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Abstract

We propose a new framework for algorithmic stability in the context of multiclass
classification. In practice, classification algorithms often operate by first assigning
a continuous score (for instance, an estimated probability) to each possible label,
then taking the maximizer—i.e., selecting the class that has the highest score. A
drawback of this type of approach is that it is inherently unstable, meaning that
it is very sensitive to slight perturbations of the training data, since taking the
maximizer is discontinuous. Motivated by this challenge, we propose a pipeline
for constructing stable classifiers from data, using bagging (i.e., resampling and
averaging) to produce stable continuous scores, and then using a stable relaxation
of argmax, which we call the “inflated argmax”, to convert these scores to a set of
candidate labels. The resulting stability guarantee places no distributional assump-
tions on the data, does not depend on the number of classes or dimensionality of
the covariates, and holds for any base classifier. Using a common benchmark data
set, we demonstrate that the inflated argmax provides necessary protection against
unstable classifiers, without loss of accuracy.

1 Introduction

An algorithm that learns from data is considered to be stable if small perturbations of the training data
do not lead to large changes in its output. Algorithmic stability is an important consideration in many
statistical applications. Within the fairness literature, for instance, stability is one aspect of reliable
decision-making systems [FSVC19; HV19]. In interpretable machine learning, it similarly serves
as a form of reproducibility [MSKA19; YK20; YB24]. [CMX11] relates stability to robustness,
where a machine learning algorithm is robust if two samples with similar feature vectors have
similar test error. In the context of generalization bounds, [BE02] and subsequent authors study
stability of an algorithm’s real-valued output—for instance, values of a regression function. In the
setting of a multiclass classification problem, where the data consists of features X ∈ X and labels
Y ∈ [L] = {1, . . . , L}, the results of this literature can thus be applied to analyzing a classifier’s
predicted probabilities p̂ℓ(X) ∈ [0, 1]—i.e., our learned estimates of the conditional probabilities
Pr{Y = ℓ | X}, for each ℓ ∈ [L]. However, as we will see, stability of these predicted probabilities
by no means implies stability of the predicted label itself, ŷ = argmaxℓ∈[L] p̂ℓ(x)—an arbitrarily
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small perturbation in p̂ℓ(x) might completely change the predicted label ŷ. The distinction matters:
for system trustworthiness, we care about the model’s final output, on which users base their decisions.

In this paper, we propose a new framework for algorithmic stability in the context of multiclass
classification, to define—and achieve—a meaningful notion of stability when the output of the
algorithm consists of predicted labels, rather than predicted probabilities. Our work connects to
other approaches to allowing for ambiguous classification, including set-valued classification [Gry93;
DDB09; SLW19; CDHL21] and conformal inference [PPVG02; VGS05; Lei14; AB23] (we will
discuss related work further, below).

1.1 Problem setting

In supervised classification, we take a data set D =
(
(Xi, Yi)

)
i∈[n]

consisting of n observations, and

train a classifier that maps from the feature space X to the set [L] of possible labels.1 Typically, this
map is constructed in two stages. First we run some form of regression to learn a map p̂ : X → ∆L−1

from features to predicted probabilities, with p̂ℓ(x) denoting our learned estimate of the conditional
label probability, Pr{Y = ℓ | X = x} (here ∆L−1 = {w ∈ RL : wi ≥ 0,

∑
i wi = 1} denotes

the probability simplex in L dimensions). We will write p̂ = A(D), where A denotes the learning
algorithm mapping a data set D (of any size) to the map p̂. Then the second step is to convert the
predicted probabilities p̂ℓ(x) to a predicted label, which is typically done by taking the argmax, i.e.,
ŷ = argmaxℓ p̂ℓ(x) (with some mechanism for breaking ties). This two-stage procedure can be
represented in the following diagram:

Training data
D =

(
(Xi, Yi)

)
i∈[n]

Predicted
probabilities
p̂(x) ∈ ∆L−1

Test features x ∈ X

Predicted label
ŷ ∈ [L]

Learning
algorithm A

Selection
(via argmax)

When predictions are ambiguous, meaning two or more classes nearly achieve the maximum predicted
probability, the selected label becomes unstable and can change based on seemingly inconsequential
perturbations to the training data. In other words, the above workflow is fundamentally incompatible
with the goal of algorithmic stability. Consequently, in this paper we instead work with set-valued
classifiers, which return a set of candidate labels—in practice, this typically leads to a singleton set
for examples where we have high confidence in the label, but allows for a larger set in the case of
ambiguous examples. While the idea of returning a set of candidate labels is not itself new, we will
see that the novelty of our work lies in finding a construction that offers provable stability guarantees.

In this framework, a feature vector x ∈ X is now mapped to a set of candidate labels Ŝ ⊆ [L] (rather
than a single label ŷ), via a selection rule s, as illustrated here:

Training data
D =

(
(Xi, Yi)

)
i∈[n]

Predicted
probabilities
p̂(x) ∈ ∆L−1

Test features x ∈ X

Candidate labels
Ŝ ⊆ [L]

Learning
algorithm A

Selection
rule s

Formally, given a test point x ∈ X , this two-stage procedure returns Ŝ = s(p̂(x)) ⊆ [L], where
p̂ = A(D) is the output of the regression algorithm A trained on data D. Here s : ∆L−1 → ℘([L])
denotes a selection rule, mapping a vector of estimated probabilities to the set of candidate labels,
and ℘([L]) denotes the set of subsets of [L]. Of course, the earlier setting—where the procedure
returns a single label ŷ = argmaxℓ p̂ℓ(x), rather than a subset—can be viewed as a special case by
simply taking s to be the argmax operator.

1We remark that all the results of this paper apply also to the case of countably infinitely many labels, L = ∞,
in which case we should take N to be the label space instead of [L].
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If we instead allow for Ŝ to contain multiple candidate labels, a commonly used version of this
framework is given by a top-5 procedure (or top-k, for any fixed k). That is, after running a learning
algorithm A to estimate probabilities p̂(x), the selection rule s then returns the top 5 labels—the
labels ℓ1, . . . , ℓ5 ∈ [L] corresponding to the highest 5 values of p̂ℓ(x). This approach is more stable
than a standard argmax. However, the choice of 5 in this setting is somewhat arbitrary, and the set Ŝ
always contains 5 candidate labels, regardless of the difficulty of the test sample—while intuitively,
we might expect that it should be possible to return a smaller Ŝ for test points x that are easier to
classify (and a larger Ŝ if x is more ambiguous). In contrast, in our work we seek a more principled
approach, where we provide provable stability guarantees while also aiming for the set Ŝ to be as
small as possible.

1.2 Overview of main results

In this work, we introduce selection stability, a new definition of algorithmic stability in the context
of classification, which focuses on the stability of the predicted label. We reduce the problem of
stabilizing a classifier to separately stabilizing the learning and selection stages, described above. For
the selection rule s of the two-stage procedure, we propose the inflated argmax operation:
Definition 1 (Inflated argmax). For any w ∈ RL, define the inflated argmax as

argmaxε(w) :=
{
j ∈ [L] : dist(w,Rε

j) < ε
}
, (1)

where dist(w,Rε
j) = infv∈Rε

j
∥w − v∥, and where

Rε
j =

{
w ∈ RL : wj ≥ max

ℓ ̸=j
wℓ + ε/

√
2

}
.

Our procedure will then return the set Ŝ = argmaxε(p̂(x)) of candidate labels—intuitively, j ∈
argmaxε(p̂(x)) indicates that a small perturbation of the predicted probabilities, p̂(x), would lead to
the jth label’s predicted probability being largest by some margin. In particular, by construction, the
inflated argmax will always include any maximal index—that is, if p̂(x)j is the (possibly non-unique)
largest estimated probability, then we must have j ∈ Ŝ = argmaxε(p̂(x)) (this fact, and other
properties of the inflated argmax, will be established formally in Proposition 10 below).

In this work, we derive the stabilizing properties of the inflated argmax, and give an algorithm to
compute it efficiently. We prove that combining this operation with bagging at the learning step will
provably stabilize any classifier. In particular, our guarantee holds with no assumptions on the data,
and no constraints on the dimensionality of the covariates nor on the number of classes.

2 Framework: stable classification

In this section, we propose a definition of algorithmic stability in the setting of multiclass classification.
To begin, we formally define a classification algorithm as a map2

C : ∪n≥0(X × [L])n × X −→ ℘([L]),

which maps a training data set D of any size n, together with a test feature vector x ∈ X , to a
candidate set of labels Ŝ = C(D, x). To relate this notation to our earlier terminology, the two-stage
selection procedure described in Section 1.1 corresponds to the classification algorithm

C(D, x) = s(p̂(x)) where p̂ = A(D).

Abusing notation, we will write this as C = s ◦ A, indicating that C is obtained by applying the
selection rule s to the output of the learning algorithm A.

We now present our definition of algorithmic stability for a classification algorithm C. As is common
in the algorithmic stability literature, we focus on the stability of the algorithm’s output with respect

2We will assume without comment that C is measurable. Furthermore, in practice classification algorithms
often incorporate randomization (either in the learning stage, such as via stochastic gradient descent, and/or in
the selection stage, such as by using a random tie-breaking rule for argmax). All of our definitions and results
in this paper can be naturally extended to randomized algorithms—see Appendix B.
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to randomly dropping a data point: does the output of C on a test point x change substantially if
we drop a single data point from the training data D? If the algorithm’s output were a real-valued
prediction ŷ ∈ R, we could assess this by measuring the real-valued change in ŷ when a single data
point is dropped. For classification, however, we will need to take a different approach:
Definition 2 (Selection stability). We say a classification algorithm C has selection stability δ at
sample size n if, for all datasets D ∈ (X × [L])n and all test features x ∈ X ,

1

n

n∑

i=1

1
{
Ŝ ∩ Ŝ\i = ∅

}
≤ δ,

where Ŝ = C(D, x) and where Ŝ\i = C(D\i, x), for each i ∈ [n].

Here the notation D\i denotes the data set D with ith data point removed—that is, for a data set
D =

(
(Xj , Yj)

)
j∈[n]

, the leave-one-out data set is given by D\i =
(
(Xj , Yj)

)
j∈[n]\i.

2.1 Interpreting the definition

Intuitively, selection stability controls the probability that our algorithm makes wholly inconsistent
claims when dropping a single data point at random from the training set. If we interpret Ŝ as making
the claim that the true label Y is equal to one of the labels in the candidate set Ŝ, and similarly for
Ŝ\i, then as soon as there is even one single value that lies in both Ŝ and Ŝ\i, this means that the two
claims are not contradictory—even if the sets are large and are mostly nonoverlapping.

At first glance, this condition appears to be too mild, in the sense that we require the two prediction
sets only to have some way of being compatible, and allows for substantial difference between the sets
Ŝ and Ŝ\i. However, since standard classification algorithms always output a single label, they often
cannot be said to be stable even in this basic sense. Thus, we can view this definition as providing a
minimal notion of stability that we should require any interpretable method to satisfy.

2.2 Connection to classical algorithmic stability

Most prior work on algorithmic stability concerns algorithms with continuous outputs—for example,
in our notation above, the algorithm A that returns estimated probabilities p̂(x). With such algorithms,
there are more standard tools at our disposal for quantifying and ensuring stability. In this section,
we connect classical algorithmic stability to our notion of selection stability (Definition 2). We first
recall the following definition.
Definition 3 (Tail stability). [SBW24b] A learning algorithm A has tail stability (ε, δ) at sample
size n if, for all datasets D of size n and all test features x ∈ X ,

1

n

n∑

i=1

1
{
∥p̂(x)− p̂\i(x)∥ ≥ ε

}
≤ δ,

where p̂ = A(D) and p̂\i = A(D\i), and where ∥ · ∥ denotes the usual Euclidean norm on RL.

This intuitive notion of stability is achieved by many well-known algorithms A, such as nearest-
neighbor type methods or methods based on bagging or ensembling (as established by [SBW24a;
SBW24b]—see Section 3.1 below for details).

2.3 From stability to selection stability

To construct a classification algorithm using the two-stage procedure outlined in Section 1.1, we need
to apply a selection rule s to the output of our learning algorithm A. We might expect that choosing a
stable A will lead to selection stability in the resulting classification algorithm—but in fact, this is not
the case: even if the learning algorithm A is itself extremely stable in the sense of Definition 3, the
classification rule obtained by applying argmax to the output of A can still be extremely unstable.
The underlying issue is that argmax is extremely discontinuous—the perturbation ∥p̂(x)− p̂\i(x)∥
in the predicted probabilities can be arbitrarily small but still lead to different predicted labels, i.e.,
argmaxℓ p̂ℓ(x) ̸= argmaxℓ p̂

\i
ℓ (x).

4



Since combining argmax with a stable learning algorithm A will not suffice, we instead seek a
different selection rule s—one that will ensure selection stability (when paired with a stable learning
algorithm A). To formalize this aim, we introduce another definition:
Definition 4 (ε-compatibility). A selection rule s : ∆L−1 → ℘([L]) is ε-compatible if, for any
v, w ∈ ∆L−1,

∥v − w∥ < ε =⇒ s(v) ∩ s(w) ̸= ∅.

This notion of ε-compatibility allows us to construct classification algorithms with selection stability.
Combining the above definitions leads immediately to the following result:
Proposition 5. Let A be a learning algorithm with tail stability (ε, δ) at sample size n, and let s be
a selection rule satisfying ε-compatibility. Then the classification algorithm C = s ◦ A has selection
stability δ at sample size n.

Therefore, by pairing a stable learning algorithm A with a compatible selection rule s, we will
automatically ensure selection stability of the resulting classification algorithm C = s ◦ A.

Of course, ε-compatibility of the selection rule s might be achieved in a trivial way—for instance, s
returns the entire set [L] for any input. As is common in statistical settings (e.g., a tradeoff between
Type I error and power, in hypothesis testing problems), our goal is to ensure selection stability while
returning an output Ŝ that is as informative as possible. In particular, later we will consider the
specific aim of constructing Ŝ to be a singleton set as often as possible.

3 Methodology: assumption-free stable classification

In this section, we formally define our pipeline for building a stable classification procedure using
any base learning algorithm A. At a high level, we leverage Proposition 5 and separately address the
learning and selection stages described in Section 2.

1. In Section 3.1, we construct a bagged (i.e., ensembled) version of the base learning algo-
rithm A. The recent work of [SBW24b] ensures that the resulting bagged algorithm has tail
stability (ε, δ), with ε ≍ 1√

nδ
.

2. In Section 3.2, we introduce a new selection rule, the inflated argmax, and establish its
ε-compatibility. Combined with the bagged algorithm, then, the resulting classification
algorithm will be guaranteed to have selection stability δ (by Proposition 5).

Before describing these two steps in detail, we first present our main theorem that characterizes
the selection stability guarantee of the resulting procedure. Given sample size n for the training
data set D, the notation Ãm will denote a bagged version of the base algorithm A, obtained by
averaging over subsamples of D comprised of m data points sampled either with replacement
(“bootstrapping”, commonly run with m = n) or without replacement (“subbagging”, commonly run
with m = n/2)—see below for details.
Theorem 6. Fix any sample size n, any bag size m, and any inflation parameter ε > 0. For any base
learning algorithm A, the classification algorithm C = argmaxε ◦Ãm, obtained by combining the
bagged version of A together with the inflated argmax, satisfies selection stability δ where

δ = ε−2 · 1− 1/L

n− 1
· pn,m
1− pn,m

, (2)

where pn,m = 1− (1− 1
n )

m for bootstrapping, and pn,m = m
n for subbagging.

The guarantee in Theorem 6 holds for any base learning algorithm A, and applies regardless of the
complexity of the feature space X , and allows the test feature x ∈ X to be chosen adversarially. The
dependence on the number of classes L is mild—in fact, the tail stability parameter δ in (2) differs
only by a factor of two for L = 2 versus L = ∞. Of course, the guarantee does depend on the choice
of the bag size m. In general, a smaller value of m leads to a stronger stability guarantee (since pn,m
increases with m), but this comes at the expense of accuracy since we are training the base algorithm
A on subsampled data sets Dr of size m (rather than n). For the common choices of m = n for
bootstrap or m = n/2 for subbagging, we have pn,m

1−pn,m
= O(1) for each.
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3.1 Bagging classifier weights

In this section, we formally define the construction of a bagged algorithm to recap the tail stability
result that our framework leverages. We consider the two most common variants of this ensembling
method: bagging (based on bootstrapping training points) and subbagging (based on subsampling).
For any data set D ∈ (X × [L])n, we can define a subsampled data set of size m as follows: for a
sequence r = (i1, . . . , im) ∈ [n]m (which is called a bag), we define the corresponding subsampled
data set Dr =

(
(Xi, Yi)

)
i∈r

∈ (X × [L])m. Note that if the bag r contains repeated indices (i.e.,
ik = iℓ for some k ̸= ℓ), then the same data point from the original data set D will appear multiple
times in Dr.
Definition 7 (Bootstrapping or subbagging a base learning algorithm A). Given a data set D ∈
(X × [L])n and some x ∈ X , return the output Ãm(D)(x) = Er[A(Dr)(x)], where the expected
value is taken with respect to a bag r that is sampled as follows:

• Bootstrapping (sometimes simply referred to as bagging) [Bre96a; Bre96b] constructs each
bag r by sampling m indices r = (i1, . . . , im) uniformly with replacement from [n].

• Subbagging [AEEP02] constructs each bag r by sampling m ≤ n indices r = (i1, . . . , im)
uniformly without replacement from [n].

The following result [SBW24b] ensures tail stability for any bootstrapped or subbagged algorithm:
Theorem 8 ([SBW24b]). For any base learning algorithm A returning outputs in ∆L−1, the bagged
algorithm Ãm has tail stability (ε, δ) for any ε, δ > 0 satisfying (2).

Computational cost of bagging. In this section, we have worked with the ideal, derandomized ver-
sion of bagging for simplicity—that is, we assume that the expected value Er[A(Dr)(x)] is calculated
exactly with respect to the distribution of r. In practice, of course, this is computationally infeasible
(since for bootstrapping, say, there are nm possible bags r), and so we typically resort to Monte
Carlo sampling to approximate this expected value, defining Ãm(D)(x) = 1

B

∑B
b=1 A(Drb)(x), for

B i.i.d. bags r1, . . . , rB sampled via bootstrapping or subbagging. See Appendix C for extensions of
our main result, Theorem 6, to the finite-B version of the method.

3.2 The inflated argmax

We now return to the inflated argmax operator, as defined in Definition 1. This operator, in place of
the standard argmax, allows for stability in classification.

While argmaxε is defined as an operator on RL, in the context of classification algorithms, we
only apply it to vectors w lying in the simplex ∆L−1 (in particular, in the context of a two-stage
classification procedure as in Section 1.1, we will apply the inflated argmax to the vector w = p̂(x)
of estimated probabilities). In Figure 1, we visualize the inflated argmax applied to the simplex in a
setting with three possible labels, L = 3. Each different shaded area corresponds to the region of the
simplex ∆L−1 where argmaxε(w) returns a particular subset.

3.2.1 Inflated argmax leads to selection stability

Unlike the standard argmax, the inflated argmax allows us to achieve stability in the context of
classification. This is due to the following theorem, which shows that the inflated argmax is ε-
compatible, as introduced in Definition 4. (The proofs of this result and all properties of the inflated
argmax are deferred to Appendix A.)
Theorem 9. For any ε > 0 and any v, w ∈ RL, if ∥v−w∥ < ε then argmaxε(v)∩argmaxε(w) ̸= ∅.
In particular, viewing argmaxε as a map on the simplex ∆L−1, argmaxε is ε-compatible.

To gain a more concrete understanding of this theorem, we can look again at Figure 1 to examine
the case L = 3. Theorem 9 ensures that any two regions corresponding to disjoint subsets—e.g., the
top corner region corresonding to {2}, and the bottom center region corresponding to {1, 3}—are
distance at least ε apart. In particular, the region in the center, corresponding to vectors w that map
to the full set {1, 2, 3}, is a curved triangle of constant width ε, also known as a Reuleaux triangle
[Reu76; Wei05].
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{2}

{1, 2, 3}

{1} {3}

{1, 2} {2, 3}

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

{1, 3}

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

{2}

{1} {3}

Figure 1: The left plot illustrates the inflated argmax (1) over the simplex ∆L−1 when L = 3. The
numbers in brackets correspond to the output of the inflated argmax, argmaxε(w), for various points
w in the simplex. The right plot shows the same but for the standard argmax, which corresponds to
the limit of argmaxε(w) as ε → 0.

Proof of Theorem 6. With the above results in place, we can now see that the inflated argmax allows
us to achieve selection stability, when combined with a bagged algorithm. In particular, combining
Theorem 8, Theorem 9, and Proposition 5 immediately implies our main result, Theorem 6.

3.2.2 Additional properties of the inflated argmax

The following result establishes some natural properties obeyed by the inflated argmax, and also
compares to the standard argmax.
Proposition 10 (Basic properties of the inflated argmax). Fix any ε > 0. The inflated argmax
operator satisfies the following properties:

1. (Including the argmax.) For any w ∈ RL, argmax(w) ⊆ argmaxε(w).3 Moreover,
∩ε>0 argmaxε(w) = argmax(w).

2. (Monotonicity in ε.) For any w ∈ RL and any ε < ε′, argmaxε(w) ⊆ argmaxε
′
(w).

3. (Monotonicity in w.) For any w ∈ RL, if wj ≤ wk, then j ∈ argmaxε(w) ⇒ k ∈
argmaxε(w).

4. (Permutation invariance.) For any v, w ∈ RL, if v = (wσ(1), . . . , wσ(L)) for some permuta-
tion σ on [L], then j ∈ argmaxε(v)⇔ σ(j) ∈ argmaxε(w).

Next, while we have established that inflated argmax offers favorable stability properties, we have
not yet asked whether it can be efficiently computed—in particular, it is not immediately clear how
to verify the condition dist(w,Rε

j) < ε in (1), in order to determine whether j ∈ argmaxε(w). The
following result offers an efficient algorithm for computing the inflated argmax set.
Proposition 11 (Computing the inflated argmax). Fix any w ∈ RL and ε > 0. Let w[1] ≥ · · · ≥ w[L]

denote the order statistics of w, and define

k̂(w) = max

{
k ∈ [L] :

( k∑

ℓ=1

(w[ℓ] − w[k])
)2

+

k∑

ℓ=1

(w[ℓ] − w[k])
2 ≤ ε2

}
.

Then

argmaxε(w) =

{
j ∈ [L] : wj >

ε√
2
+ Â1(w)−

√
k̂(w) + 1

√
ε2

k̂(w)
+ (Â1(w))2 − Â2(w)

}
,

where Â1(w) =
w[1]+···+w[k̂(w)]

k̂(w)
, and Â2(w) =

w2
[1]+···+w2

[k̂(w)]

k̂(w)
.

3In this result, argmax(w) should be interpreted as the set of all maximizing entries of w—i.e., in the case
of ties, argmax(w) may not be a singleton set.
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∑
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[N
]
1{
δ j
>
δ}

Stability comparison with B = 1, 000 bags

argmax◦A
argmaxε◦A
argmax◦Ãm
argmaxε◦Ãm

Figure 2: Results on the Fashion MNIST data set. The figure shows the instability δj (defined in (4))
over all test points j = 1, . . . , N . The curves display the fraction of δj’s that exceed δ, for each value
δ ∈ [0, 1]. The vertical axis is on a log scale. See Section 4 for details.

Finally, thus far we have established that argmaxε enables us to achieve stable classification with a
computationally efficient selection rule—but we do not yet know whether argmaxε is optimal, or
whether some other choice of s might lead to smaller output sets Ŝ (while still offering assumption-
free stability). For instance, we might consider a fixed-margin rule,

sεmargin(w) = {j : wj > max
ℓ

wℓ − ε/
√
2}, (3)

for which ε-compatibility also holds—might this simpler rule be better than the inflated argmax? Our
next result establishes that—under some natural constraints—argmaxε is in fact the optimal choice
of selection rule, in the sense of returning a singleton set (i.e., |Ŝ| = 1) as often as possible.
Proposition 12 (Optimality of the inflated argmax). Let s : ∆L−1 → ℘([L]) be any selection rule.
Suppose s is ε-compatible (Definition 4), permutation invariant (in the sense of Proposition 10), and
contains the argmax. Then for any w ∈ ∆L−1 and any j ∈ [L],

s(w) = {j} =⇒ argmaxε(w) = {j}.

In other words, for any selection rule s satisfying the assumptions of the proposition (which includes
the fixed-margin rule, sεmargin), if s(w) is a singleton set then so is argmaxε(w). (See also Appendix D
for a closer comparison between the inflated argmax and the fixed-margin selection rule given in (3).)

4 Experiments

In this section, we evaluate our proposed pipeline, combining subbagging with the inflated argmax,
with deep learning models and on a common benchmark data set.4

Data and models. We use Fashion-MNIST [XRV17], which consists of n = 60, 000 training pairs
(Xi, Yi), N = 10, 000 test pairs (X̃j , Ỹj), and L = 10 classes. For each data point (X,Y ), X is
a 28 × 28 grayscale image that pictures a clothing item, and Y ∈ [L] indicates the type of item,
e.g., a dress, a coat, etc. The base model we use is a variant of LeNet-5, implemented in PyTorch
[PGML19] tutorials as GarmentClassifier(). The base algorithm A trains this classifier using 5 epochs
of stochastic gradient descent.

Methods and evaluation. We compare four methods:

1. The argmax of the base learning algorithm A.

4Code to fully reproduce the experiment is available at https://github.com/jake-soloff/
stable-argmax-experiments. Training all of the models for this experiment took a total of four hours
on 10 CPUs running in parallel on a single computing cluster.
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Selection rule Algo. βcorrect-single ↗ βset-size ↘ βmax-instability ↘
argmax A 0.879 (0.003) 1.000 (0.000) 1.000

argmaxε A 0.873 (0.003) 1.015 (0.001) 1.000

argmax Ãm 0.893 (0.003) 1.000 (0.000) 0.966

argmaxε Ãm 0.886 (0.003) 1.018 (0.001) 0.000

Table 1: Results on the Fashion MNIST data set. We display the frequency of returning the correct
label as a singleton, βcorrect-single and the average size, βset-size, both of which are defined in (6).
Standard errors for these averages are shown in parentheses. The final column shows the worst-case
instability over the test set, βmax-instability, defined in (5). For each metric, the symbol ↗ indicates that
higher values are desirable, while ↘ indicates that lower values are desirable.

2. The ε-inflated argmax of the base learning algorithm A with tolerance ε = .05.

3. The argmax of the subbagged algorithm Ãm, with B = 1, 000 bags of size m = n/2.

4. The ε-inflated argmax of the subbagged algorithm Ãm, with B = 1, 000 bags of size
m = n/2 and tolerance ε = .05.

We evaluate each method based on several metrics. First, to assess selection stability, for each test
point j = 1, . . . , N we compute its instability

δj :=
1

500

500∑

k=1

1
{
s(p̂(X̃j)) ∩ s(p̂\ik(X̃j)) = ∅

}
, (4)

where i1, . . . , i500 are sampled uniformly without replacement from [n] (i.e., we are sampling 500
leave-one-out models p̂\i to compare to the model p̂ trained on the full training set). Since our theory
concerns worst-case instability over all possible test points, we evaluate the maximum instability

βmax-instability := max
j∈[N ]

δj . (5)

Second, to evaluate how accurate each method is, we compute how often the method returns the
correct label as a singleton βcorrect-single and set size βset-size (the number of labels in the candidate set):

βcorrect-single :=
1

N

N∑

j=1

1
{
s(p̂(X̃j)) = {Ỹj}

}
, βset-size :=

1

N

N∑

j=1

∣∣s(p̂(X̃j))
∣∣. (6)

Ideally we would want a method to return the correct singleton as frequently as possible (a large value
of βcorrect-single ∈ [0, 1] that is close to 1) and small set size (a value of βset-size ≥ 1 that is close to 1).

Results. In Figure 2, we present results for the instability of each method, plotting the survival
function of the instability for all test points (δj)j∈[N ]. The standard argmax applied to the base
algorithm, argmax ◦A, has the longest tail, meaning δj is large for many test points j. The inflated
argmax applied to the base algorithm, argmaxε ◦A, offers only a very small improvement on the
stability. By contrast, applying the standard argmax to the subbagged algorithm, argmax ◦Ãm, offers
a much more substantial improvement, since the red dashed curve is much smaller than both of
the solid curves. Still, some of the largest δj for this method are near 1, meaning for these test
points the returned set is sensitive to dropping a single training instance. Combining the inflated
argmax with subbagging, argmaxε ◦Ãm, offers a dramatic improvement: in this case δj = 0 for
every j = 1, . . . , N .

In Table 1, we present the average measures, βcorrect-single and βset-size and the worst-case measure
βmax-instability. For both the base algorithm and the subbagged algorithm, applying the inflated argmax
incurs a small cost both in terms of the frequency of returning the correct label as a singleton and
the average size. The inflated argmax increases set size only very slightly, but when combined with
subbagging, we improve upon the βcorrect-single of the original method and achieve an extremely high
level of stability (βmax-instability = 0), while returning a singleton set in the vast majority of cases.
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We extend our experiment in Appendix E. In particular, we compare the inflated argmax to some
existing methods for set-valued classification, including simple thresholding and top-K rules as well
as more involved methods, all of which are Bayes rules for various utility functions [MWDH21]. We
also evaluate each method using some additional metrics from set-valued classification, including
utility-discounted predictive accuracy [ZCM12].

5 Discussion

Related work. There is an enormous literature on set-valued classification, so we only reference
some of the most relevant works. Much prior work has considered the possibility of a more relaxed
argmax to allow for uncertainty [Bri90; BV16; MA16; BMN20; ZLYW23]. The more recent papers
in this line of work have focused on producing a sparse set of weights, but none of these works offer
a formal stability guarantee for the support of the weights. Our work is the first to propose a version
of the argmax that can provably control a notion of stability for the classification setting.

Our definition of selection stability relies on a notion of consistency between sets—two sets of
candidate labels are consistent if they have at least one common element. This is similar in flavor to
conformal classification [Lei14; SLW19], where a set of candidate values is valid if it contains the
correct label; this method does not rely on any distributional assumptions, and consequently has been
applied to complex and high-dimensional applications such as generative language models [QFSY23].
These frameworks share the motivation of avoiding ‘overconfidence in the assignment of a definite
label’ [HPW18].

Overview, limitations and open questions. We prove a guarantee on the selection stability based
on our methodology combining bagging with the inflated argmax. Theorem 6 does not place any
assumptions on the learning algorithm nor on the data, including any distributional assumptions. In
fact, the training data and test point may be chosen adversarially based on the algorithm, and the
output will still be stable. Moreover, we do not assume that the sample size is large: the guarantee
holds for any fixed training set size n and improves as n increases. Furthermore, the inflated argmax
selection rule ensures that the returned sets of candidate labels are as small as possible (i.e., that there
is as little ambiguity as possible about the predicted label for any given test point x).

While our theorem does not require assumptions, our method does require bagging the base learning
algorithm. The main limitation of our work is that bagging is computationally intensive. However,
training different bags is easily parallelizable, which is what allowed us to easily train a convolutional
neural network on B = 1, 000 total subsets of the training data. Moreover, while the original
definition of bagging uses the conventional bootstrap, where each bag contains as many samples as
the original data set, i.e. m = n, in our framework we allow for arbitrary bag size m, which could
be much smaller than the sample size n. Massively subsampling the data (m ≪ n) can actually
help scale learning algorithms to large data sets [KTSJ14]. Moreover, bagging with m = n can be
expensive, but there are still many areas of machine learning where it is used, notably in Random
Forests. Finally, our experiments also show that a modest number of bags (B = 1, 000) is all that we
really need to start seeing major gains in selection stability.

We leave open several avenues for future work. Practitioners may be interested in other forms of
discrete stability, which are more strict than requiring one common element between Ŝ and Ŝ\i. For
instance, one popular way to measure set similarity is the Jaccard index, given by |Ŝ∩Ŝ\i|

|Ŝ∪Ŝ\i| . Another
open problem is to extend the stability framework and methods studied here to more structured
discrete outputs, such as in clustering and variable selection, where nontrivial metrics on the output
are more common.
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A Proofs of properties of the inflated argmax

In this section, we prove all the results of Section 3.2, establishing the various properties of the
inflated argmax. In fact, all the proofs will rely on the following theorem, which gives an alternative
characterization of the set argmaxε(w).

Theorem 13. Fix ε > 0. Define the map cε : RL → R as

cε(w) is the unique solution to
( ∑

j∈[L]

(wj − c)+

)2

+
∑

j∈[L]

(wj − c)2+ = ε2,

and define the map tε : RL → R as

tε(w) = cε(w) + ε/
√
2−

∑

j∈[L]

(wj − cε(w))+.

Then for any w ∈ RL, it holds that

argmaxε(w) = {j ∈ [L] : wj > tε(w)}.
Moreover, tε(w) ≤ cε(w) for all w and all ε, and tε(w) and cε(w) are both nondecreasing functions
of ε, and both nondecreasing functions of w (i.e., if w ≤ w′ holds coordinatewise, then cε(w) ≤
cε(w

′) and tε(w) ≤ tε(w
′)).

With this key result in place, we are now ready to turn to the proofs of the results stated in Section 3.2.
Throughout all the proofs below, the functions cε(w) and tε(w) are defined as in the statement of
Theorem 13.

A.1 Proof of Theorem 9

Let w,w′ ∈ RL be any vectors with argmaxε(w) ∩ argmaxε(w′) = ∅. Define

B = {j ∈ [L] : wj > cε(w)}, B′ = {j ∈ [L] : w′
j > cε(w

′)},

and note that we must have B ⊆ argmaxε(w) since for j ̸∈ argmaxε(w), wj ≤ tε(w) ≤ cε(w) by
Theorem 13. Similarly, B′ ⊆ argmaxε(w′). We also must have B (and similarly B′) nonempty by
definition of cε(w).

For convenience, define c = cε(w), c′ = cε(w
′), t = tε(w), t′ = tε(w

′). We then have

∥w − w′∥2 ≥ ∥wB − w′
B∥2 + ||w′

B′ − wB′∥2

= ∥(wB−c1B)+(t′1B−w′
B)+(c−t′)1B∥2+∥(w′

B′ −c′1B′)+(t1B′ −wB′)+(c′−t)1B′∥2,
(7)

where the first step holds since B ∩B′ = ∅ due to argmaxε(w) ∩ argmaxε(w′) = ∅. Next we will
need a technical lemma.

Lemma 14. Let k, k′ ≥ 1 be integers and let ε > 0. Then for any x, y ∈ Rk
≥0, x′, y′ ∈ Rk′

≥0, and
r, r′ ∈ R, if

(x⊤1k)
2 + ∥x∥2 = (x′⊤1k′)2 + ∥x′∥2 = ε2 (8)

and
x⊤1k + x′⊤1k′ = r + r′ + ε

√
2, (9)

then
∥x+ y + r1k∥2 + ∥x′ + y′ + r′1k′∥2 ≥ ε2.

To apply this lemma, first we let k = |B| ≥ 1 and k′ = |B′| ≥ 1, and define

x = wB − c1B , y = t′1B − w′
B , x

′ = w′
B′ − c′1B′ , y′ = t1B′ − wB′ ,

and note that all these vectors have nonnegative entries (specifically, x and x′ are nonnegative
by definition of B and B′, while y and y′ are nonnegative by Theorem 13, using the fact that
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B ∩ s(w′) = B′ ∩ s(w) = ∅). Then the condition (8) is satisfied by definition of c = cε(w) and
c′ = cε(w

′). Define also
r = c− t′, r′ = c′ − t.

and note that

r + r′ = (c− t) + (c′ − t′) =
∑

j∈[L]

(wj − c)+ − ε/
√
2 +

∑

j∈[L]

(w′
j − c′)+ − ε/

√
2

= x⊤1k + x′⊤1k′ − ε
√
2,

where the second step holds by definition of t = tε(w) and t′ = tε(w
′). Therefore, (9) is also

satisfied. Returning to (7), Lemma 14 then implies that ∥w − w′∥2 ≥ ε2, which completes the proof
of the theorem.

A.2 Proof of Proposition 10

First we verify that argmax(w) ⊆ argmaxε(w). Let j ∈ argmax(w), i.e., wj = maxℓ wℓ. Let
v = w+ej ·ε/

√
2, where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth canonical basis vector. Then v ∈ Rε

j ,
and ∥w − v∥ = ε/

√
2 < ε, so we have dist(w,Rε

j) < ε and therefore j ∈ argmaxε(w). We also
need to verify that ∩ε>0 argmaxε(w) = argmax(w), i.e., for j ̸∈ argmax(w), there is some ε > 0

with j ̸∈ argmaxε(w). Let k ∈ [L] be an index with wk > wj , and let ε =
√
2(wk − wj). Then for

any v ∈ Rε
j , we have

∥w − v∥2 ≥ (wj − vj)
2 + (wk − vk)

2 = (wk − ε/
√
2− vj)

2 + (wk − vk)
2

≥ inf
t∈R

{(
t− (ε/

√
2 + (vj − vk))

)2
+ t2

}
=

1

2
(ε/

√
2 + (vj − vk))

2 ≥ ε2,

where the last step holds since vj − vk ≥ ε/
√
2. This means that dist(w,Rε

j) ≥ ε and so j ̸∈
argmaxε(w) at this value of ε > 0.

Next we check monotonicity in ε. Fix ε < ε′. Then for any j ∈ [L],

j ∈ argmaxε(ε) ⇐⇒ wj > tε(w) =⇒ wj > tε′(w) ⇐⇒ j ∈ argmaxε
′
(w),

where each step holds by Theorem 13.

Next we verify monotonicity in w. If wj ≤ wk, then by Theorem 13

j ∈ argmaxε(w) ⇐⇒ wj > tε(w) =⇒ wk > tε(w) ⇐⇒ k ∈ argmaxε(w).

Finally we check permutation invariance. Suppose v = (wσ(1), . . . , wσ(L)) is a permutation of w.
Then by construction, we have cε(v) = cε(w) and tε(v) = tε(w). In particular,

j ∈ argmaxε(v) ⇐⇒ vj > tε(v) ⇐⇒ wσ(j) > tε(w) ⇐⇒ σ(j) ∈ argmaxε(w).

A.3 Proof of Proposition 11

Define a function fw as

fw(c) =


∑

j∈[L]

(wj − c)+




2

+
∑

j∈[L]

(wj − c)2+. (10)

Then k̂(w) can equivalently be defined as

k̂(w) = max{k ∈ [L] : fw(w[k]) ≤ ε2}.

(Note that this maximum is well defined, since fw(w[1]) = 0 and so the set is nonempty.) Since
c 7→ fw(c) is strictly decreasing over c ≤ w[1], we see that the solution cε(w) to the equation
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fw(c) = ε2 must satisfy cε(w) ≤ w[k̂(w)], and (if k̂(w) < L) also cε(w) > w[k̂(w)+1]. In particular,
this implies

ε2 =


∑

j∈[L]

(wj − cε(w))+




2

+
∑

j∈[L]

(wj − cε(w))
2
+

=




k̂(w)∑

j=1

(wj − cε(w))




2

+

k̂(w)∑

j=1

(wj − cε(w))
2

=
(
k̂(w) · (Â1(w)− cε(w))

)2
+
(
k̂(w)Â2(w)− 2k̂(w)Â1(w)cε(w) + k̂(w)cε(w)

2
)

= k̂(w)(k̂(w) + 1)

(
cε(w)

2 − 2cε(w)Â1(w) +
k̂(w)(Â1(w))

2 + Â2(w)

k̂(w) + 1

)
.

This is a quadratic function of cε(w), and is solved by

cε(w) = Â1 −

√√√√ (Â1(w))2 − Â2(w) +
ε2

k̂(w)

k̂(w) + 1
.

We also have
tε(w) = cε(w) + ε/

√
2−

∑

j∈[L]

(wj − cε(w))+

= cε(w) + ε/
√
2−

k̂(w)∑

j=1

(w[j] − cε(w))

= (k̂(w) + 1)cε(w) +
ε√
2
− k̂(w)Â1(w).

Plugging in our above expression for cε(w), then,

tε(w) =
ε√
2
+ Â1(w)−

√
k̂(w) + 1

√
(Â1(w))2 − Â2(w) +

ε2

k̂(w)
.

Since argmaxε(w) = {j : wj > tε(w)} by Theorem 13, this completes the proof.

A.4 Proof of Proposition 12

First we will need a lemma:
Lemma 15. Fix w ∈ RL. Then w ∈ Rε

j if and only if argmaxε(w) = {j}.

For intuition on this result, we can look back at Figure 1—for instance, the blue region marked by
{1} illustrates the set of vectors w ∈ ∆L−1 such that argmaxε(w) = {1}, and according to this
lemma, this is equal to the region Rε

1.

Using this lemma, we now need to show that, for any ε-compatible and permutation invariant selection
rule s, if s(w) = {j} for some w ∈ ∆L−1 and j ∈ [L], then w ∈ Rε

j for some j. First, we must
have j = argmax(w), since s is assumed to contain the argmax. Fix any k ̸= j, and define a vector
v ∈ ∆L−1 by permuting wj and wk:

vℓ =





wk, ℓ = j,

wj , ℓ = k,

wℓ, ℓ ̸= j, k.

Then by permutation invariance we have s(v) = {k}. Since s is ε-compatible, we therefore have

ε ≤ ∥w − v∥ =

√
(wj − vj)2 + (wk − vk)2 +

∑

ℓ ̸=j,k

(wℓ − vℓ)2 =
√

2(wj − wk)2.

Therefore we have wj − wk ≥ ε/
√
2 for all k ̸= j, which proves w ∈ Rε

j and therefore
argmaxε(w) = {j}.
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A.5 Proof of Theorem 13

Step 1: verifying that cε(w) is well defined. First we check that the solution cε(w) exists and
is unique. Fix w and define the function fw as in (10). Note that fw(c) ≡ 0 for c ≥ maxi wi, and
c 7→ fw(c) is strictly decreasing over c ≤ maxi wi, with limc→−∞ fw(c) = ∞; therefore, a unique
solution cε(w) to the equation fw(c) = ε2 must exist.

Step 2: verifying tε(w) ≤ cε(w). Next we check that the claim tε(w) ≤ cε(w) must hold. First,
by definition of cε(w), we have

ε2 =


∑

j∈[L]

(wj − cε(w))+




2

+
∑

j∈[L]

(wj − cε(w))
2
+ ≤ 2


∑

j∈[L]

(wj − cε(w))+




2

,

where the inequality holds by the properties of the ℓ1 and ℓ2 norms. Therefore,

∑

j∈[L]

(wj − c)+ ≥ ε/
√
2,

which verifies that

tε(w) = cε(w) + ε/
√
2−

∑

j∈[L]

(wj − cε(w))+ ≤ cε(w).

Step 3: checking monotonicity. Now we turn to verifying the monotonicity properties of tε(w) and
cε(w). First we check that these functions are nonincreasing in ε. First, since fw(c) is nonincreasing
in c, and cε(w) is the solution to fw(c) = ε2, this immediately implies that cε(w) is nonincreasing in
ε. Next we turn to tε(w). Define

t′(c) = c+
1√
2

√√√√√

∑

j∈[L]

(wj − c)+




2

+
∑

j∈[L]

(wj − c)2+ −
∑

j∈[L]

(wj − c)+,

so that we have tε(w) = t′(cε(w)) by construction. We can verify that c 7→ t′(c) is nondecreasing,
and therefore, tε(w) = t′(cε(w)) ≤ t′(cε′(w)) = tε′(w), where the inequality holds since cε(w) ≤
cε′(w).

Next we check that tε(w) and cε(w) are nondecreasing functions of w. Fix any w ≤ w′ (where the
inequality is coordinatewise, i.e., wj ≤ w′

j for all j ∈ [L]). Since w 7→ fw(c) is a nondecreasing
function, we have fw(c) ≤ fw′(c) for all c. We therefore have fw′(cε(w)) ≥ fw(cε(w)) = ε2 =
fw′(cε(w

′)). Since c 7→ fw′(c) is nonincreasing, therefore, cε(w′) ≥ cε(w). Next we consider tε.
Let t′′ε (c) = c+ ε/

√
2−∑j∈[L](wj − c)+, which is a nondecreasing function of c. Then we have

tε(w) = t′′ε (cε(w)) ≤ t′′ε (cε(w
′)) = tε(w

′).

Step 4: returning to the inflated argmax. Finally, fixing any w ∈ RL, we will prove that
argmaxε(w) = {j : wj > tε(w)}. First choose any j ∈ [L] with wj > tε(w). We need to verify
that j ∈ argmaxε(w). Define v ∈ RL with entries

vk =

{
max{cε(w) + ε/

√
2, wj}, k = j,

min{cε(w), wk}, k ̸= j.
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By construction, we have v ∈ Rε
j . We calculate

dist(w,Rε
j)

2 ≤ ∥w − v∥2

=
(
wj −max{cε(w) + ε/

√
2, wj}

)2
+
∑

k ̸=j

(wk −min{cε(w), wk})2

=
(
cε(w) + ε/

√
2− wj

)2
+
+
∑

k ̸=j

(wk − cε(w))
2
+

<
(
cε(w) + ε/

√
2− tε(w)

)2
+
∑

k ̸=j

(wk − cε(w))
2
+

≤


∑

k∈[L]

(wk − cε(w))+




2

+
∑

k∈[L]

(wk − cε(w))
2
+ = ε2,

where the last two steps hold by definition of tε(w) and cε(w), while the strict inequality holds since
tε(w) ≤ cε(w) < cε(w) + ε/

√
2 as established above, while wj > tε(w) by assumption. Therefore

j ∈ argmaxε(w).

Now we check the converse. For this last step, we will need a lemma. The following result
characterizes the projection of w to the set Rε

j .

Lemma 16. Fix any w ∈ RL and any j ∈ [L]. Then there is a unique a ∈ R satisfying

wj = a+ ε/
√
2−

∑

k ̸=j

(wk − a)+. (11)

Moreover, defining the vector v ∈ RL as

vk =

{
a+ ε/

√
2, k = j,

a ∧ wk, k ̸= j,
(12)

it holds that v = argminu∈Rε
j
∥w − u∥, i.e., v is the projection of w to the set Rε

j .

Next suppose wj ≤ tε(w). We need to verify that j ̸∈ argmaxε(w). Let a and v be defined as in
Lemma 16 above. We can compare the equation (11) to the definition of tε(w),

tε(w) = cε(w) + ε/
√
2−

∑

k∈[L]

(wk − cε(w))+ = cε(w) + ε/
√
2−

∑

k ̸=j

(wk − cε(w))+,

where the last step holds since wj ≤ tε(w) by assumption, and tε(w) ≤ cε(w) as proved above.
Since c 7→ c + ε/

√
2 −∑k ̸=j(wk − c)+ is an increasing function, and wj ≤ tε(w), this implies
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a ≤ cε(w). We then calculate

dist(w,Rε
j)

2 = ∥w − v∥2

=
(
wj −

(
a+ ε/

√
2
))2

+
∑

k ̸=j

(wk − a ∧ wk)
2 by (12)

=
(
wj −

(
a+ ε/

√
2
))2

+
∑

k ̸=j

(wk − a)2+

=


∑

k ̸=j

(wk − a)+




2

+
∑

k ̸=j

(wk − a)2+ by (11)

≥


∑

k ̸=j

(wk − cε(w))+




2

+
∑

k ̸=j

(wk − cε(w))
2
+ since a ≤ cε(w)

=


∑

k∈[L]

(wk − cε(w))+




2

+
∑

k∈[L]

(wk − cε(w))
2
+ since wj ≤ tε(w) ≤ cε(w)

= ε2 by definition of cε(w).

Therefore, dist(w,Rε
j) ≥ ε, and so j ̸∈ argmaxε(w).

A.6 Proofs of technical lemmas

A.6.1 Proof of Lemma 14

First, since y is constrained to have nonnegative entries,

∥x+ y + r1k∥2 ≥ ∥(x+ r1k)+∥2,
where for a vector v = (v1, . . . , vL) ∈ RL, we write (v)+ to denote the vector with jth entry given
by (vj)+ = max{vj , 0} for each j. The analogous bound holds for ∥x′ + y′ + r′1k′∥2.

∥x+ y + r1k∥2 + ∥x′ + y′ + r′1k′∥2 ≥ ∥(x+ r1k)+∥2 + ∥(x′ + r′1k′)+∥2.
We now need to show that

∥(x+ r1k)+∥2 + ∥(x′ + r′1k′)+∥2 ≥ ε2.

Next let

r̄ =
r + r′

2
=

x⊤1k + x′⊤1k′ − ε
√
2

2
, ∆ =

−r + r′

2
,

so that we can write
r = r̄ −∆, r′ = r̄ +∆

for some ∆ ∈ R. We we therefore need to show inf∆∈R f(∆) ≥ ε2, where

f(∆) = ∥(x+ (r̄ −∆)1k)+∥2 + ∥(x′ + (r̄ +∆)1k′)+∥2.

First, we observe that we can restrict the range of ∆. Specifically, for any ∆ ≥ maxj∈[L] xj + r̄, we
have f(∆) = ∥(x′ + (r̄ +∆)1k′)+∥2, which is a nondecreasing function; therefore,

inf
∆≥maxj∈[L] xj+r̄

f(∆) = f

(
max
j∈[L]

xj + r̄

)
,

meaning that we do not need to consider values of ∆ beyond this upper bound. Applying a similar
argument for a lower bound, we see that from this point on we only need to verify that

f(∆) ≥ ε2 for − max
j∈[k′]

x′
j − r̄ ≤ ∆ ≤ max

j∈[L]
xj + r̄.

Moreover, for any ∆, we have

(xj + (r̄ −∆))2 = (xj + (r̄ −∆))2+ + (xj + (r̄ −∆))2− ≤ (xj + (r̄ −∆))2+ + (r̄ −∆)2
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for all j, by nonnegativity of x. Furthermore we must have
(xj + (r̄ −∆))2 = (xj + (r̄ −∆))2+

for at least one j ∈ [L] when ∆ ≤ maxj∈[L] xj + r̄ as specified above (i.e., because for j maximizing
the entry xj , the value (x+ (r̄ −∆)1k)j is nonnegative). Therefore,

∥(x+ (r̄ −∆)1k)+∥2 ≥ ∥x+ (r̄ −∆)1k∥2 − (k − 1)(r̄ −∆)2.

Similarly, we can show that
∥(x′ + (r̄ +∆)1k′)+∥2 ≥ ∥x′ + (r̄ +∆)1k′∥2 − (k′ − 1)(r̄ +∆)2.

We then calculate
f(∆) = ∥(x+ (r̄ −∆)1k)+∥2 + ∥(x′ + (r̄ +∆)1k′)+∥2

≥ ∥x+ (r̄ −∆)1k∥2 − (k − 1)(r̄ −∆)2 + ∥x′ + (r̄ +∆)1k′∥2 − (k′ − 1)(r̄ +∆)2

= ∥x∥2 + 2(r̄ −∆)x⊤1k + (r̄ −∆)2 + ∥x′∥2 + 2(r̄ +∆)x′⊤1k′ + (r̄ +∆)2

= 2ε2 − (x⊤1k)
2 − (x′⊤1k′)2 + 2(r̄ −∆)x⊤1k + 2(r̄ +∆)x′⊤1k′ + 2r̄2 + 2∆2,

where the last step holds by (8).

Writing z = x⊤1k and z′ = x′⊤1k′ for convenience, we have
f(∆) ≥ 2ε2 − z2 − z′2 + 2(r̄ −∆)z + 2(r̄ +∆)z′ + 2r̄2 + 2∆2

= 2ε2 − z2 − z′2 + 2

(
z + z′ − ε

√
2

2
−∆

)
z + 2

(
z + z′ − ε

√
2

2
+ ∆

)
z′

+ 2

(
z + z′ − ε

√
2

2

)2

+ 2∆2

= ε2 + 4
(
z − ε/

√
2
)(

z′ − ε/
√
2
)
+ 2

(
∆− z − z′

2

)2

≥ ε2 + 4
(
z − ε/

√
2
)(

z′ − ε/
√
2
)
.

where the second step holds because r̄ = r+r′

2 = z+z′−ε
√
2

2 by (9).

Finally, we also have x⊤1k = ∥x∥1 ≥ ∥x∥, where the first step holds since x is nonnegative,
and so by assumption (8) we have z = x⊤1k ≥ ε/

√
2. Similarly, z′ ≥ ε/

√
2. Therefore,

4
(
z − ε/

√
2
) (

z′ − ε/
√
2
)
≥ 0, and so we have shown that f(∆) ≥ ε2, as desired.

A.6.2 Proof of Lemma 15

First, suppose w ∈ Rε
j . Then argmax(w) = {j}, and so j ∈ argmaxε(w) by Proposition 10. Next,

let c = wj − ε/
√
2. Then wℓ ≤ c for all ℓ ̸= j, and so defining fw as in (10), we have

fw(c) = (wj − c)2 + (wj − c)2 = ε2 =⇒ cε(w) = c = wj − ε/
√
2.

Then
tε(w) = cε(w) + ε/

√
2−

∑

ℓ∈[L]

(wℓ − cε(w))+ =
(
wj − ε/

√
2
)
+ ε/

√
2− ε/

√
2 = wj − ε/

√
2,

and so for all ℓ ̸= j, we have wℓ ≤ wj − ε/
√
2 = tε(w) and thus ℓ ̸∈ argmaxε(w). This verifies

that argmaxε(w) = {j}.

To prove the converse, suppose argmaxε(w) = {j}. By Proposition 10, we then have argmax(w) =

{j}. Let k ∈ argmaxℓ ̸=j wℓ, then to show w ∈ Rε
j it suffices to show that wj ≥ wk + ε/

√
2. Define

v ∈ RL as

vℓ =





wk, ℓ = j,

wk + ε/
√
2, ℓ = k,

wℓ, ℓ ̸= j, k.

.

Then v ∈ Rε
k, and so we must have ∥w − v∥ ≥ ε since k ̸∈ argmaxε(w). We calculate

∥w − v∥2 = (wj − vj)
2 + (wk − vk)

2 = (wj − wk)
2 + (ε/

√
2)2.

This implies that we must have (wj − wk)
2 ≥ ε2/2, which completes the proof.
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A.6.3 Proof of Lemma 16

First we verify existence and uniqueness of a. Let

f(a) = wj − a+
∑

k ̸=j

(wk − a)+.

Then f : R → R is a continuous and strictly decreasing bijection, so f(a) = ε/
√
2 must have a

unique solution.

Next let a be this unique solution and let v be defined as in (12). Now we verify that v is the unique
solution to the optimization problem

v = argminu∈RL

{
1

2
∥u− w∥2 : uj ≥ uk + ε/

√
2 for all k ̸= j

}
,

which defines the projection of w to Rε
j . By the Karush–Kuhn–Tucker (KKT) conditions for first-order

optimality, it is sufficient to verify that

v − w −
∑

k ̸=j

λk(ej − ek) = 0, (13)

where λk ≥ 0 for all k, and λk = 0 for any inactive constraints, i.e., any k for which vj > vk+ε/
√
2.

Let λk = (wk − a)+ for each k ̸= j. Note that if vj > vk + ε/
√
2 (i.e., an inactive constraint), then

we must have wk < a and so λk = 0, by construction of v. Then, for any ℓ ̸= j,

v − w −

∑

k ̸=j

λk(ej − ek)




ℓ

= vℓ − wℓ + λℓ = a ∧ wℓ − wℓ + (wℓ − a)+ = 0,

where ek denotes the kth canonical basis vector in RL. This proves that the ℓth coordinate of the
system of equations (13) holds for each ℓ ̸= j. Now we verify the jth coordinate. We have

v − w −

∑

k ̸=j

λk(ej − ek)




j

= vj − wj −
∑

k ̸=j

λk

= a+ ε/
√
2− wj −

∑

k ̸=j

(wk − a)+ = ε/
√
2− f(a) = 0,

by our choice of a as the solution to f(a) = ε/
√
2. This verifies the KKT conditions, and thus, v is

the projection of w to Rε
j as claimed.

B Extension to randomized algorithms

As mentioned in Section 2, in many applications it is common to use randomization in the construction
of a classification procedure, in the learning algorithm A and/or in the selection rule s. In this section
we formalize this more general framework, and will see how our results apply.

First, in the non-random setting, a learning algorithm A maps a data set D ∈ (X × [L])n to
a fitted probability estimate function p̂ : X → ∆L−1—we write the regression procedure as
p̂ = A(D). In the randomized setting, we also allow for external randomness, p̂ = A(D; ξ), where
ξ ∼ Uniform[0, 1] is a random seed (e.g., we might use ξ to randomly shuffle the training data when
running stochastic gradient descent).

Next, in the non-random setting, a selection rule s is a map from ∆L−1 to subsets of [L], resulting
in a candidate set of labels Ŝ = s(p̂(x)). In the randomized setting (for instance, if s is the argmax
but with ties broken at random), we instead include a random seed ζ ∼ Uniform[0, 1], and write
Ŝ = s(p̂(x); ζ). Formally, then, we have s : ∆L−1 × [0, 1] → ℘([L]). (Note that the selection rule
proposed in this work—the inflated argmax—is itself not random.)
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Combining the two stages of the procedure, then, the classification algorithm is given by C = s ◦ A,
where given a training set D and a test point x, along with i.i.d. random seeds ξ, ζ ∼ Uniform[0, 1],
we return the candidate set of labels given by

C(D, x; ξ, ζ) = s(p̂(x); ζ) where p̂ = A(D; ξ).

Of course, we can derive the non-random setting as a special case, simply by designing A and s to
not depend on the random seeds ξ and ζ.

Now, how do the results of this paper extend to this randomized setting? First, we need to reconsider
our definition of selection stability (Definition 2). We will now define it as

1

n

n∑

i=1

Pr
{
Ŝ ∩ Ŝ\i = ∅

}
≤ δ,

where Ŝ = C(D, x; ξ, ζ) and Ŝ\i = C(D\i, x; ξ, ζ), and where the probabilities are taken with
respect to the distribution of the random seeds. We can also consider a notion of algorithmic stability
(Definition 3) that allows for randomization: we say that A has tail stability (ε, δ) if

1

n

n∑

i=1

Pr
{
∥p̂(x)− p̂\i(x)∥ ≥ ε

}
≤ δ,

where p̂ = A(D; ξ) and p̂\i = A(D\i; ξ), and where again probability is taken with respect to the
distribution of ξ.

With these definitions in place, we observe that the result of Proposition 5 still holds in this more
general setting for the selection rule argmaxε: if A is a randomized algorithm with tail stability
(ε, δ) (under the new definition given above), then the randomized classification algorithm given by
C = argmaxε ◦A has selection stability δ (again, under the new definition given above), simply due
to the ε-compatibility property of argmaxε (Theorem 9). [SBW24b] proved Theorem 8 in this more
general setting of randomized learning algorithms A, so Theorem 6 holds for randomized A under
this more general definition of selection stability.

C Extension to finitely many bags

In Section 3.1, we discussed how in practice, the bagged algorithm Ãm would be constructed by
taking an empirical average over some large number B of sampled bags, rather than computing the
exact expectation Er[A(Dr)(x)]. Now that we have allowed for randomized learning algorithms (as
in Appendix B), we can formalize this setting: for a random seed ξ ∼ Uniform[0, 1], we define

Ãm(D, ξ)(x) =
1

B

B∑

b=1

A(Drb)(x),

where the random draw of B many bags, r1, . . . , rB , is generated using the random seed ξ. Recall that
[SBW24b] showed tail stability for the bagged version of any algorithm (as restated in Theorem 8)—
their work also gives a result for the finite-B case, as follows:
Theorem 17 ([SBW24b]). For any base learning algorithm A returning outputs in ∆L−1, the bagged
algorithm Ãm (computed with a finite number of bags, B) has tail stability (ε, δ) for any ε, δ > 0
satisfying

δ = ε−2 · (1− 1/L)

(
1

n− 1
· pn,m
1− pn,m

+
16e2

B

)
.

In particular, combined with our result on the ε-compatibility of the inflated argmax, we have the
following generalization of our main result (Theorem 6):
Theorem 18. Fix any sample size n, any bag size m, any inflation parameter ε > 0, and any number
of bags B ≥ 1. For any base learning algorithm A, the classification algorithm C = argmaxε ◦Ãm,
obtained by combining the bagged version of A (with B many bags) together with the inflated argmax,
satisfies selection stability δ where

δ = ε−2 · (1− 1/L)

(
1

n− 1
· pn,m
1− pn,m

+
16e2

B

)
. (14)
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Figure 3: The fixed-margin selection rule (3), left, and the inflated argmax (1), right, when L = 3.

Comparing to our main result for the derandomized case (Theorem 6, which can be interpreted as
taking B → ∞), we see that this finite-B result is essentially the same as Theorem 6 once B ≫ n.

D Compare to a simpler selection rule: the fixed-margin rule

In this section, we compare to the simpler fixed-margin selection rule, which was defined earlier
in (3)—for convenience, we define it again here:

sεmargin(w) =

{
j ∈ [L] : wj > max

ℓ∈[L]
wℓ − ε/

√
2

}
,

the set of all indices j that are within some margin of being the maximum.

In this section, we will see that this fixed-margin selection rule is ε-compatible. Since this rule clearly
has the advantage of being much simpler than the inflated argmax (both in terms of its definition and
interpretability, and in terms of its computation), we might ask whether this rule is perhaps preferable
to the more complex inflated argmax. However, we will also see that the fixed-margin selection rule
can be very inefficient compared to the inflated argmax: the inflated argmax can never return a larger
set, and will often return a substantially smaller one.

D.1 Theoretical results

First, we verify that this simple rule satisfies ε-compatibility (Definition 4).
Proposition 19. For any ε > 0, the selection rule sεmargin is ε-compatible.

In particular, since sεmargin clearly contains the argmax (i.e., argmax(w) ⊆ sεmargin(w)) and satisfies
permutation invariance (in the sense of Proposition 10), by Proposition 12 this immediately implies
that

sεmargin(w) = {j} =⇒ argmaxε(w) = {j}
for all w ∈ RL, i.e., argmaxε is at least as good as sεmargin at returning a singleton set. However, for
this particular selection rule, we can state an even stronger result:
Proposition 20. For any w ∈ RL and any ε > 0,

sεmargin(w) ⊇ argmaxε(w).

In particular, this theoretical result ensures that the set of candidate labels Ŝ returned by the inflated
argmax can never be larger than for the fixed-margin selection rule. In low dimensions, however,
the improvement is small. Indeed, for L = 2, we actually have sεmargin(w) = argmaxε(w) for all
w. For L = 3, Figure 3 shows that the inflated argmax is strictly better (i.e., the set inclusion
result of Proposition 20 can, for certain values of w, be a strict inclusion), but the difference in this
low-dimensional setting appears minor. Next, however, we will see empirically that as the dimension
L grows, the benefit of the inflated argmax can be substantial.
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Figure 4: Simulation to compare the selection rules argmaxε and sεmargin. The figure shows the
average set size, | argmaxε(w)| and |sεmargin(w)|, averaged over 1, 000 random draws of w (with
standard error bars shown). See Appendix D.2 for details.

D.2 Simulation to compare the selection rules

In this section, we compare the fixed-margin rule to the inflated argmax using randomly generated
probability weights. For our simulation, we consider the size of the two sets for various values of L.
To sample the weights, we draw a standard Gaussian random vector Z ∼ N (0, IL) and define w as
the softmax of Z, i.e.,

wj =
eZj

∑
ℓ∈[L] e

Zℓ

for j ∈ [L]. We then compute argmaxε(w) and sεmargin(w), where ε = 0.1. In Figure 4, we present
results comparing the average size of the sets returned by each of the two methods. In this setting,
we see that the inflated argmax has substantial gains over the fixed-margin selection rule when the
number of classes L is large. Even when L = 25, the ratio of the expected sizes is about 78%, so the
inflated argmax has a nontrivial advantage in that setting. When L = 100, the ratio of expected sizes
is 48%, meaning the inflated argmax is on average more than twice as small.

D.3 Proofs for the fixed-margin selection rule

D.3.1 Proof of Proposition 19

Let w, v ∈ RL with sεmargin(w) ∩ sεmargin(v) = ∅. Let j ∈ argmaxℓ wℓ and k ∈ argmaxℓ vℓ. Then
clearly j ∈ sεmargin(w), so since sεmargin(w)∩sεmargin(v) = ∅, this implies j ̸∈ sεmargin(v). By definition,
then, vj ≤ maxℓ vℓ − ε/

√
2 = vk − ε/

√
2. By an identical argument, we have wk ≤ wj − ε/

√
2.

Then

∥w − v∥2 ≥ (wj − vj)
2 + (wk − vk)

2

≥ (wj − vj)
2
+ + (vk − wk)

2
+

≥
(
wj − (vk − ε/

√
2)
)2
+
+
(
vk − (wj − ε/

√
2)
)2
+

≥ inf
t∈R

{
(ε/

√
2− t)2+ + (ε/

√
2 + t)2+

}

= 2(ε/
√
2)2 = ε2.

This proves ∥w − v∥ ≥ ε, and therefore, we have shown that ε-compatibility is satisfied.
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D.3.2 Proof of Proposition 20

Suppose j ∈ argmaxε(w). Then dist(w,Rε
j) < ε, so we can find some v ∈ Rε

j with ∥w − v∥ < ε.
Then, for any k ̸= j,

wj − wk = vj − vk + (wj − vj) + (vk − wk)

≥ ε/
√
2 + (wj − vj) + (vk − wk) since v ∈ Rε

j

≥ ε/
√
2−

(
|wj − vj |+ |wk − vk|

)

≥ ε/
√
2−

√
2
√

(wj − vj)2 + (wk − vk)2

≥ ε/
√
2−

√
2∥w − v∥

> ε/
√
2−

√
2 · ε

= −ε/
√
2.

Since this holds for all k ̸= j, then,

wj > max
k∈[L]

wk − ε/
√
2,

which proves that j ∈ sεmargin(w).

E Additional experimental results

In this section, we extend our experiment from Section 4 to consider some additional existing methods
as baselines and evaluate each method using some common metrics from set-valued classification.

Selection rules. We compare the following selection rules:

1. Standard argmax.
2. ε-inflated argmax with tolerance ε = .05.
3. Top-K classification with K = 2.
4. Thresholding: including classes in the output set until the sum of probabilities becomes at

least τ = 0.8, i.e.,

Γ∗
τ (w) :=

{
ℓ ∈ [L] : wℓ ≥ w[k̂]

}
, where

k̂ = min{k : w[1] + · · ·+ w[k] ≥ τ}.

5. Nondeterministic classification optimized for F1-score [DDB09]:

NDCF1(w) :=
{
ℓ ∈ [L] : wℓ ≥ w[k̂]

}
, where

k̂ = min{k : w[1] + · · ·+ w[k] ≥ (k + 1)w[k+1]},
with the convention w[L+1] = 0.

6. Set-valued Bayes-optimal prediction [MWDH21]: for any utility u : [L]×2[L]\{∅} → R+,

SVBOPu(w) := argmaxS⊆[L]

∑

ℓ∈[L]

wℓ · u(ℓ, S).

We consider two utility functions based on u65 and u80, defined below.

Evaluation metrics. We evaluate each method based on a variety of metrics. In addition to βprec
and βset-size, defined in Section 4, we assess each method in terms of utility-discounted predictive
accuracy [ZCM12]. For a set S ⊆ [L] and label ℓ ∈ [L], define for some parameters α, β > 0,

u(ℓ, S) := 1 {ℓ ∈ S} ·
(

α

|S| −
β

|S|2
)
.
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Sel. rule Algo. βcorrect-single ↗ βset-size ↘ u65 ↗ u80 ↗ βsup. infl. ↘
argmax A 0.879 (0.003) 1.000 (0.000) 0.879 (0.003) 0.879 (0.003) -

argmax Ãm 0.892 (0.003) 1.000 (0.000) 0.892 (0.003) 0.893 (0.003) -

argmaxε A 0.873 (0.003) 1.015 (0.001) 0.881 (0.003) 0.883 (0.003) 0.496 (0.005)

argmaxε Ãm 0.886 (0.003) 1.017 (0.001) 0.895 (0.003) 0.897 (0.003) 0.474 (0.005)

top-2 A 0.000 (0.000) 2.000 (0.000) 0.632 (0.001) 0.777 (0.001) 0.905 (0.003)

top-2 Ãm 0.000 (0.000) 2.000 (0.000) 0.632 (0.001) 0.777 (0.001) 0.918 (0.003)

Γ∗
0.8 A 0.756 (0.004) 1.248 (0.005) 0.880 (0.002) 0.909 (0.002) 0.622 (0.005)

Γ∗
0.8 Ãm 0.704 (0.005) 1.356 (0.006) 0.867 (0.002) 0.907 (0.002) 0.701 (0.005)

NDC for F1 A 0.832 (0.004) 1.105 (0.003) 0.889 (0.003) 0.902 (0.003) 0.531 (0.005)

NDC for F1 Ãm 0.825 (0.004) 1.138 (0.004) 0.898 (0.003) 0.915 (0.002) 0.586 (0.005)

SVBOPu65 A 0.838 (0.004) 1.091 (0.003) 0.889 (0.003) 0.901 (0.003) 0.525 (0.005)

SVBOPu65
Ãm 0.833 (0.004) 1.119 (0.003) 0.899 (0.003) 0.915 (0.002) 0.577 (0.005)

SVBOPu80 A 0.777 (0.004) 1.190 (0.004) 0.885 (0.003) 0.910 (0.002) 0.611 (0.005)

SVBOPu80
Ãm 0.744 (0.004) 1.245 (0.005) 0.882 (0.002) 0.914 (0.002) 0.690 (0.005)

Table 2: Results on the Fashion MNIST data set. The table displays the frequency of returning the
correct label as a singleton βcorrect-single, average size βset-size, utility-discounted predictive accuracies
u65 and u80, and the superfluous inflation, βsup. infl.. For each metric, the symbol ↗ indicates that
higher values are desirable, while ↘ indicates that lower values are desirable. Results for the base
algorithm are in white, and results for the subbagged algorithm are in gray. Standard errors are in
parentheses.

We use the measures u65 with (α, β) = (1.6, 0.6) and u80 with (α, β) = (2.2, 1.2), which respec-
tively give small and large rewards for being cautious [NDMH18].

Finally, we directly assess the extent to which each selection rule resorts to returning a non-singleton
set on difficult instances. Specifically, we define the superfluous inflation, which, for a selection
rule s, is the ratio of the accuracy of the standard argmax given s returns at least two labels divided
by the accuracy of s given s returns at least two labels:

βsup. infl. :=

∑N
j=1 1

{
Ỹj ∈ argmax(p̂(X̃j)), |s(p̂(X̃j))| ≥ 2

}

∑N
j=1 1

{
Ỹj ∈ s(p̂(X̃j)), |s(p̂(X̃j))| ≥ 2

} .

If this ratio is close to 1, it means the standard argmax is correct as often as s (when the latter
expresses uncertainty by returning multiple labels), so outputting multiple labels could be seen as
overly conservative. Note that the argmax never returns more than a singleton, so its superfluous
inflation is left blank in our results.

Results. This experiment shows that the inflated argmax combined with the subbagged algo-
rithm Ãm has accuracy (according to a variety of metrics) comparable with several alternative
methods, does not output overly large sets of candidate labels, and at the same time admits rigorous
stability guarantees. That is, our algorithmic framework does not unduly harm empirical performance.

In Table 2, we present results for each selection rule applied to the base algorithm A and the
subbagged algorithm Ãm described in Section 4. The inflated argmax has significantly higher average
precision and significantly smaller set sizes than all of the alternative set-valued classifiers. These
two measures are related, since a selection rule can only have high precision if it frequently returns
the correct label as a singleton set. The inflated argmax also has the lowest superfluous inflation,
meaning that it tends return multiple labels on difficult instances. The u65 of the inflated argmax is
also within two standard errors of the u65 of SVBOP65, which seeks to optimize this utility. Our
method does have a significantly lower u80 than many of the competing methods, since this utility is
more forgiving of returning multiple labels.
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While this experiment considers many different perspectives on set-valued classification, we reiterate
that our chief contribution is distribution-free stability guarantees. This means that, regardless of the
dataset or base algorithm used, we can guarantee that our method will be stable. In the context of our
experiment, Theorem 6 guarantees that δj ≤ δ∗ = ε−2 · 1−1/L

n−1 · pn,m

1−pn,m
≈ 0.006 for every test point

j = 1, . . . , N . Furthermore, our optimality result shows that the inflated argmax returns a singleton
as often as possible among all ε-compatible selection rules.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1.2 in the introduction clearly state our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of the work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the theorems are numbered and cross-referenced in the supplemental
material, where the proofs appear.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all necessary details to reproduce the analysis in Section 4. To
reproduce the learning algorithm A, we both provide a reference and release our own
documented code using the same architecture.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We attach our code in our submission to OpenReview, and we will de-
anonymize the link to the Github repository after the review process.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is presented in the core of the paper with enough
detail to appreciate the results. The full details are provided with the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results in Table 1 are reported with standard errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4 we provide details on the type and quantity of compute workers
and total time for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and our work conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research contribution is primarily theoretical and does not have immedi-
ately foreseeable impacts on society on a large scale.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: PyTorch and Fashion MNIST are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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