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ABSTRACT

Biological neural networks are shaped both by evolution across generations and
by individual learning within an organism’s lifetime, whereas standard artificial
neural networks undergo a single, large training procedure without inherited con-
straints. In this preliminary work, we propose a framework that incorporates this
crucial generational dimension—an “outer loop” of evolution that shapes the “in-
ner loop” of learning—so that artificial networks better mirror the effects of evo-
lution and individual learning in biological organisms. Focusing on language, we
train a model that inherits a “model connectome” from the outer evolution loop be-
fore exposing it to a developmental-scale corpus of 100M tokens. Compared with
two closely matched control models, we show that the connectome model per-
forms better or on par on natural language processing tasks as well as alignment
to human behavior and brain data. These findings suggest that a model connec-
tome serves as an efficient prior for learning in low-data regimes – narrowing the
gap between single-generation artificial models and biologically evolved neural
networks.

1 INTRODUCTION

How does the brain quickly and robustly learn to perform a wide array of tasks? A lot of research
compares the representations from artificial and biological neural networks to broadly answer this
question (1; 2; 3). However, artificial and biological networks differ fundamentally across several
dimensions, including architecture, input-output constraints, and–critically–their learning processes
(e.g., (4)). A key distinction lies in how learning takes place over time. In biological systems,
learning consists of two nested “training loops”: The evolutionary outer loop takes place across gen-
erations, where information needs to be transmitted in a low-bandwidth, compressed form–such as
wiring rules and circuit priors (5). The inner learning loop takes place during the lifetime of a single
individual, where relatively little data is used to flexibly learn complex behaviors and generalize
to novel settings (6; 7). In contrast, standard artificial neural networks rely on a single large-scale
training phase with a randomly initialized model using a generic architecture (Transformers; (8)),
requiring vast amounts of data (9; 10). In this early stage work, we take a step toward bridging this
gap between artificial and biological systems by proposing a generational learning framework for
neural networks, followed by evaluation of task performance and alignment to human behavior and
brain responses.

Our paper focuses on the domain of language, motivated by the massive engineering success of
language-trained models (11; 12; 13; 14), as well as research that demonstrates alignment of lan-
guage model representations with human behavior and neural responses during language processing
(15; 16; 17; 18; 19).

Our problem formulation consists of two phases: an evolutionary outer loop, where the model has
access to a large dataset of super-human scale, and a lifetime learning phase, where the model has
to learn efficiently on a smaller, developmental-scale dataset (Figure 1A). Crucially, any learning
acquired from the large dataset must be compressed into a connectome, a sparse binary mask, that
is transmitted across “model generations”. Specifically, across six generations of the evolutionary
large-dataset loop–where 20% of the weights are pruned (i.e., zeroed out) in each generation–we

1Code available at: https://github.com/TuKoResearch/GenerationalConnectomes
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derive a connectome that ultimately retains only 25% of the initial model weights. Additionally, the
remaining weights are set to a fixed positive or negative constant after each generation, further re-
ducing the information capacity of the connectome. This final connectome is then used to initialize
a model, denoted as Connectome, which is trained on the smaller, developmental-scale dataset. To
evaluate its performance, we compare it to two control models trained on the small dataset: i) Ran-
domConnectome, a model with a randomly sampled connectome that also retains 25% of the initial
weights, and ii) NoConnectome, an unpruned, fully-connected model with uniform initialization
(the “standard choice” in machine learning) (Figure 1A).

Our core contribution is demonstrating that distilling information from a large dataset into a sparse
connectome for initialization enables a model to generalize more effectively in low-data regimes.
The resulting connectome model performs better or on par with control models in natural language
processing (NLP) tasks and aligns more closely with human behavior and brain responses.

Related work in machine learning has explored compressing neural network weights by employing
lower-bit representations (20), enforcing structural sparsity (21), and routing computations through
uniform sub-modules as in mixtures of experts (22). Another line of research has shown that sparsely
connected sub-networks within a larger network, when trained from their original initialization,
can match the performance of a full image-trained network (23). Subsequent studies have refined
this idea through iterative pruning over multiple generations (24), extended it to language models
(25; 26), shown its benefits for transfer learning (27), proposed improved pruning policies (28),
and demonstrated that sub-networks can be defined using binary masks alone (29). We consolidate
these ideas under the notion of a model connectome — a sparse binary wiring diagram composed
of excitatory and inhibitory connections (i.e., weights with a constant positive or negative sign)
that is refined over successive generations. The connectome defines a model’s initialization. While
previous work has focused on achieving loss equivalence between pruned and unpruned models on
the same training dataset (with the goal of reducing model size), our study investigates a pruned
model’s (i.e., initialized with a connectome) ability to learn effectively from a much smaller dataset.
Hence, in contrast to prior work, our approach highlights the potential of sparse initialization to
support learning in data-limited regimes.

One line of related work within “NeuroAI” (3) has explored directly optimizing the compression of a
model’s weights to achieve high innate (zero-shot) performance for vision tasks (30; 31). In contrast,
we do not optimize for compression–instead, our connectome evolves over generations through
“standard” task optimization. In practice, our resulting models converge faster during training, rather
than performing well at initialization. Another direction has pruned the embedding space of standard
pre-trained models to identify model features that are most important for alignment with human
behavior or neural data (32; 33). Unlike these approaches, we prune our model based solely on
next-word prediction performance, assessing human alignment only after generational pruning. To
our knowledge, the behavioral and brain alignment of generationally pruned models (here, denoted
as “Connectome” models) has not previously been studied.

2 METHODS

2.1 MODEL DEVELOPMENT

2.1.1 MODEL ARCHITECTURE

We investigate how language models in the GPT-2 family (11) can transmit information through
initialization across model generations. We utilize the standard GPT-2 configurations used in modern
AI approaches (see Appendix A.1). In our main experiments, we train models with 124M weights
(see Section 3.1), and, in an exploratory analysis we scale up to 417M weights (see Section 3.1.1). To
ensure robustness of our results, all analyses are conducted with four seeds per model instantiation.

2.1.2 TRAINING DATASETS

Our framework leverages two datasets: A small (S) dataset, approximating a child’s language ex-
posure up to age 10 (34; 9; 10) (100M tokens of FineWeb (35), ∼75M words), and a much larger
(L) dataset (4B tokens of FineWeb (35), ∼3B words) containing roughly the amount of tokens
that are optimal for training a standard 124M-parameter GPT model (11) (see A.2 for details). We
explore how the L dataset (orders of magnitude larger than S) can transmit information through
model initialization (“outer” evolutionary loop), denoted as the model connectome, across succes-
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sive generations of large language models (LLMs), which are then ultimately trained on the smaller
S dataset (“inner” learning loop).

2.1.3 GENERATIONAL OUTER LOOP: WIRING UP THE CONNECTOME

We define the model connectome as a special form of initialization: a binary mask of weights
(“synapses”) connecting LLM units between layers. The connectome has the following two prop-
erties: i) sparsity, where most synapses are zeroed out (effectively reducing the size of the final
model), and ii) binary initialization, assigning the remaining synapses a binary initialization value;
a constant positive (excitatory) or a constant negative (inhibitory).

To derive the connectome, we explore the Iterative Pruning approach (23) on the L dataset. We
begin with a fully dense normally initialized model with standard parameters (µ = 0, σ = 0.02)
(11), f0

θ , and train it on L for 7,000 iterations. After training, we take the final state of this model,
f0fin
θ , and prune (i.e., zero out) 20% of the weights with lowest absolute magnitude, yielding the

next model generation’s initialization, f1
θ

1. In addition to pruning, f1
θ retains only the sign of the

unpruned weights in f0fin
θ , initializing the weights of the subsequent model generation as 0.0, −0.02

or +0.02 (29) (where 0.02 is the standard deviation of the random initialization of the initial model
parameters). We then train f1

θ for another 7, 000 iterations, only optimizing the remaining 80%
unpruned binary initialized weights. This prune-and-retrain cycle is repeated for six generations,
ultimately yielding f5fin

θ , a model with 25% of the original weights retained from the original
model, f0

θ . The final f5
θ connectome serves as a highly compressed wiring diagram (Appendix A.3).

For each training generation, we use a batch size of 512 and a learning rate schedule consisting of
250 linear warm-up steps, 5,000 hold steps at 0.0018 followed by 1,750 steps of linear decay to zero
as in (36). We use the AdamW optimizer and weight decay of 0.1.

2.1.4 DEVELOPMENTAL INNER LOOP: LEARNING LANGUAGE REPRESENTATIONS

We take the final connectome, f5
θ , and use it to initialize a new sparse model, which we train on

the smaller dataset S (just 100M tokens, different from the L dataset). This model is trained for
2,000 iterations (250 warm-up steps, 1,750 decay steps) using the same batch size, maximum learn-
ing rate, weight decay, and optimizer class as in the generational loop. We denote this model as
Connectome. We train two control models, also on S, to have a set of minimally differing control
models: i) RandomConnectome, a model with a similar initialization mask to Connectome, except
that the sparsity and the positive/negative weights are randomly sampled, and ii) NoConnectome, a
normally initialized unpruned dense model with (µ = 0, σ = 0.02).

2.2 MODEL EVALUATION

We evaluate models on NLP tasks (Section 3.1), behavioral alignment (Section 3.2), and neural
alignment (Section 3.2), and the respective sections contain brief methods. For detailed methods,
see Appendix A.4.

3 RESULTS

3.1 THE CONNECTOME MODEL OUTPERFORMS CONTROL MODELS ON NLP BENCHMARKS

We evaluate our models on the FineWeb validation loss—a popular LLM next-word prediction
benchmark (35). As shown in Figure 1B (panel i), the Connectome model strongly outperforms
the standard NoConnectome baseline when both are trained on the small dataset S, despite Con-
nectome using only 25% of the weights (purple vs. green line). To contextualize the Connectome
model’s performance, we compare it to an upper bound: a dense model (similarly 124M weights)
trained on the full large dataset (L) (dotted horizontal line in Figure 1B). Among the three models
trained on the small dataset, Connectome comes closest to this upper bound. Finally, the Ran-
domConnectome model performs substantially worse than both Connectome and NoConnectome,
indicating that the iterative pruning procedure is carving out an efficient subspace for learning lan-
guage. Next, we evaluate our models on two standard NLP benchmarks; HellaSwag (37), a task

1Note that we performed pruning in a layer-wise fashion, as pilot experiment ablations showed that global
pruning led to significantly worse performance.
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B   Performance on NLP tasks C  Behavioral alignment D  Brain alignment
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Figure 1: A. Conceptual overview, see description in Sections 1 and 2. B. Performance evaluation
on standard NLP benchmarks: FineWeb validation loss (panel i), HellaSwag and MMLU (panel
ii). C. Alignment with human reading times on naturalistic stories. D. Model-brain alignment,
flexibly mapping all units within each model layer to brain responses (panel i) or through a more
stringent procedure which localizes language-selective model units (panel ii). To ensure robustness
of our results, all analyses are conducted with four seeds per model instantiation, and plots report
the standard error of the mean (SE) across seeds.

that requires selecting the most plausible continuation for sentences concerning everyday scenarios,
and MMLU (38), a multiple-choice benchmark assessing LLMs’ knowledge and reasoning on var-
ious topics. In line with the superior performance of Connectome on the FineWeb validation loss
(Figure 1B, panel i), Connectome also outperforms RandomConnectome and NoConnectome on
the HellaSwag and MMLU (Figure 1B, panel ii), highlighting its strong performance as a language
model beyond simply next-word prediction.

3.1.1 SCALING UP: EXPLORATORY ANALYSIS

So far (Figure 1B) we have compared three models (Connectome, RandomConnectome, and No-
Connectome)–each with 124M weights (with Connectome and RandomConnectome having only
25% active weights, i.e., 31M), and found that the Connectome model consistently outperforms the
two control models. But what happens if we take this a step further and scale up? In an exploratory
analysis, we initialized a model with 417M weights and pruned it down to 109M active weights over
a six-generation procedure similar to that of Connectome. As expected, the 417M pruned model
(Figure 1B, blue line) outperforms the 124M Connectome model (purple line). Interestingly, the
417M pruned model obtains a loss comparable to the 124M dense model trained on the large dataset
(L) (Figure 1B, dotted line), despite the 417M pruned model being trained only on the small dataset
(S). These findings suggest that a large pruned model–only trained on the small dataset–matches the
performance of a small dense model trained on the large dataset, underscoring the data efficiency of
the connectome approach. More broadly, these results demonstrate the power of efficient model ini-
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tialization through iterative pruning, and open the door for future work scaling to even larger models
and evaluating on a larger array of tasks.

3.2 THE CONNECTOME MODEL ALIGNS BETTER OR ON PAR WITH HUMAN READING TIMES
AND BRAIN RESPONSES

Behavioral alignment: Building on prior work demonstrating that per-word surprisal estimates
from LLMs correlate with self-paced reading times (39; 40; 41) (a measure of language process-
ing difficulty, (42; 43)), we tested our models against a large dataset of reading times from 179
participants reading 5-10 naturalistic stories (44). We tested the behavioral alignment between the
models’ estimated per-word surprisal and the reading time obtained from human participants, as
done in prior work (45; 46). Based on Figure 1C, we note two main findings. First, we replicate
the finding that for larger LLMs trained on large amounts of data, alignment with reading times de-
grades (47; 48; 49; 50; 41)–here, indicated by a peak behavioral alignment around iteration 250. In
line with this finding, the RandomConnectome model, remaining in a high-loss regime, maintains
a surprisingly high prediction of reading times. Second, we note that the Connectome model has
the highest peak behavioral alignment with human reading times compared to the control models–
although this result should be interpreted in light of the inverse correlation of training data amount
and fit to human reading times.

Brain alignment: Building on prior work showing that internal LLM representations can predict
human brain responses (17; 18; 19; 2), we here evaluated our models’ brain alignment using a pub-
lished benchmark consisting of responses from the human language network (51) collected from
five participants reading 1,000 linguistically diverse sentences (52) (see additional details in Ap-
pendix A.4). First, we followed the alignment procedure of Tuckute et al. (52) (Figure 1D, panel
i) fitting a linear encoding model that flexibly maps all units within each LLM layer to brain re-
sponses. The Connectome model consistently outperforms the RandomConnectome model while
the NoConnectome model is more comparable. The Connectome model achieves r = 0.32 for
layer 10 (the noise ceiling for this dataset is r = 0.56, i.e., 57%). Finally, we turn to a more strin-
gent model-brain alignment procedure by focusing on a subset of LLM units that are intended to
functionally correspond to the language network in the human brain. To identify these units, we
adopt a well-established approach in neuroscience: selecting units that respond more strongly to
well-formed sentences than to lists of non-words (51). Following AlKhamissi et al. (53) (see details
and validation of the approach in this paper), we identify the top 1% most language-selective units
across all layers of each model (yielding 92 units) and apply the same voxelwise encoding proce-
dure used in our previous analyses. This localization step enables a more principled comparison to
brain data, with the aim of targeting functionally similar units in models and brains. Although over-
all performance drops and there is variability across model seeds, the Connectome model is still
more or at least as brain-aligned as the control models (Figure 1D, panel ii). Similar patterns hold
when expanding to the top 10% language-selective units (Appendix A.5), with overall higher align-
ment. In conclusion, the Connectome model shows better or on par alignment with brain responses
during language processing, highlighting the biological plausibility of our generational modeling
framework.

4 LIMITATIONS & DISCUSSION

In this paper, we show that a generational learning framework–transmitting sparse connections
across model generations–provides an effective model initialization for learning in low-data regimes.
Our Connectome model outperforms control models on NLP tasks and achieves comparable or bet-
ter alignment with human behavior and brain responses during language processing.

One way to interpret the success of model connectomes is through the lens of model distillation
research (54; 55), which suggests that large models effectively perform a parallel search over many
useful sub-networks during training. The lottery ticket hypothesis (23; 29) builds on this idea,
demonstrating that these performant sub-networks can be efficiently extracted from the final model
state. We further constrain the problem to a setting where only a binary connectome—capturing the
presence and sign of connections—is inherited from an ancestor model trained on a large dataset, and
show that this highly compressed structure serves as powerful initializations for efficient learning.
This aligns with prior work that has demonstrated the relative importance of sign over magnitude
of weight initializations for downstream task performance (29). Alternatively, the model connec-
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tome can be thought of as a graph, where the outer loop training procedure identifies several good
trajectories through which information flows across the model (56; 57). Because these pathways
contribute strongly to the model’s output, focusing optimization solely on them allows for efficient
learning from limited data.

Limitations of this work exist. We by no means claim that our framework mimics the exact process
of evolution: Biological organisms do not begin with a dense initialization that “prunes away” less
important information over generations. Nevertheless, our framework demonstrates that a highly
compressed connectome can transmit sufficient information across generations to evolve a strong
initialization, without explicitly optimizing for compression. Another limitation is a limited set
of alignment metrics investigated here; future work will explore additional behavioral and brain
benchmarks for a more comprehensive view.

Future work includes investigating model behavior across checkpoints in both the outer and inner
training loops, scaling up the models (for which we have demonstrated promising results, see Sec-
tion 3.1.1), and establishing the relationship between the amount of data transmitted through the
connectome and performance on various tasks. Additionally, machine learning interpretability tech-
niques (e.g., (58; 59)) could be applied on the connectome to explain specific pruned circuits, and
potentially relating them to hypothesized neural circuits.
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A APPENDIX

A.1 MODEL ARCHITECTURE

We utilize the upgraded GPT-2 architecture which has become the standard baseline implementation
for this model family (36). It differs from the original GPT-2 paper (11) in three ways: firstly it uses
RMSNorm without trained parameters (60), secondly it removes all bias parameters such that the
model consists solely of 2D weight matrices, and thirdly it uses RoPE positional embedding (61)
instead of learned positional embeddings. These architectural design choices were fixed before
evaluating our generational pruning approach.

A.2 DATASET DETAILS

We utilize the first shard of the FineWeb (35) dataset - consisting of 100M tokens which make up
74,248,643 words - for the small dataset S, and the subsequent 40 shards - consisting of 4B tokens
which make up 2,969,847,300 words - for the large dataset L.

A.3 CONNECTOME COMPRESSION

Our generational pruning framework iteratively zeros out 20% of the weights with the lowest mag-
nitudes at each generation. After six generations (see Section 2, the final f5

θ connectome is a highly
compressed representation consisting of just 124M ternary values where 25% are non-zero. The
Shannon entropy of this connectome can be computed as:

H = − [0.75 log2(0.75) + 0.125 log2(0.125) + 0.125 log2(0.125)] = 1.06

which means that encoding 1.06 bits of information per weight would result in a final compressed
size of roughly 124M ∗ 1.6 bits = 131.44 Mb = 16MB. This corresponds to approximately a 15x
compression over naı̈vely storing the dense model weights (248MB at 16 bits per weight), and an
over 500x compression of the entire dataset L (8GB at 16 bits per token).

A.4 MODEL EVALUATION DETAILED METHODS

A.4.1 NATURAL LANGUAGE PROCESSING TASKS

We evaluate our models on three standard NLP benchmarks: FineWeb validation loss (35), a diverse
corpus of web-based text spanning various online content, HellaSwag (37), a benchmark that tests
for commonsense reasoning in scenario completion, and MMLU (38), a multiple choice benchmark
which tests for multi-domain knowledge and reasoning.
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A.4.2 BEHAVIORAL ALIGNMENT

We analyze the self-paced reading dataset from Futrell et al. (2021) (44) (through Brain-Score (62))
consisting of word-by-word reading times from 179 participants across 5-10 naturalistic stories. The
same stories are processed by our language models, and behavioral alignment is measured using the
Pearson correlation between LLM per-word perplexity (summing sub-token perplexities for words
that are split into multiple tokens per (63)) and human reading times.

A.4.3 BRAIN ALIGNMENT

We analyze fMRI data from Tuckute et al. (2024) (52) consisting of brain responses from 5 partic-
ipants during a sentence-reading experiment. Participants read 1,000 6-word-long semantically and
stylistically diverse sentences, and we investigated responses in the left-hemisphere language net-
work (51), averaged across 5 participants. Following (52), brain alignment is measured by predicting
brain responses using a ridge regression encoding model and computing the Pearson correlation be-
tween predicted and actual responses via 5-fold cross-validation.

A.5 BRAIN ALIGNMENT USING TOP 10% LANGUAGE-SELECTIVE UNITS
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Figure 2: In the main text, we present model-brain alignment results using the top 1% language-
selective units, per prior work (53) (Figure 1B, panel ii). However, in neuroscience, the top 10%
units are typically used (51), and in this supplement we select the top 10% language-selective units
in our models. The pattern is the same as in the top 1% case (Figure 1D, panel ii), but the overall
correlations are higher. The error bars show show the standard error of the mean (SE) across model
seeds.
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