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Abstract

Existing algorithms for ensuring fairness in AI use a single-shot training strategy, where an AI model 1

is trained on an annotated training dataset with sensitive attributes and then fielded for utilization. 2

This training strategy is effective in problems with stationary distributions, where both the training 3

and testing data are drawn from the same distribution. However, it is vulnerable with respect to 4

distributional shifts in the input space that may occur after the initial training phase. As a result, 5

the time-dependent nature of data can introduce biases and performance degradation into the model 6

predictions. Model retraining from scratch using a new annotated dataset is a naive solution that is 7

expensive and time-consuming. We develop an algorithm to adapt a fair model to remain fair and 8

generalizable under domain shift using solely new unannotated data points. We recast this learning 9

setting as an unsupervised domain adaptation (UDA) problem. Our algorithm is based on updating 10

the model such that the internal representation of data remains unbiased despite distributional shifts 11

in the input space. We provide empirical validation on three common fairness datasets to show that 12

the challenge exists in practical setting and to demonstrate the effectiveness of our algorithm. 13

1 Introduction 14

AI has been extensively utilized in automating heavy and electric industry tasks such as logistics, transportation, retail, 15

e-commerce, entertainment and gaming. This growing reliance on AI, particularly deep learning, owes much to its 16

ability to handle vast datasets and bypass tedious feature engineering. This success has spurred the application of deep 17

learning approaches in critical decision-making areas such as loan approvals, parole verdicts, healthcare, and police 18

assignments Chouldechova & Roth (2018). However, these methods often focus on maximizing some performance 19

metric and compared to fundamental statistical approaches, lack explainability in their decisions. Based on inherent 20

biases present in the data, this can translate into features such as race, sex or age influencing outcomes. 21

It is well documented that some of the best AI models are biased against certain racial or gender sub-groups Eidinger 22

et al. (2014); Zhang et al. (2017); Cirillo et al. (2020) and can produce adverse outcomes for disadvantaged groups. 23

Hence, fairness is a major concern for using AI in societal decision-making processes. This concern is particularly 24

important in deep learning because data-driven learning can unintentionally lead to training unfair models due to the 25

inherent biases that exist in annotating training datasets by human workers or skewed data distributions conditioned 26

on certain sensitive attributes Buolamwini & Gebru (2018). As a result, training models by simply minimizing the 27

empirical error on relevant datasets may add spurious correlations between majority subgroup features and positive 28

outcomes for them. This unwanted outcome happens because statistical learning primarily discovers correlations 29

rather than causation. Thus, the decision boundary of AI models may be informed by group-specific characteristics 30

that are irrelevant to the decision task Dua & Graff (2017). For example, since the income level is generally correlated 31

positively with the male gender, it can lead to training models with unfair decisions against female loan applicants. 32

The crucial concern about fairness in AI and the need to overcome the resulting adverse effects have resulted in 33

significant research interest from the AI community. The first attempt to address bias in AI is to arrive at a commonly 34

agreed-upon definition of fairness. Pioneer works in this area focused on defining quantitative notions for fairness 35

based on commonsense intuition and using them to quantitatively demonstrate the presence and severity of bias in 36

AI Buolamwini & Gebru (2018); Caliskan et al. (2017). Most existing fairness metrics consider that the input data 37

points possess characteristics of protected subgroups Feldman et al. (2015), e.g., gender and race, in addition to 38

standard features that are used for model training based on empirical risk minimization (ERM). Based on subgroup 39

membership, majority and minority populations emerge, or in general subgroups, which can be used to define fairness 40
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metrics. A model is then assumed to be fair if its predictions possess a notion of probabilistic independence for data41

membership into the subgroups Mehrabi et al. (2021) (see Section 5.1.3 for definitions of common fairness metrics).42

Fairness in an AI models can be reinforced by mapping data into a latent space in which data representations are43

independent from the sensitive attributes. For example, we can benefit from adversarial learning for this purpose44

Zhang et al. (2018). Since the sensitive attributes are absent in the latent space, decision-making will not consider45

sensitive attributes. Despite being an effective approach, most existing fair model training algorithms consider that46

the data distribution will remain stationary after the training stage. This assumption is rarely true in practical settings,47

particularly when a model is used over extended periods, because societal applications are dynamic but fairness metrics48

are normally static. As a result, a fair model might fail to maintain its fairness under the input-space distributional49

shifts or when the model is used on differently sourced tasks Pooch et al. (2019). The naive solution of retraining the50

model after distributional shifts requires annotating new data points to build datasets representative of the new input51

distribution. This process, however, is time consuming and expensive for deep learning and is challenging when data52

annotation becomes a persistent task. As a result, it is highly desirable to develop algorithms that can preserve model53

fairness under distribution shifts. Unfortunately, this problem has been marginally explored in the AI literature.54

The negative effect of distributional shifts on the performance of AI models is well-known and the problem of model55

adaptation has been investigated extensively in the unsupervised domain adaptation (UDA) literature Tzeng et al.56

(2017); Daumé III (2009). The goal in UDA is to train a model with a good generalization performance on a target57

domain, where only unannotated data is available. The idea is to transfer knowledge from a related source domain,58

where annotated data is accessible. A primary group of UDA algorithms achieves this goal by matching the source59

and the target distributions in a shared embedding space Redko et al. (2017) such that the embedding space is domain-60

agnostic. As a result, a classifier that receives its input from the embedding space will generalize well in the target61

domain, despite being trained solely using the source domain annotated data. To align the two distributions in such an62

embedding, data points from both domains are mapped into a shared feature space that is modeled as the output space63

of a deep neural encoder. The deep encoder is then trained to minimize the distance between the two distributions,64

measured in terms of a suitable probability distribution metric. However, existing UDA algorithms overlook model65

fairness and solely consider improving model performance in the target domain. In this work, we adopt the idea of66

domain alignment in UDA to preserve model fairness and mitigate model biases introduced by domain shift.67

Contribution: We address the problem of preserving the model fairness and the model generalization under distribu-68

tional shifts in the input space when only unannotated data is accessible after an initial training stage. We model this69

problem within the classic unsupervised domain adaptation paradigm. Our specific contributions include:70

• We develop an algorithm that minimizes distributional mismatches that results from domain shift in a shared71

embedding space to maintain model fairness and model performance in non-stationery learning settings.72

• We build three AI tasks using three standard fairness benchmarks and demonstrate that in addition to model73

performance, model fairness is compromised when domain shift exists in real-world applications.74

• We conduct extensive empirical explorations and demonstrate that the existing methods for fairness in AI are75

vulnerable in our learning setting and show that the proposed algorithm is effective.76

2 Related Work77

2.1 Fairness in AI78

There are various approaches for training a fair model for a single domain. A primary idea in existing works is to79

map data points into an embedding space at which the sensitive attributes are entirely removed from the representative80

features, i.e., an attribute-agnostic space. As a result, a classifier that receives its input from this space will make81

unbiased decisions due to the independence of its decisions from the sensitive attributes. After training the model,82

fairness can also be measured at the classifier output using a desired fairness metric. Ray et al. 2020 develop a fair-83

ness algorithm that induces probabilistic independence between the sensitive attributes and the classifier outputs by84

minimizing the optimal transport distance between the probability distributions conditioned on the sensitive attributes.85

Hence, the transformed probability in the embedding space then becomes independent (unconditioned) from the sen-86

sitive attributes. Celis et al. 2019b study the possibility of using a meta-algorithm for fairness with respect to several87
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disjoint sensitive attributes. Du et al. 2021 have followed a different approach. Instead of training an encoder that 88

removes the sensitive attributes in a latent embedding space and then training a classifier, they propose to debias the 89

classifiers by leveraging samples with the same ground-truth label yet having different sensitive attributes. The idea is 90

to discourage undesirable correlation between the sensitive attribute and predictions in an end-to-end scheme, allowing 91

for the emergence of attribute-agnostic representations in the hidden layers of the model. Agarwal et al. 2018 propose 92

an approach that incrementally constructs a fair classifier by solving several cost-constrained classification problems 93

and combining results. Zhang et al. 2018 train a deep model to produce predictions independent of sensitive attributes 94

by training a classifier network to predict binary outcomes and then inputting the predictions to an adversary that 95

attempts to guess their sensitive attribute. By optimizing the network to make this task harder for the adversary, their 96

approach leads to fair predictions. Beutel et al. 2017 benefit from removing sensitive attributes to train fair models 97

by indirectly enforcing decision independence from the sensitive attributes in a latent representation using adversarial 98

learning. They also amend the encoder model with a decoder to form an autoencoder. Since the representations are 99

learned such that they can self-reconstruct the input, they become discriminative for classification purposes as well. 100

These work consider stationary settings. Our work builds upon using adversarial learning to preserve fairness when 101

distribution shifts exist. In order to combat domain shift, our idea is to additionally match the target data distribution 102

with the source data distribution in the latent embedding space, a process that ensures classifier generalization. 103

2.2 Unsupervised Domain Adaptation 104

Works on domain alignment for UDA follow a diverse set of strategies. The goal of existing works in UDA is solely 105

to improve the prediction accuracy in the target domain in the presence of domain shift without exploring the problem 106

of fairness. The closest line of research to our work addresses domain shift by minimizing a probability discrepancy 107

measure between two distributions in a shared embedding space. Selection of the discrepancy measure is a critical 108

task for these works. Several UDA methods simply match the low-order empirical statistics of the source and the 109

target distributions as a surrogate for the distributions. For example, the Maximum Mean Discrepancy (MMD) metric 110

is defined to match the means of two distributions for UDA Long et al. (2015; 2017). Correlation alignment is another 111

approach to include second-order moments Sun & Saenko (2016). Matching lower-order statistical moments overlooks 112

the existence of discrepancies in higher-order statistical moments. In order to improve upon these methods, a suitable 113

probability distance metric can be incorporated into UDA to consider higher-order statistics for domain alignment. 114

A suitable metric for this purpose is the Wasserstein distance (WD) or the optimal transport metric Courty et al. 115

(2016); Bhushan Damodaran et al. (2018). Since WD possesses non-vanishing gradients for two non-overlapping 116

distributions, it is a more suitable choice for deep learning than more common distribution discrepancy measures, e.g., 117

KL-divergence. Optimal transport can be minimized as an objective using first-order optimization algorithms for deep 118

learning. Using WD has led to a considerable performance boost in UDA Bhushan Damodaran et al. (2018) compared 119

to methods that rely on aligning the lower-order statistical moments Long et al. (2015); Sun & Saenko (2016). 120

2.3 Domain Adaptation in Fairness 121

Works on benefiting from knowledge transfer to maintain fairness are relatively limited. Madras et al. 2018a benefit 122

from adversarial learning to learn domain-agnostic transferable representations for fair model generalization. Coston 123

et al. 2019 consider a UDA setting where the sensitive attributes for data points are accessible only in one of the 124

source or the target domains. Their idea is to use a weighted average to compute the empirical risk and then tune 125

the corresponding data point-specific weights to minimize co-variate shifts. Schumann et al. 2019 consider a similar 126

setting, where they define the fairness distance of equalized odds, and then use it as a regularization term in addition to 127

empirical risk, minimized for fair cross-domain generalization. Hu et al. 2019 address fairness in a distributed learning 128

setting, where the data exist in various servers with private demographic information. Singh et al. 2021 consider that 129

a causal graph for the source domain data and anticipated shifts are given. They then use feature selection to estimate 130

the fairness metric in the target domain for model adaptation. Zhang and Long 2021 explore the possibility of training 131

fair models in the presence of missing data in a target domain using a source domain with complete data and find 132

theoretical bounds for this purpose. Yoon et al. 2020 consider a fair adaptation scenario where a fair classifier trained 133

on a source domain is deployed on a target domain where the sensitive attribute changes. Oneto et al. 2020 propose 134

to improve model fairness and generalization to new domains by framing the fair transfer learning problem in a multi- 135

task learning framework. Pham et al. 2023 propose a multi source fairness preserving approach, where an algorithm 136

leverages several source domains in order to ensure fairness and generalization on a target domains. 137

3



Under review as submission to TMLR

Our learning setting is relevant yet different from the above settings. We consider a standard UDA setting where the138

sensitive attributes are accessible in both domains. The challenge is to adapt the model to preserve fairness in the139

target domain without requiring data annotation when domain shift occurs.140

3 Problem Formulation141

We first describe how to train a fair model, then explain how the problem extends to a non-stationery setting, and142

offer our solution in the next section. Consider a source domain S, where we are given an annotated training dataset143

Ds = (Xs, As, Y s) ∈ RN×d × {0, 1}N × {0, 1}N for which Xs ∈ Rn represents feature vectors with dimension144

d and Y s represents the binary labels. Additionally, As represents binary sensitive attributes for each data point,145

e.g., race, sex, age, etc. Each triplet (xs, as, ys) is drawn from the source domain distribution PS(X, A), where146

the feature vector corresponds to characteristic features that are used for decision-making, e.g., occupation length,147

education years, credit history, etc. Our goal is to train a fair model with respect to the sensitive attributes, e.g., sex,148

race, etc. to perform binary decision making, e.g., approving for a loan, parole in prison system, etc.149

In classic parametric supervised learning, we select a family of predictive functions fθ : (Xs, As) → Y s, parameter-150

ized with learnable parameters θ. We then search for the model with the optimal parameter based on ERM on the fully151

annotated dataset Ds, as a surrogate for a model with the expected error on the unknown source domain distribution:152

θ̂ = arg min
θ

Lsl = arg min
θ

{ 1
N

N∑
i=1

Lbce(fθ(xs, as), ys)}, (1)

where Lbce is a suitable loss function such a binary cross-entropy loss. Under certain conditions, solving equation 1153

leads to training a generalizable model during the testing stage. However, there is no guarantee to obtain a fair model154

because only prediction accuracy is optimized in equation 1. Inherent bias in the training dataset, e.g., over/under-155

representation of subgroups, can lead to training a biased model. Note that although the sensitive attributes are not156

used in equation 1, the sensitive attribute may still be highly correlated with the decision features due to data collection157

procedures. For example, a human operator might have subconsciously consider a sensitive attribute for annotation.158

An effective approach to train a fair model is to map the domain data into a latent embedding space such that the159

encoded data representations are fully independent from the sensitive attributes A. There are various approaches160

to implement this idea via training an appropriate encoding function. Inspired by adversarial learning, a group of161

fairness algorithms rely on solving a min-max optimization problem for this purpose Beutel et al. (2017); Madras162

et al. (2018b); Zhang et al. (2018). To this end, we first consider that the end-to-end predictive model fθ(·) : Rd → R2
163

can be decomposed into an encoder subnetwork eu(·) : Rd → Rz , with learnable parameters u, followed by a classifier164

subnetwork gv(·) : Rz → R2 with learnable parameters v, where fθ(·) = (gv ◦ eu)(·) and θ = (u, v). The parameter165

z denotes the dimension of the latent embedding space that we want to be sensitive-agnostic which is modeled as the166

output space of the encoder subnetwork. To induce “independence from the sensitive attribute” in the latent space, we167

consider an additional classification network hw(·) : Rz → R2 with learnable parameters w. This classifier is tasked168

to predict the corresponding sensitive attribute as using the latent space representations eu(xs, as).169

The core idea is to induce “probabilistic independence from sensitive attributes” by training eu(·) and hw(·) in an ad-170

versarial learning scheme, where eu(·) plays the role of the generator network and hw(·) is the discriminator network.171

In other words, if the latent representations are independent from the sensitive attribute, A, the classifier h(·) would172

perform poorly. To this end, consider the loss function for predicting the sensitive attributes:173

Ls
fair = Lbce((hw ◦ eu)(xs, as), as). (2)

To train an attribute-agnostic encoder, we solve the following alternating min-max optimization process to train a fair174

model based on adversarial learning scheme Goodfellow et al. (2014):175

1. We fix the encoder eu(·) and minimize the fairness loss Lfair through updating the attribute classifier hw(·).176

2. We then fix the attribute classifier hw(·) and maximize the fairness loss Lfair by updating the encoder eu(·).177

The first step will perform ERM for the attribute prediction classifier, conditioned on the encoder network being fixed.178

The second step will keep the classifier fixed and ensures that the latent data representations are as little informative179
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Figure 1: Block-diagram description of the proposed framework for preserving fairness under domain shift. First, a fair model is
trained on a fully labeled source domain: (a) minimizing binary cross entropy loss against the source labels (Eq. 1) ensures the
learnt embeddings are informative with respect to the classification task (b) adversarial optimization with respect to the sensitive
attribute (Eq. 2) makes the learnt embeddings conditionally independent from the sensitive attributes. During adaptation on the
unlabeled target domain: (c) Sliced Wasserstein Distance is minimized between the target embedding distribution and the source
embedding distribution (Eq. 4) in order to maintain the relevance of the source classifier on the target domain, (d) the fairness loss
is also minimized on the target domain to ensure conditional independence of the embeddings and sensitive attributes.

as possible about the sensitive attribute A. Similar to vanilla adversarial learning, empirical explorations demonstrate 180

that the above iterative alternations between the two optimization steps will lead to training an encoder that produces 181

latent representations that are independent from the sensitive attribute when the attribute classifier fails to predict the 182

sensitive attributes. To train a fair and generalizable model, we combine equations 1 and 2 and solve: 183

û, ŵ, v̂ = arg min
u,w,v

Lsl + αLs
fair, (3)

to learn extracting features that are discriminative for performing the original classification task via gv(·). The high- 184

level description of this procedure is presented in Figure 1, top portion. 185

The above approach would suffice in practice if we have a single source domain, i.e., the data distribution is stationery 186

and the testing data points are drawn from the source domain distribution. In our formulation, we consider that the test 187

data is drawn from a second target domain T with a different data distribution PT (X, A) ̸= PS(X, A). The target 188

domain may be result of drifts in the input space or can occur when we want to use the model in a different domain. 189

We also assume that we only have access to the unannotated dataset Dt = (Xt, At) in the target domain. Due to 190

the distribution gap between the two domains, we need to update the model to remain fair in the target domain which 191

will require annotating Dt. Our goal is to make this process more practical by relaxing the need for data annotation. 192

To this end, we formulate this problem in a UDA setting. UDA tackles the challenge of performance degradation 193

under domain shift. The core idea in UDA is to improve generalization on the target domain via updating the encoder 194

network such that the empirical distance between the distributions eu(PS(X, A)) and eu(PT (X, A)) is minimized, 195

i.e., the two distributions are aligned such that the embedding space becomes domain agnostic. Under this restriction, 196

the classifier gv(·) that is trained on the source domain will generalize on the target domain. While this idea has been 197

explored extensively in the UDA literature, it is insufficient to guarantee fairness after the adaptation phase. Our goal 198

is to extend UDA to perserve model fairness in the target domain in addition to maintaining model generalization. 199
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4 Proposed Algorithm200

While adversarial learning has been used extensively to address UDA similar to training a fair model, solving two201

coupled adversarial learning problems to address our problem can be challenging. In our approach we still use adver-202

sarial learning to preserve fairness but benefit from metric learning to maintain model generalization Lee et al. (2019);203

Redko et al. (2017). The block-diagram description of our proposed approach is presented in Figure 1. We follow a204

two phase process. Initially, we train a fair model on the source domain dataset (Xs, As, Y s) and then update it to205

work well on the target domain. To train a fair model, we use the following three steps iteratively to solve equation 3:206

1. We optimize the classifier fθ(·) = (gv ◦ eu)(·) network in an end-to-end scheme by minimizing equation 1.207

This process will generate informative and discriminative latent features for decision making.208

2. We then fix the feature extractor encoder eu(·) and optimize the sensitive attribute classifier hw(·) by min-209

imizing the loss in equation 2. This step will enforce the sensitive attribute classifier to extract information210

from the representations in the embedding space that can be used for predicting the sensitive attribute A.211

3. We freeze the sensitive attribute classifier hw(·) and update the encoder subnetwork eu(·) in order to maxi-212

mize the fairness loss function in equation 2. This step will force the encoder to produce representations that213

are independent from the sensitive attribute A to enforce fairness.214

The above steps leads to training a fair and generalizable model. In the second phase, we update the model to remain215

fair and generalizable when used on the target domain. We first explain the classic UDA approach.216

The classic adaptation process relies only on aligning the two distributions in the embedding space, i.e.,217

e(PS(X, A)) ≈ e(PT (X, A)). We follow metric minimization to enforce domain alignment Lee et al. (2019);218

Redko et al. (2017). The idea is to select a suitable probability distribution distance d(·, ·) and minimize it as a loss219

function at the encoder output, i.e. d(e(PS(X, A)), e(PT (X, A))). As a result, the encoder is trained to guarantee220

domain-agnostic embedding features at its output. Compared to using adversarial learning, this approach requires less221

hyperparameter tuning and the resulting optimization problem is more stable. The choice of the distribution distance222

d(·, ·) is a design choice and various metric have been used for this purpose. We use the Sliced Wasserstein Distance223

(SWD) Redko et al. (2017) for this purpose. SWD is defined based on optimal transport or the Wasserstein Distance224

(WD) metric to broaden its applicability in deep learning. The upside of using WD is that it has a non-zero gradient225

even when the support for two distributions are non-overlapping. WD has been used successfully to address UDA226

but the downside of using WD is that it is defined in terms of an optimization problem. As a result, minimizing WD227

directly is a challenging task because often we need to solve another optimization problem to compute WD. The idea228

behind defining SWD is to develop a metric with closed-form solution by slicing two high-dimensional distributions to229

generate 1D projected distributions. Since WD has a closed-form solution for 1D distributions, SWD between the two230

high-dimensional distributions is computed as the average of these 1D WD slices. In addition to having a closed-form231

solution, SWD can be computed using empirical samples from the two distributions as follows:232

Lswd = 1
K

K∑
i=1

W D1(⟨e(xs, as), γi⟩, ⟨e(xt, at), γi⟩), (4)

where, WD1(·, ·) denotes the 1D WD distance, K is the number of random 1D projections we are averaging over and233

γi is one such projection direction. We use random projection to estimate averaging over all possible projections. We234

can then solve the following problem to maintain model generalization on the source domain:235

Lsl + γLswd. (5)

If we only align the two distributions using equation 5, the model fairness can be compromised because when the236

encoder is updated to maintain model generalization, there is no guarantee that the embedding space remains inde-237

pendent from the sensitive attributes. Hence, the model can become biased. To preserve fairness in the target domain238

under distributional shifts, we augment the iterative steps (1) − (3) described above with the following two steps:239

4. We minimize the empirical SWD distance between e(PS(X, A)) and e(PT (X, A)) via equation 4. This step240

ensures the source-trained classifier g(·) will generalize on the target domain samples from e(PT (X, A)).241
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5. We repeat steps (2) and (3) using solely the sensitive attributes of the target domain. 242

The additional steps will update the model on the target domain to preserve both fairness and generalization accuracy. 243

Following steps (1)-(5), the total loss function that we minimize would become: 244

Lbce(ŷ, ys) + αLs
fair + βLt

fair + γLswd, (6)

where the trade-off hyperparameters α, β, and γ can be tuned using cross validation. Algorithm 1 summarizes the 245

above described training process for our proposed algorithm, named FairAdapt. 246

5 Empirical Validation 247Algorithm 1 FairAdapt (α, β, γ, thresh, ITR)
1: for itr = 1, . . . , ITR do
2: Source Training:
3: Optimize αLbce via 1.
4: Optimize βLfair via 2 and freezing u.
5: Optimize −βLfair via 2 and freezing h.
6: if itr > thresh then
7: Target Adaptation:
8: Optimize γLswd via 4.
9: Optimize βLfair via 2 and freezing u.

10: Optimize −βLfair via 2 and freezing h.
11: end if
12: end for
13: return u, g

We adopt existing common datasets in the AI fairness 248

literature and tailor them for our formulation. 249

5.1 Experimental Setup 250

We first describe our empirical exploration setting. 251

5.1.1 Datasets and Tasks 252

Common datasets in the fairness literature pose bi- 253

nary decision-making problems, e.g., approval of a 254

credit application, alongside relevant features used for 255

decision-making by professionals, e.g., employment his- 256

tory, credit history etc., and group-related sensitive at- 257

tributes, e.g., sex, race, nationality, etc. Based on sensitive group membership, data points can be part of privileged or 258

unprivileged subgroups. For example, with respect to sex, men are part of the privileged group while women are part 259

of the unprivileged group.We perform experiments on three datasets widely used by the AI fairness community. We 260

consider sex as our sensitive attribute because it is recorded for all three datasets. These datasets are: 261

The UCI Adult dataset1 is part of the UCI database Dua & Graff (2017) and consists of 1994 US Census data. The 262

task associated with the dataset is predicting whether annual income exceeds 50k. After data cleaning, the dataset 263

consists of more than 48, 000 entries. Possible sensitive attributes for this dataset include sex and race. 264

The UCI German credit dataset 2 contains financial information for 1000 different people applying for credit and is 265

also part of the UCI database. The predictive task involves categorizing individuals as acceptable or non-acceptable 266

credit risks. Sex and age are possible sensitive attributes for the German dataset. 267

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) recidivism dataset 3
268

maintains information of over 5, 000 individuals’ criminal records. Models trained on this dataset attempt to predict 269

people’s two year risk of recidivism. For the COMPAS dataset, sex and race may be used as sensitive attributes. 270

5.1.2 Evaluation Protocol 271

Experiments on these datasets have primarily considered random 70/30 splits for the training and test splits. While 272

such data splits are useful in evaluating overfitting for fairness algorithms, features for training and test sets will be 273

sampled from the same data distribution. As a result, randomly splitting the datasets is not suitable for our learning 274

setting because domain shift will not exist between the training and the testing splits. Instead, we consider natural 275

data splits obtained from sub-sampling the three datasets along different criteria to generate the training and testing 276

splits. We show that compared to random splits, where learning a model that guarantees fairness on the source domain 277

is often enough to guarantee fairness on the target domain predictions, domain discrepancy between the source and 278

target domains can lead to biased or degenerate predictions on the target domain, even if the model is initially trained 279

1https://archive.ics.uci.edu/ml/datasets/Adult
2https://archive.ics.uci.edu/ml/datasets/statlog+(German+credit+data)
3https://github.com/propublica/COMPAS-analysis/
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to be fair. For details about the splits for each dataset, please refer to the supplementary material. In short, these splits280

introduce domain gap between the testing and training splits to generate appropriate tasks for our setting.281

Next, for each of the three datasets, we will generate source/target data splits where ignoring domain discrepancy282

between the source and target can negatively impact model fairness. Per dataset, we produce three such splits. We283

characterize the label distributions and sensitive attribute conditional distributions for the Adult dataset in Table 1. We284

provide similar analysis for the German and COMPAS datasets in the supplementary material.285

Adult Dataset. We use age, education and race to generate the source and target domains. These domains can be286

a natural occurrence in practice, as gathered census information may differ along these axes geographically. For287

example, urban population is on average more educated than rural population 4, and more ethnically diverse 5. Thus, a288

fair model trained on one of the two populations will need to overcome distribution shift when evaluated on the other289

population. The source/target splits we consider are as follows:290

1. Source Domain: White, +12 education years. Target Domain: Non-white, Less than 12 education years.291

2. Source Domain: White, Older than 30. Target Domain: Non-white, younger than 40.292

3. Source Domain: Younger than 70, +12 ed. years. Target Domain: Older than 70, less than 12 ed. years.293

In Table 1, we analyze the conditional distributions of the labels and sensitive attribute for the above data splits.294

For the random split (A), we see that the conditional distributions of the sensitive attributes are identical in both295

domains which is expected due to absence of domain shift. For the three splits that we generated, we observe all296

three distributions: P (Y ), P (A|Y = 0), P (A|Y = 1) differ between the source and the target domains. We also note297

the label distribution becomes more skewed towards Y = 0. Common UDA methods rely on establishing a shared298

embedding space for both the source and target distributions. These approaches typically prioritize domain-invariance299

and are agnostic to sensitive attribute conditional probabilities necessary for maintaining prediction fairness. Hence,300

based on the probability landscape showcased in Table 1, such methods may not be suitable for preserving fairness.301

Split Source Target
Size Y=0 A=0|Y=0 A=0|Y=1 Size Y=0 A=0|Y=0 A=0|Y=1

A 34120 0.76 0.39 0.15 14722 0.76 0.39 0.15
A1 12024 0.53 0.41 0.16 5393 0.91 0.49 0.18
A2 29466 0.66 0.34 0.14 2219 0.97 0.48 0.30
A3 11887 0.52 0.42 0.16 778 0.89 0.39 0.17

Table 1: Data split statistics corresponding to the Adult dataset: the row with no number, i.e., “A”, corresponds to random data
splits. The numbered rows, i.e., A1,A2,A3 correspond to statistics for specific splits that we prepared. The columns represent the
probabilities of specific outcomes for specific splits, e.g., P (Y = 0), when using sex as sensitive attribute.

5.1.3 Fairness Metrics302

There exist a multitude of criteria developed for evaluating algorithmic fairness Mehrabi et al. (2021). The goal is to303

define fairness intuitively and then come up with a computable quantitative metric based on a notion of independence.304

In the context of datasets presenting a privileged and unprivileged group, these metrics rely on ensuring predictive305

parity between the two groups under different constraints. The most common fairness metric employed is demographic306

parity (DP) P (Ŷ = 1|A = 0) = P (Ŷ = 1|A = 1), which is optimized when predicted label probability is identical307

across the two groups. However, DP only ensures similar representation between the two groups, while ignoring actual308

label distribution. Equal opportunity (EO) Hardt et al. (2016) conditions the fairness value on the true label Y , and is309

optimized when P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1). EO is preferred when the label distribution is310

different across privilege classes, i.e., P (Y |A = 0) ̸= P (Y |A = 1). A more constrained fairness metric is averaged311

odds (AO), which is minimized when outcomes are the same conditioned on both labels and sensitive attributes, i.e.,312

P (Ŷ |A = 0, Y = y) = P (Ŷ |A = 1, Y = y), y ∈ {0, 1}. EO is a special case of AO, for the case where y = 1.313

Following the AI fairness literature, we report the“ left hand side and right hand side difference ∆” for each of the314

4https://www.ers.usda.gov/topics/rural-economy-population/employment-education/rural-education/
5https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=99538
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above measures. Under this format, ∆ values that are close to 0 will signify that the model maintains fairness, while 315

values close to 1 signify a lack of fairness. Tuning a model to optimize fairness may incur accuracy trade offs Madras 316

et al. (2018a); Kleinberg et al. (2016); Wick et al. (2019). For example, a classifier which predicts every element to be 317

part of the same group, e.g., P (Ŷ = 0) = 1 will obtain ∆EO = ∆EO = ∆AO = 0, without providing informative 318

predictions. Our approach has the advantage that the regularizers of the three employed losses LCE , Lfair, Lswd can 319

be tuned in accordance with the importance of accuracy against fairness for a specific task. 320

5.1.4 Methods for Comparison 321

To the best of our knowledge, no prior method has exactly addressed our learning setting. To offer extensive evaluation, 322

we compare our work against seven fairness preserving algorithms: Meta-Algorithm for Fair Classification (MC) Celis 323

et al. (2019a), Adversarial Debiasing (AD) Zhang et al. (2018), Reject Option Classification (ROC) Kamiran et al. 324

(2012), Exponentiated Gradient Reduction (EGR) Agarwal et al. (2018), Learning Fair Representations (LFR) Zemel 325

et al. (2013), Calibrated Equal Odds (CEO) Pleiss et al. (2017), Reweighing Pre-processing (RP) Kamiran & Calders 326

(2012). Implementations for these algorithms are available in the AIF360 Bellamy et al. (2018) package. Results 327

reveal the superiority of our approach when distributional shift is present between source and target. We additionally 328

report as baseline (Base) minimizing only Lbce without optimizing fairness or distributional distance. This baseline 329

corresponds to the performance of a naive source-trained classifier and serves as a lower bound. 330

5.2 Comparison Results 331

We report balanced accuracy (Acc.), demographic parity (∆DP ), equalized odds (∆EO) and averaged opportunity 332

(∆AO) in our comparison results to study both accuracy and fairness. Desirable accuracy values are close to 1, while 333

desirable fairness metric values should be close to 0. Prior studies have shown that there is a trade-off between the 334

performance accuracy and the model fairness. Results are averaged over 10 runs to make comparisons statistically 335

meaningful. We use sex as the sensitive attribute A, as it is shared across all datasets. 336

Alg. Adult German COMPAS
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.74±0.00 0.37±0.00 0.38±0.01 0.33±0.01 0.67±0.01 0.22±0.07 0.14±0.02 0.18±0.05 0.68±0.00 0.32±0.02 0.42±0.03 0.30±0.02

MC 0.71±0.01 0.13±0.07 0.10±0.07 0.10±0.07 0.66±0.01 0.07±0.04 0.04±0.02 0.05±0.03 0.65±0.01 0.18±0.08 0.16±0.11 0.14±0.08

AD 0.66±0.02 0.09±0.03 0.10±0.09 0.06±0.05 0.52±0.00 0.55±0.34 0.62±0.30 0.57±0.33 0.64±0.03 0.19±0.22 0.19±0.19 0.21±0.22

ROC 0.71±0.00 0.01±0.00 0.05±0.00 0.06±0.00 0.66±0.00 0.05±0.00 0.07±0.00 0.03±0.00 0.52±0.00 0.02±0.00 0.05±0.00 0.02±0.00

EGR 0.65±0.00 0.05±0.00 0.01±0.01 0.01±0.00 0.55±0.02 0.02±0.02 0.07±0.03 0.03±0.02 0.65±0.01 0.09±0.02 0.04±0.02 0.04±0.02

LFR 0.71±0.01 0.02±0.02 0.05±0.02 0.06±0.02 0.65±0.01 0.01±0.01 0.09±0.02 0.02±0.01 0.65±0.01 0.01±0.00 0.04±0.01 0.04±0.01

CEO 0.68±0.00 0.06±0.00 0.02±0.00 0.01±0.00 0.61±0.03 0.03±0.01 0.09±0.04 0.03±0.02 0.64±0.01 0.11±0.01 0.11±0.01 0.07±0.01

RP 0.71±0.00 0.01±0.00 0.05±0.00 0.06±0.00 0.65±0.00 0.00±0.00 0.08±0.00 0.01±0.00 0.66±0.00 0.01±0.00 0.05±0.00 0.02±0.00

Ours 0.71±0.00 0.00±0.00 0.05±0.00 0.07±0.00 0.68±0.01 0.01±0.00 0.03±0.02 0.03±0.01 0.67±0.00 0.00±0.00 0.05±0.01 0.03±0.00

Table 2: Results for random data splits.

We first report performance results for standard random splits that are commonly used in the fairness literature in Table 337

2. Since for standard splits, the source and the target are sampled from the same distribution, there is no domain shift. 338

We observe the baseline approach obtains highest or close to highest accuracy across datasets, but does not lead to 339

fair predictions according to the three fairness metrics. The rest of the methods preserve fairness significantly better 340

than the baseline but their performance accuracy values are less than the baseline. This observation aligns with what 341

has been reported in the fairness literature. Importantly, our method leads to best accuracy performance amongst the 342

fairness preserving methods while also leading to minimum demographic parity on the Adult and COMPAS datasets, 343

which indicates that the embedding space is fully independent from the sensitive attributes. We also see that our 344

method achieves best equalized odds difference on the German dataset, as well as close to best average opportunity 345

difference on the German and COMPAS datasets, despite the fact that our method is not directly minimizing these 346

metrics. We conclude that our algorithm successfully learns a competitively fair model when domain shift does not 347

exist while leading to the best performance accuracy compared to fairness preserving methods. 348

We next present results for the three data splits for each of the considered datasets that we prepared. These are custom 349

splits for each dataset such that domain shift exists during the testing phase. 350
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Adult dataset We report results on the three splits of the Adult dataset in Table 3.351

We first note that out of the considered methods, our approach is the only one capable of maintaining both fairness352

and competitive accuracy on all data splits. On the first split, MC obtains the highest accuracy of 0.66, however is not353

able to maintain fairness. LFR, CEO and RP are able to maintain fairness, which is matched by our method on the354

demographic parity metric. On the second split, we are able to obtain best fairness results with respect to all fairness355

metrics: ∆DP , ∆EO, ∆AO. In contrast, all other fairness methods are unable to offer competitive performance for356

∆EO, ∆AO. On the third split, CEO and ROC produce degenerate results. Out of the remaining methods, we are357

able to once again obtain best fairness scores with respect to all metrics. Similar performance is obtained on the third358

split. We conclude that existing fairness-preserving methods struggle with domain shift between the source and target,359

while our method is positioned to overcome the challenge of domain shift.360

Alg. Race, Education Race, Age Age, Education
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.66±0.06 0.40±0.19 0.61±0.25 0.49±0.21 0.60±0.02 0.18±0.10 0.23±0.12 0.20±0.10 0.62±0.03 0.81±0.25 0.85±0.28 0.83±0.27

MC 0.66±0.02 0.19±0.14 0.27±0.20 0.21±0.17 0.64±0.02 0.12±0.14 0.19±0.13 0.15±0.11 0.62±0.03 0.81±0.27 0.85±0.27 0.83±0.27

AD 0.64±0.04 0.15±0.13 0.24±0.20 0.18±0.16 0.60±0.04 0.21±0.17 0.22±0.10 0.21±0.09 0.59±0.04 0.64±0.25 0.69±0.25 0.67±0.25

ROC 0.56±0.00 0.40±0.00 0.32±0.00 0.38±0.00 0.64±0.00 0.02±0.00 0.15±0.00 0.09±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

EGR 0.64±0.00 0.12±0.01 0.26±0.03 0.17±0.01 0.61±0.01 0.01±0.00 0.14±0.06 0.07±0.03 0.54±0.03 0.24±0.02 0.25±0.14 0.24±0.07

LFR 0.63±0.01 0.02±0.01 0.04±0.01 0.01±0.00 0.63±0.02 0.04±0.01 0.24±0.04 0.14±0.02 0.53±0.01 0.01±0.00 0.04±0.01 0.02±0.00

CEO 0.64±0.00 0.00±0.00 0.05±0.00 0.01±0.00 0.62±0.00 0.04±0.00 0.24±0.00 0.14±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RP 0.63±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.65±0.00 0.02±0.00 0.28±0.00 0.15±0.00 0.53±0.00 0.01±0.00 0.04±0.00 0.02±0.00

Ours 0.62±0.01 0.00±0.00 0.02±0.01 0.02±0.01 0.58±0.01 0.01±0.00 0.05±0.05 0.03±0.02 0.52±0.01 0.01±0.01 0.02±0.02 0.01±0.01

Table 3: Performance results for the three splits of the Adult dataset

COMPAS dataset results for the COMPAS dataset are reported in Table 4.361

On the first data split, our method is able to obtain the best fairness performance with respect to all three metrics. RP362

achieves best accuracy, however comes second in terms of fairness performance. On the second split, several methods363

produce degenerate solutions, such as RP, CEO, LFR or ROC. A degenerate solution is undesirable, as fairness is364

minimized by assigning the same label to all samples. In contrast, our method is strikes a balance between accuracy365

and fairness. On the third split, FairAdapt achieves best results both in accuracy and fairness. Again, several methods366

produce degenerate solutions. AD matches our performance with respect to accuracy, but fails to maintain fairness.367

We conclude FairAdapt is effective on COMPAS, as it maintains both accuracy and fairness under domain shift.368

Alg. Age, Priors Race, Age, Priors Age, Priors, Charge
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.58±0.03 0.33±0.09 0.35±0.07 0.33±0.08 0.59±0.04 0.51±0.26 0.60±0.35 0.55±0.27 0.60±0.03 0.56±0.13 0.60±0.20 0.56±0.14

MC 0.60±0.02 0.30±0.15 0.33±0.23 0.30±0.17 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.53±0.02 0.33±0.21 0.33±0.23 0.33±0.21

AD 0.58±0.05 0.72±0.28 0.82±0.22 0.75±0.26 0.61±0.02 0.77±0.31 0.83±0.23 0.79±0.27 0.57±0.01 0.86±0.14 0.86±0.14 0.86±0.14

ROC 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

EGR 0.51±0.00 0.12±0.04 0.06±0.04 0.08±0.05 0.52±0.02 0.10±0.01 0.05±0.04 0.09±0.01 0.54±0.02 0.08±0.06 0.09±0.08 0.08±0.05

LFR 0.59±0.02 0.02±0.01 0.07±0.04 0.04±0.02 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

CEO 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RP 0.61±0.00 0.02±0.00 0.05±0.00 0.04±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Ours 0.58±0.01 0.01±0.01 0.02±0.01 0.01±0.01 0.56±0.03 0.19±0.05 0.35±0.17 0.28±0.08 0.57±0.00 0.02±0.00 0.01±0.00 0.02±0.00

Table 4: Performance results for the three splits of the COMPAS dataset

German dataset in Table 5, we present the results on the German dataset.369

In the first data split, our approach achieves best performance in terms of accuracy while obtaining a close to optimal370

demographic parity value. This highlights the ability of our method to strike a balance between accuracy and fairness,371

making it a compelling choice for domain adaptation tasks. Moving on to the second data split, our method achieves372

competitive performance for accuracy, and close to best performance for two of the three fairness metrics. On the last373

data split, our method outperforms all other algorithms that do not produce degenerate results (all approaches besides374

ROC, CEO) in terms of accuracy and both demographic parity and averaged opportunity. This proves the robustness375

of our approach, even in challenging scenarios, where fairness is a critical concern.376
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Alg. Employment Credit hist., Empl. Credit hist., Empl.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.61±0.05 0.08±0.09 0.06±0.05 0.07±0.07 0.59±0.02 0.26±0.23 0.32±0.26 0.27±0.25 0.55±0.02 0.30±0.27 0.20±0.20 0.25±0.25

MC 0.65±0.01 0.12±0.03 0.10±0.04 0.12±0.03 0.60±0.02 0.03±0.05 0.15±0.03 0.09±0.03 0.55±0.00 0.09±0.00 0.00±0.00 0.05±0.00

AD 0.53±0.02 0.63±0.23 0.70±0.24 0.65±0.21 0.54±0.04 0.41±0.31 0.47±0.27 0.44±0.27 0.53±0.01 0.56±0.22 0.57±0.30 0.57±0.24

ROC 0.54±0.00 0.14±0.00 0.05±0.00 0.11±0.00 0.51±0.00 0.18±0.00 0.50±0.00 0.33±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

EGR 0.58±0.01 0.28±0.02 0.43±0.04 0.33±0.03 0.52±0.01 0.18±0.05 0.58±0.28 0.36±0.15 0.51±0.01 0.59±0.03 0.67±0.00 0.62±0.02

LFR 0.65±0.02 0.01±0.02 0.04±0.02 0.02±0.02 0.63±0.03 0.00±0.01 0.11±0.06 0.07±0.02 0.53±0.00 0.02±0.00 0.08±0.00 0.05±0.00

CEO 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.61±0.00 0.00±0.00 0.16±0.00 0.08±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RP 0.67±0.00 0.01±0.00 0.02±0.00 0.00±0.00 0.61±0.00 0.00±0.00 0.16±0.00 0.08±0.00 0.53±0.00 0.02±0.00 0.08±0.00 0.05±0.00

Ours 0.67±0.01 0.01±0.01 0.05±0.04 0.02±0.02 0.61±0.01 0.03±0.01 0.17±0.15 0.08±0.05 0.55±0.01 0.02±0.01 0.08±0.05 0.04±0.02

Table 5: Performance results for the three splits of the German dataset

From Tables 3–5, we conclude that algorithms for training fair models are vulnerable in our setting. FairAdapt is ef- 377

fective and well-suited for preserving model fairness and accuracy performance on tasks associated with domain shift. 378

Our approach is the only algorithm out of the considered methods that is able to consistently achieve top performance 379

both in terms of accuracy and fairness on nine data splits across three datasets. Its demonstrated robustness make it a 380

promising choice for real-world applications where domain adaptation and fairness are crucial considerations. 381

5.3 Analytic and Ablative Experiments 382

To provide a more intuitive understanding of our method, we visualize the impact of domain shift by generating 2D 383

embeddings of the source and target domain features in the shared embedding space. For this purpose, we employ the 384

UMAP McInnes et al. (2020) visualization tool, which helps us create meaningful visual representations that encode 385

the geometry of high dimensions. The resulting visualizations are presented in Figure 2. We have compared the source 386

and target features resulting from a random split of the Adult dataset (Figure 2 (a)) with our first custom split (Figure 387

2 (b)). Upon examining the visualization of the random split, we notice that the source and target samples exhibit a 388

considerable degree of similarity. However, when using a custom split, we observe a substantial discrepancy between 389

the two distributions, indicating the existence of distributional mismatch. This disparity can have a significant impact 390

on the model’s ability to generalize effectively. Our numerical results align with this observation, indicating that in the 391

presence of domain shift, maintaining both model generalization and fairness becomes a challenging task. 392

Figure 2: UMAP embeddings of the source and target feature spaces for random and custom splits of the Adult dataset

We additionally provide ablative experiments to investigate the impact of the different components of our approach on 393

performance. In Table 6, we compare the performance on the COMPAS dataset of four variants of our algorithm: (1) 394

Base, similar to the main experiments, where no fairness or distributional minimization metric is used, (2) SWD, only 395

the loss Lswd is minimized (3) Fair, training is performed only with respect to Lfair on the source and target domains 396

(4) Our complete pipeline using both fairness and adaptation objectives. We can see that on the first and third splits, 397

utilizing all losses leads to the best performance in terms of fairness. On the second split, we are able to obtain highest 398

balanced accuracy while improving ∆DP compared to only optimizing the SWD metric. In general, compared to the 399

baseline and SWD variant, the Fair variant is able to achieve competitive fairness results at the cost of accuracy. The 400
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SWD only approach achieves better accuracy but at the cost of fairness. Combining the two losses leads to improved401

accuracy over the Fair only model, and also improved fairness if accuracy is matched. Due to Lswd being minimized402

at the encoder output space, both classifier and fairness head benefit from a shared source-target feature space.403

In the previous experiments, we only considered sex as the sensitive attribute. We assess the performance of our404

proposed algorithm when using a different sensitive attribute. For this purpose, we utilize the German dataset and405

designate age as the sensitive attribute. The results of these experiments are presented in Table 7. Similar to our406

experiments where sex was chosen as the sensitive attribute, FairAdapt continues to exhibit outstanding performance407

by achieving the best combined performance among all the methods. It achieves best or second best demographic408

parity scores on all splits, and maintains accuracy values close to the highest reported. This observation demonstrates409

the robustness of our approach in terms of the choice of sensitive attribute: our method can adapt to various fairness410

settings and has the potential to cover a wide range of domain adaptation tasks where fairness is a critical consideration.411

Alg. Age, Priors Race, Age, Priors Age, Priors, Chrg.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.58±0.03 0.33±0.09 0.35±0.07 0.33±0.08 0.59±0.04 0.51±0.26 0.60±0.35 0.55±0.27 0.60±0.03 0.56±0.13 0.60±0.20 0.56±0.14

SWD 0.59±0.01 0.32±0.06 0.42±0.10 0.34±0.07 0.55±0.03 0.32±0.24 0.3±0.36 0.32±0.28 0.62±0.03 0.59±0.10 0.63±0.16 0.57±0.11

Fair 0.58±0.01 0.01±0.00 0.03±0.01 0.02±0.01 0.54±0.03 0.13±0.10 0.20±0.2 0.17±0.14 0.57±0.00 0.03±0.00 0.03±0.00 0.06±0.00

Ours 0.58±0.01 0.01±0.01 0.02±0.01 0.01±0.01 0.56±0.03 0.19±0.05 0.35±0.17 0.28±0.08 0.57±0.00 0.02±0.00 0.01±0.00 0.02±0.00

Table 6: Ablative experiments using a subset of losses on the COMPAS dataset

Alg. Empl. Credit hist., Empl. Credit hist., Empl.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.61±0.05 0.17±0.13 0.22±0.21 0.17±0.11 0.57±0.04 0.27±0.19 0.29±0.20 0.26±0.19 0.53±0.02 0.12±0.12 0.25±0.08 0.18±0.09

MC 0.67±0.01 0.31±0.12 0.17±0.05 0.25±0.10 0.59±0.00 0.21±0.00 0.16±0.00 0.19±0.00 0.55±0.01 0.27±0.19 0.30±0.20 0.27±0.19

AD 0.53±0.00 0.58±0.04 0.80±0.00 0.64±0.03 0.51±0.01 0.63±0.27 0.68±0.38 0.65±0.31 0.51±0.01 0.69±0.33 0.73±0.35 0.66±0.37

ROC 0.67±0.00 0.30±0.00 0.16±0.00 0.24±0.00 0.51±0.00 0.06±0.00 0.05±0.00 0.06±0.00 0.55±0.00 0.15±0.00 0.20±0.00 0.17±0.00

EGR 0.51±0.01 0.02±0.01 0.05±0.02 0.03±0.02 0.52±0.01 0.25±0.14 0.49±0.29 0.33±0.20 0.51±0.01 0.36±0.11 0.53±0.00 0.35±0.18

LFR 0.64±0.04 0.04±0.04 0.15±0.17 0.06±0.06 0.56±0.03 0.02±0.02 0.12±0.10 0.05±0.04 0.58±0.00 0.06±0.00 0.07±0.00 0.06±0.00

CEO 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.54±0.00 0.01±0.00 0.05±0.00 0.02±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RP 0.60±0.00 0.00±0.00 0.13±0.00 0.05±0.00 0.54±0.00 0.01±0.00 0.05±0.00 0.02±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Ours 0.66±0.01 0.01±0.00 0.08±0.02 0.04±0.01 0.57±0.01 0.00±0.00 0.06±0.02 0.03±0.00 0.55±0.00 0.00±0.00 0.31±0.00 0.14±0.00

Table 7: Results on the German dataset when optimizing fairness metrics with respect to the age sensitive attribute

For additional experiments about the dynamics of learning when our method is used, please refer to the Appendix. In412

summary, we analyzed the effect of adaptation process on target domain accuracy and demographic parity on the target413

domain as more training epochs are performed. We observed that the target accuracy consistently increased while414

demographic parity on both the source and target domains remained relatively unchanged, i.e., fairness is maintained.415

These observations validate that our algorithm leads to desired effects on the model performance.416

6 Conclusions and Future Work417

We study the problem of fairness under domain shift. Fairness preserving methods have overlooked the problem of418

domain shift when deploying a source trained model to a target domain. Our first contribution is providing different419

data splits for common datasets employed in fairness tasks which present significant domain shift between the source420

and target. We show that as the distribution of data changes between the two domains, existing state-of-the-art fairness-421

preserving algorithms cannot match the performance they have on random data splits, where the source and target422

features are sampled from the same distribution. This observation demonstrates that model fairness is not naturally423

preserved under domain shift. Second, we present a novel algorithm that addresses domain shift when a fair outcome424

is of concern by combining fair model training via adversarial learning and and producing a shared domain-agnostic425

latent feature space for the source and target domains by minimizing the distance between the source and target426

embedding distributions. Through empirical evaluation, we show that combining our algorithms maintains fairness427

effectively under domain shift and also mitigates the effect of domain shift on the performance accuracy. Future428

extensions of this work includes considering scenarios where in addition to maintaining fairness under domain shift,429

the target domain maybe encountered sequentially, necessitating source-free model updating.430
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A Appendix555

Split Source Target
Size Y=0 A=0|Y=0 A=0|Y=1 Size Y=0 A=0|Y=0 A=0|Y=1

A 34120 0.76 0.39 0.15 14722 0.76 0.39 0.15
A1 12024 0.53 0.41 0.16 5393 0.91 0.49 0.18
A2 29466 0.66 0.34 0.14 2219 0.97 0.48 0.30
A3 11887 0.52 0.42 0.16 778 0.89 0.39 0.17
C 3701 0.52 0.77 0.86 1577 0.54 0.76 0.84
C1 2886 0.58 0.74 0.82 1096 0.67 0.78 0.86
C2 903 0.47 0.80 0.80 96 0.74 0.70 0.92
C3 2031 0.45 0.80 0.85 162 0.58 0.60 0.79
G 697 0.70 0.28 0.37 303 0.70 0.30 0.34
G1 573 0.66 0.34 0.45 427 0.76 0.23 0.20
G2 388 0.61 0.36 0.49 196 0.84 0.20 0.16
G3 439 0.62 0.35 0.45 159 0.87 0.21 0.19
B 21184 0.87 0.02 0.06 9304 0.88 0.03 0.04
B1 4259 0.87 0.00 0.01 8518 0.86 0.07 0.14
B2 1314 0.90 0.00 0.01 5620 0.85 0.06 0.12
B3 1560 0.88 0.01 0.04 10832 0.87 0.03 0.05

Table 8: Data split statistics. A,C,G,B correspond to the Adult, COMPAS, German and Bank dataset respectively. The rows with
no number i.e. A,C,G,B correspond to random data splits. The numbered rows e.g. A1,A2,A3 correspond to statistics for specific
splits. The columns represent the probabilities of specific outcomes for specific splits e.g. P (Y = 0). Results when using sex as
sensitive attribute, except for the Bank dataset, where age is the sensitive attribute.

A.1 Data splits556

The data splits employed in our approach are as follows:557

Adult Dataset. We will use age, education and race to generate source and target domains. This can be a natural558

occurrence in practice, as gathered census information may differ along these axes geographically. For example,559

urban population is on average more educate than rural population 6, and more ethnically diverse 7. Thus, a fair model560

trained on one of the two populations will need to overcome distribution shift when evaluated on the other population.561

Besides differences in the feature distributions, we also note the Adult dataset is both imbalanced in terms of outcome,562

P (Y = 1) = 0.34, and sensitive attribute of positive outcome, P (A = 1|Y = 1) = 0.85, i.e. only a fraction of563

participants are earning more than 50k/year, and 85% of them are male.564

The source/target splits we consider are as follows:565

1. Source data: White, More than 12 education years. Target data: Non-white, Less than 12 education years.566

2. Source data: White, Older than 30. Target data: Non-white, younger than 40.567

3. Source data: Younger than 70, More than 12 education years. Target data: Older than 70, less than 12 years568

of education.569

In Table 8 we analyze the label and sensitive attribute conditional distributions for the above data splits. For the570

random split (A), the training and test label and conditional sensitive attribute distributions are identical, which is to571

be expected. For the three custom splits we observe all three distributions: P (Y ), P (A|Y = 0), P (A|Y = 1) differ572

between training and test. We also note the label distribution becomes more skewed towards Y = 0.573

COMPAS Dataset Compared to the Adult dataset, the COMPAS dataset is balanced in terms of label distribution,574

however is imbalanced in terms of the conditional distribution of the sensitive attribute. We will split the dataset along575

age, number of priors, and charge degree, i.e. whether the person committed a felony or misdemeanor. Considered576

splits are as follows:577

6https://www.ers.usda.gov/topics/rural-economy-population/employment-education/rural-education/
7https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=99538
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1. Source data: Younger than 45, Less than 3 prior convictions. Test data: Older than 45, more than 3 prior 578

convictions. 579

2. Source data: Younger than 45, White, At least one prior conviction. Target data: Older than 45, Non-white, 580

No prior conviction. 581

3. Source data: Older than 25, At least one prior conviction, Convicted for a felony. Target data: Younger than 582

25, No priors, Convicted for a misdemeanor. 583

The first split tests whether a young population with limited number of convictions can be leveraged to fairly predict 584

outcomes for an older population with more convictions. The second split introduces racial bias in the sampling 585

process. In the third split we additionally consider the type of felony committed when splitting the dataset. For all 586

splits, the test datasets become more imbalanced compared to the random split. 587

German Credit Dataset The dataset is smallest out of the three considered. For splitting we consider credit history 588

and employment history. Similar to the Adult dataset, the label distribution is skewed towards increased risk i.e. 589

P (Y = 0) = 0.7, and individuals of low risk are also skewed towards being part of the privileged group i.e. P (A = 590

1|Y = 1) = 0.63. We consider the following splits: 591

1. Source data: Employed up to 4 years. Target data: Employed long term (4+ years). 592

2. Source data: Up to date credit history, Employed less than 4 years. Target data: un-paid credit, Long term 593

employed. 594

3. Source data: Delayed or paid credit, Employed up to 4 years. Target data: Critical account condition, Long 595

term employment. 596

Compared to random data splits, the custom splits reduce label and sensitive attribute imbalance in the source domain, 597

and increase these in the target domain. 598

Bank Marketing Dataset The dataset records the effects of a marketing campaigns initiated by a bank on its term 599

deposits. Compared to the other datasets, the bank dataset is highly imbalanced, both in terms of label distribution and 600

sensitive attribute distribution. We consider the following splits: 601

1. Source data: Made a loan, has a job. Target data: No loan, unemployed. 602

2. Source data: Married, not self employed. Target data: Not married, self employed. 603

3. Source data: Followed a professional course, Married, Technician. Target data: High School educated, Not 604

Married, Blue-collar job. 605

A.2 Parameter tuning and implementation 606

A.2.1 Training and model selection 607

Implementation of our approach is done using the PyTorch Paszke et al. (2019) deep learning library. We model our 608

encoder eu as a one layer neural network with output space z ∈ R20. Classifiers g and h are also one layer networks 609

with output space ∈ R2. We train our model for 45, 000 iterations, where the first 30, 000 iterations only involve source 610

training. For the first 15, 000 we only perform minimization of the binary cross entropy loss Lbce. We introduce source 611

fairness training at iteration 15, 000, and train the fair model, i.e. with respect to both Lbce and Lfair, for 15, 000 612

more iterations. In the last 15, 000 iterations we perform adaptation, where we optimize Lbce, Lfair on the source 613

domain, Lfair on the target domain, and Lswd between the source and target embeddings eu((xs, as)), eu((xt, at)) 614

respectively. We use a learning rate for Lbce, Lfair of 1e − 4, and learning rate for Lswd of 1e − 5. Model selection 615

is done by considering the difference between accuracy on the validation set, and demographic parity on the test set. 616

Given equalized odds and averaged opportunity require access to the underlying labels on the test set we cannot use 617

these metrics for model selection. Additionally, models corresponding to degenerate predictions i.e. test set predicted 618

labels being either all 0s or all 1s are not included in result reporting. 619
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A.3 Empirical Results about Dynamics of Learning620

We performed another analytic experiment to study the effect of model training on the important loss terms and621

metric. In Figure 3, we analyze the effect of the adaptation process on target domain accuracy, validation accuracy,622

demographic parity on the source domain, and demographic parity on the target domain for the Adult dataset. We623

compare two scenarios: (1) running the algorithm when Lswd is not enforced (bottom), and (2) running the algorithm624

using both fairness and domain alignment (top). For the first 30, 000 iterations, we only perform source-training,625

where the first half of iterations is spent optimizing Lbce, and the second half is spent jointly optimizing Lbce and the626

source fairness objective. We note once optimization with respect to Lfair starts, demographic parity decreases until627

adaptation start, i.e., iterations 15, 000 to 30, 000. The validation accuracy in this interval also slightly decreases, as628

improving fairness may affect accuracy performance. During adaptation, i.e., after iteration 30, 000, we observe that629

in the scenario where we use Lswd, the target domain accuracy increases, while demographic parity on both the source630

and target domains remains relatively unchanged. In the scenario where no optimization of Lswd is performed, there631

is still improvement with respect to target accuracy. However, target domain demographic parity becomes on average632

larger. These observations imply that the distributional alignment at the output of the encoder has beneficial effects633

both for the classification as well as the fairness objective and our algorithm gradually leads to the desired effects.

Figure 3: Learning behavior during training when using both Lfair and Lswd (left) versus when only using Lfair (right)

634

We further investigate the different components present in our algorithm. In Figure 3 we analyze the training and635

adaptation process with respect to target accuracy, validation accuracy, demographic parity on the source domain, and636

demographic parity on the target domain. Performance plots are reported for the Adult dataset. We compare two637

scenarios: running the algorithm when Lswd is not enforced (bottom), and running the algorithm using both fairness638

and domain alignment (top). For the first 30, 000 iterations we only perform source training, where the first half639

of iterations is spent optimizing Lbce, and the second half is spent jointly optimizing Lbce and the source fairness640

objective. We note once optimization with respect to Lfair starts, demographic parity decreases until adaptation641

start, i.e. between iterations 15, 000 − 30, 000. The validation accuracy in this interval also slightly decreases, as642

improving fairness may affect accuracy performance. During adaptation, i.e. after iteration 30, 000, we observe that643

in the scenario where we use Lswd, the target accuracy increases, while demographic parity on both source and target644

domains remains relatively unchanged. In the scenario where no optimization of Lswd is performed, there is still645

improvement with respect to target accuracy, however target demographic parity becomes on average larger. This646

implies that the distributional alignment loss done at the output of the encoder has beneficial effects both for the647

classification as well as the fairness objective.648

A.4 Additional dataset analysis649

Similar to the analysis in the main body of the paper, we evaluate performance on the Bank dataset and report results650

in Table 9.651

On all data splits our approach leads to the best outcome in terms of ∆DP , and on the first two splits we also652

achieve highest accuracy amongst the fairness preserving methods. Moreover, besides our approach, only RP is able653
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to strike a balance between fairness and accuracy on all splits, and our approach proves superior in terms of accuracy 654

and demographic parity. We also note that compared to the other datasets, ∆EO and ∆AO are not automatically 655

improved with the optimization of ∆DP . This is the case with all other methods as well - either competitive accuracy 656

or several fairness metrics will not be enforced. For our method, the sensitivity of ∆EO and ∆AO appears to be 657

high, while that of the accuracy is low. This suggests that these metrics may be further improved with higher focus on 658

dataset specific hyper-parameter tuning. 659

Alg. Admin., Married Technician, Married, Housing Technician, Education, Housing
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.82±0.01 0.00±0.01 0.21±0.07 0.17±0.01 0.83±0.05 0.03±0.05 0.07±0.12 0.06±0.06 0.83±0.02 0.12±0.03 0.54±0.05 0.30±0.03

MC 0.79±0.00 0.06±0.07 0.15±0.11 0.09±0.05 0.72±0.02 0.09±0.04 0.12±0.06 0.12±0.03 0.88±0.01 0.01±0.01 0.37±0.02 0.18±0.02

AD 0.58±0.08 0.28±0.25 0.52±0.31 0.34±0.26 0.56±0.02 0.30±0.38 0.41±0.36 0.33±0.37 0.54±0.04 0.12±0.12 0.23±0.14 0.16±0.11

ROC 0.51±0.00 0.06±0.00 0.00±0.00 0.05±0.00 0.81±0.00 0.22±0.00 0.06±0.00 0.12±0.00 0.61±0.00 0.06±0.00 0.02±0.00 0.03±0.00

EGR 0.70±0.01 0.06±0.03 0.28±0.11 0.17±0.06 0.61±0.01 0.06±0.03 0.25±0.01 0.12±0.03 0.68±0.02 0.02±0.01 0.16±0.04 0.08±0.03

LFR 0.68±0.05 0.04±0.04 0.10±0.05 0.08±0.05 0.63±0.07 0.06±0.04 0.21±0.16 0.09±0.08 0.67±0.07 0.07±0.06 0.32±0.23 0.17±0.12

CEO 0.61±0.10 0.01±0.01 0.03±0.01 0.03±0.02 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.60±0.05 0.05±0.04 0.11±0.08 0.07±0.04

RP 0.75±0.00 0.00±0.00 0.10±0.00 0.09±0.00 0.80±0.00 0.02±0.00 0.21±0.00 0.06±0.00 0.84±0.00 0.05±0.00 0.33±0.00 0.19±0.00

Ours 0.81±0.01 0.00±0.00 0.25±0.10 0.17±0.02 0.84±0.01 0.00±0.00 0.26±0.29 0.11±0.12 0.84±0.02 0.01±0.01 0.55±0.11 0.23±0.04

Table 9: Performance results for the three splits of the bank dataset
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