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Abstract

Systematic generalization is the ability of a machine learning model to perform well
on a family of test examples that are out-of-distribution with respect to the training
examples in a systematic way. To succeed, compositionality of useful information
learned from the training data is required. One well-studied problem instance is
single path relational reasoning where a model is provided with small relational
graphs and is tasked with predicting the relation between a head and target node.
Crucially, this task can be solved by identifying a single resolution path between
the head and the target and then using rules to sequentially compose relations until
a relationship between the head and target node can be inferred. Previous work has
shown that graph-based transformers and text-based large language models perform
poorly on single path reasoning tasks, while some rule-based and neuro-symbolic
methods can solve them with near-perfect accuracy. In this paper, we propose a
Spatio-Temporal Reasoning benchmark (STaR) based on classic relational calculi,
which generalizes the single path relational reasoning problem to require the
aggregation of partial information from multiple paths between the head and target
node. Our experiments demonstrate that many state-of-the-art neuro-symbolic,
transformer and graph neural network methods perform poorly on STaR. Our code
and data are available at https://github.com/erg0dic/gnn-sg

1 Introduction

Systematic generalization (SG) is the ability of a model to solve test instances by composing
knowledge that was learned from multiple training instances [8], where the test instances are typically
larger than the training instances. Leveraging compositionality, i.e., decomposing arbitrarily large
problem instances into atomic units, is at the heart of SG and is an essential ingredient for machines
and humans to generalize from a limited amount of data [12]. However, many machine learning
models, including transformers [23, 7], struggle on SG tasks [10, 11]. This has been attributed to
models exploiting statistical artefacts in the training and test data [24] which leads to a significant
drop in performance when the generation process of the test instances is altered. Furthermore, large
language models have shown impressive reasoning abilities, but this is often due to the presence of
similar problem instances in their training data which the model can memorize [9]. When exposed
to problems that require some form of generalization of the underlying reasoning principles, their
performance also collapses [6, 22], which can lead to surprisingly brittle performance [3].

In this paper, we propose a novel Spatio-Temporal Reasoning benchmark (STaR), which measures
the systematic generalization ability of a machine learning model on relational reasoning in two
well-known calculi: the Interval Algebra (IA) [1] and RCC-8 [5]. It measures SG along two axes:

1. Number of paths b: Each path in a given problem instance provides only partial information.
To infer the required relation, information from b such paths needs to be aggregated.
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Figure 1: Left: A (single) relational path reasoning problem over family relations taken from
CLUTRR [20] Right: A multipath reasoning problem over the RCC-8 relations where each path
provides partial (disjunctive) information and the target label is obtained by combining information
from paths P1, P2 and P3.

2. Path length k. Each path between the head and target node consists of k relations. This
means that inferring the information provided by a path requires k − 1 inference steps, with
each step involving taking the composition of two neighbouring relations.

Our approach generates synthetic test graphs that are computationally efficient to generate. We demon-
strate results on STaR for various machine learning architectures and highlight their shortcomings in
handling the new generalized relational reasoning setting.

2 Related work

Existing benchmarks for systematic relational reasoning like CLUTRR [20], Graphlog [21], Addition
[17], SCAN [11] and LEGO [25] primarily vary the difficulty of problem instances with respect to
path or sequence length k. These prove challenging for most machine learning models including
large language models [26]. Neuro-symbolic methods that are able to learn (differentiable) rules
can perform well on these tasks [16, 15, 4], but make strong assumptions, including the fact that the
answer can be inferred from a single relational path.

STaR goes further than the aforementioned benchmarks on three fronts: i) the need to go beyond Horn
rules (see below (1)) to capture relational compositions; ii) requiring models to aggregate information
from multiple relational paths; and iii) the need to deal with novel graph topologies at test time. The
contrast between CLUTRR and our RCC-8 dataset is illustrated in Figure 1.

3 Systematic Spatio-Temporal Reasoning benchmark

We focus on the problem of reasoning about binary relations. In each problem instance, we assume
that a set F of facts is given, referring to a set of relations R and a set of entities E . The set of
relations is fixed across problem instances, but the entities are not. Each of the facts is an atom of
the form r(a, b), with r ∈ R and a, b ∈ E . The problems we consider essentially require models to
learn a set of rules K, which they can then use to decide of a given atom r(a, b) can be inferred from
the set of facts F . To be successful, models must be capable of composing the learned rules in a
systematic way.

3.1 Disjunctive rules

The most commonly studied setting concerns Horn rules of the following form (n ≥ 3):

r(X1, Xn)← r1(X1, X2) ∧ . . . ∧ rn−1(Xn−1, Xn) (1)

where Xi are variables. This rule uniquely determines the relationship between two entities X1 and
Xn, given knowledge about the relations that hold between intermediate entities Xi. In many settings,
however, such knowledge might not be sufficient for completely characterising the relationship
between X1 and Xn. Domain knowledge might then be expressed using disjunctive rules of the
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following form:

s1(X1, Xn) ∨ . . . ∨ sk(X1, Xn)← r1(X1, X2) ∧ . . . ∧ rℓ(Xn−1, Xn) (2)

In other words, suppose ℓ = 2, if we know that r1(X,Y ) and r2(Y,Z) hold for some entities X,Y, Z,
then all we can infer is that one of the relations s1, . . . , sk must hold between X and Z.

3.2 Relation Calculi

The spatial component of STaR comes from the Region Connection Calculus, RCC-8 [18], which
uses eight primitive relations to describe qualitative spatial relationships between regions: ntpp(a, b)
means that a is a proper part of the interior of b, tpp(a, b) means that a is a proper part of b and shares
a boundary point with b, po(a, b) means that a and b are overlapping (but neither is included in the
other), dc(a, b) means that a and b are disjoint, ec(a, b) means that a and b are adjacent (i.e. sharing
a boundary point but no interior points), eq(a, b) means that a and b are equal, and ntppi and tppi
are the inverses of ntpp and tpp. The RCC-8 semantics is governed by the so-called composition
table, which describes the compositions of RCC-8 relations. This is shown in Table 1 in the appendix,
where the trivial composition with the identity element eq being itself is dropped. Each entry in this
table corresponds to a rule of the form (2), specifying the possible relations that may hold between
two regions a and c, when we know the RCC-8 relation that holds between a and some region b as
well as the relation that holds between b and c. For instance, the composition of ec and tppi is given
by the set {dc, ec}, which means that from {ec(a, b), tppi(b, c)} we can infer dc(a, c) ∨ ec(a, c). In
the table, we writeR8 to denote that any RCC-8 relation is possible. In addition to these composition
rules, reasoning with RCC-8 relies on the fact that the eigh primitive relations are jointly exhaustive
and pairwise disjoint, i.e. between any two regions exactly one of the primitive relations holds.

The temporal component of STaR is based on Allen’s interval algebra [1]. Similar to RCC-8, the
interval algebra uses 13 primitive relations to describe qualitative temporal relationships. The interval
algebra captures all possible relationships between two time intervals. These are again binary relations,
defined as follows: <(a, b) means that the time interval a strictly precedes the time interval b; d(a, b)
means that a occurs during b (and a and b do not share starting or ending times); o(a, b) means that
a starts before b and ends during b; m(a, b) means that a ends exactly when b starts; s(a, b) means
that a starts b (a and b share the starting time and a ends before b); f(a, b) means that a finishes b
(a and b share the finishing time and b starts before a); =(a, b) means that a equals b; and finally
>, di, oi,mi, si, fi are the inverses of the respective operations defined previously. The composition
table for all the primitive interval relations is shown in Table 2.

3.3 Data Generation

All sampling in the discussion below is uniform random. Each problem instance has to be constructed
such that after aggregating the information provided by all the relational paths, we need to be able to
infer a a single primitive relation. In other words, problem instances need to be consistent (i.e. the
information provided by different paths cannot be conflicting) and together all the paths need to be
informative enough to uniquely determine which relation holds between the head and tail entity. This
makes brute-force sampling of problem instances prohibitive. Instead, to create a problem instance
involving b paths of length k, we first sample a base graph, which has b shorter paths, with a length
in {2, 3, 4}. This is done by pre-computing relational compositions for a large number of paths and
then selecting b paths whose intersection is a singleton. Then we repeatedly increase the length of
the paths by selecting an edge and replacing it by a short path whose composition is equal to the
corresponding relation. Finally, to add further diversity to the graph topology, for each of the b paths,
we allow 1 edge from the base graph to be replaced by a subgraph (rather than a path), where this
subgraph is generated using the same procedure. Note that the final path count b then includes the
paths from this subgraph as well. We ensure that all relational paths in a problem instance in the
generated dataset do not informationally conflict with each other by using the DPC+ algorithm [14].
It efficiently computes directional path consistency, for the qualitative constraint networks that we
can transform our graph instances to. Directional path consistency is sufficient as a test for global
path consistency for networks with singleton edge labels [13]. Detailed steps and examples are in
Appendix A.1.
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Figure 2: STaR results for the RCC-8 and Interval Algebra (accuracy). R5 results for 5+ hops were
set to zero since the model took longer than 30 minutes for inference. The best model for all cases
is the Edge Transformer, although its performance also significantly decreases after the number of
reasoning paths is increased from b = 1 to b = 3 for path lengths greater than k ≤ 4 that are seen
during training.

4 Results

We consider the following baselines: the state-of-the-art (SOTA) neuro-symbolic methods on
CLUTRR, namely R5, a Monte-Carlo Tree Search based method equipped with a dynamic rule
memory [15] and NCRL, a neural compositional rule learner with recurrent attention [4]; the Edge
Transformer, which employs a triangular attention on Graph edges; NBFNet [27], a strong knowledge
graph completion model; and Relational Graph Convolutional Networks [19]. The performance of
these models on STaR is shown in Figure 2. Models are trained on graphs with b ∈ {1, 2, 3} paths
of length k ∈ {2, 3, 4}. The RCC-8 spatial reasoning task is easier for all models, which could be
related to the fact that it has fewer relations than IA (8 as opposed to 13). As can clearly be seen, the
need to go beyond single relational paths means that neuro-symbolic methods such as NCRL and
R5 perform poorly when going beyond the training distribution (i.e. k ≥ 5), as could be expected.
NBFNet and R-GCNs do not focus on individual relational paths, but they also perform poorly for
k ≥ 5. Edge transformers achieve the best results, but their performance also clearly degrades for
k ≥ 5 especially for IA, and for RCC-8 with b = 3.

5 Conclusion

We have proposed a novel benchmark for evaluating the systematic generalization abilities of machine
learning models for relational reasoning. The benchmark is based on two well-known relational
calculi: RCC-8 and IA. Different from existing benchmarks for systematic generalization, reasoning
in the considered settings requires aggregating information from multiple relational paths. We
empirically found the benchmark to be challenging for state-of-the-art neuro-symbolic methods, as
well as transformer and GNN based methods. We thus believe it can serve as a valuable test-bed for
advancing the capabilities of models that are aimed at learning to reason.
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A Appendix

A.1 Detailed data generation information

The spatial reasoning component of the Spatio-Temporal Reasoning (STaR) benchmark is based on
Region Connection Calculus (RCC-8) whose generating composition table is given by Table 1 with
the 8 regional relations described in the main text. An example from the RCC-8 spatial reasoning
graph collection with b = 6 paths from the source node 0 to the target node 17. Each path has a
length of k = 3 where k is the number of hops or edges from the node 0 to node 17. The graph has
to be collapsed into the single relation ntpp(0, 17) using information from all the paths. The data
generation process is described in more detail below:

1. Sample short paths: Randomly sample n = 100 000 paths of length k ∈ {2, 3, 4} and
compute their composition. Note that this sampling is done with replacement to avoid
uniqueness upper bounds for small graphs.

2. Generate base graphs: Generate the desired number of b-path base graphs, by selecting
paths that were generated in step 1. Each individual path typically composes to a set of
relations, but the graphs are constructed such that the intersection of these sets, across all b
paths, produces a singleton target label.

3. Recursive edge expansion: Randomly pick an edge from a path that does not yet have the
required length k. Select a path from step 1 which composes to a singleton, corresponding
to the relation that is associated with the chosen edge. Replace the edge with this path.

4. Recursive subgraph expansion: Rather than replacing an edge with a path, we can also
replace it with a subgraph. As candidate subgraphs, we use the base graphs from step 2 with
at most ⌊ b2⌋ paths.

5. Keep repeating steps 2 and 3 until we have the desired number paths b with the desired
length of k, with the restriction that step 3 is applied at most once to each path from the
initial base graph.

The temporal reasoning component is based on the Allen Interval algebra with 13 temporal relations
described in the main text. Its composition table is provided in Table 2. Examples illustrating the rich
topology of the graphs from the benchmarks for some path count b and path length k are shown in
figures 4 and 5.

Table 1: Region Connection Calculus (RCC-8) composition table [5] (excluding eq).
dc ec po tpp ntpp tppi ntppi

dc R8
dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po, tpp,
ntpp

dc dc

ec
dc, ec, po,
tppi, ntppi

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tpp, ntpp

ec, po, tpp,
ntpp

po, tpp, ntpp dc, ec dc

po
dc, ec, po,
tppi, ntppi

dc, ec, po,
tppi, ntppi R8 po, tpp, ntpp po, tpp, ntpp dc, ec, po,

tppi, ntppi
dc, ec, po,
tppi, ntppi

tpp dc dc, ec dc, ec, po,
tpp, ntpp tpp, ntpp ntpp

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tppi, ntppi

ntpp dc dc
dc, ec, po,
tpp, ntpp ntpp ntpp

dc, ec, po,
tpp, ntpp R8

tppi
dc, ec, po,
tppi, ntppi

ec, po, tppi,
ntppi

po, tppi,
ntppi

po, eq, tpp,
tppi

po, tpp, ntpp tppi, ntppi ntppi

ntppi
dc, ec, po,
tppi, ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi, tpp,
ntpp, ntppi, eq ntppi ntppi
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Figure 3: An example from the RCC-8 spatial reasoning graph collection.

Table 2: Allen’s interval algebra composition table [1] excluding the trivial composition with =.
< > d di o oi m mi s si f fi
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o, d, s
<, o,
m, di,
fi

<, o,
m

o, oi,
d, s, f,
di, si,
fi, =

<
oi, di,
si

o
o, di,
fi

o, d, s <, o,
m

oi
<, o,
m, di,
fi

>
oi, d,
f

>, oi,
mi, di,
si

o, oi,
d, di,
s, si, f ,
fi, =

>, oi,
mi

o, di,
fi

>
oi, d,
f

oi, >,
mi

oi
oi, di,
si

m <
>, oi,
di, mi,
si

o, d, s < < o, d, s <
f, fi,
=

m m d, s, o <

mi
<, o,
m, di,
fi

>
oi, d,
f

>
oi, d,
f

>
s, si,
=

>
d, f,
oi

> mi mi

s < > d
<, o,
m, di,
fi

<, o,
m

oi, d,
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=
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A.2 Additional experimental details

We now present further details of the experimental set-up, the dataset statistics and training details.
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Figure 4: Some graph instances for the RCC-8 dataset generated using the procedure described in A.1.
The graph topology becomes more diverse for the test instances when sub-graphs are embedded
within a single path, as shown in (g) for path length k − 6 and number of paths b = 1. In this
particular case, there are two sub-graphs that have been embedded in the graph by replacing two
edges. Instances of the type shown in (a), (b), (c), (d), (e), (f) are used in the training set and the
graph topology is fixed in this case. The target edge label between the source node and the tail node
that needs to be predicted by the model is indicated by the dotted line.
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Figure 5: Graph instances for the interval dataset generated using the procedure described in A.1. We
highlight the rich variation in the topology of the graph instance for path length k = 6 and number
of paths b = 3 in (h) by contrasting it with a similar graph instance for the RCC-8 dataset shown
in Figure 4(h). The target edge label between the source node and the tail node that needs to be
predicted by the model is indicated by the dotted line.

A.2.1 Dataset statistics

STaR is the Spatio-Temporal Reasoning benchmark that we introduce in this paper, as described in
Section A.1. We release this benchmark under a CC-BY 4.0 license.

Dataset statistics for STaR are reported in table 3. We use a standard 80-20 split for training and
validation.
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Table 3: Data statistics of the STaR benchmark

Name Training regime No. of relations # Train # Test Test regime

RCC-8 b ∈ {1, 2, 3}, k ∈ {2, 3} 8 57,600 153,600 b ∈ {1, 2, 3}, k ∈ {2, . . . , 9}

IA b ∈ {1, 2, 3}, k ∈ {2, 3} 13 57,600 153,600 b ∈ {1, 2, 3}, k ∈ {2, . . . , 9}

A.2.2 Baselines

We consider the following neuro-symbolic methods:

R5 This model [15] learns symbolic rules of the form r(X,Z) ← r1(X,Y ) ∧ r2(Y,Z), with the
possibility of using invented predicates in the head. To make a prediction, the method then
samples (or enumerates) simple paths between the head and tail entities and iteratively
applies the learned rules to reduce these paths to a single relation. The order in which
relations are composed is determined by Monte Carlo Tree Search.

NCRL Neural Compositional Rule Learning [4] also samples relational paths between the head
and tail entities, and iteratively reduces them by composing 2 relations at a time, similar
to R5. However, in this case, the choice of the two relations to compose in each step are
determined by a Recurrent Neural Network. Moreover, rather than learning symbolic rules,
the rules are learned implicitly by using an attention mechanism to compose relations. Both
R5 and NCRL implicitly make the assumption that the relational reasoning problem is about
predicting the target relation from a single relational path, and that this prediction can be
done by repeatedly applying Horn rules.

The following transformer [23] variant is also a natural baseline:

ET Edge Transformers [2] modify the transformer architecture by using an attention mechanism
that is designed to simulate relational composition. In particular, the embeddings are
interpreted as representations of edges in a graph. To update the representation of an
edge (a, c) the model selects pairs of edges (a, x), (x, b) and composes their embeddings.
These compositions are aggregated using an attention mechanism, similar as in the standard
transformer architecture.

We also compare against several GNN models:

R-GCN Relational GCNs [19] are a variant of GCNs in which messages are computed using a
relation-specific linear transformation. This is similar in spirit to how we compute messages
in our framework, but without the inductive bias that comes from treating embeddings as
probability distributions over primitive relation types.

NBFNet Neural Bellman-Ford Networks [27] model the relationship between a designated head
entity and the other entities from a given graph. Our model employs essentially the same
strategy to use GNNs for relation classification, which is to learn entity embeddings that
capture the relationship with the head entity rather than the entities themselves. The main
difference between NBFnet and our model comes from the additional inductive bias that our
model is adding.

A.2.3 Training details

All experiments were conducted using a single RTX 4090 NVIDIA GPU with most models finishing
training in under 30 minutes, with the exception of R5, which took over 3 hours to train and up to 30
minutes for inference.

Hyperparameter settings All models reported in the paper are used with the hyperparameter tuned
configurations of the respective authors.
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