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ABSTRACT

Particulate matter (PM) is a complex mix of organic and inorganic compounds of
distinct sources, with a range of physical and chemical properties, which might
have a different harmful effects to health. Disentangling total ambient PM con-
centration into its sources is key for developing strategies to reduce PM through
targeted actions. Current methods to identify sources of particulate pollution typ-
ically require a priori specification of the number of sources and do not include
information on covariates in the source allocations. In this work, we develop a
comprehensive approach for source apportionment of airborne particles by using
machine learning probabilistic models. We proposed a Bayesian nonparametric
approach through a Dirichlet process mixture models that enables the better un-
derstanding of hidden structures in multi-pollutants and allow to accommodate
complex patterns of temporal dependencies as well as for concomitant processes
(e.g. meteorology) in the prediction of the source contributions. Then we evaluate
the health effects of the sources. To illustrate our model framework, we applied
it to the PM10 chemical composition data measured at an urban background site
(North Kensington) in London, UK, from 2011 to 2012. The health data will be
related to cardio-respiratory hospital admission.

1 INTRODUCTION

Atmospheric particulate matter (PM) is a complex mixture of chemically and physically diverse
substances, from anthropogenic and natural sources. These source contributions, in combination
with other factors, such as meteorological conditions and chemical transformations, determine the
pollution concentration in air and the variation in the physio-chemical compounds across space
and time. It is hypothesized that mixture of particles from different sources can have different
toxicity and health effects (e.g., Dai et al., 2014; Park et al., 2014; Pirani et al., 2015; Samoli et al.,
2016). This makes source apportionment (SA) of pollutants all the more important in order for air
quality managers to fully understand the potential health outcomes of pollutant mixtures. SA aims
at deriving information about ambient air pollution sources based on data registered at monitoring
sites, therefore allowing to quantify how much each individual source contributes to the pollution
concentrations in the air (Krall & Chang, 2019).

Traditionally methods for SA problem are dominates by two approaches (Viana et al., 2008): source-
oriented deterministic models and receptor models. The former relies on the knowledge of emissions
and physical and chemical processes of dispersion to predict air quality; the latter is based on sta-
tistical procedures for identifying and quantifying the sources of pollutants on the basis of mixture
of chemicals measured at receptor sites. Within receptor model approaches, most techniques share
a strong assumption that the source contributions or pollution mixtures are independent over time.
However, this may be not appropriate and temporal dependence can exist, driven by meteorology
or other time-varying factors. Therefore, approaches have been proposed for identifying distinct air
pollutant mixtures, mainly framed in clustering-based solutions, leading to the characterization of
groups of time points with similar pollutant concentration profiles, while suggesting major source
contributions based on the presence of specific markers (e.g., Adame et al., 2012; Austin et al., 2012;
Zanobetti et al., 2014; Pirani et al., 2015; Alahamade et al., 2020; Chen et al., 2015; Bellinger et al.,
2017; Bousiotis et al., 2021). Krall & Chang (2019) suggest as possible solution to the issue, con-
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sisting in the incorporation into the model of temporally-varying variables, such as meteorological
factors.
In this conference, my talk will focus on a model-based clustering approach, framed in a nonpara-
metric Bayesian perspective, a Dirichlet process (DP; (Ferguson, 1973)) over the latent generating
function, encoding measurement error, and temporal dependencies via the inclusion of wind field
(i.e., wind speed and direction). Here, we refer to the class of dependent DP (DDP; MacEachern
(1999; 2000)), recently reviewed by Quintana et al. (2020), and we focus on the kernel stick breaking
process (KSBP), which was firstly formulated by Dunson & Park (2008) and used in spatial setting
by Reich & Fuentes (2007).
We apply our proposed approach for apportioning compositional metrics of particulate with aero-
dynamic diameter smaller than 10µm (PM10) in Greater London’s urban atmosphere for the period
2011-2012. This dataset was previously apportioned by Beddows et al. (2015) using PMF tool (i.e.,
PMF-5) provided by the Environmental Protection Agency (US). Beddows and colleagues’ study,
however, failed to resolve a number of diffuse urban sources including some aspects of the traffic
mix and domestic wood burning. To fill the methodological gaps in source characterisation and
health effect evaluation, We will explore joint models, which would allow to extend the SA model
to evaluate the link between sources and health outcomes.

2 METHODS

2.1 DATA

We use daily (24 hours) filter samples of PM10 composition taken over a two-year period, 2011-
2012, collected at a monitoring station (North Kensington) in central London, UK. A total of 23
metrics were recorded, covering water-soluble inorganic ions such as sulfate (SO2−

4 ), nitrate (NO−
3 ),

chloride (CI− and ammonium (NH+
4 ), elemental and black carbon (EC and BC, respectively), wood

burning (WOD), metals or trace elements (Al, Ba, Ca, Cu, Fe, K, Mn, Mo, Na, Ni, Pb, Sb, Ti, V,
Zn, Mg). Wind data were imported from the R package openair (Carslaw & Ropkins, 2012). The
health data related to cardio-respiratory hospital admission are available from the Hospital Episode
Statistics registry within the Small Area Health Statistics Unit (SAHSU) at Imperial College London.

2.2 MODEL

In this section we briefly introduce the popular DP mixture model (Neal, 2000), then we describe the
extension to the DDP (Quintana et al., 2020) as specified by a kernel stick-breaking process (Dunson
& Park, 2008; Reich & Fuentes, 2007). Successively, we show how to apply it for clustering time-
series of outdoor chemical species of particles into source profiles, while accounting for temporally-
resolved meteorological conditions such as wind field.

2.2.1 GENERAL CHARACTERIZATION OF THE KERNEL DIRICHLET PROCESS

We start with some notation. Consider a set of n observations made at T time points, Xt = {Xti :
t = 1, 2, . . . , T}, i = 1, . . . , n, being independently drown from some unknown distribution, mod-
elled as a mixture of distributions of the form f(θt), so that Xt|θt ∼ f(θt).
Also, let F be an unknown mixing distribution over the unknown parameters, so that θt|F

iid∼ F
(where iid stands for independent and identically distributed). The prior for F is taken to be a DP
with non-negative precision (or concentration) parameter α and a continuous distribution function
F0 called as the base (or centering) measure, denoted as F |α, F ∼ DP(αF0). The random measure
F is discrete with probability one, and this is made explicit by the stick-breaking representation of
the DP provided by Sethuraman (1994):

F =

∞∑
j=1

wjδ(θ
∗
j ),

w1 = V1 for j = 1 and wj = Vj

j−1∏
k=1

(1− Vk), for j ≥ 2,

Vj
iid∼Beta(1, α), θ∗

j
iid∼ F0.

(1)
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where δ(θ∗) denotes a Dirac measure (point mass) at θ∗. For each component j there is a probability
weight wj . These mixing weights w1, w2, . . . , and they satisfies wj ∈ (0, 1) and

∑∞
j=1 = 1. The

name of this construction derives by an analogy given by breaking pieces off from a stick of unit
length, where the breakpoints (V1, V2, . . . ) are randomly sampled from a Beta distribution. The
mixture probabilities break the stick into a potentially infinite number of pieces, such that they sum
to the unity. For this representation, the base measure F0 defines the mean of the process, since
E(F ) = F0 and it can be considered as the prior guess (Antoniak, 1974); while the α parameter
can be understood as an inverse variance (Teh, 2010), so the larger α is, the smaller the variance
(broadly speaking, α controls the number of components of the mixture).
Although flexible, this mixture modelling approach does not explicitly exploits the order information
contained in the data, and assumes that the observations are exchangeable. This assumption usually
leads to a easy tractable model form for the posterior computation, however, it may degrade the
clustering performance in time-series studies as the temporal order of the data is not accounted for.
The same problem applies for data characterised by spatial dependence. One solution suggested in
literature to address this issue, is given by a DDP (MacEachern, 1999), which general formulation
allows the weights and/or the locations in the stick-breaking construction of the DP in (1) to depend
on covariates.
We consider wind speed and direction as our main covariates. The covariates influence only the first
K − 1 mixing weights as the K th is set to take on the remaining probability up to 1. Therefore, the
structure in (1) is modified as follows:

Ft =

∞∑
k=1

wk,tδθk

wk,t = vk,t
∏
l<k

(1− vl,t), k = 2, . . . ,K

vk,t =wk,t · ηk,t, w1,t = v1,t vK,t = 1

ηk,t ∼ Beta(1, α), k = 1, . . . ,K − 1

θk
iid∼ F0

(2)

where wk,t is a kernel that incorporates weights dependent on wind speed and wind direction. When
wk,t = 1 the model becomes a standard time varying DP without time dependency. For computa-
tional feasibility, we implement the model with finite approximation to the infinite stick-breaking
process (2), that is k = 1, 2, . . . ,K.

2.2.2 CHARACTERIZATION OF PARTICLE SOURCE PROFILES VIA WIND KERNEL
STICK-BREAKING DIRICHLET PROCESS(KSBDP)

Pollutant model: A Gaussian Mixture model
Under this setting for each cluster k, the cluster specific parameters are given by Θk. We consider
Xpt as a measurement of component p (p = 1, . . . , P ) on day t(t = 1, . . . , n). We assumed a
multivariate normal distribution for the P covariates:

p(Xt|zt,Θk,Θ0) = f(Xt|mzt ,Θk) = (2π)−
P
2 |Σzt |−

1
2 exp

[
− 1

2
(Xt −mzt)

TΣ−1
k (Xt −mzt)

]
,

zt ∼ Discrete(wt,k) (3)

where Xt = (Xt1, . . . , XtP )
T represents a daily covariate profile of air pollutants, the cluster spe-

cific parameters are given by Θk = (mk,Σk) , where mk is a mean vector and Σk is a covari-
ance matrix. There are no additional global parameters Θ0. We choose mk ∼ N(m0,Σ0) and
Σk ∼ InvWishart(R0, κ0) (for each k) for our prior.

Health model: Count response
Let yt be the observed number of health outcome for the day t, and is is Poisson distributed with
mean λt. Following (Pirani et al., 2015) , we define ut = (ut1, . . . , utH)T to be a B-spline basis
matrix for natural cubic splines of temperature, relative humidity and calendar time, we have
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yt ∼ Pois(λt), λt = Etexp{µt}

µt = β0 + ϕk +

H∑
h=1

fh(uth, dfh) +Dummy.DayWeek (4)

The parameter ϕk represents the log relative risk for the outcome of interest associated with the kth
cluster, were each cluster includes days with similar multipollutant profile. The functions f(., dfh)
denote smooth functions of confounding factors, with smoothing parameters dfh. We use this ker-
nel to incorporate wind speed in m/s ({wst}) and wind direction in degrees clockwise from north
({wdt}) both aggregated at the same daily time steps as the observed data. Explicitly,

wk,t = exp

((
ν1,k − wst

)2
2 · h1,k

)
· exp

(
sin ((ν2,k − wdt) · π/360)2

2 · h2,k

)
, (5)

where ν1,k and ν2,k are the kernel modes (knots) for the two wind-related covariates, and h1,k, h2,k

the corresponding bandwidths, which control the spread for source k both in angular and speed
direction.

3 PRELIMINARY RESULTS

Six cluster solutions are derived from the SBDP model, that represent corresponding aerosol types
(see Fig.1). Our preliminary results are in line with Beddows et al. (2015), which used positive
matrix factorization for apportioning PM in London. The study of Beddows et al. (2015), however,
failed to resolve a number of diffuse urban sources including some aspects linked to fireworks.
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Figure 1: Clusters outputted from the kernel stick-breaking process run on PM10 components

Our analysis on PM compositional data using the SBDP shows a better characterization of this
diffuse urban profile defined by contributions from both wood-smoke and road traffic, since these
are ground-level sources which are affected by meteorology. The link with health outcomes is
currently on going.
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