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Abstract
Large Language Models (LLMs) have exhib-001
ited remarkable performance across various002
downstream tasks, but they may generate in-003
accurate or false information with a confident004
tone. One of the possible solutions is to em-005
power the LLM confidence expression capa-006
bility, in which the confidence expressed can007
be well-aligned with the true probability of008
the generated answer being correct. How-009
ever, leveraging the intrinsic ability of LLMs010
or the signals from the output logits of an-011
swers proves challenging in accurately captur-012
ing the response uncertainty in LLMs. There-013
fore, drawing inspiration from cognitive diag-014
nostics, we propose a method of Learning from015
Past experience (LePe) to enhance the capabil-016
ity for confidence expression. Specifically, we017
first identify three key problems: (1) How to018
capture the inherent confidence of the LLM?019
(2) How to teach the LLM to express confi-020
dence? (3) How to evaluate the confidence021
expression of the LLM? Then we devise three022
stages in LePe to deal with these problems. Be-023
sides, to accurately capture the confidence of024
an LLM when constructing the training data,025
we design a complete pipeline including ques-026
tion preparation and answer sampling. We also027
conduct experiments using the Llama family028
of LLMs to verify the effectiveness of our pro-029
posed method on four datasets.030

1 Introduction031

Although large language models (LLMs) demon-032

strate remarkable performance across many do-033

mains (Guo et al., 2023; Han et al., 2024; Achiam034

et al., 2023), they can’t provide a reasonable confi-035

dence level in the generated answers (Wang et al.,036

2022; Shuster et al., 2021), which distinguish them037

from human intelligence. A critical aspect of hu-038

man intelligence is the capability to express con-039

fidence effectively. Reliable uncertainty estimates040

are also vital for human-machine collaboration, of-041

fering valuable insights into response reliability042

Figure 1: For a given question, the LLM simply pro-
vides an answer and we can’t identify the correctness.
After empowering the confidence expression ability of
the LLM, we can determine the trustworthiness of its
responses based on the confidence level it provides.

and alleviating hallucinations in natural language 043

generation (NLP) tasks (Xiong et al., 2023). More- 044

over, these estimates aid developers in pinpointing 045

LLM weaknesses for targeted refinement, thus en- 046

hancing overall performance iteratively. Figure 1 047

illustrates the difference in responses given by an 048

LLM when it answers a question incorrectly or ac- 049

curately, compared to the output from an LLM that 050

can convey confidence level in its responses. 051

The current works leverage the intrinsic abil- 052

ity of LLMs or the signals from the output logits 053

of answers to elicit their confidence expression, 054

but it is challenging to accurately capturing the 055

uncertainty associated with the responses gener- 056

ated by LLMs. For example, some works utilize 057

carefully constructed prompts to instruct and gen- 058

erate answers while providing a confidence level 059

(Lin et al., 2022). However, when verbalizing their 060

confidence, LLMs tend to exhibit high confidence 061

(Xiong et al., 2023). Furthermore, their effective- 062

ness is often constrained by the task-specific na- 063

ture and the labor-intensive process of designing 064

prompts. Another method is to use the logit value 065

of a specific token within the generated answer as a 066

measure of uncertainty for the entire response (Ka- 067

davath et al., 2022), such as the final numerical re- 068
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sult in a mathematical question or the final option in069

a multiple-choice question (Li et al., 2024b). Nev-070

ertheless, relying solely on a specific token logit071

makes it challenging to represent the uncertainty072

level of the entire generated answer accurately.073

Considering that relying on the inherent ability074

of LLM is not enough, we argue that it is essen-075

tial to provide additional training for the LLM to076

acquire the ability to express confidence, which is077

regarded as a meta-capability in this paper. There-078

fore, guided by the Cognitive Diagnostic (Liu et al.,079

2024) approach for assessing students’ ability lev-080

els, we propose a method of Learning from Past081

experience (LePe) to enhance the LLM’s capabil-082

ity of confidence expression. In Cognitive Diag-083

nosis, student knowledge mastery is modeled by084

analyzing their performance on previous experi-085

ences, thereby enabling an accurate assessment of086

their degree of knowledge acquisition and poten-087

tial performance on similar problems in the future.088

Similarly, our proposed method LePe mainly in-089

cludes three stages: testing, learning, and predict-090

ing. The testing stage primarily aims to capture091

the inherent confidence of LLM by assessing its092

performance across a predefined set of questions.093

In the learning stage, the LLM is fine-tuned using094

a curated set of instruction data to learn to express095

its confidence level. Finally, the prediction stage in-096

volves the LLM applying its newly acquired ability097

to express confidence when addressing new, unseen098

questions.099

However, it is challenging to obtain accurate100

confidence scores of LLMs due to the context sen-101

sitivity (Giallanza and Campbell, 2024), where the102

LLM generation results are inconsistent when the103

same question is presented in different contexts.104

Therefore, we design a complete pipeline and sev-105

eral strategies to alleviate this issue from multiple106

aspects, including mutation questions and hybrid107

sampling strategies. The mutation questions is to108

make various transformations of the questions and109

options without changing the original questions110

to test the robustness of the answers generated by111

LLM. The hybrid sampling strategy uses multiple112

sampling methods to obtain the model’s intrinsic113

beliefs.114

In summary, our contributions are as follows:115

• Inspired by the approach used in cognitive di-116

agnostics to test student’s knowledge level, we117

innovatively propose a method called learn-118

ing from past experiences (LePe) to empower119

LLMs with confidence expression capability. 120

• We devise a complete pipeline to capture the 121

inherent true responses of the LLM and alle- 122

viate the generation bias. 123

• We conduct experiments using the open- 124

source family of LLMs on several datasets 125

to validate the effectiveness of our proposed 126

method. The experimental results show that 127

our method enables LLMs to give reliable con- 128

fidence scores that reflect the correctness of 129

their responses. 130

2 Related Work 131

2.1 Self-awareness of LLMs 132

While models were equipped with extensive para- 133

metric knowledge, some studies highlighted an 134

evident lack of self-awareness in discerning their 135

competence scope (Wang et al., 2024). In the ex- 136

isting literature, research exploring self-awareness 137

in LLMs tended to focus on mapping the knowl- 138

edge boundaries of the LLMs (Yin et al., 2023; 139

Ren et al., 2023). These approaches worked to 140

enable LLMs to make full use of their intrinsic 141

knowledge, thereby reducing their hallucination 142

about unknown questions. The Inference-Time In- 143

tervention (ITI) (Li et al., 2024a) method worked 144

by shifting model activations alongside factuality- 145

related heads during inference, thereby enabling 146

the model to generate more truthful answers. Mean- 147

while, the FactTune method (Tian et al., 2023a) 148

employed Direct Preference Optimization (DPO) 149

(Rafailov et al., 2024) as a means to steer the LLM 150

toward generating responses that aligned with exter- 151

nal knowledge. Similarly, Srivastava et al. (2022) 152

evaluated LLMs’ competence in delineating their 153

knowledge boundaries by employing a set of 23 154

pairs of answerable and unanswerable multiple- 155

choice questions. However, these existing methods 156

tended to be overly strict and conservative. When 157

faced with uncertain questions, the LLM opted not 158

to reply at all rather than attempting to deduce from 159

existing information or speculate on a potential an- 160

swer, thus diminishing its utility. Confidence elic- 161

itation can mitigate this issue, enabling LLMs to 162

generate answers while conveying their confidence 163

levels. 164

2.2 Confidence elicitation in LLMs 165

Confidence elicitation refers to the process of es- 166

timating the level of confidence in an LLM re- 167
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Figure 2: The pipeline of our proposed method LePe.

sponse without relying on LLM fine-tuning or ac-168

cess to the proprietary information of LLMs (Xiong169

et al., 2023). To successfully elicit the confidence170

of LLMs, efforts could be categorized into two171

categories: One focused on employing meticu-172

lously crafted prompts to guide answer generation173

while simultaneously eliciting confidence. Bran-174

wen (2020) displayed GPT-3’s capacity to con-175

vey expression uncertainty on basic simple queries176

through the few-shot prompt. This denoted the be-177

ginning of this type of approach. Lin et al. (2022)178

introduced the concept of "verbalized confidence",179

which could directly guide the LLM output confi-180

dence. Subsequently, Xiong et al. (2023) aimed to181

explore a broader method space, introducing two182

categories: consistency-based methods and their183

hybrid variants. Zhou et al. (2023) injected uncer-184

tainty expressions into the prompt in the hope that185

the LLM would emit its uncertainty expressions,186

but this led to a decrease in accuracy. To assess187

the confidence and uncertainty of language models,188

Tian et al. (2023b) employed external annotations189

by instructing the LLM to express uncertainty in190

words during answer generation. However, this191

class of methods did not cope well with reasoning-192

heavy problems, and LLMs tended to be overcon-193

fident in their expression. The other category fo-194

cused on using the logit value of a specific token in195

the generated answer to measure the uncertainty of196

the whole answer. Kadavath et al. (2022) proposed197

probing the self-awareness of LLMs by incorpo-198

rating a dedicated "Value Head". However, the199

effectiveness of this method faces challenges when200

employed in other tasks as it relies on task-specific201

training. 202

Overall, current methods utilize the inherent ca- 203

pability or signal of LLMs to guide them to elicit 204

confidence. These methods rely more on the ca- 205

pabilities of the model itself, and the confidence 206

expression ability is limited by the downstream 207

tasks. In contrast, in this paper, we regard the abil- 208

ity to express confidence as a meta-capability that 209

requires explicit training in LLMs. 210

3 Methods 211

3.1 Learning from the Past Experience (LePe) 212

In this paper, our goal is mainly to enhance the 213

LLMs’ capability for confidence expression. This 214

entails equipping the LLMs to not only generate 215

responses but also to provide the associated con- 216

fidence levels of their outputs. We identify three 217

key problems to enhance the confidence elicitation 218

capability of LLMs. (1) How to capture the inher- 219

ent confidence of the LLM? Since different LLMs 220

demonstrate varied proficiency levels within the 221

same knowledge domain, it’s necessary to devise 222

a standardized procedure to capture the inherent 223

confidence of LLMs. (2) How to teach the LLM 224

to elicit confidence? After gathering confidence 225

scores of the LLM, it becomes crucial to investi- 226

gate effective strategies that enable the models to 227

convey their confidence levels. (3) How to eval- 228

uate the confidence elicitation of the LLM? A 229

comprehensive assessment of LLMs’ confidence 230

elicitation abilities is required. Inspired by the cog- 231

nitive diagnostics approach, we propose the Learn- 232

ing confidence expression from Past Experience 233
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The original question: Sammy wanted to go to where the people were. Where might he go?
A. race track B. populated areas C. the desert D. apartment
The varied question: (TaskP) Examine the following options carefully and select the correct one. (COTP) Please select the correct
option from the provided choices and offer a comprehensive problem-solving process. (question)Sammy wanted to go to
where the people were. Where might he go?
(Shuffle options and change option label) 1. populated areas 2. apartment 3. the desert 4. race track
(DisO) 5. All of the above / None of the above
Input: (confidence expression prompt) For the following question, please select the correct option, and provide your confidence in this answer.
Google Maps and other highway and street GPS services have replaced what?
A. united states B. mexico C. countryside D. atlas E.None of the above
Output: The correct answer is D. atlas. (Conf) My confidence is 61.5%.

Table 1: The question format of the testing stage and instruction data format of the prediction stage.

(LePe). The overall framework of LePe is shown234

in Fig 2. Our method mainly includes three stages:235

testing, learning, and predicting stage.236

In the testing stage, we capture the inherent con-237

fidence level of the LLM by evaluating its previous238

performance. Current LLMs often exhibit high con-239

fidence when asked directly about the confidence240

level of their responses. To more accurately capture241

the inherent confidence, we evaluate the model’s242

knowledge mastery by posing questions multiple243

times in different contexts. Given a question set244

Q = {q1, . . . , qi, . . . , qn}, where n represents the245

number of questions in the question set Q. For246

each question qi, the LLM M provides multiple247

corresponding answers {ai1, ai2, . . . , aik}, where248

k is the total number of times the ith question is249

answered. Each answer aij(1 ≤ j ≤ k) is repre-250

sented by M(qi) → aij . Therefore, each question251

and its corresponding answer is represented as a252

triple tuple (qi, aij , pi), where pi(pi ∈ {0, 1}) in-253

dicates the correctness of an answer aij , where 1254

stands for correct and 0 for incorrect. Then we con-255

struct the training dataset based on these answer256

records. A more comprehensive discussion of this257

stage will be presented in the next section.258

In the learning stage, we construct the instruc-259

tional data derived from the gathered confidence260

scores and employ instruction fine-tuning (Stien-261

non et al., 2020; Ouyang et al., 2022) to enhance262

the model’s capability to convey its confidence rea-263

sonably.264

In the predicting stage, we verify the calibration265

ability of LLM after instruction fine-tuning on the266

new question data by comparing the confidence267

of the LLM’s predictions with the probability of268

being correct for the answers it generates, the LLM269

is considered well-calibrated when its confidence270

estimate closely aligns with the actual probability271

of the answer being correct. An ideally calibrated272

LLM conforms to the conditions that: 273

P (ŷ = y | conf = z) = z, ∀z ∈ [0, 1], (1) 274

where y is the ground truth, ŷ is the response of the 275

M , and conf is the confidence level of the LLM 276

output on this problem. 277

3.2 Training Data Construction 278

Traditional deep learning approaches for classifi- 279

cation fail to capture the model uncertainty. The 280

predictive probabilities provided by the softmax 281

output are frequently misinterpreted as a measure 282

of the model’s confidence. However, a model may 283

still be uncertain in its predictions despite produc- 284

ing a high softmax output (Gal and Ghahramani, 285

2016). Therefore, we test an LLM multiple times 286

on a batch of questions to obtain its true responses 287

and record its performance. In this part, we also de- 288

vise some strategies including mutation question 289

and answer sampling to ensure the consistency 290

of LLM‘s responses, alleviating context sensitivity, 291

and capturing a more true response of LLM. 292

293

3.2.1 Mutation Question 294

When selecting a question for the LLM to answer, 295

we design a two-step question sampling strategy. 296

Firstly, each time, we randomly draw a question 297

using sampling with the replacement for the M to 298

answer, with the total number of samplings being 299

k ∗ n. Secondly, we locate and select questions 300

from the record that exhibit higher variability for 301

additional inquiry. For example, in the case of a 302

multiple-choice dataset, we assign scores to dif- 303

ferent options. For a five-option multiple-choice 304

question, the range of scores allocated is from 1 305

to 5. We calculate the fuzziness F of the LLM’s 306

answer to a question: 307

F =

∑k
i (xi − x̄)

k
, (2) 308
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Figure 3: The calibration results of the baselines. The horizontal axis is the predicted confidence and the vertical
axis is the true correctness.

where xi is the score corresponding to the ith an-309

swer of the LLM, and x̄ is the average score of the k310

answers. And for the math question, the fuzziness311

is calculated by:312

F =
u

k
, (3)313

where u is the number of different answers among314

k responses. A greater fuzziness value suggests315

that the LLM produces various responses to the316

query. To obtain the model’s genuine response to317

highly ambiguous questions, we continue querying318

the LLM to obtain more answer records.319

To reduce the likelihood of probabilistic errors320

in generative models and achieve more consistent321

responses of LLMs, we perform various mutations322

to both the question stems and options before hav-323

ing the model answer an original question in the324

question set. For the question stem, we use GPT3.5-325

turbo to assist in rewriting the question stem with-326

out changing the semantics. For the options, we327

first add some distractor options (DisO) for multi-328

ple choice questions, such as "None of the above"329

or "All of the above". Besides, the options for each330

question are randomly shuffled (RS) before present-331

ing to the LLM each time. Additionally, we employ332

various types of option labels, including uppercase333

letters(A B C D...), lowercase letters (a b c d...),334

Arabic numerals (1 2 3 4...), as well as Roman nu-335

merals (i ii iii iv or I II III IV...). What’s more, we336

design multiple instruction templates for a given337

task to guide the LLM M to generate a problem-338

solving process, including a few-shot prompt tem-339

plate and a COT prompt (COTP) template (Wei 340

et al., 2022). The COT prompt is like “For the 341

given math problem, please select the correct op- 342

tion from the provided choices and give a compre- 343

hensive problem-solving process.” Here, we give a 344

question example when it is presented to the LLM, 345

which is shown in Table 1. 346

3.2.2 Answer Sampling 347

We use random sampling decoding when LLM in- 348

fers these question sets. Besides, we have inte- 349

grated the Top-k and Top-p sampling as a static so- 350

lution to capture the region of confidence to avoid 351

the unreliable tail. Combined with the prepared 352

questions, we obtain the LLM’s answer records on 353

the question set Q. 354

3.2.3 Data Format 355

To improve the confidence expression capability 356

of LLM, we employ the instruction fine-tuning 357

technology commonly used in LLM capability en- 358

hancement. In the record of responses, for the k 359

responses to each question, there are three possi- 360

ble situations: all answers are correct, some are 361

partially correct, or all are incorrect. Training the 362

model with incorrect answers and low confidence 363

levels enables the LLM to express the confidence 364

level appropriately. However, the incorrect answers 365

has the potential to cause the LLM to generate 366

wrong responses, intensifying the issue of halluci- 367

nations (Huang et al., 2023) within the LLM. For 368

the first two cases, we employ the following for- 369
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Figure 4: The detailed confidence statistics of the CuteGPT-13B and ChatGPT.

Baselines
CuteGPT-13B LLaMA2-Chat-13B

C-Eval XieZhi GSM8K CommonsenseQA
r ECE r ECE r ECE r ECE

First-Prob 0.86 23.36 0.87 15.95 0.92 23.35 0.82 22.39
SuC 0.90 24.21 0.86 19.85 0.86 26.82 0.90 21.79

LePe-random -0.17 27.86 0.33 22.63 0.05 27.09 -0.20 25.39
ChatGPT 1.00 21.57 0.99 13.08 0.99 26.76 0.98 7.46

LePe 0.89 17.43 0.98 7.84 0.95 18.77 0.98 14.74

Table 2: The quantitative results on four datasets.

mula:370

Conf =
fqi
k
, (4)371

where fqi is the number of correct answers to ques-372

tion qi. We append the confidence score output373

after the correct answer, using a structure such as374

"My confidence is [Conf ∗ 100]%". For the last375

case, we incorporate incorrect answers into the376

training dataset. However, this content is excluded377

from the loss calculation, and the confidence level378

is set to 0. Therefore, we construct the data format379

like <Question, Answer+ Confidence>. Besides,380

we design the confidence expression prompt. For381

instance, "For the following question, please pro-382

vide your answer and your confidence about this383

answer." We further use ChatGPT to help rephrase384

this prompt to increase diversity and ensure LLM385

to better understand the instruction. The instruction386

data example is shown in Table 1.387

4 Experiments388

4.1 Experiment settings389

Dataset. We evaluate the effectiveness of LePe390

on four datasets including C-Eval (Huang et al.,391

2024), XieZhi (Gu et al., 2024), GSM8K (Cobbe392

et al., 2021), and CommonsenseQA (Talmor et al.,393

2018).394

Baselines. We consider three different types of395

baseline approaches.396

First token probability (First-Prob): It uses the397

probability of the first token in the generation an-398

swer as the confidence score.399

Model t Dataset ACC ACCt DP

CuteGPT-13B 65%
C-Eval 33.76% 48.90% 21.05%

XieZhi 44.76% 73.62% 26.33%

LLaMA2-13B 55%
GSM8K 30.67% 46.3% 24.30%

CommonsenseQA 57.20% 77.41% 38.42%

Table 3: For CuteGPT-13B and LLaMA2-chat-13B, the
accuracy performance under the different acceptable
confidence thresholds on four datasets. DP represents
the proportion of data for which the confidence level
exceeds the t.

Subset clustering(SuC): The dataset is initially 400

partitioned into several subsets based on difficulty. 401

The confidence score of each subset is computed 402

through subset clustering. Ultimately, the LLM is 403

trained using supervised fine-tuning. 404

LePe-random: This is a variant of our method. 405

The key distinction lies in the utilization of random 406

confidence during the learning stage, as opposed 407

to the confidence computed by record D in our ap- 408

proach. 409

Models. We incorporate a range of widely used 410

LLMs of different scales, including CuteGPT1 and 411

LLaMA2-Chat2. CuteGPT is built upon the origi- 412

nal Llama model architecture, with expanded Chi- 413

nese vocabulary and pretraining. It is available in 414

two public versions: CuteGPT-7B and CuteGPT- 415

1https://github.com/Abbey4799/CuteGPT/
2https://huggingface.co/meta-llama/

Llama-2-13b-chat/
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13B. C-Eval and XieZhi are the Chinese datasets,416

therefore, we only employ CuteGPT on these two417

datasets. We use the 7B and 13B versions of the418

LLaMA2-Chat model on the GSM8K and Com-419

monsenseQA. At the same time, we utilize the420

prompt used by Lin (2022) to guide ChatGPT to421

give its confidence level about the generation an-422

swer.423

Metrics. To evaluate the accuracy of generated424

answers, we employ a string-matching approach to425

extract the model’s final answer and compare them426

with the ground truth. We use the following evalua-427

tion metrics to assess the model’s performance:428

Accuracy (ACC). Represents the average accuracy429

of the LLM’s responses.430

ACCt. Represents the accuracy of responses431

with confidence scores higher than the confidence432

threshold t.433

Expected Calibration Error (ECE). We partition434

the inference results into B disjoint bins based on435

the confidence scores, compute the average confi-436

dence score for each bin, and compare it with the437

average true accuracy of the answers within that438

bin. The ECE is calculated by:439

ECE =

B∑
b=1

sb
S

|acc(b)− conf(b)| , (5)440

where b is the bth bin, B is the total number of bins,441

sb is the number of questions in the bth bin, S is442

the total number of questions in the test set, acc(b)443

is the true correctness of the answers in the bth bin,444

and conf(b) is the average of the LLM confidence445

in the bth bin. The smaller the value, the better.446

Pearson Correlation Coefficient (r). We also use447

the Pearson correlation coefficient to verify the448

correlation between the correctness of the LLM’s449

responses and the confidence level after using our450

method :451

r =

∑B
b (acc(b) − acc)(conf(b) − conf)√∑B

b
(acc(b) − acc)2

√∑B
b
(conf(b) − conf)2

, (6)452

where acc is the average correctness of all ques-453

tions, and conf is the average of the LLM confi-454

dence of all questions.455

Implementation Details. Our optimizer is456

AdamW (Loshchilov and Hutter, 2017) with β1457

and β2 values of 0.9 and 0.95. During training, we458

set the initial learning rate to 1e-4, the final learning459

rate to 3e-4, the warmup phase to 300 steps, and we460

train for 700 steps. We conduct all our experiments461

using the NVIDIA A800.462

4.2 Experimental Analysis and Findings 463

To validate the efficacy of our proposed method 464

LePe, we mainly answer the following three ques- 465

tions. 466

RQ1: Can our proposed LePe make LLM be 467

calibrated? 468

We conduct experiments to analyze the accuracy of 469

LLM on the test data after fine-tuning our method. 470

The overall result is shown in Figure 3 and the 471

quantitative results are presented in Table 2 and 472

Figure 4. 473

Overall analysis. After using the LePe method, 474

we find that there is a strong correlation between 475

the model’s prediction confidence level and the 476

actual accuracy. For example, for LLaMA2-Chat- 477

13B, the Pearson correlation coefficient between 478

confidence and true correctness is 0.98 on the 479

CommonsenseQA dataset. For the LePe-random 480

method, r is only -0.20, there is almost no correla- 481

tion between LLM confidence and true correctness 482

to speak of. It also represents that our method can 483

better capture LLM’s inherent true performance 484

which helps LLM learn to express confidence. Ad- 485

ditionally, LePe empowers the LLM with better 486

calibration capability. We observe that the ECE 487

of our method is the lowest on almost all datasets. 488

At the same time, the good calibration of our pro- 489

posed method also is proved in the ACC metric. 490

For example, CuteGPT-13B expresses 80-100% 491

confidence and exhibits a true correctness rate of 492

89.19% on the XieZhi dataset. We also find for 493

ChatGPT, the correlation coefficient is high, but 494

the confidence level of its outputs is consistently 495

high. For example, it barely outputs the confidence 496

level between 0%-40% even if its answer is wrong. 497

In our experimental datasets, we observe that for 498

XieZhi and CommonsenseQA, whose inferential 499

process is relatively simple, the CuteGPT obtains a 500

high r value and a low ECE value. For instance, in 501

the XieZhi dataset, when the LLM assigns a confi- 502

dence range of 0-20%, the actual correctness rate of 503

its responses is about 25%. It indicates that the cal- 504

ibration capability becomes significantly enhanced 505

after using our proposed method. In contrast, with 506

a more complexly structured reasoning dataset like 507

GSM8K, the ECE is relatively high. This shows 508

that the complexity of the posed questions im- 509

pacts the calibration performance. 510

Parameter size. For various parameter sizes, 511

the calibration levels of LLM vary differently. 512

However, it still follows the scaling laws (Kaplan 513
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D-Train D-Test t ACC ACCt ECE

XieZhi
C-Eval

65%
33.76% 38.74% 21.73

M3KE 27.05% 29.42% 20.61

CommonsenseQA
GSM8K

55%
30.61% 33.62% 22.19

OpenBookQA 41.32% 44.83% 21.43

Table 4: Testing on the out-of-domain datasets. The
LLM is trained using LePe on D-Train and tested on
D-Test.

et al., 2020). We find both CuteGPT and LLaMA2-514

Chat demonstrate superior calibration with the515

13B parameters than the 7B parameters.516

517

RQ2: Can the confidence level of the LLM518

output guide us to adopt the answer?519

For an LLM, we identify an acceptable confidence520

threshold through a comprehensive analysis of the521

confidence levels, the actual rate of correct re-522

sponses, and the distribution of questions among523

different confidence intervals. The confidence524

threshold and the results are shown in Table 3. The525

acceptable confidence threshold serves as a cru-526

cial guideline in practical applications. If the527

generated confidence level of an LLM exceeds the528

set confidence threshold, we consider adopting its529

response. Otherwise, it means that the model is530

uncertain in answering the question, and we can531

consider using a larger language model to answer532

this question. In other words, this signal helps533

us discern the reliability of LLM’s response. For534

example, for the CuteGPT-13B, we set the accept-535

able confidence threshold is 65%. On the XieZhi536

dataset, 26.33% of the questions displayed answer537

confidence levels surpassing the confidence thresh-538

old, and the corresponding correct response rate539

of 73.62%, significantly surpassing the overall cor-540

rect rate of 44.76% on the whole dataset. Con-541

versely, for ChatGPT, which is directly guided by542

the prompt to output confidence, the confidence is543

extremely high, and nearly no low-confidence re-544

sponses. Hence, it is challenging for us to evaluate545

the answer based on the provided confidence levels.546

547

RQ3: Can the LePe generalize to out-of-548

domain data?549

To assess the generalizability of our proposed550

method, we use CuteGPT-13B to train with LePe551

on XieZhi dataset and evaluate its confidence ex-552

pression ability on C-Eval and M3KE (Liu et al.,553

2023). Besides, we use LLaMA2-Chat-13B trained 554

on CommonsenseQA and test its confidence expres- 555

sion ability on GSM8K and OpenBookQA (Mi- 556

haylov et al., 2018). The result is shown in Table 557

4. 558

The calibration capability using LePe re- 559

mains effective when tested with out-of-domain 560

datasets. For instance, after learning from the an- 561

swer records in XieZhi, CuteGPT-13B still per- 562

forms a good confidence expression on the C-Eval. 563

When the model’s output confidence score exceeds 564

the acceptable confidence threshold, the accuracy 565

rate reaches 38.74%, surpassing the overall accu- 566

racy rate of 33.76%. Additionally, GSM8K and 567

CommonsenseQA are two completely different 568

tasks, we find our method is still effective even 569

when the test task varies significantly from the train- 570

ing task. 571

5 Conclusion 572

In this paper, we present a method of learning from 573

past experience to enhance the LLMs’ capability 574

for confidence expression, which enables the LLM 575

to provide an answer and corresponding confidence. 576

We first design a general pipeline to obtain the 577

actual performance of the LLM on the problem. 578

Further, we utilize the performance records to con- 579

struct the dataset for instruction fine-tuning so that 580

the LLM learns to express confidence in the gen- 581

erated answers. We conduct experiments on two 582

open-source language LLMs to demonstrate the 583

effectiveness of our method. The consistent experi- 584

mental results across multiple tasks affirm that our 585

method endows the LLM with confidence expres- 586

sion capability. 587

6 Limitations 588

We mainly evaluate LePe’s performance in 589

question-and-answer tasks and do not delve into 590

its ability on open questions. Moreover, as men- 591

tioned earlier, using the confidence expressed by 592

the model, we can identify the model’s weaknesses 593

and further improve them in a targeted manner, 594

allowing LLM to continue to evolve. In this pa- 595

per, we propose a general method to enhance the 596

model’s ability to express confidence, but we do 597

not discuss the impact of ability on the continuous 598

learning of large language models. 599
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