform 3 and C,,,D are the cross and scalar products. In terms of

signal processing, jF ½xi �3F½by �j (or jCF½xi�;F½by �Dj) can be expressed by how much the power spectral den-

sities (PSD) of the neurons differ from (or resemble) y, respectively. This is quite a natural result, as it simply

implies that if the time series of the variables x are similar to the target, then the readout will work better.

Thus, to achieve the optimal performance of ESN for any specific task, it is crucial to alter the PSD of the

reservoir, which can be achieved by adding feedback loops with delay L in our neurons, encoded as cycles

of length L in the reservoir network. We account for the strength of those cycles by using the following

measure:

rL =
EL;s � EL;�s

E
; (Equation 6)
iScience 23, 101440, September 25, 2020 5

Figure 4. Sketch of the Frequency Adaptation Argument

(Left) The target output by is a time series of length T, represented by a vector in the corresponding space. A reservoir

consists of N nonlinear filters of the input time series, represented by N points in that same space. The readout simply

selects the point in the subspace spanned by the N neurons that are closest to the target. (Center) Thanks to Parseval’s

theorem (Parseval, 1806), the distances between vectors do not change after Fourier transformation, hence the

picture is still valid in the Fourier domain. (Right) However, in the Fourier domain it will be possible to alter the filters so

that the N points approach the target by making the reservoir resonate at appropriate frequencies, effectively reducing

the forecasting error.

ll
OPEN ACCESS

iScience
Article
where EL,s is the number of edges in the reservoir network and EL,s (with s˛{+,�}) represents the number of

edges embedded in cycles of length L and sign s = + or �, respectively. The value of E, the number of

edges, depends on the specific ESN implementation (see Supplemental Information Section II). Note

that standard ESNs (Jaeger and Haas, 2004; Pathak et al., 2018; Schrauwen et al., 2007) typically use fully

random reservoirs, rendering EL,s�EL,�s~0 regardless of the values of E, and hence rL~0 for all L.

As shown in Figure 5, a reservoir with different cycle lengths L and different rL values as generated by an

algorithm presented in Supplemental Information Section IV can enhance different families of frequencies.

This holds true even though the dynamics of the neuron are nonlinear (see Supplemental Information

Section X for an analytical explanation). For example, the Mackey-Glass time series and Spoken Arabic

Digit time series, are dominated by low frequencies. Any reservoir with rL > 0 will enhance the low fre-

quencies, meaning that such a reservoir would enhance the frequencies relevant to those two time series.

Similarly, for Laser Intensity, there are three peaks in the center of its PSD, which are enhanced in the cases

of r < 0 for L = 2 and L = 3, but not for L = 1. This implies a strategy to tailor reservoir for any specific task.

To prove the concept of tailoring reservoir for specific tasks, we consider reservoirs with varying fractions of

cycles and plot the ESN performance as a function of rL for L = 1,2,3. As shown in Figure 6, the ESN per-

formance does change with rL for each L. To better understand this phenomenon, it is useful to consider

the optimal rL value (highlighted in pink) and compare the corresponding average PSD of the neuron states

for this reservoir with the PSD of the empirical time series.

For the Mackey-Glass (or the Spoken Arabic Digits) time series, the optimal rL is positive for L = 1,2,3 (see

Figures 6A, 6D, and 6G; or 6C, 6F, and 6I). We also know that for rL>0 (especially for L = 2,3), the reservoir’s

average PSD response is enhanced for the frequencies close to 0, which is exactly the regime where the

spectrum of the Mackey-Glass (or the Spoken Arabic Digits) time series is concentrated (see Figures 5A,

5D, and 5G; or 5C, 5F, and 5I).

As for the Laser Intensity time series, the dominating frequencies of its PSD are around 0.13, 0.27, and 0.38,

thus ESN is improved when the response of the reservoir enhances those frequencies. As shown in Figures

5E and 5H, this happens when rL<0 for L = 2,3. Indeed, as shown in Figures 6E and 6H, negative rL (for L =

2,3) improves the ESN performance. For L = 1, we observed in Figure 5 that the three peaks cannot be all

enhanced simultaneously by setting r1 to be either positive or negative. Instead, setting r1 = 0 would yield

the optimal performance. This is exactly what we observed in Figure 6B.

Results shown in Figures 5 and 6 indicate that the reservoir should be tailored to resonate with the domi-

nating frequencies present in the target signal. To achieve that, we designed a simple heuristic algorithm to

find the optimal values of rL for cycles of different lengths (see Supplemental Information Section XI). This
6 iScience 23, 101440, September 25, 2020

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

cy
cl
e
le
ng
th
=
3

cy
cl
e
le
ng
th
=
2

po
w
er
de
ns
ity

(P
SD

)

Mackey-Glass time series
ρL = -0.5
ρL = 0
ρL = 0.5

cy
cl
e
le
ng
th
=
1

0.1

1

0.0 0.1 0.2 0.3 0.4 0.5
10-5

10-3

10-1

101

Laser Intensity time series
ρL = -0.5
ρL = 0
ρL = 0.5

0.01

0.1

1

0.0 0.2 0.4
10-5

10-3

10-1

101

Spoken Digits (Male)
- - - - Spoken Digits (Female)

ρL = -0.5
ρL = 0
ρL = 0.5

0.01

0.1

1

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

po
w
er
de
ns
ity

(P
SD

)

0.1

1

0.0 0.1 0.2 0.3 0.4 0.5
10-5

10-3

10-1

101

0.01

0.1

1

0.0 0.2 0.4
10-5

10-3

10-1

101

0.1

1

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

po
w
er
de
ns
ity

(P
SD

)

frequency

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5
10-5

10-3

10-1

101

frequency

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5
10-5

10-3

10-1

101

frequency

0.1

0.2

0.3

0.4

A

D

G H I

E F

CB

Figure 5. Frequency Domain Analysis of Target Signals and Reservoir Frequencies

(A–I) Left y axis: the power spectral density (PSD) of three empirical time series (Mackey-Glass in A, D, and G; Laser

Intensity in B, E, and H; and Spoken Digits in C, F, and I). Right y axis: the average PSD of the neuron states for reservoirs

with various rL when using a randomGaussian input fromNð0; 1Þ. In each panel we plot the average PSD of 500 reservoirs

with 400 neurons and connectivity 0.05. The length of cycles added into the reservoir is 1 (A–C), 2 (D–F), and 3 (G–I).

ll
OPEN ACCESS

iScience
Article
heuristic algorithm does offer much better ESN performance (dotted lines in Figure 6) than simply

optimizing cycles of a fixed length L, and is definitely better than standard, state-of-the-art random

reservoirs with random weights, where rL = 0 (Jaeger and Haas, 2004; Pathak et al., 2018; Schrauwen

et al., 2007).

DISCUSSION

In this work, we start by showing how the correlations between neurons define the memory of ESN and

demonstrate that those correlations are determined by the eigenvalues of the reservoir’s adjacency matrix.

This result allows us to easily assess thememory capacity of a particular reservoir network, unifying previous

results (Farka�s et al., 2016; Jaeger, 2001a, 2001b; Rodan and Ti�no, 2012; Strauss et al., 2012). Then we go

beyond the current ESN practice and reveal previously unexplored optimization strategies. In particular,

we show that adding short loops to the reservoir network can create resonant frequencies and enhance

ESN performance by adapting the reservoir to specific tasks. It is important to note that we are not advo-

cating the hand-tuning of reservoir topologies for specific tasks of ESN, but rather raising the point that

notions from classical signal processing can help us understand and improve recurrent neural networks,

either through selection of appropriate initial topologies in a pre-training stage or by designing learning

algorithms that account for the principles outlined here. Given that most current learning strategies

such as back-propagation focus on adapting single weights, we are convinced that many new learning al-

gorithms can be created by focusing on network-level features. Moreover, our approach goes beyond

improving current techniques. By studying which properties of a recurrent neural network make it well

suited for a particular problem, we are also addressing the converse question of how should a neural

network be after it has been adapted to a specific task. Thus, we provide valuable insights into the training
iScience 23, 101440, September 25, 2020 7

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0
-1.6

-1.4

-1.2

-1.0

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.4

-1.3

-1.2

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

Mackey Glass Time Series Forecasting

lo
g 1

0(σ
)

ρL

Laser Intensity Time Series Forecasting

lo
g 1

0(σ
)

ρL

Female
Male

Spoken Arabic Digit Recognition

Fa
ilu
re
R
at
e

ρL

lo
g 1

0(σ
)

ρL

cy
cl
e
le
ng
th
=
3

cy
cl
e
le
ng
th
=
2

lo
g 1

0(σ
)

ρL

cy
cl
e
le
ng
th
=
1

Female
Male

Fa
ilu
re
R
at
e

ρL

lo
g 1

0(σ
)

ρL

lo
g 1

0(σ
)

ρL

Female
Male

Fa
ilu
re
R
at
e

ρL

A

D

G H I

E F

B C

Figure 6. Tailoring ESN through Frequency Adaptation

(A–I) ESN performance as a function of rL, for Mackey-Glass Forecasting (A, D, and G), Laser Intensity Forecasting (B, E,

and H), and Spoken Arabic Digit Recognition (C, F, and I). Every point corresponds to the median performance, measured

by forecasting error in (A, B, D, E, G, and H) and failure rate in (C, F, and I), over 200 realizations with error bars

representing upper and lower quartiles. The length of cycles added into the reservoir is L = 1 in (A–C), 2 in (D–F), and 3 in

(G–I). For each L, the optimal rL values are highlighted in pink. Dotted lines represent the best ESN performance obtained

by combining cycles of different lengths.

ll
OPEN ACCESS

iScience
Article
process of general recurrent neural networks, as our theory highlights structural features that the training

process would enhance or inhibit.
Limitations of the Study

Finally, we would like to highlight some potential caveats of the current work. On the application side,

although we demonstrate that adding short loops to the reservoir network can improve the ESN perfor-

mance for the aforementioned tasks, ESN as a whole can be outperformed by other, more task-specialized

approaches that often require larger training dataset and longer training time. For instance, with a standard

MATLAB package we can obtain performances of log(s)~�6for Mackey-Glass Time Series Forecasting,

although the algorithm takes much longer to train and requires more data. An ad hocmethod for the Laser

Intensity task with linear Finite Impulse Response Filters and a longmemory buffer achieved performance in

the interval log(s) = [�1.7,�3] depending on the time interval (Wan, 1993). The Spoken Arabic Digit Recog-

nition can be solved with a failure rate between 2.5% and 12% by using graphical models (Hammami and

Sellam, 2009), although in the graphical models they used all the 13 Mel Frequency Cepstral Coefficient

(MFCC) channels as opposed to the single channel that we used in this work. The reason why we focus

on ESN in this work is just because of its simplicity, which allows us to perform analytical calculations.

On the theoretical side, there are two caveats. First, the heuristic we used to find the optimal values of

rL presented in Figure 6 and Supplemental Information Section XI does not have theoretical guarantees.

We could create signals where the dominant frequency does not contain any relevant information, for

instance, by adding a strong sinusoid to the time series to be processed. In this sense, we are counting

on the domain knowledge of researchers who are interested in our method to filter out large non-informa-

tive components before feeding the time series to the ESN. Second, the relationship between eigenvalue

moduli and neuron correlations assumes that linearization is a valid approximation. Although it is useful as

an upper bound, the bound might become loose when the nonlinearity effects are strong. This could in

principle be addressed by studying the Lyapunov spectra of the reservoir, which depends partially on

the network structure and partially on the dynamics, accounting thus for the nonlinearities. A rigorous

mathematical analysis is likely to be very challenging and is beyond the scope of the current study.
8 iScience 23, 101440, September 25, 2020

ll
OPEN ACCESS

iScience
Article
Resource Availability

Lead Contact

Further information and requests should be addressed to Yang-Yu Liu (yyl@channing.harvard.edu).

Materials Availability

This study did not generate any new reagents.

Data and Code Availability

The data and code used in this work are available at: https://github.com/pvili/EchoStateNetworks_

NetworkAdaptation/tree/master.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101440.

ACKNOWLEDGMENTS

We thank Professor Herbert Jäger and Benjamin Liebald for valuable discussions. This work was partially

supported by the ‘‘la Caixa’’ Foundation and grants from the John Templeton Foundation (Award No.

51977) and National Institutes of Health (R01AI141529, R01HD093761, UH3OD023268, U19AI095219, and

U01HL089856).

AUTHOR CONTRIBUTIONS

Y.-Y.L. conceived and designed the project. P.V.A. performed all the analytical calculations and empirical

data analysis. P.V.A. and G.Y. performed extensive numerical simulations. All authors analyzed the results.

P.V.A. and Y.-Y.L. wrote the manuscript. G.Y. edited the manuscript.

DECLARATION OF INTERESTS

The authors declare that they have no competing financial interests.

Received: May 14, 2020

Revised: July 17, 2020

Accepted: August 3, 2020

Published: September 25, 2020
REFERENCES

Aceituno, P.V., Rogers, T., Schomerus, H., et al.
(2019). Universal hypotrochoidic law for random
matrices with cyclic correlations. Physical Review
E. 100, 010302, In press. https://doi.org/10.1103/
PhysRevE.100.010302.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M.,
and Hwang, D.-U. (2006). Complex networks:
structure and dynamics. Phys. Rep. 424, 175–308.

Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M.,
and Asada, M. (2012). Information processing in
echo state networks at the edge of chaos. Theor.
Biosci. 131, 205–213.

Boedecker, J., Obst, O., Mayer, N.M., and Asada,
M. (2009). Studies on reservoir initialization and
dynamics shaping in echo state networks. In
European Symposium on Artificial Neural
Networks (Bruges (Belgium): European neural
network society), ISBN 2-930307-09-9. https://
www.elen.ucl.ac.be/esann/proceedings/papers.
php?ann=2009 In press.
Buehner, M., and Young, P. (2006). A tighter
bound for the echo state property. IEEE Trans.
Neural Network 17, 820–824.

Buteneers, P., Schrauwen, B., Verstraeten, D. and
Stroobandt, D. (2008), Real-time epileptic seizure
detection on intra-cranial rat data using
reservoir computing, in International Conference
on Neural Information Processing, Springer, pp.
56–63.

Coulibaly, P. (2010). Reservoir computing
approach to great lakes water level forecasting.
J. Hydrol. 381, 76–88.

Cui, H., Liu, X., and Li, L. (2012). The architecture
of dynamic reservoir in the echo state network,
Chaos. Interdiscip. J. Nonlinear Sci. 22, 033127.

Deihimi, A., and Showkati, H. (2012). Application
of echo state networks in short-term electric load
forecasting. Energy 39, 327–340.
Deng, Z. and Zhang, Y. (2006), Complex systems
modeling using scale-free highly-clustered echo
state network, in International Joint Conference
on Neural Networks (IJCNN), IEEE, pp. 3128–
3135.

Farka�s, I., Bosák, R., and Gergel, P. (2016).
Computational analysis of memory capacity in
echo state networks. Neural Networks 83,
109–120.

Ferreira, A.A. and Ludermir, T.B. (2011),
Comparing evolutionary methods for reservoir
computing pre-training, in International Joint
Conference on Neural Networks (IJCNN), IEEE,
pp. 283–290.

Gandhi, M., Tiño, P. and Jaeger, H. (2012), Theory
of input driven dynamical systems, in European
Symposium on Artificial Neural Networks,
Computational Intelligence and Machine
Learning, pp. 25–27.
iScience 23, 101440, September 25, 2020 9

mailto:yyl@channing.harvard.edu
https://github.com/pvili/EchoStateNetworks_NetworkAdaptation/tree/master
https://github.com/pvili/EchoStateNetworks_NetworkAdaptation/tree/master
https://doi.org/10.1016/j.isci.2020.101440
https://doi.org/10.1103/PhysRevE.100.010302
https://doi.org/10.1103/PhysRevE.100.010302
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref3
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2009
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2009
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2009
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref11

ll
OPEN ACCESS

iScience
Article
Hammami, N. and Bedda, M. (2010), Improved
tree model for arabic speech recognition, in
International Conference on Computer Science
and Information Technology (ICCSIT), Vol. 5,
IEEE, pp. 521–526.

Hammami, N. and Sellam, M. (2009), Tree
distribution classifier for automatic spoken arabic
digit recognition, in 2009 International
Conference for Internet Technology and Secured
Transactions,(ICITST), IEEE, pp. 1–4.

Hübner, U., Abraham, N., and Weiss, C. (1989).
Dimensions and entropies of chaotic intensity
pulsations in a single-mode far-infrared nh 3 laser.
Phys. Rev. A 40, 6354.

Jaeger, H. (2001a). Short Term Memory in Echo
State Networks (GMD-Forschungszentrum
Informationstechnik).

Jaeger, H. (2001b). The ‘‘Echo State’’ Approach to
Analysing and Training Recurrent Neural
Networks -with an Erratum Note148 (German
National Research Center for Information
Technology GMD), p. 34, Technical Report.

Jaeger, H. (2002). Tutorial on Training Recurrent
Neural Networks, Covering BPPT, RTRL, EKF and
the ‘‘Echo State Network’’ Approach (GMD-
Forschungszentrum Informationstechnik).

Jaeger, H. (2005). Reservoir riddles: suggestions
for echo state network research. Proc. Int. Joint
Conf. Neural Networks 3, 1460–1462.

Jaeger, H. (2007). Discovering Multiscale
Dynamical Features with Hierarchical Echo State
Networks (Jacobs University Bremen), Technical
Reports.

Jaeger, H., and Haas, H. (2004). Harnessing
nonlinearity: predicting chaotic systems and
saving energy in wireless communication.
Science 304, 78–80.

Jaeger, H., Luko�sevi�cius, M., Popovici, D., and
Siewert, U. (2007). Optimization and applications
of echo state networks with leaky-integrator
neurons. Neural Networks 20, 335–352.

Jiang, F., Berry, H., and Schoenauer, M. (2008).
Supervised and evolutionary learning of echo
10 iScience 23, 101440, September 25, 2020
state networks. Parallel Problem Solving from
Nature–PPSN X (Springer), pp. 215–224.

Lichman, M. (2013). UCI Machine Learning
Repository. http://archive.ics.uci.edu/ml.

Liebald, B. (2004). Exploration of Effects of
Different Network Topologies on the ESN Signal
Crosscorrelation Matrix Spectrum, PhD Thesis
(University Bremen).

Lin, X., Yang, Z., and Song, Y. (2009). Short-term
stock price prediction based on echo state
networks. Expert Syst. Appl. 36, 7313–7317.

Luko�sevicius, M., and Jaeger, H. (2007). Overview
of Reservoir Recipes (Technical Reports: Jacobs
University Bremen).

Luko�sevi�cius, M., and Jaeger, H. (2009). Reservoir
computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3, 127–149.

Mackey, M.C., and Glass, L. (1977). Oscillation
and chaos in physiological control systems.
Science 197, 287–289.

Newman, M.E., and Girvan, M. (2004). Finding
and evaluating community structure in networks.
Phys. Rev. E 69, 026113.

Newton, M.J., and Smith, L.S. (2012). A neurally
inspired musical instrument classification system
based upon the sound onset. J. Acoust. Soc. Am.
131, 4785–4798.

Ozturk, M.C., Xu, D., and Prı́ncipe, J.C. (2007).
Analysis and design of echo state networks.
Neural Comput. 19, 111–138.

Parseval, M.-A. (1806). Mémoire sur les Séries et
sur lâV�Intégration Complète dâV�une
Équation Aux Différences Partielles Linéaires du
Second Ordre, à Coefficients Constants, 1
(Mémoires Présentés Par Divers. Savants,
Academie Des Sciences), pp. 638–648.

Pathak, J., Hunt, B., Girvan, M., Lu, Z., and Ott, E.
(2018). Model-free prediction of large
spatiotemporally chaotic systems from data: a
reservoir computing approach. Phys. Rev. Lett.
120, 024102.
Plöger, P.G., Arghir, A., Günther, T., and
Hosseiny, R. (2003). Echo state networks for
mobile robot modeling and control. In Robot
Soccer World Cup, D. Polani, B. Browning, A.
Bonarini, and K. Yoshida, eds. (Springer),
pp. 157–168.

Rodan, A., and Ti�no, P. (2012). Simple
deterministically constructed cycle reservoirs with
regular jumps. Neural Comput. 24, 1822–1852.

Rodriguez, N., Izquierdo, E., andAhn, Y.-Y. (2019).
Optimal modularity and memory capacity of
neural reservoirs. Netw. Neurosci. 3, 551–566.

Schrauwen, B., Verstraeten, D. and Van
Campenhout, J. (2007), An overview of reservoir
computing: theory, applications and
implementations, in Proceedings of the
European Symposium on Artificial Neural
Networks, pp. 471–482.

Schrauwen, B., Wardermann, M., Verstraeten, D.,
Steil, J.J., and Stroobandt, D. (2008). Improving
reservoirs using intrinsic plasticity.
Neurocomputing 71, 1159–1171.

Strauss, T., Wustlich, W., and Labahn, R. (2012).
Design strategies for weight matrices of echo
state networks. Neural Comput. 24, 3246–3276.

Tong, M.H., Bickett, A.D., Christiansen, E.M., and
Cottrell, G.W. (2007). Learning grammatical
structure with echo state networks. Neural
Networks 20, 424–432.

Verplancke, T., Looy, S., Steurbaut, K., Benoit, D.,
Turck, F., Moor, G., and Decruyenaere, J. (2010).
A novel time series analysis approach for
prediction of dialysis in critically ill patients using
echo-state networks. BMC Med. Inform. Decis.
Making 10, 1.

Wan, E.A. (1993). Time series prediction by using
a connectionist network with internal delay lines.
Santa Fe Institute Studies in the Sciences of
Complexity-Proceedings, Vol. 15 (Addison-
Wesley Publishing Co), p. 195.

Yildiz, I.B., Jaeger, H., and Kiebel, S.J. (2012). Re-
visiting the echo state property. Neural Networks
35, 1–9.

http://refhub.elsevier.com/S2589-0042(20)30632-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref17
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref17
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref17
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref24
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30632-5/sref45

iScience, Volume 23
Supplemental Information
Tailoring Echo State Networks

for Optimal Learning

Pau Vilimelis Aceituno, Gang Yan, and Yang-Yu Liu

1

CONTENTS

I Transparent Methods 2

I. An introduction of ESN 2
A. Basic schema 2
B. Training the readout 2
C. Selecting reservoir parameters 3
D. Performance Measurement 3

II. Benchmark Tasks 4
A. Forecasting Mackey-Glass time series 4
B. Forecasting Laser Intensity time series 4
C. Spoken Arabic Digit Recognition 4

III. Network Generation 5
A. Scale-free networks 5
B. Random regular networks 5
C. Erdős-Rényi networks 5
D. Spectral radius and the variance of the weight distribution 6

IV. Generating Reservoirs with cycles 6

V. Numerical study of eigenvalue density and memory capacity 8

VI. Memory Capacity and the Correlations Between Neurons 9
1. Optimizing the linear projections 10
2. Correlations as constraints on the variance 12
3. Example 13

VII. Correlations and eigenvalues in dynamical systems 14

VIII. Maximizing the Memory Capacity 17

IX. Reservoir Design in the Fourier Domain 18

X. Adapting the Power Spectral Density in non-linear reservoirs 20

XI. Algorithm to adapt reservoirs 22

II Supplemental Figures 23

III Supplemental References 27

References 27

2

Part I

Transparent Methods
I. AN INTRODUCTION OF ESN

Echo state network (ESN) is a promising paradigm of recurrent neural networks (RNNs) that can be used to model
and predict the temporal behavior of nonlinear dynamic systems Jaeger and Haas (2004). As a special form of
RNNs, ESN has feedback loops in the randomly assigned and fixed synaptic connections and trains only a linear
combination of the neurons’ states. This fundamentally differs from the traditional feed-forward neural networks,
which have multiple layers but no cycles Christopher (2006) and simplifies other RNN architectures that suffer from
the difficulty in training synaptic connections Pascanu et al. (2013).

An ESN can be viewed as a dynamic system from which the information of input signals is extracted Dambre et al.
(2012). Mathematically, the discrete-time dynamics of the simplest ESN with N neurons xi(t), one input u(t) and
one output y(t) is given by

x(t) = f(W x(t− 1) + win u(t) + wofb y(t− 1)), (S1)

y(t) = wout [x(t), u(t)]
>
. (S2)

The nonlinear function f can have different forms, e.g., the logistic sigmoid or the hyperbolic tangent Christopher
(2006). The matrix W ∈ RN×N is the fixed weighted adjacency matrix of the reservoir network. The vector win ∈ RN
captures the fixed weights of the input connections. The vector wofb ∈ RN denotes the fixed weights of the feedback
connections from the output to the N neurons. Finally, the row vector wout ∈ R1×(N+1) represents the trainable
weights of the readout connections from the N neurons and the input to the output.

It has been shown that the information processing capacity of a dynamic system, in theory, depends only on the
number of linearly independent variables or, in our case, neurons Dambre et al. (2012); Duport et al. (2012); Maass
et al. (2002). Yet, the theoretical capacity does not imply that all implementations are practical Whitley and Watson
(2005); Büsing et al. (2010), nor does it mean that any reservoir is equally desirable for a given task. A clear example
is the effect of the reservoir’s spectral radius (i.e., the largest eigenvalue in modulus): an ESN with a larger spectral
radius has longer-lasting memory, indicating that it can better process information from past inputs Jaeger (2002).

A. Basic schema

Note that there is a rich literature on methods to improve the ESN performance such as using regularization in
the computation of w∗out Jaeger (2002), controlling the input weights Strauss et al. (2012) or changing the dynamics
of the neurons Lukoševičius and Jaeger (2009). Those results, while relevant and important for applications, are
tangential to our study. Therefore in this work we will use the simplest version of the ESN as depicted in Fig.1 of the
main text.

B. Training the readout

The training of an ESN aims to find the output weights of each neuron state such that the output y(t) can best
approximate the target variable ŷ(t) Jaeger (2001a). Here the output is a linear combination of the neurons’ states
x(t) and the input u(t), as shown in Eq.S2.

This aim can be achieved by minimizing the squared training errors
∑T
t=1(ŷ(t) − y(t))2. Hence it becomes a

classical linear regression problem: Given T vectors x(t) of dimension N and the target variable ŷ(t), calculate the
vector wout that satisfies

wout = argmin
wout

T∑
t=0

(
ŷ(t)−wout

(
x(t)
u(t)

))2

.

We rewrite Eq.S2 as a matrix equation Y = wout ·X, where Y is the column vector containing all y(t) for t = 1, ..., T

values and X a matrix where each row contains the values of the corresponding vector
(

x(t)
u(t)

)
. Thus, wout can be

3

solved through the Moore-Penrose pseudo-inverse X+ = X∗ (XX∗)
−1 where X∗ is the Hermitian transpose (also

known as conjugate transpose of X). In the case of real matrices, the Hermitian transpose is just the transpose.
Thus we can write X+ = X>

(
XX>

)−1, and

wout = Y ·X+.

The calculation of X+ is implemented with the command pinv in Matlab.
Depending on the task Jaeger (2002), the output y(t) can be fed back to the reservoir through wofb. During the

training phase, we do not have the actual y(t), since wofb has not been trained. If the reservoir’s output is expected
to be close to the target variable, we can instead feed the target variable ŷ(t+1). To have a valid comparison with the
original benchmark problem Jaeger and Haas (2004), we use this process for the task of forecasting Mackey-Glass
time series, and for the rest of tasks the values of wofb are set to be 0.

C. Selecting reservoir parameters

Besides the training of the readout, the reservoir has other parameters that must be optimized. Typically, those
are the scaling of win, wofb and W. In this work, however, we take a very simple version of ESN where win and wofb
are fixed and only the scaling of W is trained. This is often trained through the spectral radius |λmax|, which grows
linearly with the weights of W – just as our metric 〈|λ|〉 does.

In the examples used in this work we trained this in the simplest possible way: by trying a range of scalings –
from a spectral radius of 0.2 to 1 with intervals of 0.05. This is done with classical Erdős-Rényi reservoirs, and in
the last experiments, we evaluated the 〈|λ|〉. By noticing that the Erdős-Rényi reservoirs have a uniform eigenvalue
distribution within a circle in the complex plane centered at zero and with radius |λmax|, then we only need to integrate
the radius over the uniform distribution and divide by the area,

〈|λ|〉 = 1

π|λmax|2

∫ |λmax|

0

r2πrdr =
2

3
λmax. (S3)

D. Performance Measurement

In the literature of ESN it is common to forecast time series Jaeger and Haas (2004). To be consistent with the
previous literature we use the normalized root mean squared error (NRMSE), as a metric of forecasting error

σ =

√∑t0+T
t=t0

(y(t)− ŷ(t))2

T · var(ŷ(t))
. (S4)

This metric is a normalization of the classical root mean squared error. The parameter t0 is used to describe when
we start to count the performance, since it is also common to ignore the inputs during the initialization phase Jaeger
(2002), which is taken here as the full initialization steps given for each task (see details in the subsequent sections).
The parameter T is simply the number of time-steps considered, which we take here as the full count of all points
except the initialization phase in each testing time series.

The NRMSE is obviously not a good metric for classification tasks where the target variable is discrete. In order
to have a comparable metric for ESN performance, we use the failure rate in classification tasks such as the Spoken
Arabic Digit Recognition. Note that having 10 digits implies that the failure rate with random guesses is 0.9, therefore
a failure rate of 0.3 is well below it.

4

II. Benchmark Tasks

A. Forecasting Mackey-Glass time series

Forecasting Mackey-Glass time series is a benchmark task to test the performance of ESN Jaeger and Haas
(2004). The Mackey-Glass time series follows the ordinary differential equation Jaeger and Haas (2004):

ds(t)

dt
= β

s(t− τ)
1 + s(t− τ)n

− γs(t),

where β, γ, τ , n are real positive numbers. We used the parameters β = 0.2, γ = 0.1, τ = 17, n = 10 in our
simulations. The discrete version of the equation uses a time step of length h = 0.1. For each time series we
generated τ

h = 170 uniformly distributed random values between 1.1 and 1.3 and then followed the equations. The
first 1000 points were considered as initialization steps, which did not fully capture the time series dynamics and were
thus discarded. For training and testing we used time series of 10,000 points, but in both cases the first 1000 states
of the reservoir were considered as initialization steps and were thus ignored for training and testing. For an ESN
with 1000 neurons and an optimized memory, the forecasting performance for this setting is close to its maximum
value, thus the addition of short cycles will have a small effect. In order to show the interest of our contribution, we
normalized the signal to have mean zero and variance of one and we added Gaussian white noise with σ = 0.05,
and the forecasting was done using reservoirs of 1000 neurons, average degree 〈k〉 = 20, hence E = 20000 and
spectral radius of α = 0.85, and the output was feed back to the reservoir through the vector wofb where every
entry is independently drawn from a uniform distribution on the interval [−1, 1]. The ESN was trained to forecast one
time-step, and then we used this readout to forecast 84 time-steps in the future by recursively feeding the one-step
prediction of s(t+ 1) into the ESN as the new input.

B. Forecasting Laser Intensity time series

The Laser Intensity time series Hübner et al. (1989); Huebner et al. (1989) was obtained from the Santa Fe Institute
time series Forecasting Competition Data. It consists of 10,093 points, which we normalized to have an average of
zero and an standard deviation of one, and were filtered with a Gaussian filter of length three and standard deviation
of one. The forecasting was done using reservoirs of 100 neurons, average degree 〈k〉 = 10, hence E = 1000 and
spectral radius of α = 0.9, without feedback so wofb = 0. Here we forecasted one time-step. We used 1,000 points
of the time series for initialization, 4,547 for training and 4,546 for testing.

C. Spoken Arabic Digit Recognition

The Spoken Arabic Digits Hammami and Bedda (2010) dataset was downloaded from the Hammami and Bedda
(2010) from the UCI Machine Learning Repository Lichman (2013). This dataset consists of 660 recordings (330 from
men and 330 from women) for each of the ten digits and 110 recordings for testing. Each recording is a time series of
varying length encoded with MCCF Mermelstein (1976) with 13 channels. While using the first three channels gave
a better performance, here we use only the first channel, which is akin to a very lossy compression. We normalized
this time series to have average of zero and a standard deviation of one, and a length of 40. Since in most cases
we had less than 40 points, we computed the missing values by interpolation. The classification procedure was
done using the forecasting framework. We collected the reservoir states from all the training examples of each digit
and computed wout as did in the previous forecasting tasks. In the testing we collected the states and computed
the forecasting performance σ for each of the 20 cases. We classified the time series as the digit that yielded the
lowest forecasting error. Then we calculate the failure rate as the number of misclassified recordings divided by the
total number of recordings in the training set. We used reservoirs of 100 neurons, average degree 〈k〉 = 10, hence
E = 1000 and spectral radius of α = 1, without feedback (wofb = 0).

5

III. Network Generation

In this paper we systematically studied the impact of network topology on the performance of ESN. In this section
we described the methods of generating various model networks with different topological properties.

A. Scale-free networks

In scale-free (SF) networks the probability distribution of node degrees follows a power law, i.e., P (k) ∼ k−γ , and
the exponent γ usually varies between 2 and 3.

In this paper we adopted the so-called static model Goh et al. (2001), to generate scale-free networks with tunable
degree exponent γ and mean degree 〈k〉. Since we use directed networks, we have outgoing and incoming edges.
For simplicity we use γin = γout, meaning that for every node the expected outgoing and incoming degrees are the
same. The static model can be described as follows:

Step-1: We start with N isolated nodes, labeled from 1 to N . Each node is assigned a weight wi ∼ i−a, where
a = 1/(γ − 1).

Step-2: We independently pick up two nodes according to their assigned weights, and add a link between these
two nodes if they have not been connected before. Self-links and double-links are forbidden.

Step-3: Repeat Step-2 until M = 〈k〉N/2 links have been added into the network.

B. Random regular networks

In a random regular (RR) network, all nodes have the same degree and the edges randomly connect node pairs.
Random regular networks can be generated by rewiring, as described by the following algorithm, which follows the
same logic as Wormald’s algorithm Wormald (1984) but is designed for directed networks:

The algorithm takes the number of nodes N and the connectivity c as parameters.
Step-1: Create a list L1 where, for each of the N nodes, there are cN/2 outgoing edges.
Step-2: Copy the previous list and make a random permutation, creating list L2. The nth edge is the edge that

goes from the node L1(n) to the node L2(n).
Step-3: If there are repeated edges, randomly swap the destinations, until there are no more repeated edges.
Step-4: If Step-3 was repeated M times, jump to Step-2.
The limited number of iterations given by step 4 was set to avoid infinite iterations. In this work we set M = 500.
For each node there are k outgoing links and the k links can go to k of the N nodes. Thus we have N !

(N−k)!
combinations of destinations that do not include a repetition against Nk possible combinations, yielding a probability
of pr = 1− N !

Nk(N−k−1)! of repeating an edge. Thus on the first iteration we will have prcN2 repetitions, on the second
one p2rcN2 and therefore the complexity is O(1

1−pr cN
2).

C. Erdős-Rényi networks

In an Erdős-Rényi (ER) random network, each pair of nodes is connected with probability p. We can use different
probability distributions to assign link weights in the ER random networks, including binary, uniform, normal and
power law distributions. Networks used in ESN typically have no preference for positive or negative weights, and we
modified the link weight distributions to keep the mean zero.

• For binary distribution, each link was assigned a weight −a or a, with a > 0.

• For uniform distribution, the link weights were randomly drawn from the interval [−a, a] where a > 0.

• For normal distribution, the link weights were drawn from a normal distribution with zero mean and standard
deviation a.

• For the power law (PL) distribution we use the inverse transform sampling method to convert a uniform distri-
bution in [0, 1] into a power law Deák (1990). The power law distribution provides only positive numbers, thus
we randomly inversed the sign of each link with probability 0.5.

6

D. Spectral radius and the variance of the weight distribution

In the main text and in the previous network generation algorithms we do not mention the variance of the probability
distribution from which we draw the weights. Here we show that the variance of the link weight distribution is actually
irrelevant.

The networks referred in the main text have an adjacency matrix W = (W)ij the weights are drawn from a normal
distribution with zero mean and some variance v. As we consider the case where the dimension of the adjacency
matrix is very high, the variance converges to its expected value. We recall the definition of the variance,

v = Var [Wij] =
1

N

N∑
i=1

N∑
j=1

W 2
ij .

If we multiply the matrix by a scalar a ≥ 0, when the variance becomes

Var [aWij] =
1

N2

N∑
i=1

N∑
j=1

a2W 2
ij = a2v. (S5)

Note that the entries of aW are still drawn from a normal distribution, it is simply that the variance has changed.
Consider now the spectral radius α of W ,

α = max
v

‖Wv‖
‖v‖

where ‖ · ‖ is the Euclidean norm. If we scale the matrix by a,

max
v

‖aWv‖
‖v‖

= max
v

a
‖Wv‖
‖v‖

= aα. (S6)

Putting together Eqs.S5 and S6, we see that both values can be set though α, meaning that there is a one-to-one
correspondence between variance and spectral radius. Therefore, when we fix the spectral radius, we also fix the
variance. Thus, the original variance of the distribution is irrelevant.

IV. GENERATING RESERVOIRS WITH CYCLES

In order to generate networks with desired ρL =
EL,s−EL,−s

E , we designed the following algorithm, which takes as
parameters the number of neurons N ; the connectivity c; |ρL| ∈ [0, 1], which is the portion of edges that are dedicated
to cycles of length L –the other ones being random–; and s ∈ {−1, 1}, which corresponds to the feedback sign.

If L = 1: Create a random sparse matrix Wr with cN(N − 1) non-zero entries. Normalize the spectral radius to 1
and then W← α ((1− |ρ1|)Wr + sr1I), where I is the identity matrix.

Else:

Step-1: Create |ρL|cN2

2L permutations of L numbers randomly picked from 1 to N without replacement. Each
permutation corresponds to L nodes that will be connected form a cycle.

Step-2: For each cycle, draw the edge weights from N(0, 1).

Step-3: For each cycle, if the sign of the product of the edge weights is not the same as s, multiply the last edge
by −1. This gives the adjacency matrix Wc.

Step-4: Create a random sparse matrix Wr with (1−|ρL|)cN2

2 entries and weights drawn from N(0, 1).

Step-5: If the edges do not overlap in Wr and Wc, W = (Wr + Wc). Otherwise, move the edge from Wr into a
new random node pair.

Step-6: Normalize to the desired average eigenvalue moduli 〈|λ|〉 by W ← W
1
N

∑N
i=1 |λi(W)| 〈|λ|〉, where λi(W) are

the eigenvalues of W

7

The special treatment of the case L = 1 is due to the fact that with length of 1 if all edges are self loops the network
is completely disconnected and the number of edges is at most N , meaning that for some values of ρ1 the number
of edges would be lower than the number required by the connectivity parameter.

8

V. NUMERICAL STUDY OF EIGENVALUE DENSITY AND MEMORY CAPACITY

One of the motivations of our study on Memory Capacity is that the spectral radius is not enough to capture how
M changes, particularly for different network structures. In Fig.S1, we show that for some families of networks the
memory is also affected by other parameters.

Specifically, we study the following architectures:

• Erdös-Rény (ER) random graphs with weights drawn from a Gaussian distribution and varying spectral radii.

• Erdös-Rény random graphs with weights drawn from a power law distribution (PL) with β ∈ [2, 5] but normalized
to have a spectral radius α = 1.

• Scale-Free (SF) networks where the degree heterogeneity is given by the degree exponent γ ∈ [2, 6], and the
weights are drawn from a Gaussian distribution, also normalized to have a spectral radius α = 1.

• Random Regular (RR) graphs with varying degrees and a spectral radius α = 1.

The results from Fig.1 can be contrasted with the eigenvalue densities of the aforementioned network families
presented in Fig.2. We observe that the networks where the eigenvalues are concentrated in the center, either
through the spectral radius α, the power law exponent β or the degree heterogeneity γ, have lower memory, while
those with eigenvalues uniformly spread have more memory.

9

VI. MEMORY CAPACITY AND THE CORRELATIONS BETWEEN NEURONS

Here we derive an upper bound which connects the variance of the reservoir across different directions with
the memory capacity. The gist of our argument goes as follows: the memory capacity reflects the precision with
which previous inputs can be recovered; the nonlinearity of the reservoir and other, far-in-the-past inputs induce
noise that complicates recovery, so the variance of the linear part of the reservoir must be placed in such a way as to
maximize how much information can be recovered. First we argue that the inputs should be projected into orthogonal
directions of the reservoir state space, so that they do not add noise to each other; within those orthogonal directions,
the variance should be such that it is as evenly spread across the different dimensions –inputs – as possible, as
concentrating the variance into few inputs makes the rest loose precision. This is quantified by the covariance of the
neurons.

We start by noticing that the linear nature of the projection vector wout implies that we are treating the system as

x(t) =

∞∑
k=0

akr(t− k) + εr(t) (S7)

where the vectors ak ∈ RN are correspond to the linearly extractable effect of r(t − k) onto x(t) and εr(t) is the
nonlinear contribution of all the inputs onto the state of x(t).

Notice that there are two perspectives here: on one side, the readout extracts the best linear approximation of
past inputs with a noise-like term, and on the other it can be interpreted as a Taylor expansion around an undefined
point where the first order corresponds to the first term and the non-linear behavior to the other expansion terms.
This separation between linear and non-linear behavior has been thoroughly studied Dambre et al. (2012); Ganguli
et al. (2008) and the general understanding is that linear reservoirs have longer memory, but nonlinearity is needed
to perform interesting computations. Here we will not try to leverage or bypass this trade-off, but rather we will show
that for a fixed ratio of the non-linearity, the more decorrelated the neurons are the higher the memory.

To maintain this trade-off between linear and non-linear behavior, we will assume that the distribution of the linear
and non-linear strengths are fixed. This can be achieved if we impose the probabilities of the neuron states do not
change, meaning that the mean, variance and other moments of the neuron outputs are unchanged and hence the
strength of the nonlinear effects is unchanged.

A first constraint can also be obtained from the maintained strength of the linear side of Eq.S7

var

(∞∑
τ=1

aτr(t− τ)

)
= c (S8)

where c is a constant.
If we are allowed to shift the linear side of Eq.S7, the natural choice of aτ to maximize the memory capacity would

be to impose aτ > 0 ⇐⇒ τ > N , and also make the vectors aτ orthogonal to each other, so that the input at time
t− τ1 does not interfere with the effect of an input at time t− τ2. This can be introduced into Eq.S8 and we obtain

var

(∞∑
τ=1

aτr(t− τ)

)
=

N∑
τ=1

var(r(t− τ))‖aτ‖2 =

N∑
τ=1

‖aτ‖2 = c (S9)

This leaves us with a straightforward choice for the readout vector, namely

wτ
out = aτ , (S10)

which we can plug into the memory capacity to obtain

M∗τ =
cov2(r(t− τ),aτx(t))

var(aτx(t))

=
cov2(r(t− τ), ‖aτ‖2r(t− τ) + 〈aτ , εr(t)〉)

var(‖aτ‖2r(t) + 〈aτ , εr(t))

(S11)

where M∗τ is the maximum memory that can be achieved by shifting the linear side of Eq.S7 but maintaining the
linear-nonlinear ratio of variance. We must recall the definition of εr(t) in Eq.S7, which implies that any correlation
between its projection on aτ and r(t) would imply that part of r(t − τ) is projected linearly onto the non-linear

10

component. This necessarily means that cov(〈r(t− τ), 〈aτ , εr(t)〉) = 0, hence our previous equation becomes

M∗τ =
‖aτ‖2

‖aτ‖2 + var
(
〈 aτ
‖aτ‖ , εr(t)〉

) , (S12)

and for the sake of simplicity we will name ‖aτ‖2 = aτ , and var
(
〈 aτ
‖aτ‖ , εr(t)〉

)
= ετ , leaving us with

M∗τ =
aτ

aτ + ετ
, (S13)

where aτ is the squared modulus of the linear projection of the input r(t − τ) on the reservoir state and ετ is the
variance in that direction induced by the non-linear terms in that same direction.

Hence the new problem that we must solve is to maximize

N∑
τ=1

M∗τ =

N∑
τ=1

aτ
aτ + ετ

(S14)

subject to the constraint

N∑
τ=1

aτ = c, (S15)

with an order on the coefficients arising from the contractiveness or the reservoir

aτ+1 < aτ (S16)

and under the assumption that we do not change the nonlinear effects on any direction, hence ετ will be fixed.
Finally, we shall also note that we will assume that M∗τ is always a monotonically decreasing variable that goes

from M∗1 ≈ 1 to M∗N ≈ 0, as we observed in the plots on Fig. 1. By noting that

M∗τ =
1

1 + ετ
aτ

, (S17)

this assumption implies that qτ = ετ
aτ

goes from r1 ≈ 0 to rN → ∞, hence ετ starts being much smaller than aτ and
decreases much slower than aτ .

1. Optimizing the linear projections

Now the problem is to find how a change in the distribution of [a1, a2, ..., aN] would affect the value of M∗. Our
approach will be to show that the fastest aτ decreases, the lower M∗.

We will show that there is one case, namely aτ ∝ ετ which has higherM∗ than an other setting where aτ decreases
faster. Since we know that the values of aτ must decrease faster than ετ , our best arrangement of the strength of
the linear projection of r(t) is to try to make aτ decrease as slowly as possible.

With a fixed ratio aτ = χετ , the upper bound on the memory is

M∗ =

N∑
τ=1

aτ
aτ + ετ

=

N∑
τ=1

1

1 + ετ
aτ

= N
1

1 + χ
. (S18)

Now we will split the sequence of M∗τ into two subsequences, one with τ < k where the values of aτ will be increased
by a factor β+ and another one with τ > k + 1 where the values will be decreased by β−. This leads us to the new
memory capacity bound,

M∗ = k
β+

β+ + χ
+ (N − k)

N∑
τ=k+1

β−
β− + χ

(S19)

11

which for simplicity we will normalize to obtain

m∗ =
M∗

N
= φ

β+
β+ + χ

+ (1− φ) β−
β− + χ

. (S20)

where φ = k
N , and m∗ is just a normalized memory capacity bound.

Note that the function m∗ is still subject to the constraints presented in Eq.S15 and Eq.S16. By introducing
γ = 1

c

∑k
τ=1 aτ we obtain

β+γ + β−(1− γ) = 1. (S21)

Now we can introduce another variable q = β+

β−
which determines the difference between β+ and β−. As our main

point is to show that a faster decrease of aτ would decrease m∗, which in this particular case translates to

∂m∗

∂q
< 0, (S22)

which would imply that β+ is larger than β− and hence aτ decreases faster than ετ at τ = k and equally at any other
τ .

We can now compute the derivative

∂m∗

∂q
= φ

χ

(β+ + χ)2
∂β+
∂q

+ (1− φ) χ

(β− + χ)2
∂β−
∂q

(S23)

where the first term is positive and the second is negative – because the memory capacity for τ < k will increase
when β+ grows and vice-versa. Since β+ > 1 > β−, χ

(β++χ)2 <
χ

(β−+χ)2 we only need to prove that

φ
∂β+
∂q

< −(1− φ)∂β−
∂q

. (S24)

To do so we will use the constraint from Eq.S21. By setting β+ = β−q we can solve both equations and obtain

β+ =
1

γ

q

q + 1−γ
γ

⇒ ∂β+
∂q

=

1−γ
γ

(q + 1−γ
γ)2

β− =
1

γ

1

q + 1−γ
γ

⇒ ∂β−
∂q

= − 1

(q + 1−γ
γ)2

.

(S25)

We can plug this into Eq.S24, which simplifies to

φ

γ

1−γ
γ

(q + 1−γ
γ)2

<
1− φ
γ+

1

(q + 1−γ
γ)2

⇐⇒ φ(1− γ) < (1− φ)γ ⇐⇒ φ < γ,

(S26)

which is true by the definitions of γ and φ, and the fact that aτ is decreasing.
Now we have proven that whenever we can take an index k and increase aτ for τ > k and decrease aτ for τ < k,

the memory capacity bound M∗ decreases. We shall now use this result to prove that whenever

ετ+i
ετ

<
aτ+i
aτ

∀i, τ > 0, (S27)

the memory capacity bound M∗ is lower than when ετ ∝ aτ .
We do so by starting with the case ετ ∝ aτ and we will change it step by step to a series of a′τ that fulfills Eq.S27.

This is a simple iterative procedure. We start with k = 1, then select q = β+

β−
such that akβ+ = a′k under the constraint

from Eq.S21. Then we fix a1 and we have the same problem for aτ starting at τ ≥ 2. This process can be repeated
until k = N , at which point the memory bound m∗ will be lower because every modification with index k lowered it.

Note that we have used aτ in our argument, hence we obtained that the distribution of aτ should be as homoge-
neous as possible. However, our result can also be stated for aτ + ετ , because the non-linear effects of the reservoir

12

on every direction are unchanged and the series ετ is also a decreasing one.

2. Correlations as constraints on the variance

From the previous section we know that the memory bound increases when the variance along the projections of
the input into the reservoir state become more homogeneous. This can be expressed in terms of the state space
of the reservoir. Intuitively, the variances at directions aτ must fit into the variances of the state space, and since
we already established orthogonality of the projections, those variances must be along orthogonal directions. Since
our goal is to have a variance as homogeneous as possible along the directions of aτ , we need variance that is as
homogeneous along orthogonal directions. Finally, this homogeneity is reduced when we add correlations between
neurons.

We shall recall that we started our discussion by assuming that the probability distribution of neuron states is
unchanged, which would ensure that the strength of the nonlinearity is not altered. This implies that the distribution
of variances of the neurons is fixed. If we start by having zero correlations, we can start by setting

aτ + ετ = var
(
xsort(τ)(t)

)
(S28)

where sort(τ) is the operation that finds the neuron with the τ th largest variance in the reservoir. In other words,
we associate every neuron to one direction of aτ , with the constraint that the variances along those directions are
ordered, hence we associate a1 to the neuron with highest variance, a2 to the second and so on.

The distribution of aτ + ετ in that particular case is then given by the distribution of var (xn(t)). If the correlations
are not zero, however, we need a new family of vectors which preserves orthogonality across the covariance matrix
C. This is given by the eigenvectors of C. In that framework, the new variances are given by the eigenvalues of the
covariance matrix, λn(C). Naturally, when the correlations are zero, the eigenvalues correspond to the entries of the
diagonal, which in our case are the variances as in the previous case.

Hence we have to now work on the distribution of the eigenvalues of the covariance matrix. Specifically, we would
want to show that increasing the correlations between neurons increases the inhomogeneity of the eigenvalues,
which would decrease our memory bound M∗. A simple way to quantify this inhomogeneity is the mean with respect
to the square root of the raw variance, which is given by

ν =

∑N
n=1 λ

2
n(C)(∑N

n=1 λn(C)
)2 , (S29)

where λn(C) is the nth eigenvalue of C. To get an intuition of how this metric reflects the inhomogeneity, consider
the case of two eigenvalues λ1, λ2; when λ1 = λ2 –very homogeneous – then ν = 1

2 , but when λ1 > 0, λ2 = 0 –
very inhomogeneous–, then ν = 1. For N � 1 the perfectly homogeneous case approach zero but the perfectly
inhomogeneous one is still one.

We can compute
(∑N

n=1 λn(C)
)2

by using th relationship between trace and eigenvalues,

N∑
n=1

λn(C) = tr [C] =

n∑
n=1

var (xn(t)) (S30)

which is constant by the assumption that the probability distributions of the neuron activities are fixed. Hence we can
focus on the value of

∑N
n=1 λ

2
n(C). This is easily done by noting that

Ckvn(C) = λn(C)Ck−1vn(C) = λkn(C)vn(C) (S31)

where vn(C) and λn(C) are, respectively the nth eigenvector and eigenvalue of C. If we plug this into the relationship
between trace and eigenvalues we obtain

N∑
n=1

λ2n(C) = tr
[
C2
]
, (S32)

13

which we can compute by decomposing the square of covariance matrix and obtain

N∑
n=1

λ2n(C) =

N∑
n=1

N∑
m=1

CnmCmn =

N∑
n=1

cov (xn(t), xm(t))
2
. (S33)

This obviously grows when the neurons become correlated. Hence, the inhomogeneity measured by ν grows.

3. Example

The bound developed in previous sections might seem a bit artificial and far from the standard practice of reser-
voir computing, particularly the notion that we can adapt the linear part of the dynamics as we want. To make it
more understandable and to show that the bound is indeed sharp we will present a simple example where all our
assumptions are easily verified and the bounds are sharp.

For this we consider a line of neurons with the input on the first one. That is,

Wij =

{
w ⇐⇒ j = i+ 1

0 otherwise,
(S34)

with w < 1 to keep the contractivity and the input is only sent to the first neuron, meaning that win = [win, 0, 0, ...]. If
we let win � 1, then the network is effectively linear, because the hyperbolic tangent is almost an identity around 0.
Then the reservoir state becomes

x(t) ≈ win
[
u(t), wu(t− 1), ..., wNu(t−N)

]
(S35)

which corresponds to the case where ετ ≈ 0, and the previous input can be easily recovered, and this gives us
M =M∗ = N , which is the memory maximum Dambre et al. (2012); Jaeger (2001b). If we increase the value of win,
the reservoir is described as

x(t) = [tanh (winu(t)) , tanh (w tanh (winu(t− 1))) , ...] (S36)

where a readout can be obtained for each delay but the nonlinearity of repeatedly applying the hyperbolic tangent
makes the memory harder and harder to recover, so the factor ετ

aτ
grows. Naturally, here M =M∗.

In either case, the covariance matrix is diagonal because the inputs r(t), r(t − τ) are uncorrelated. Notice that,
if we add connections between neurons or if we feed inputs with some alternative win, then we would be increasing
the correlations because there would be more neurons fed by the same input. This can only decrease the memory,
because a reservoir with a line of neurons achieves its maximum memory capacity Dambre et al. (2012); White et al.
(2004).

14

VII. CORRELATIONS AND EIGENVALUES IN DYNAMICAL SYSTEMS

We will show that the larger the eigenvalues of W, the lower the correlations.
To do so we will first linearize the system presented in Eq.S1, which gives us

x(t) = Wx(t− 1) + winu(t). (S37)

This linearizion might seem unjustified, as a key requirement of a reservoir is that it must be non-linear Jaeger (2002)
to provide the necessary diversity of computations that a practical ESN requires. However, here we are interested in
the memory capacity, which is maximized for linear reservoirs Jaeger (2002); White et al. (2004). That is, by studying
a linear system we are implicitly deriving an upper bound on the memory, similarly to the approach taken in the
control-theoretical study of the effect of the spectral radius Jaeger (2001b). Finally, note that this linearizion is within
the parameters of the ESN from Eq.S1, as it would suffice to set ‖win‖ � 1.

Given that our system is linear, we can formulate the state of a single neuron xi(t) as

xi(t) =

∞∑
k=0

(
W kwin

)
i
u(t− k) =

∞∑
k=0

ai,ku(t− k) = 〈ai,ut〉 (S38)

where the vector ai = [ai,0, ai,1, ...] represents the coefficients that the previous inputs ut = [u(t), u(t− 1), ...] have
on xi(t). We can then plug this into the covariance between two neurons,

cov (xi, xj) = lim
T→∞

1

T

t+T∑
q=t

〈ai,uq〉〈aj ,uq〉 = 〈ai,aj〉 lim
T→∞

1

T

T∑
qi=0

T∑
qj=0

〈uqi ,uqj 〉, (S39)

and given that u(t) is a random time series with zero autocorrelation and variance of one,

lim
T→∞

1

T

T∑
qi=0

T∑
qj=0

〈uqi ,uqj 〉 = lim
T→∞

1

T

T∑
q=0

〈uq,uq〉 = E
[
u2(t)

]
= 1. (S40)

This gives us

cov (xi, xj) = 〈ai,aj〉, (S41)

and similarly, we can compute the variance of xi,

var (xi) = cov (xi, xi) = 〈ai,ai〉 = ‖ai‖2. (S42)

We can plug the previous two formulas into the Pearson’s correlation coefficient between two nodes i, j as:

Pij =
〈ai,aj〉
‖ai‖‖aj‖

= cos(ai,aj) (S43)

which is the same as the cosine distance between vectors ai and aj .
The next step is thus to write ai as a function of the eigenvalues of W. To do so, we note that the state of a neuron

can be written as

x(t) =

∞∑
k=0

Wkwinu(t− k) =
∞∑
k=0

(
VΛkV−1

)
winu(t− k) (S44)

where V is the matrix eigenvectors of W and Λ the diagonal matrix containing the eigenvalues of W. When we
obtain

xi(t) =

∞∑
k=0

N∑
n=1

λkn〈v−1n ,win〉(vn)iu(t− k), (S45)

where vn and v−1n are, respectively, the left and right eigenvectors of W. Notice that as long as the network given
by W is drawn from an edge-symmetric probability distribution – meaning that Pr [Wij = a] = Pr [Wji = a] ∀a ∈ R–

15

and is self averaging then vn and v−1n are vectors drawn from the same distribution.

The λkn terms present in the previous equation can be used as a new vector basis,

xi(t) =

N∑
n=1

〈v−1n ,win〉(vn)i〈λn,ut〉 =
∞∑
k=0

N∑
n=1

λknbi,nu(t− k), (S46)

where λn =
[
1, λn, λ

2
n, ...

]
and bi,n = 〈v−1n ,win〉(vn)i. By simple identification from Eq.S38, we find that

(ai)k =

N∑
n=1

λknbi,n. (S47)

Thus every coefficient of ai is a sum of many terms. Specifically, every term is a multiplication of bi,n, which are all
independent as they refer to the projections of vn,i into win and the values of λn, whose phase – which we assume
to be uniformly distributed on [0, 2π]– ensures that (ai)k is uncorrelated with (ai)k+1.

We will now proceed to cast the distribution of ai as a uniform distribution of points defining an ellipsoid. By the
central limit theorem, the values of ai are independent random variables drawn from a normal distribution with zero
mean and whose variance decreases with the index k. Therefore the distribution of ai is given by

∞∏
k=0

exp

(
− (ai)

2
k

s2k

)
(S48)

where sk is a decreasing function of k. Thus all the points with probability exp
(
−r2

)
are given by the surface

∞∑
k=0

a2k
s2k
− r2 = 0 (S49)

which are ellipsoids of infinite dimension and axis sk
r . Furthermore, as we are only interested in the angular coordi-

nates of the points in the ellipsoid, not on their distance to the origin, we can project every one of those surfaces into
an ellipsoid with axis

s =

[
1,
s2
s1
,
s3
s1
, ...

]
. (S50)

Note that, even though the ellipsoid has infinite dimensions, the length of the axes decreases exponentially due to
the factor λkn. Therefore, it has finite surface and it can be approximated by an ellipsoid with finite dimensions.

Now we have that the vectors ai are, ignoring their length, uniformly distributed on an ellipsoid with axis σ. Then

lim
N→∞

S =
1

2

∫
Es

∫
Es

cos2(∠(p, q))dpdq (S51)

where the integrals are taken over Es, the ellipsoid with axes s, and the half factor comes from counting every pair
only once.

If we now change to spherical coordinates we will find that the two vectors can be expressed as

p = [rp, φ
p
1, φ

p
2, ...]

q = [rq, φ
q
1, φ

q
2, ...] ,

where φp1 is the angle of p on the plane given by the first and second axis, φp2 the plane by the first and third axis and
so on. The cosine between the two vectors is then

cos(∠(p, q)) =
∞∏
k=1

cos(φpk − φ
q
k). (S52)

16

Thus we can write the integral from Eq.S51 as

lim
N→∞

S =
1

2

∞∏
k=1

∫ 2π

0

cos2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k (S53)

where µφk(φ) is the probability density function of the difference angle φpk − φ
q
k.

We will show that this integral decreases when the values sk increase. To do so, it is helpful to consider the extreme
cases to get an intuition: when the semi-minor axis is zero, then we have a line, and all the points in the line have an
angle between them either of zero or π, and thus a squared cosine of one. Conversely, when the semi-minor axis is
maximal it equals the semi-major one and we have a circle, and the average squared cosine becomes 1/2. Those
are the two extreme values and thus the squared cosine decreases as the ellipse becomes more similar to a circle.

To make this argument more precise, we start by finding the density µφk(φ
p
k). This density is found by taking a

segment of differential length dlS on the sphere of radius one and then compare it with the length covered in the
ellipse dlE . This gives us

µφk(φ) ∝
dlE
dlS

=
‖ cos(φ− dφ)− cos(φ), s2k(sin(φ− dφ)− sin(φ))‖

φ+ dφ− φ

=
√
sin2(φ) + a2k cos

2(φ) =
√
1− (1− s2k) cos2(φ).

To fully evaluate the previous integral we would need to normalize µφk and then evaluate the integral as a function
of sk. However, we would take a simpler approach and note that sk controls the homogeneity of µφk : the larger sk is
(within the interval [0, 1]), the more the mass of probability is concentrated on the area around φ ∼ 0 and φ ∼ π.

Furthermore, we note that the squared cosine has the following periodicities

cos2(θ) = cos2(π + θ) = cos2(π − θ) = cos2(2π − θ),

thus, when we integrate over the angle φ we can take advantage of the four-fold symmetry and integrate only on the
interval [0, π/2]. Thus we only need to study the integral∫ π

2

0

cos2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k, (S54)

and by using sin2(θ) + cos2(θ) = 1, we can recast the previous integral as

1−
∫ π

2

0

sin2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k. (S55)

In the interval φ ∈ [0, π/2] the squared sine can be seen a metric between two angles. Therefore the term∫ π
2

0

sin2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k (S56)

is nothing else than an average distance between the points which have a density given by µφk . Thus, the more
homogeneous the density, the larger the distance, and vice-versa. Putting it all together, sk controls the homogeneity
of µφk , and the homogeneity of µφk controls the terms on Eq.S53. Specifically, increasing sk decreases S.

The last thing to mention is that the values of |λn| control sk, as they give the variance to (ai)k in Eq.S47. Thus,
the larger |λn| the higher sk and the lower S. By the negative correlation between M and S, increasing the values of
|λn| should increase the memory.

17

VIII. MAXIMIZING THE MEMORY CAPACITY

Given that the memory capacity is one of the main characteristics of a reservoir, it is natural to ask whether our
set-up offers some insight into how to maximize it. Obviously, the direct answer is to maximize 〈λ〉, so making every
eigenvalue such that |λn| = 1.

There are many methods to create matrices with a given spectra, but they tend to be dense, thus we resort to
directed circulant networks. Those networks have all nodes aligned in a circle and every node has a connection to
the d subsequent clockwise neighbors. For such a network with degree d, the corresponding is matrix such that

Wnm =

{
N(0, 1) ⇐⇒ n−m mod N ∈ [1, .., d]

0 otherwise
(S57)

which have eigenvalues distributed in bd+1
2 c concentric circles centered at the origin (see Aceituno (2018) for details).

In any case, the eigenvalues for d = 1 are the N th roots of the product of the weights, thus after rescaling we obtain
|λn| = 1. The resulting memory curve is presented in Fig. 3.

It is worth noticing that this particular architecture is very similar to having a long line of neurons, each one
receiving inputs form its predecessor –the only difference being that the last neuron is coupled to the first. This line
architecture can obviously provide the maximum memory M = N is the input is scaled appropriately, but it is beyond
the traditional rules of reservoir computing: its eigenvalues are aways zero, and its input weights need to be set as
win = [s, 0, 0, ..., 0] with s being almost zero. It is remarkable, however, that we obtain a similar architecture just by
looking at 〈λ〉.

18

IX. RESERVOIR DESIGN IN THE FOURIER DOMAIN

The intuition that we will use here is that every neuron can be seen as a filter that extracts some features from the
input time series. If the reservoir extract the right features, the ESN performance would improve.

Training the readout through a linear regression is a minimization of the distance between the linear subspace
spanned by the neurons’ outputs and the target output, given by

‖e‖2 =

T+t0∑
t=t0

(ŷ(t)−woutx(t))
2 =

∥∥∥∥∥ŷ −
N∑
n=1

rnxn

∥∥∥∥∥
2

(S58)

where ‖ · ‖ is the euclidean norm and e is the vector of errors, which inhabits the space of the time series. In this
space, ŷ is the target point, where every value of ŷ(t) corresponds to the coordinate of ŷ at dimension t. The time
series of the neurons xn are also points in that space with xn(t) being their corresponding coordinates. Then, woutx
is the linear combination of neuron points that is closest to ŷ. Having this geometrical interpretation of the ESN
training it is clear that we should set xn to be as close as possible to the target ŷ, then the error should also be
reduced.

To make this statement more precise, we develop a bound that shows how the error in the training error changes
as the neurons become more similar to the readout. We do so by decomposing every neuron time series

xn = x||yn + x⊥yn (S59)

where x||yn is the projection of xn onto the direction of ŷ and x⊥ŷn the part that is orthogonal to it. We propose a very
simple readout vector,

(w∗out)n = snγ (S60)

where

γ =
‖ŷ‖∑N

n=1 ‖x
||ŷ
n ‖

, sn =

{
1 ⇐⇒ x

||ŷ
n > 0

−1 ⇐⇒ x
||ŷ
n ≤ 0.

(S61)

Thus the readout simply adds the vectors xn in the direction of ŷ and scales them equally so that

N∑
n=1

(w∗out)n x
||ŷ
n = ŷ. (S62)

Notice that our readout is obviously not the optimal, one, so the error that we get is harder,

‖e‖ ≤ ‖e∗‖ =

∥∥∥∥∥ŷ −
N∑
n=1

(w∗out)n xn

∥∥∥∥∥ . (S63)

We can now decompose xn, obtaining∥∥∥∥∥ŷ −
N∑
n=1

(w∗out)n xn

∥∥∥∥∥
2

=

∥∥∥∥∥
(
ŷ −

N∑
n=1

(w∗out)n x
||ŷ
n

)
+

N∑
n=1

r∗nx
⊥ŷ
n

∥∥∥∥∥
2

, (S64)

which, given Eq.S62, becomes

‖e∗‖2 =

∥∥∥∥∥
N∑
n=1

snx
⊥ŷ
n

∥∥∥∥∥
2

= ‖ŷ‖2

∥∥∥∑N
n=1 snx

⊥ŷ
n

∥∥∥2(∑N
n=1 ‖x

||ŷ
n ‖
)2 . (S65)

In the worst case, snx⊥ŷn are all aligned on and on the same direction, so ‖
∑N
n=1 snx

⊥y
n ‖ =

∑N
n=1 ‖x⊥ŷn ‖. This yields

19

the bound

σ2 =
‖e‖2

‖ŷ‖2
≤ ‖e

∗‖2

‖ŷ‖2
=

(∑N
n=1 ‖x⊥ŷn ‖

)2
(∑N

n=1 ‖x
||ŷ
n ‖
)2 . (S66)

The final step in this geometric bound is to notice that the basis that we used for our space is not unique; when we
talk about x⊥ŷn , x

||ŷ
n , ŷ, we do not need to use the basis where every entry corresponds to one time entry. We can

instead choose another orthonormal basis and we will still keep the same values and distances. Our choice here is
the Fourier basis, which is a natural choice when thinking about time series or signals Elliott (2013). At this point it
us useful to drop the geometric interpretation and come back to the time series or frequency formulation of ŷ and e∗,
giving

σ2 ≤ ‖e
∗‖2

‖ŷ‖2
=

(∑N
n=1 ‖F

[
x⊥ŷn

]
‖
)2

(∑N
n=1 ‖F

[
x
||ŷ
n

]
‖
)2 , (S67)

where F[xn] is the same as xn in the Fourier basis. By noting that

‖F
[
x⊥ŷn

]
‖ = |F[xn]×F[ŷ]| ‖ŷ‖

‖F
[
x||ŷn

]
‖ = |〈F[xn],F[ŷ]〉| ‖ŷ‖

(S68)

we obtain the bound

σ ≤
∑N
i=1 |F[xi]×F[ŷ]|∑N
i=1 |〈F[xi],F[ŷ]〉|

, (S69)

as shown in the main text.

20

X. ADAPTING THE POWER SPECTRAL DENSITY IN NON-LINEAR RESERVOIRS

While the relationship between cycles and frequencies is very natural in linear systems Elliott (2013), we are
dealing with a non-linear reservoir, meaning that we must prove that adding cycles does indeed modify the frequency
response of the reservoir. This is a simple consequence of the monotonicity of the nonlinearity, which implies that
adding a cycle of length L will increase the autocorrelation with delay L of the neurons embedded in the cycle, and
this in turn increases the PSD of the neuron.

To make this more precise, we start by applying the Wiener-Khinshin theorem Khintchine (1934); Wiener et al.
(1930) to a neuron indexed by n,

PSDxn(f) = |F[xn](f)|2 = Et [xn(t)xn(t− τ)] = Cxn(τ), (S70)

where τ
T = f and Cxn(τ) is the autocorrelation function. Hence, to increase the PSD of neuron n at frequency f we

need to increase the autocorrelation of neuron n with itself at delay fT . To show that this can be done by rewiring the
network so that there are many cycles of length L with positive feedback, we start by writing the equation describing
a neuron state,

xn(t) = tanh

(
vnu(t) +

N∑
m=1

wmnxm(t− 1)

)
. (S71)

By applying the mean value theorem

xn(t) = g (xn, t)

[
vnu(t) +

∑
m∈Sn

wmnxm(t− 1)

]

g (xn, t) = tanh′

(
c

[
vnu(t) +

∑
m∈Sn

wmnxm(t− 1)

]) (S72)

where ct,n ∈ [0, 1]. This can be expanded recursively to obtain

xn(t) =

τ−1∑
l=1

N∑
m=1

∑
p∈Pl(n,m)

G(p, t)wpvmu(t− l)

+

N∑
m=1

∑
p∈Pτ (n,m)

G(p, t)wpxm(t− τ)

(S73)

where Pl(n,m) are the paths from neuron n to neuron m with length l such that each vector p = [n, p1, p2, ..., pl−1,m]

contains the indexes of the neurons with p0 = n and pdim(p) = m. The function G(p, t) =
∏dim(p)
k=1 g(pk, t − k)

corresponds to the attenuation given by the nonlinearity along each path, and finally, wp =
∏dim(p)
k=1 wnm is the

cumulative weight of path p.

Sparse random large graphs such as the ones used for ESN reservoirs are locally tree-likeWormald et al. (1999);
Bollobás et al. (2010), meaning that for τ � N , almost all the neuron states xm(t− τ) in the last term of Eq.S73 are
distinct and n 6= m. However, when we rewire our graph such that it has many cycles with length τ , we obtain

xn(t) = Q(n, t) + xn(t− τ)
∑

c∈Pτ (n,n)

G(c, t)wc, (S74)

whereQ(n, t) is the term that includes the first summand of Eq.S73 as well as all the paths from the second summand
that are not cyclic. By putting this into the autocorrelation,

Et [xn(t)xn(t− τ)] = Q(n) + Et
[
x2n(t)

] ∑
c∈Pτ (n,n)

wcG(c), (S75)

where Q(n) = Et [Q(n, t)] and G(c) = Et [G(c, t)]. Given that all the entries of the weight matrix and the input vector
are randomly sampled from probability distributions with mean zero, we would expect Q(n, t) to also have mean zero

21

across all neurons, so

En [Cxn(τ)] = En

var [xn(t)]
∑

c∈Pτ (n,n)

wcG(c)

 (S76)

Here it is worth noticing that G(c, t) is a multiplication of g(m, t) > 0, hence it is always positive just as the variance
of xn(t). Thus the strength of the average PSD of the neuron the signs of wc.

An important insight from this derivation presented here is that by using the mean value theorem we loose informa-
tion about the actual value of the autocorrelation. That is, while in linear systems we know how much the frequencies
will be modified, in non-linear systems we do not, having to conform ourselves with knowing which frequencies will be
enhanced or dampened. Yet, the mean value theorem implies that we do not need to know the value of the derivative
of the nonlinear function applied to the neurons. Therefore any positive monotonic function will fulfill the requirements
of our derivation, hence we can use other nonlinearities such as a sigmoid of a piecewise linear function to obtain
the same result.

22

XI. ALGORITHM TO ADAPT RESERVOIRS

In the tasks described in the main text, different tasks require different reservoir parameters. Specifically, for a
given maximum cycle length value L there is one combination of ρl, ∀l ≤ L and a value of 〈|λ|〉, which optimizes the
ESN performance. In this section we present the heuristic that we use to find those parameters.

The first step is to tune the memory for the current task. We take a very simple approach, where we simply try
many spectral radii on the interval [0, 1] and pick the one that gives the best performance on a classical ER network.
Once found, we calculate the corresponding 〈|λ|〉 using S3 and we will use that for the rest of the process.

Since the reservoirs that we use are not linear, we need to characterize their frequency response for various values
of ρl for all the l ≤ L considered. This response, that we denote R(ρl, L) is computed by generating Gaussian noise
with the same variance and mean as the original signal and use it as an input for the reservoir. Then apply the Fast
Fourier Transform to the neurons’ states and average over all neurons. As the reservoirs are generated randomly,
it is necessary to average those responses over multiple reservoir instances. For a given L we use the following
heuristic to find the optimal combination of cycles with size no greater than L.

Step-1: Compute the Fourier transform of the input signal and keep the vector of absolute values ŝ = [ŝ(0), ŝ(2), ...ŝ(fS)],
where fS is half the sampling frequency.

Step-2: Compute the scalar product 〈ŝ, R(ρl, l)〉 for all ρl, l, and select the ρl that maximizes it for each l.

Step-3: Test the performance of an ESN with the values of ρl found in the previous step. If the performance is lower
than in the default case of ρl = 0, do not optimize with regard to that length.

Step-4: For all values of ρl where the cycle length is allowed and which fill the condition ‖ρ‖1 ≤ 1, select the one that
maximizes

∑
l〈ŝ, R(ρl, l)〉.

23

Part II

Supplemental Figures

24

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M
ER networks with normal weight distribution

 = 0.7

 = 0.8

 = 0.9

 = 1

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

SF networks with normal weight distribution

 = 6

 = 4

 = 3

 = 2

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

ER networks with PL weight distribution

 = 4

 = 3

 = 2.2

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

RR networks with normal weight distribution

<k> = 100

<k> = 50

<k> = 10

Supplementary Figure 1: Memory Decay of ESN, Related to Figure.2. The ability of the reservoir to retrieve
previous inputs decays as with τ , the delay with which we try to retrieve them. Each network has 400 neurons and

average degree is 〈k〉 = 20. Each curve shows the average result over 100 trials and the error bars are the standard
deviation. The spectral radius α = 1, except in ER networks where it varies as marked in the legend.

25

0 0.2 0.4 0.6 0.8 1
10

-2

10
-1

10
0

10
1

d
e
n
s
it
y

| | density for ER

=0.7

=0.8

=0.9

=1

0 0.2 0.4 0.6 0.8 1
10

-2

10
-1

10
0

10
1

d
e
n
s
it
y

| | density for SF

=6

=4

=3

=2

0 0.2 0.4 0.6 0.8 1
10

-2

10
-1

10
0

10
1

d
e
n
s
it
y

| | density for ER with PL

=4

=3

=2.2

0 0.2 0.4 0.6 0.8 1
10

-2

10
-1

10
0

10
1

d
e
n
s
it
y

| | density for RR

<k>=10

<k>=50

<k>=100

Supplementary Figure 2: Eigenvalues of various network topologies, Related to Figure.2. Eigenvalue
densities of the random networks studied in the main text. Each line shows the density of eigenvalues at a distance
λ from the origin. 200 realizations of a network. The network size is 1000, the edge weights are drawn from a normal
distribution except when in the ER networks with PL. Unless explicitly stated in the sub-figure legend, 〈k〉 = 50 and

the spectral radius is α = 1.

26

0 5 10 15 20 25 30 35

-0.2

0

0.2

0.4

0.6

0.8

1

M
C

Memory Curve for Circulant Directed Networks

k = 1

k = 2

k = 3

k = 4

k = 5

0 0.2 0.4 0.6 0.8 1

|
n
|

1

2

3

4

5

6

7

8

9

10

d
e

n
s
it
y

| | density for Circulant

 k =1

 k =2

 k =3

 k =4

Supplementary Figure 3: Memory decay (left) and eigenvalue densities (right) for circulant networks with
various degrees, Related to Figure.2. The memory decays significantly slower for 〈k〉 = 1, corresponding to the
eigenvalue distribution for N = 400, which is all concentrated at |λ| = 1 for 〈k〉 = 1, but for 〈k〉 > 1 more and more

eigenvalues concentrate around lower |λ|.

27

Part III

Supplemental References

Aceituno, P. V. (2018), ‘Eigenvalues of random graphs with cycles’, arXiv preprint arXiv:1804.04978 .
Bollobás, B., Kozma, R. and Miklos, D. (2010), Handbook of large-scale random networks, Vol. 18, Springer Science & Business
Media.
Büsing, L., Schrauwen, B. and Legenstein, R. (2010), ‘Connectivity, dynamics, and memory in reservoir computing with binary
and analog neurons’, Neural Computation 22(5), 1272–1311.
Christopher, M. B. (2006), ‘Pattern recognition and machine learning’, Company New York 16(4), 049901.
Dambre, J., Verstraeten, D., Schrauwen, B. and Massar, S. (2012), ‘Information processing capacity of dynamical systems’,
Scientific reports 2.
Deák, I. (1990), Random number generators and simulation, Akadémiai Kiadó.
Duport, F., Schneider, B., Smerieri, A., Haelterman, M. and Massar, S. (2012), ‘All-optical reservoir computing’, Optics express
20(20), 22783–22795.
Elliott, D. F. (2013), Handbook of digital signal processing: engineering applications, Academic Press.
Ganguli, S., Huh, D. and Sompolinsky, H. (2008), ‘Memory traces in dynamical systems’, Proceedings of the National Academy
of Sciences 105(48), 18970–18975.
Goh, K.-I., Kahng, B. and Kim, D. (2001), ‘Universal behavior of load distribution in scale-free networks’, Physical Review Letters
87(27), 278701.
Hammami, N. and Bedda, M. (2010), Improved tree model for arabic speech recognition, in ‘Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on’, Vol. 5, IEEE, pp. 521–526.
Hübner, U., Abraham, N. and Weiss, C. (1989), ‘Dimensions and entropies of chaotic intensity pulsations in a single-mode far-
infrared NH 3 laser’, Physical Review A 40(11), 6354.
Huebner, U., Klische, W., Abraham, N. and Weiss, C. (1989), On problems encountered with dimension calculations, in ‘Measures
of Complexity and Chaos’, Springer, pp. 133–136.
Jaeger, H. (2001a), Short term memory in echo state networks, GMD-Forschungszentrum Informationstechnik.
Jaeger, H. (2001b), ‘The “echo state” approach to analysing and training recurrent neural networks-with an erratum note’, Bonn,
Germany: German National Research Center for Information Technology GMD Technical Report 148, 34.
Jaeger, H. (2002), Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the ”echo state network” ap-
proach, GMD-Forschungszentrum Informationstechnik.
Jaeger, H. and Haas, H. (2004), ‘Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communica-
tion’, Science 304(5667), 78–80.
Khintchine, A. (1934), ‘Korrelationstheorie der stationären stochastischen prozesse’, Mathematische Annalen 109(1), 604–615.
Lichman, M. (2013), ‘UCI machine learning repository’.
URL: http://archive.ics.uci.edu/ml
Lukoševičius, M. and Jaeger, H. (2009), ‘Reservoir computing approaches to recurrent neural network training’, Computer Science
Review 3(3), 127–149.
Maass, W., Natschläger, T. and Markram, H. (2002), ‘Real-time computing without stable states: A new framework for neural
computation based on perturbations’, Neural Computation 14(11), 2531–2560.
Mermelstein, P. (1976), ‘Distance measures for speech recognition, psychological and instrumental’, Pattern recognition and
artificial intelligence 116, 374–388.
Pascanu, R., Mikolov, T. and Bengio, Y. (2013), On the difficulty of training recurrent neural networks, in ‘International conference
on machine learning’, pp. 1310–1318.
Strauss, T., Wustlich, W. and Labahn, R. (2012), ‘Design strategies for weight matrices of echo state networks’, Neural Computa-
tion 24(12), 3246–3276.
White, O. L., Lee, D. D. and Sompolinsky, H. (2004), ‘Short-term memory in orthogonal neural networks’, Physical Review Letters
92(14), 148102.
Whitley, D. and Watson, J. P. (2005), Complexity theory and the no free lunch theorem, in ‘Search Methodologies’, Springer,
pp. 317–339.
Wiener, N. et al. (1930), ‘Generalized harmonic analysis’, Acta mathematica 55, 117–258.
Wormald, N. C. (1984), ‘Generating random regular graphs’, Journal of algorithms 5(2), 247–280.
Wormald, N. C. et al. (1999), ‘Models of random regular graphs’, London Mathematical Society Lecture Note Series pp. 239–298.

	Tailoring Echo State Networks for Optimal Learning
	Introduction
	Results
	ESN Performance Captured by Reservoir Spectrum
	Adapting ESN in the Frequency Domain

	Discussion
	Limitations of the Study
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

