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ABSTRACT

Positional encodings from spectral graph theory—such as spectral distances like
effective resistance—have been shown to enhance the performance of graph neural
networks (GNNs). However, the theoretical expressive power of these spectral
features is not entirely understood. While certain spectral features are known to
increase expressive power, it is unclear if different spectral features are equally
powerful. Moreover, while it is established that spectral distance measures can
enhance the expressivity of transformer-based architectures, their implications for
message passing neural networks (MPNNG5) are relatively underexplored. In this
work, we focus on one such family of spectral features: the k-harmonic distances.
We establish upper and lower bounds on the expressivity of MPNNs augmented
with k-harmonic distances. We also show that not all k£ are equally expressive, and
some are better than others in certain situations. To corroborate this theory, we
present several empirical results demonstrating k-harmonic distance’s expressive
power. We show its potential for computational efficiency over transformers in
some cases. Further, we experiment with making & a learnable parameter and find
that different datasets have different optimal values of k.

1 INTRODUCTION

Graph neural networks (GNNs) have been extensively studied in the machine learning community.
GNNs have demonstrated strong performance on a variety of tasks, including node classification,
graph classification, and regression. However, GNNs are fundamentally limited in their ability to
capture global structural information, which is essential for many graph learning problems.

This limitation has been formalized (Xuef-all, POT8; Morris_ef all, 20T9) by showing that message-
passing neural networks (MPNNSs), perhaps the dominant class of GNNs, are no more powerful than
the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & T.ehman, T96X). In practice,
MPNNSs are further limited by issues such as oversmoothing (Oona & Suzuki, P0720; Cai & Wang,
2020) which harm the performance of MPNNs as the number of layers increase.

Positional encodings (PEs) have been proposed as a solution to both limitations. They can provide
the missing global structural information in the form of node or edge features, and can curb the issue
of oversmoothing by requiring fewer layers of message passing for this global structural information
to propagate through the graph, resulting in a shallow GNN (i.e. a GNN with few layers.)

Various positional encodings have been explored to provide different types of structural information
to GNNSs, including shortest-path distances ([Ying et all, 2021 and spectral distances such as effective
resistance (a.k.a. commute time) (Zhang et all, 2073; [Velingker et all, PZ073). However, the broader
question of which positional encoding is best suited for any given task remains open—both in theory
(expressive power) and in practice (empirical performance).

A broad class of positional encodings are derived from the eigenvalues and eigenvectors of the graph
Laplacian, so-called spectral positional encodings. Some of these encodings are relative (they assign
values to pairs of nodes), while others are absolute (they assign values to individual nodes). A GNN
that makes use of spectral PEs is said to be a spectral GNN. Further, a major class of relative spectral
PEs are spectral distances, defined generally as
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Dy(s,t) = /(1o = 10T (L)L, — L), (1)

where f(L) is a matrix function of the Laplacian and 1, is an indicator vector that is 1 at index x and
zero everywhere else. Well-known examples of such distances include effective resistance® (Kirch3
hoff, [847), where f(L) = L%, biharmonic distance (Lipman et al}, 2010), where f(L) = (L*)?,
k-harmonic distance (Black ef all, DO244), where f(L) = (L1)*, and diffusion distance at time
t (Corfman & Taton, DO0A), where f(L) = et B

The goal of this work is to advance our understanding of the expressive power of spectral positional
encodings. To this end, we show that the class of k-harmonic distances is as expressive as any other
spectral distance (Theorem B4). This result allows us to focus on analyzing the expressive power of
k-harmonics as positional encodings, with implications for the broad class of spectral encodings.

Different k-harmonic distances are known to encode several fundamental properties of a graph,
making them a good candidate for use as a PE. The effective resistance between nodes s and ¢ is
lower the more different paths exist between s and ¢ so it measures how well-connected s and t are.
It is also connected to the expected number of steps in random walks between s and ¢ (Chandra’efall,
1996). The biharmonic distance has been shown to measure how important or central an edge (s, t)
is to the overall structure of a graph (Li & Zhang, POTR; [Yiefall, POTRa; Black ef all, D0744).

While there are known upper bounds on the expressivity for generic spectral positional encodings
that subsume the spectral distances (e.g., the eigenspace projection invariant (Zhang et all, 2024;
Gaief all, P075)), these positional encodings rely on projections into Laplacian eigenspaces which
are not computationally feasible for most graph data, warranting an exploration of more efficient,
but potentially less expressive, positional encodings like the k-harmonic distances. Moreover, with
the exception of (Velingker et all, 2023) and (Feldman_ef-all, 2073, most of the theoretical work
on spectral positional encodings have been for transformers (Zhang et all, 2023) or fully-connected
GNNG;s like IGNs (BIackefall, 2074h; [Zhang et all, 2024) whose runtime scales quadratically with
the number of nodes, in contrast to MPNNSs that scale linearly with the number of edges.

Despite their generality, the power of k-harmonic distances as positional encodings for GNNss is
not well understood beyond the case of & = 1 (Velingker et all, 2073; Zhang et all, 2023). Many
questions remain open: What is the expressive power of different values of £? Are some values
more informative for specific tasks or graph structures? Can combining multiple k-harmonics yield
more powerful representations? And how effective are these encodings in practice, particularly in
shallow GNNs with limited receptive fields?

Contributions We address these questions through theoretical analysis and empirical evaluation:

* We show that the set of the first 2n k-harmonic distances for an n-vertex graph is at least
as expressive as any other spectral distance for MPNNs (Theorem B-4).

* We show that k-harmonic positional encodings strictly increase the expressive power of
MPNNSs beyond the WL test (Theorem Bl), but not beyond the 3-WL test (Theorem B2).

* As Theorem Bl shows that different k-harmonic different information about the graph,
this suggests combining multiple k-harmonics increases expressivity. However, this benefit
has diminishing returns: we prove that for any graph, the number of distinct k-harmonics
that contribute new information is at most the number of distinct Laplacian eigenvalues
(Theorem B3). At this point, the concatenated k-harmonics are as powerful as general
spectral positional distance (Theorem B4).

* We show that different £-harmonics capture different structural properties in shallow GNN's
(Theorem BI), and thus, there are better (more expressive) values of k for different tasks
and types of graphs. Conversely, we show that if a pair of graphs can be distinguished by
some k-harmonic, then they can be distinguished for all but finitely many other k-harmonic
distances (Theorem B2).

!Technically, effective resistance is defined R(s,t) = (15 — 1¢) " Lt (15 — 1;), i.e., with no square root.
Surprisingly, even without the square root, effective resistance is a metric (Klem & Randid, 1993, Theorem B)
2L* denotes the Moore-Penrose pseudoinverse of the Laplacian L.
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* We empirically validate (Theorem Bl) and (Theorem B2) using the BREC dataset (Wang
& Zhang, P074)) as a measure of realized expressivity. To validate the differences between
individual £k, we evaluate on ZINC (Dwivedief all, 2073) and ogbg-molhiv (Hn ef all,
P0204), confirming that the optimal choice of k depends on the dataset or task at hand. This
motivates using multiple or learnable £ values in practice. We also implement a learnable-k
parameter and report its performance.

* Finally, we observe that k-harmonic encodings can improve training efficiency. On ZINC,
k-harmonic MPNNSs offer a favorable trade-off between training time and accuracy com-
pared to more expensive graph transformers.

2 RELATED WORK

k-harmonic distances Though the k-harmonic distance is a natural extension of the effective
resistance and biharmonic distance, it was only recently proposed (Black“efall, 2(074a) and has not
been fully explored. Its efficacy has been shown for clustering, but little else is known.

The effective resistance is much more well-studied in the literature. It has been shown several times
that the effective resistance of a graph is a measure of connectivity and has been utilized for various
graph-specific tasks such as sparsification (Spielman & Srivastava, POTT), clustering (Alev_ef all,
701X), and is now being used as an positional encoding in GNNs ([Velingker et all, 2073; [Zhang
ef all, 2023). As it relates to our work, it has been shown that MPNNSs that make use of effective
resistance are strictly more expressive than the WL test ([Velingker ef all, 20773).

The biharmonic distance has been used in the study of consensus networks (Yi“ef-all, POTSH; D021
and has been shown to be a measure of edge centrality (Li & Zhang, POTR; [Yiefall, DOTRA; Black
ef-all, 20744). However, it has not been studied as a positional encoding in GNNSs.

Positional Encodings from Spectral Graph Theory While we consider incorporating spectral
information into GNNs using the k-harmonic distances, there have been many previously proposed
methods for incorporating spectral information in other ways. The first graph transformers used
Laplacian eigenvectors as positional encodings (Dwivedi & Bresson, P07T), with subsequent works
also using Laplacian eigenvectors as positional encodings (Krenzer efall, PO71; Rampasek et all,
P0272; Zhon'et all, P024). However, Laplacian eigenvectors suffers from sign and basis ambiguities,
so Cim—ef-all (2023) proposed to use the projection onto the eigenspaces, rather than the eigen-
vectors themself, to avoid this ambiguity. Huang et all (?074) and Zhang et al] (?024)) proposed
alternative techniques using the projections onto the eigenspaces. Other graph neural networks have
used spectral invariants beyond the eigenvectors as positional encodings, including the effective re-
sistance (Zhang et all, 2073; Velingker et all, P0273) and heat kernels (Choromanski_ef all, D077
Feldman ef all, P073).

Expressivity of Spectral Invariants for Graph Isomorphism Understanding the capability of
spectral invariants, such as spectral distances, to distinguish non-isormorphic graphs has recently
been an active area of research as its relate to graph learning, specifically in the area of graph
transformer. However, understanding which pairs of graphs are distinguished by different spectral
invariants predates GNNs. FEirer (Z(011) proposed a spectral invariant that he showed was weaker
than the 3-WL test. Rattan & Seppelf (2023) showed Furer’s invariant was strictly weaker than the
3-WL test and the (1,1)-WL test. [Zhang et al] (Z0023) studied the expressive power of effective
resistance as a relative positional encoding for a transformer. They proposed the RD-WL test—a
variant of the WL test that incorporates effective resistance—as an upper bound of the expressive
power of these transformers and showed this was weaker than the 3-WL test. The resistance-distance
transformer was generalized to eigenspace projection neural networks (EPNNs) by Zhang et all
(2024). They also introduced the eigenspace projection WL (EP-WL) test as an upper bound for
EPNNSs, which they proved was weaker than both 3-WL and certain types of subgraph WL tests.

3 BACKGROUND

Let G = (V, E) be an undirected, unweighted graph. Denote the number of vertices and edges as
n = |V| and m = |E|. Additionally, let the graph have a set of node features, {x, € R% : v € V},
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and a set of edge features, {e,, € RY : (u,v) € E}. The adjacency matrix of G is the matrix
A e R"*™ where A; ; = 1if (i,7) € E and 0 otherwise. The degree matrix is the diagonal matrix
D € R™™ where D, ; = deg(i). The Laplacian matrix is L = D — A and is the central structure
of study in spectral graph theory, and is positive semidefinite by definition. The eigenvalues of the
Laplacian are the spectrum of the graph. Throughout this paper, multisets are denoted with the
double curly bracket notation { J}.

Message Passing Neural Networks Graph neural networks are functions that take as input a
graph G = (V, E), a set of node features, {z, € R? : v € V}, and (optionally), a set of edges

{ew € RS : (u,v) € E}. The t" layer of a GNN computes features K for each vertex using the

node features from the previous layer th‘”. The most common type of graph neural network are
message passing neural network (MPNNs) (Gilmer ef all, POI7). Each layer of an MPNN updates

$f) and the features of the incident

the feature of a node by aggregates the feature from its neighbors h
edegs ey, Initially, hq(,o) = x,. For each layer t € {1,...,T}, a message passing layer updates the

node features using the following formula:

P = 6O (B0, 00 (f(ewn, D) 5 (u,0) € B}, @
where ¢(®) and 1)) are learnable functions and 1)) is invariant on multisets, e.g. sum.

WL Tests The Weisfeiler-Lehman (WL) test is an iterative algorithm that assigns labels to nodes
in order to deduce whether or not two graphs are isomorphic. Specifically, the WL test assigns each
vertex v € V a color x(!)(v) for all # > 0. The labels are initialized to some arbitrary constant in
the O™ iteration, e.g., X(O)(v) = 1forallv € V. Fort > 1, the WL color of a vertex v is defined

X () = hash (x*"D(0), {xO(w) : (u,v) € E}) ©
where hash is an injective hash function.

Let xM(G) = {xW(v) : v € Vg}}. Two graphs G and H are indistinguishable by the WL test if
they have the multisets of colors for all £ > 0, or formally,

XNG) = XV () v e Vel =X () v eVa} =x"(H)  vt>o0.
G and H are indistinguishable by T iterations of the WL test if () (G) = x) (H) for T >t > 0.

The WL test provides an upper bound on the distinguishing power of MPNNs with constant node
features (Xuefall, POTX; Morris ef all, OTY).

Further, there are higher order variants of the WL test called the k-WL fests that assign colors to
tuples of k nodes rather than to single nodes; see (Huang & Villai, 2021)).

Comparing Isomorphism Tests The WL test is a one-sided graph isomorphism test. That is, if
two graphs are distinguishable by the WL test they are guaranteed to be non-isomorphic, but two
graphs that are indistinguishable are not guaranteed to be isomorphic. MPNNs are also a one-sided
graph isomorphism test. An MPNN distinguishes a pair of graphs G and H if the multiset of node

features are different, i.e., {{hg,t) veVol # {hg) v eVhl.

We are interested in comparing isomorphism tests. Suppose we have two different one-sided iso-
morphism tests, A and B, that for any two graphs G and H return if they are distinguishable or
indistinguishable. Test A is said to be as strong as test B if any two graphs G and H that are indis-
tinguishable by A are also indistinguishable by B. That is, if A fails to distinguish a pair of graphs,
then B will as well. Likewise, A is strictly stronger than B if A is as strong as and there exist some
pair of graphs G and H such that A distinguishes but B does not distinguish.

4 SPARSE ¢ WL TEST

In this section, we present the sparse 1) WL test, a modification of the WL test that incorporates edge
features. While the WL test provides an upper bound on the expressive power of MPNNS, the sparse
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Figure 1: The graphs G (the length 9 cycle graph) and H (3 copies of the length 3 cycle graph) are
indistinguishable by the WL test, but distinguishable by any sparse k-harmonic WL test

1) WL test upper bounds MPNNs that use edge features. In Section B, we present several results
about the expressivity of this sparse 1y WL test when v is a k-harmonic distance.

An edge positional encoding is a function 1 that assigns each graph G a map ¢ : Eg — R™
such that, if 0 : Eg — FEp is the map on edges induced by a graph isomorphism, then g =
g o o; edge positional encodings complement previously defined absolute and relative positional
encodings which are functions ag : Vg — R? and pg : Vg x Vg — R? respectively; see (Black
ef all, D074K). In the current work, we usually take ¢ to be a k-harmonic distance, i.e., ¥((u,v)) =
Hi(u,v) € R.

Like the WL test, the sparse 1» WL test iteratively assigns labels to the vertices of a graph. The
labels for the ™ iteration are computed using the following formula:

A () = hash (XU (), £ @ ((w,0) T (@)« (u,0) € ) @

Indistinguishability for the sparse v WL test is defined the same as for the WL test in Section B.

It is an open question as to how different choices of 1) affect the distinguishing power of the test.
When v is a constant function, the sparse ¢ WL is equally strong as the original WL test. Therefore,
for any v, the sparse 1) WL is at least as strong as the original WL test. In Section B, we will prove
that with certain choice of 1, that the sparse 1) WL test is strictly stronger than the WL test.

The reason we introduce the sparse 1» WL is because it provides an upper bound on the distinguishing
power of MPNNs with edge features ¢, as evidenced by the following lemma.

Lemma 4.1. Let G and H be graphs with constant node features and edge features given by 1. If
G and H are indistinguishable by t iterations of the sparse 1) WL test, then for any t-layer MPNN

f, the multisets of node features at each layer are equal, i.e., {{hg,t) veVel = {{h,(}t) v eV}l

Related Work. While our sparse WL test is defined for edge positional encodings, there are simi-
lar WL tests defined for relative positional encodings (RPEs) (Zhang et al], P0073; Black ef all, P074kh;
Zhang et all, P074; Arvind efall, P74; Garefall, 2075). The RPE WL test aggregates over all nodes
in an iteration; in contrast, our sparse WL test only aggregates a node’s neighbors in a given itera-
tion, hence the name “sparse.” While both tests generalize the classical WL tests by incorporating
positional encodings, these two WL tests play different roles in the study of GNNs. RPE WL tests
provide an upper bound on the expressive power of graph transformers and similar architectures like
IGNs, while our sparse WL test provides an upper bound on MPNNs with edge features.

5 COMPARING THE SPARSE k-HARMONIC AND CLASSICAL WL TESTS

In this section, we compare the sparse k-harmonic WL tests to classical WL tests. We show that it
lies in the space between the WL test and the 3-WL test.
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We show that any & > 1 yields a sparse k-harmonic WL test that is strictly more expressive than
the WL test. This had previously been shown for £ = 1 (i.e., effective resistance) (VelingKer et all,
2073, Theorem 3.7), but it was not known for general k.

Theorem 5.1. Let k > 1. The sparse k-harmonic WL is strictly stronger than the WL test.

We defer the full proof to the Appendix, but we utilize the pair of regular graphs found in Figure 0.
It is well known that the WL test is unable to distinguish pairs of regular graphs. We show that the
edge features decided by any k£ > 1 is able to distinguish a given edge in these graphs.

Theorem 5.2. The 3-WL test is strictly stronger than the sparse k-harmonic WL test for all k € R.

In the opposite direction, we show that 3-WL is an upper bound for our sparse k-harmonic WL test.
The proof is implied by (Zhang et all, 7024, Lemma A.16), but we include a complete proof in the
Appendix.

6 COMPARING DIFFERENT k-HARMONIC DISTANCES

Section B laid the groundwork for study of sparse k-harmonic WL test. We now provide theoretical
results for comparing different values of £ and comparing the k-harmonic distances to other spectral
distances.

Per Lemma B, a ¢-layer GNN is equivalent to a WL test with ¢ iterations. In this section, we
provide results to show that not all values of k are equally powerful. To prove this, we show that
there are graphs that sparse biharmonic WL can distinguish in fewer iterations than sparse resistance
WL, corresponding to a GNN with fewer layers.

In this theorem, the sparse resistance WL test and sparse biharmonic WL test to refer to the sparse
1) WL test when ¥ is the effective resistance of biharmonic distance respectively.

Theorem 6.1. There are pairs of graphs that sparse biharmonic distance WL can distinguish in one
iteration but the sparse resistance WL test cannot distinguish in o(n) iterations.

The pairs of graphs we consider in this proof are both trees. To prove this theorem, we will use the
following fact.

Lemma 6.1. The sparse resistance WL test is equally strong as the WL test when G and H are trees

This result is directly implied by a result of Ghosh'ef all (20008, Theorem 2.3) that the effective resis-
tance between any two nodes in a tree is their shortest path distance. Thus, the effective resistance of
all edges in a tree is 1, giving no additional information. Conversely, Black_ef-all (20244, Theorem
5.1) proves that the biharmonic distance for any edge in a tree uniquely determined by the number
of nodes on either side of that cut edge, which does supply more additional topological information
about an edge. The full proof of Theorem Bl is contained in Appendix B-Il. While this may suggest
that sparse biharmonic WL is much more powerful than sparse resistance WL on trees, this does not
generalize to all trees. We can construct a counterexample consisting of a pair of non-isomorphic
trees that sparse biharmonic WL cannot distinguish in o(n) iterations. We defer this example to the
appendix as well.

Importantly, this result gives credence to the idea that there is an important amount of expressive
granularity that exists within the k-harmonics and spectral distances as a whole. That is, while all
k-harmonics are situated between 1-WL and 3-WL, the WL hierarchy does not tell the whole story
of their expressive power, and there can be stronger and weaker spectral encodings in this space.

Theorem Bl proves that sparse biharmonic WL can distinguish a pair of graphs much more quickly
than sparse resistance WL. A natural follow-up question is if this is common. Our next theorem
suggests this is not usually the case for different k-harmonic distances. Intuitively, if two graphs are
distinguishable by some k-harmonic WL test, they will be distinguishable for most k-harmonic WL
tests (disregarding the number of iterations ¢). A proof can be found is found in Appendix B3.

Theorem 6.2. Let G and H be graphs with n vertices that are distinguishable by sparse k-harmonic
WL for some k. Then for all but O(n®) values of k' € RY, G and H are distinguishable by the sparse
k’-harmonic WL test.
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We have shown that most k-harmonics provide equally powerful WL tests. A potential way to
improve the expressive power of the k-harmonic distance would be to use the concatenation of
multiple k-harmonic distances as an edge feature. Concatenating multiple positional encodings is
a common technique that is known to increase the expressive power of a network (Ma“ef all, D023
Zhang_et all, P073). However, we show that this technique has a limit. Specifically, we show
that concatenating the first 2n k-harmonic distances is as strong as taking all k-harmonic distances.
This is analogous to known results for other RPEs like powers of the adjacency matrix or heat
kernels (Black ef all, 0240, Garef all, ZO25).

For a set of values S C R, let the sparse S-harmonic WL test denote the sparse ¢-WL test for
¢ o E — RIS defined ¢(u,v) = (H®)(u,v) : k € S), i.e., we concatenate the k-harmonic
distances for all k € S.

Theorem 6.3. Let 2n] = {1,2,...,2n}. For graphs on n vertices, the sparse [2n]-harmonic WL
test is equally strong as the sparse R-harmonic WL test.

Lastly, we show that these [2n] harmonic distances subsume all spectral distance measurements with
reference to their respective WL tests. That is, any expressive power that can be gained from the
spectral distances is contained within the first [2n] k-harmonics.

Theorem 6.4. Let Dy be a spectral distance. The sparse [2n]-harmonic WL test is as strong as the
sparse D g-harmonic WL test.

In summary, the results in this section imply that there is an important amount of granular expressiv-
ity present in the k-harmonic distances.

7 RESULTS AND DISCUSSION

To corroborate our results, we test the k-harmonic distance on both synthetic and real world data.
In order to empirically verify the expressivity of the k-harmonic distance, we examine performance
on the BREC dataset, a dataset that utilizes contrastive learning in order to test a GNN’s ability
to distinguish non-isomorphic graphs. Further, we examine performance on the ZINC dataset as a
measurement for a regression task, and ogbg-molhiv to measure classification. These experiments
also validate our theoretical results seen in Section B, as we see that different datasets have different
optimal values for k.

Architecture We use the k-harmonic distances as edge features. We use the GINE architec-
ture (Huefall, 2070K) as our MPNN. We provide further experimental settings in the Appendix.

Learnable £ In an attempt to further explore the empirical power of the k-harmonic distances, we
set k to be a learnable parameter in our MPNN as one of our experiments. That is, k is trained with
gradient descent during the learning process. In all experiments, we initialize £ = 1.5, with further
justification given in the Appendix.

7.1 BREC

The BREC dataset was introduced by Wang & Zhang (2074) as an attempt to measure the realized
expressivity of GNNs. That is, the dataset makes use of a contrastive learning approach to test
whether or not the GNN is able to learn to map non-isomorphic graphs to different features in latent
space, and isomorphic graphs to similar areas. The dataset consists of several different types of
graphs including Basic Graphs, Regular Graphs, Extension Graphs, and CFI Graphs which range
from WL indistinguishable up to 4-WL indistinguishable.

We conduct the experiment by comparing an MPNN that makes use of effective resistance, bihar-
monic distance, and higher k-harmonic distances to their own theoretical expressivity. We present
the most compelling results in Table [, which shows that the realized expressivity of k-harmonic
distance augmented MPNN:Ss is in line with what we would expect, that is, stronger than 1-WL but
weaker than 3-WL. We defer a full discussion of the results to the Appendix.

Further, the learnable k£ parameter does not prefer any value of £ over another. That is, we suspect
any value of k results in a local optimum and the MPNN is able to learn BREC nearly equally as
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well with any initialization of k. This directly supports our findings in Theorem B2 that almost any
k-harmonic works equally as well at distinguishing graphs.

Table 1: % Accuracy for each family of graph in BREC.

Accuracy Resistance Biharmonic 4-harmonic Learnable k = arbitrary

Basic 100 100 100 98
Regular 50 49 46 50
Extension 95 99 94 99
CFI 4 5 6 4
Total 52 52.5 51.5 52

7.2 OGBG-MOLHIV

Though BREC provides a measure of the empirical expressivity of different k-harmonic distances,
it is still imperative to test the performance on real world datasets. We test on ogbg-molhiv, a
popular binary classification task that aims to predict whether a given molecule inhibits HIV virus
replication.

Table [ depicts the main results from the experiment. Interestingly, the biharmonic distance has the
best absolute performance on the dataset with two layers of message passing. However, when given
only one layer of message passing, the learnable k parameter is able to find a more optimal value,
tending towards k£ = 2 but ultimately landing on an average of 1.81 across all tests. This suggests
that £ = 2 may be at least a local optimum for k. We provide further discussion in the Appendix.

In the spirit of Theorem B3, we also concatenate n different k-harmonic values together to create
an edge feature e,,, € R™ in order to see whether or not it gives us more expressive power. This
experiment is largely ineffective, and single values of k perform better in most instances.

Lastly, we report that these results are statistically significant («« = 0.05 via the paired Wilcoxon
test). That is, the biharmonic distance is significantly better than any other static value of k as well
as not using a k harmonic.

Table 2: % AUC for ogbg-molhiv. k& = [1, 4] refers to appending all k-harmonic distances from 1 to
4 together. Results are averaged across 10 seeds.

k 1 Layer 2 Layers 4 Layers
No k-Harmonic 742+ 14 743+16 725+35
k=1 736+ 1.6 755+13 71.14+3.7
k=2 757+21 782+14 744428
k=3 748+ 15 747+1.7 746+24
k=4 73.7+£09 726+2.1 706=£56
k=11,4] 73.7+13 735417 734414
Learnable & 770+ 12 775+1.1 741414

7.3 ZINC

The form of the ZINC dataset that we utilize (12K) was formalized in Dwivedi-ef all (2023) which
is a graph regression task that seeks to learn the constrained solubility of a molecule.

Similarly to molhiv, more layers of message passing help the network with the regression task,
though only up to the point of 4 layers. Also of note, the effective resistance outperforms any other
k-harmonic distance on this dataset. Full results are provided in the Appendix.

The learnable &k parameter corroborates our findings and settles at around 1.15 across all experiments,
indicating that effective resistance is locally optimal.



Under review as a conference paper at ICLR 2026

Further, we compare to other models across multiple architectures that have used the ZINC dataset
in Table B. The resistance and biharmonic transformer come from (Black ef-all, P(174H), Graphormer
(fYing et all, P02T), GraphGPS (Rampasek et al], 2077), GCN-PE, GAT, 3-WL GNN (Dwivediefall,
2073). Though our MPNN model is outclassed in raw performance by transformer models that make
use of PEs, we argue the benefit of computational efficiency when the power of k-harmonic distances
are added to low-cost networks — retaining most of the performance with 1/5" of the parameters
incurring 1/10" of the runtime (on equivalent hardware) — suggesting that the power lies within the
use of the k-harmonic distance, rather than the specific choice of network architecture.

Table 3: Test MAE for ZINC compared against number of parameters. The parameter to perfor-
mance ratio is calculated as (1/ test MAE) x # parameters (in millions), where higher is better.

Resistance Biharmonic ~ Resistance  Biharmonic

Graphormer  GraphGPS GCN-PE GAT 3WLGNN

MPNN MPNN Transformer Transformer
Test MAE 0.127 0.157 0.106 0.132 0.122 0.071 0214 0384 0.256
# Parameters 95,601 95,601 573,922 573,922 489,321 423717 505011 531,345 103,098
Performance to ¢, 3¢ 66.63 16.44 13.20 1675 33.24 9.25 4.90 37.89

Parameter Ratio

8 LIMITATIONS

Though we provide interesting experimental results showing there are better values of & for specific
datasets, it is an open question as to why these values of k£ were better in these cases. That is, though
ZINC and ogbg-molhiv are both chemical datasets consisting of graphs that are roughly the same
size, our experiments suggest that effective resistance performs better on ZINC while the biharmonic
distance performs better on ogbg-molhiv.

Further, though the theoretical expressivity of arbitrary & is clearly present from our BREC results,
on real datasets we struggle to find an optimal k that is not 1 or 2 - which is compounded by the
inability to have an intuitive interpretation of any k-harmonic of £ > 2. It remains an open question
how to interpret values of k£ > 2, and whether or not these k-harmonic distanecs have any additional
power beyond that of k = 1, 2. This is in contrast to the results in (Black efall, 2(0744), where values
of k >> 2 gave the best results for several clustering experiments.

Theorem Bl shows that the sparse biharmonic WL can distinguish certain graphs much more quickly
than sparse resistance WL. However, sparse resistance WL is able to distinguish these graphs given
enough iterations. It is an open question whether there are pairs of graphs that sparse k-harmonic
WL can distinguish for some value of & but not for another value of &’ in any number of iterations.

9 CONCLUSION

In this paper, we proved several theoretical properties of the k-harmonic distances. We theorized the
practical use of these k-harmonic distances on specific families of graphs, as well as limitations on
the expressive power to be gained with an increasing number of k-harmonic distances. To substanti-
ate these results, we provide several empirical tests both on toy datasets and real-world applications
to give insight into how these k-harmonics perform. We believe this provides a compelling case for
the use of the k-harmonic distances as a positional encoding in GNNs.

In future work, we hope to further explore exactly what the k-harmonic distance tells us about a
graph for k£ > 2. By doing so, we may find consistent insights that allows us to recommend specific
k-harmonic distance for certain types of real world data/graphs.
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A PROOFS FROM SECTION

A.1 PROOF OF THEOREM Bl

Theorem 5.1. Let k > 1. The sparse k-harmonic WL is strictly stronger than the WL test.

Proof. Let C), denote the ring graph on n nodes. In particular, let Cy be the ring graph on 9 nodes,
and let C5 3 = U3_,C3 be the graph that is the union of 3 ring graphs on 3 nodes; see Figure [I.
Observe that Cg and C}3 3 are indistinguishable by the WL test as they are both 2-regular graphs.

Now, we will show that Cy and C'5 3 are distinguishable by one iteration of the sparse k-harmonic
WL.

First, for any edges e, ¢’ € Co, HE, (e) = HF, (¢'); likewise for any two edge in C3 3. This is
because both graphs are edge-transitive. Second, for any edge e € E¢, , and any edge ¢’ € E¢,,

H(’fwm (e) = Hgs (e’). This is because for a graph G with connected components Gy, . .., G,
k+
ke, (13+

This follows from the fact that the eigenvectors of a disconnected graph are the eigenvectors of each
of its connected components with zero padding to be the correct dimesnionality; see (Spielmar,
2079, Lemma 3.1.1).

As Cy is a regular graph and all edges have the same k-harmonic distance, then all nodes in Cy
have the same sparse k-harmonic WL color; likewise for C'5 3. For both graphs, these colors are
P (w) = (1,{(1, H*(e), (1, H*(e)}), where H*(e) denotes the ungiue k-harmonic distance in
the respective graph. Therefore, we only need to show that H, ég (e) # H 53(6’ ) for e € E¢, and
e e Cs.

We first derive an exact formula for the k-harmonic distances of edges in these graphs.

Lemma A.1. Let Cy,, 11 be the cycle graph on 2n + 1 vertices. Let k > 0. Then the k-harmonic
—(k—1)
distance of any edge in Coy 11 is H&nﬂ (e) = Qfﬁ Sy (2 — 2cos (2%?1))

Proof. The analytical form of the eigenvectors and eigenvalues of cycle graphs are well-
established (Spielman, 2075, p. 49). In addition to the all-ones vector with eigenvalue 0 (which
is an eigenpair of the Laplacian of all graphs), for all 1 < ¢ < n, there are two distinct eigenval-
ues corresponding z; and ¥, corresponding to the eigenvalue A;. Let the vertices of Co,11 as the
integers {0, ..., 2n}. The eigenvectors are

0 = 2 omti 0 = 2 [ orti
W=\t “C\onr1) YW T Vo r MM an

with eigenvalue

2t
A =2-2 .
¢ COS(2n+1>

Further, the k™ power of the pseudoinverse of G is

(LH)* = Z()\t)_k (zeaf + )

t=1

13
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Thus, the k-harmonic distance of an edge in Cyy, 41 is
HéQn-H (i7i + 1) :(]-i - 1i+1)TL+k(1i — 1i+1)

B Z o 9ees [ 27t 2 coc? (271 e (270
= 2n + 1 2n+1 2n + 1 2n+1
. 2mti . (2mt(i+1) 2mti 2rt(i+ 1)
— 2sin sin ([ ————= ) — 2cos cos
2n+1 2n+1 2n+1 2n +1
2rt(i + 1 2rt(i + 1
L2 (ALY e (2t D)
2n+1 2n+1
Here 0 < ¢ < 2n. The choice of 7 is arbitrary as all edges in C5,, 1 have the same k-harmonic
distance. By applying the common trigonometry identities sin(x) 4+ cos?(z) = 1 and cos(z —y) =
cos(x) cos(y) + sin(x) sin(y), we arrive at
2 & ort \\ " ot
HY it 1) = —— 2-2 2-2
Cana (B +1) 2n—|—1t§_:1< COS(2n+1 [ COS<2n+1>}

n —(k—-1)
2 2mt
—2n+1¥<2—2(?08(2n+1)> O

t=1

Observe that for the case of the disconnected 3-cycle graph (n = 1), the k-harmonic of an edge is

—(k=1)
2 2
H&(e) =3 (2 — 2cos (;))

and for the case of the 9-cycle graph (n = 4) we have

—(k-1) —(k-1)
2 2 2 4
Hég(e) =5 (2—2008 (g)) +§ (2—2005 (g))
—(k—1) —k—1
2 2 2
+9<2—2cos<;>) +9<2—2003<8£;r>)

s () oz () ()

b, (¢) = 3 HE, () + 5

It is easy to see that
1
-3

or more simply

2

HE,(€) = SHE, () + 5

so we want to show that f(k) > %Hgs Because cos(mx) is strictly decreasing on the interval
x € [0, 1] this implies that

2w 4r 2w 8w
0<2—2cos (9) < 2 —2cos (9) < 2 —2cos (3) < 2—2cos (9)

Accordingly, for k > 1,

—(k—=1) —(k-1)
2 2 2
9(2—2005‘(;)) 29(2—2cos(7r>)
—(k=1)
2 2w 1
Zg (22COS <3)> :g é}(e)
—(k-1)
2
2§ (2—2005(8;)) >0
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The first two terms are larger than %Hgs (e), with the last term being strictly positive regardless.
This implies that

7y > Sk,

or that Hf, (e) and H, (e) are never equal for any value of & > 1. This implies that any value of
k used for the sparse k-harmonic test will be able to successfully distinguish any two edges in C3 3
and Cy. Therefore, a single iteration of sparse k-harmonic WL will result in different multisets for
G and H as the edge features will be aggregated to their incident nodes. Thus, as we have found a
pair of graphs that sparse k-harmonic WL can distinguish that 1-WL cannot, sparse k-harmonic WL
> WL. O

Corollary A.1. Sparse k-harmonic WL can distinguish any two odd cycle ring graphs of the form
C., and - copies of Cy, where m|n.

Proof. Observe that the logic in the previous proof follows similarly when n is varied up to

n —k—1
2 2t

E — | 2—2cos il
n 2n+1

t=1

for the rest of the proof to hold, we need to deduce that H¢. (e) C H¢, (e). For this to be true for
two summations of the form cos(27t/2n + 1) it must be the case that m|n. While it is true that the
two summations will share terms when m and n are not coprime, for H, (]i“m (e) C H (’fwn (e) it must be
that m/|n.

From here, the rest of the proof remains true. O

A.2 PROOF OF THEOREM B2

We use the following lemma about the number of roots of an exponential function. A stronger
variant of it is proved in (Tameson, 2006, Theorem 3.1).

Lemma A.2. Let f(z) = Z§=1 a;b¥, with nonzero a;s and positive b;s. Then, f(x) = 0 for at most
t values of x.
Theorem 5.2. The 3-WL test is strictly stronger than the sparse k-harmonic WL test for all k € R.

Proof. We rely on the important results from (Zhang et all, P074), which proves that 3-WL upper-
bounds an isomorphism test called the eigenspace projection-WL (EP-WL). We will thus show that
sparse k-harmonic WL is upper bounded by EP-WL. EP-WL is defined as:

Xg+1)(v) _ (Xg) (v), {Xg) (u), P(u,v):u € V}) 4)

where P (u,v) is the eigenspace projection invariant associated with graph laplacian L. Specifi-
cally, the Laplacian can be defined as

L=Y AP (6)
iem
where \; are the distinct eigenvalues and P; are the projection matrices for m unique eigenvalues ;.
The eigenspace projection invariant is the multiset

P(um) = {(Alv Pl(u’v)) ) ()‘mv Pm(uvy))}}'

The outline for the rest of the proof is as follows. We aim to upper bound sparse k-harmonic WL by
EP-WL. In order to prove our upper bound, we need to prove that both 1.) EP-WL can determine
the k-harmonic distance of a pair of nodes and 2.) EP-WL can successfully recover which pairs of
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nodes are connected by an edge. Part 1) is implied by Lemmas B3 and B (and proved in the proof
of Lemma [A7A) and part 2) is Corollary B2,

We begin with a few observations about EP-WL.
Lemma A.3. Let G and H be graphs. Let u,v € Vg and x,y € Vy. Then P(u,v) = P(x,y) if
and only if L, (u,v) = L% (z,y) forall k € R

Proof of Lemma B3. If P(v,v) = P(u,w), then for any k,

Z)\G’L ZG’LL’U Z)‘Hz ley) L%(l’,y)

Now assume P(v,v) # P(u,w). Consider the polynomial

LI&( ) LHl‘y Z)‘G’zPGZU’U Z/\HZPHZ(:E y)

i=1 i=1

As P(v,v) # P(u,w), then there is some ¢ such that \; ¢ # A; g or Pg;(u,v) # Py (x,y). In
either case, this polynomial is not the zero polynomial. Thus, by Lemma A2, there must be some k
such that L, (u,v) — L% (z,y) # 0, and so LE (u,v) # L% (z,y). O

Corollary A.2. Let G and H be graphs. Let u,v € Vg and x,y € Vy. If P(u,v) = P(z,y), then
(u,v) € Eg ifand only if (z,y) € Ey

Proof of Corollary B2. Lg(u,v) < 0 if and only if (u,v) € Eg, so this follows from Lemma BE73.
O

In what follows, an isolated vertex is a vertex with O neighbors.
Corollary A.3. Let G and H be graph. Let v € Vg and u,w € Vy. If v is not an isolated vertex,

then P(v,v) = P(u,w) only if u = w.

Proof of Corollary B3. Ly (u,w) > 0 only if u = w and w is not an isolated vertex, so this follows
from Lemma B3, O

Lemma A4. Let G and H be graph. Letv € Vg and x € V. Ifxg)(v) = XS)(x), then either
both v and x are isolated vertices or neither v and x are isolated vertices.

Proof of Lemma B4, If v is an isolated vertex, for any v € V, Lg(u,v) = 0. Therefore, as
{Plu,v) : v € Vg} = {P(z,y) : y € Vig}, by Lemma BT, it must also be the case that
Ly(x,y) =0forally € V. O

Lemma A.5. Let G and H be graph. Let v € Vg and x € Vy. If neither v and x are isolated
vertices and Xg)(v) = Xg;.l)(x), then L*(v,v) = L*(x,2) forall k € R.

Proof of Lemma B3, Ifx(l)( )= Xg)(v), then this implies that {P(u, v) : v € Vg } = {P(x,y) :
v € Vg }. As v and z are not isolated, then by Corollary B3, P (v, v) = P(x, x). Thus, Lemma B3
implies the lemma. O

Recall that the k-harmonic distance is

Hy(s,t) = \/L+k(s, s) 4+ Ltk(t,t) — 2L1k(s,t)
Let X(t)( ) denote the sparse k-harmonic WL color.

Lemma A.6. Let G and H be graphs. Letv € Vg and x € Vy. Forallt > 0, lfx(tﬂ)( ) =
1
X5 @), then i) (v) = i) (@)
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Proof of Lemma Bd. We prove this by induction on ¢. For ¢ = 0, this is trivial as all vertices have
the same sparse k-harmonic WL color.

Now assume this is true for some ¢ — 1. We will prove it is the case for ¢.

If X,(;H)(v) = Xgﬂ)(q:), then by Lemma A4, there are two cases: both v and x are isolated
vertices or neither are.

If v and x are isolated vertices, then x,(:) (v) = X,(:)(;v) as all isolated vertices have the sparse

k-harmonic WL color.

If v and x are not isolated vertices, then

(8 @) Axw), Plu,v) s € Va} ) = (6 @) fx(w). Ple,y) sy € Var )

By the induction hypothesis, the first part of the tuple implies that X,(:*l) (v) = X,(f*l) ().

Next, observe that by Corollary B~ that

0 (), Pu,v) s w e Vol ={x (1), P(a,y) : (z.y) € Vi }
= W (u), P(u,0) : (u,0) € Eg} ={x¥ (), P(z,y) : (z.y) € Exr}

Thus, there is a bijection ¢ : N(v) — N(X) such that (Xg)(u),P(u,v)) =
(Xg)(o(u)),’l?(x,a(u))) for all w € N(v). We claim that for each v € N(v) that
A (), HE (u,0)) = (A (o(w), HE (2, 0(u)). As ¥ (u) = % (o(u)), the inductive
hypothesis implies that X,(le(u) = X,(:*l)(o(u). To prove that H*(u,v) = H*(x,0(u)), first

observe that because v and z are not isolated vertices and XgH) (v) = X%H) (z), then LJGrk (v,v) =

LEF(x,2) by Lemma B, Likewise, LEF(u,u) = LEF(o(u),o(u)). Finally, as P(u,v)
P(z,0(u)), then L*(u,v) = L1*(x,0(u)) by Lemma B3. Therefore, H* (u,v) = H*(x, 0 (u)
As we have shown there is a bijection o : N(v) — N(X) such that (X,(Ql(u),Hk(u,v))
(X,(f_l)(o(u)), H*(z,0(u))) for all u € N(v), this concludes our proof that XS) (v) = X;gt)(x) O

~—

We can now use this lemma to prove the theorem. If G and H are 3-WL indistinguishable, they
are EP-WL indistinguishable by Zhang et all (2024). If G and H are EP-WL indistinguishable,

this implies that {{Xg)(v) v e Vgl = {{Xg)(x) cx € Vg forall t > 0. Lemma B then

implies {{X,(f)(v) v e Vgl = {X,(:) (x) : « € Vg}}, so G and H are sparse k-harmonic WL
indistinguishable. O

B PROOFS FROM SECTION SECTION A

B.1 PROOF OF THEOREM Bl

The k-hop neighbor of radius k around a node v is the graph (B (v), Ex(v)) with nodes By (v) =
{u €V :d(v,u) <k} andedges E,(v) = {{u,w} : d(v,u) <k —1,d(v,w) < k}. Two nodes u
and v have isomorphic k-hop neighborhoods if there is a graph isomorphism o : By (u) — By (v)
such that o(u) = v. While the following lemma is folklore, we will prove a stronger version of this
theorem in the coming section (proof of Lemma BJ), so readers interested in a proof of this lemma
are encouraged to read that proof.

Lemma B.1 (Folklore). Let G and H be graphs, and let v € Vg and v € Vy. If v and u have
isomorphic k-hop neighborhoods, then the WL colors ") (v) = xU () for all 0 < 1 < k.

Lemma B.2 ((Black_ef all, 20244, Theorem 5.1)). Let G = (V, E) be a connected graph. Let
(u,v) € E be a cut edge, and let S, T C V be the connected components of G after removing the
edge (u,v). Then

S||T
B(u,v)? = H‘L'
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O. o QO O
n/S{ ; nIZ{ ;
O O

Figure 2: Two non-isomorphic trees that sparse biharmonic WL can distinguish in 1 iteration but
sparse resistance WL cannot distinguish in o(n) iterations.

Proof of theorem BZIl. Let n be any positive integer that is divisible by 12. We consider the pair of
rooted trees G and H where G is a root connected to three paths of length n/3 and H is a root
connected to two paths of length n/4 and one path of length n/2; see Figure D for a picture of G
and H. Observe that these graphs are both trees and both have n + 1 vertices. We will show that G
and H are indistinguishable by |n/8] iterations of the WL test, but are distinguishable by a single
iteration of the sparse biharmonic WL test.

First, we show that these graphs are distinguishable by one iteration of sparse biharmonic WL.
First, observe that because G and H are both trees, then all edges in either graph is a cut edge;
accordingly, we can use Lemma B to compute the biharmonic distance of all edges in each graph.
In particular, consider the edge e connecting the root of H to the path of length n/2. The squared

biharmonic distance of e is B(e)? = %; any edge ¢’ in G has biharmonic distance at most

B(e')? < W/ 3)7(12&/ 3 o o/ 2)75%2“) = B(e)?. Therefore, the sparse biharmonic WL color of

the root XS) (rgr) of H contains an edge with biharmonic distance B(e) = 4/ % As there

(n/2)(n{2+1)
n+
biharmonic WL color as ;. Therefore, one iteration of sparse biharmonic WL distinguishes G and

H.
Next, we need to show that G and H cannot be distinguished in | g | iterations of the WL test. First,

n

we observe that for any k < | g |, the k-hop neighborhoods of the nodes in G and H are of one of
three types:

is no edge in G with biharmonic distance , there is no node in GG with the same sparse

1. Nodes that are distance r < k from a leaf of a tree The k-hop neighborhoods of these
nodes are the node connected to a path of length r (the path connecting the node to the
leaf) and a path of length k.

2. Nodes that are distance r < k from the root The k-hop neighborhoods of these nodes are
the node connected to a path of length k£ and a path of length r connected to two paths of
length k& — r.

3. Nodes that are distance > k from both a leaf and the root The k-hop neighborhood of
these nodes are the node connected to two paths of length k.

As k < L%j, there are no nodes of that are both distance < k to a leaf and a root, as the distance

between any leaf and a root in either tree is

For any 0 < r < k, in both graphs, there are three nodes of distance exactly r to a leaf and distance
exactly r to the root. For = 0, there is one node of distance r to the root (the root itself) and three
nodes of distance 7 = 0 to the leaves (the leaves themself.) The remaining n — 6k nodes of the
graph are at distance > k from both a leaf to a root. As there is a bijection from the nodes of G to
the nodes of H such that paired nodes have isomorphic k-hop neighborhoods, then by Lemma B,
we conclude that G and H are indistinguishable by  iterations of the WL test forall k < [§|. [
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B.2 EXAMPLE OF THEOREM B

In Theorem B, we asserted that there are trees that sparse biharmonic WL can distinguish in one
iteration. However, this does not generalize to all non-isomorphic trees. We provide one such coun-
terexample in Figure B where it would take both sparse biharmonic WL and 1-WL €(n) iterations
to distinguish these two trees.

Theorem B.1. There exist pairs of graph G and H with n nodes that cannot be distinguished in
o(n) iterations of the sparse biharmonic WL test.

To prove this, we will use a variant of Lemma B2 for the sparse » WL test. For an edge positional
encoding 1 and two graphs G and H, we define a 1-preserving isomorphism as an isomorphism
o : Vo — Vg such that for each edge (u,v) € Eg, ¥(u,v) = (o(u),o(v)). In the following
lemma, when we say a 1)-preserving isomorphism between neighborhoods, we define ) with respect
to the entire graphs G and H, and not with respect to the neighborhoods.

Lemma B.3. Let G and H be graphs, and let v € Vg and u € V. Let 1) be an edge positional
encoding. If there is a 1)-preserving isomorphism between the k-hop neighborhoods of v and x, then

the WL colors XS)(U) = Xg)(x)for all0 <1< k.

Proof. We will actually prove a stronger result. If there is a ¥-preserving isomorphism ¢ between
the k-hop neighborhoods of u and v, then for all 0 < [ < k and for all vertices u that are at most

k — [ hops away from v, then ij)( ) = Xﬁ)( (u))). We will prove this by induction on [. As u is
0 hops from itself, then this implies the theorem.

For the base case of [ = 0, this is true by the definition of the sparse 1) WL test.

Now assume this is true for some [ > 0; we will prove it is true for [ + 1. Consider a vertex w that is
at distance at most k — (I 4+ 1) from v. We claim that X(Hl)( ) = XSH)(J(U)). The color of v is

defined (1) 0 O

Xy (1) = (xy (w), {{(Xw (), P(u,w)) : (u,w) € Eq}).
By the inductive hypothesis, we know that x (u) Ezf) (o(u)) asw is at most distance k— (I+1) <
k — I from v.
Moreover, as o is an isomorphism, then the neighbors of v are {o(w) : (u,w) € Eg} {y
(o(u),y) € En}. Moreover, any neighbor of w is at most distance k — [ from v, so Xw ( ) =

Xfﬁ)(a( )). Finally, as o is ¢-preserving, we know that ¢)(u, w) = (o (u),o(w)). Therefore, we
conclude that

(L41) ()

X (¢ (@), A6 (W), v (u,w)) : (u,0) € Bo})

=(xP(o(u Jo(w))) : (u,w) € Eg})

=(xP(o(u ) : (o(u),y) € Ex})

=x"V(o(w)) 0

Proof of Theorem BZ. We will prove this theorem for the two graphs shown in Figure B. Let n =
2k _ 1 for some integer k. G and H both consist of a root, two children, and then attached to each
child a path of length n. At the end of the path, there is either a complete binary tree containing n
vertices or a path of length n. G and H are not isomorphic as the binary trees in either graphs have
different least common ancestors.

Observe that all edges in both G and H are a cut, so by Lemma B2, the biharmonic distance of any
edge will equal |S||T|/|V|, where S and T are sets of vertices on either side of the cut. Each branch
of both G and H has the same number of nodes.

Therefore, it should be easy to see that for any edge in G, there is an edge in H must have the same
biharmonic distance. These edges are matched in the "obvious" way, i.e., each edge in the tree 7" is
matched to the edge in the same position in the other tree. Moreover, if we match the nodes in G and
H in the “obvious” way, then the k-hop neighborhoods of these nodes will be biharmonic-preserving
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isomorphic for all £ < n. In other words, for k& < n, no k-hop neighborhood can tell if two trees,
two paths, or a tree and a path are in the same branch of the tree. Therefore, by Lemma B3, G and
H cannot be distinguished in n iterations of the sparse biharmonic WL test. O

Length n Length n

AL RAL

Figure 3: Two non-isomorphic trees G and H with n vertices that sparse biharmonic WL takes o(n)
iterations to distinguish. Let 7" be the complete tree consisting of n nodes and P be a path of n
nodes.

B.3 PROOF OF THEOREM B2

Theorem B.2. Let G and H be two graphs such that the Laplacians Lg and Ly have tg and ty
distinct non-zero eigenvalues respectively. Let u,v € Vg and x,y € V. Then, either

(1) the k-harmonic distances H* (u,v) = H*(x,y) for all k € R, or

(2) the k-harmonic distances H(u,v) = H*(x,y) for at most t + tg values of k € R.

Proof. Suppose that the Laplacian of G has t¢ distinct non-zero eigenvalues. Let L be the Lapla-
cian of G, let 0 < A\; < Ay < --- < \; be its nonzero distinct Laplacian eigenvalues, let U; be the
matrix with columns that are an orthogonal basis for the eigenspace of U;. Then the Laplacian of G
is

t
Lo =Y NUU!.

=1

Therefore, the k-harmonic distance between two vertices u and w is
(La = 1) (L) (1u = 1) =(1u = 1,)" (Z s ) (lu = 1)
i=2
t
:Z)‘;k(UiT(lu - 1v))TUiT(1u — 1)
i=1
t
=Y A\l (w,v),
i=1
where p;(z,y) = UL (1, — 1,) |2
We can similarly write Lz as the decomposition of its eigenvalues and eigenvectors. To distinguish

the eigenvectors and eigenvalues of G and H, we will denote each with a subscript G and H
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It follows that if G and H have the same number ¢ of distinct eigenvalues, these eigenvalues are
equal (\;, ¢ = Ay g for 1 <4 <), and p;(u,v) = p;(z,y) forall 1 < ¢ < ¢, then these pairs must
have the same k-harmonic distance for all values of k.

Otherwise, either G and H have a different number of distinct eigenvalues, there is an eigenvalue
AG,i # Am,i, or there exists at least one 2 < ¢ < ¢ for which p;(z,y) # p;(u,v). Now, consider

F(k) = (Lo=1,) " (L) (La—1y) — (1a—10) T (LE)*( ZAZGM (u,v) ZAI Fpi(z,y)

as a function k£ € R, i.e. f : R — R and £ is its only variable. Since this is an exponential function
that is not identically zero, it has at most ¢ + t roots by Lemma A, The k-harmonic distances
between x, y and u, v are different for all other values of &. O

Lemma B.4. Ler G and H be graphs. Let 1) and 1)’ be edge positional encodings such that, for all
u,v € Vg and x,y € Vi, Y(u,v) # (x,y) implies V' (u,v) # ' (x,y). Then if sparse v» WL
distinguishes G and H, then sparse 1’ WL distinguishes G and H.

Proof. Let X( ) (v) denote the color of node v under the sparse ¢ WL test at step ¢. Further, letv; € G

and v; € H. As a first step towards proving this lemma, we will show that if xfﬁ) (v;) # XS)(UJ'),
then X(t)(vl) # Xw/ (vj) or that if nodes v; and v; are not the same color under the sparse ¢» WL

test, they will not be the same color under the sparse 1)’ WL test. We will prove this by induction on
t.

Base Case: For t = 0, this is vacuously true as X( )( i) = Xff) (vj) =1forallv; € Gandv; € H.

Induction Hypothesis: Suppose this is true for t — 1 > 0. That is, if XE; 2 (Ul) # X(t 1)( vj), then
t—1 t—1

XV ) # x5 ()

We will now prove this is true for ¢. Suppose X ( i) # X(t)( ;). By definition of the WL test, it

is either the case that: the colors were different in the previous iteration of the test: XEZ _1)(1;1) #

X(tfl)( i), or the nodes aggregated distinguishing information in step t: {1 (v;, ), XEZ 1)( ) :

(vi,2) € Ea} # {v(v;,9), x5 () : (v;,) € Ex}

¢ Case 1: XE; 2 (vl) ;é X (t= 1)(vj) By the induction hypothesis, Xf/,t/ (vi) # x(t 1)(vj).

This implies that Xw' (vl) + xdﬂ (v])

« Case 2: {9h(vi,2), X V(@) : (vi,2) € Ba} # (v, ). xS V() : (vj.9) € Ex}
WLOG suppose that v; and v; have the same number of neighbors, as their mul-
tisets will be vacuously different if they don’t. Given that they have the same
number of neighbors but have different multisets of colors, we can conclude that
for any bijection ¢ : N(v;) — N(v;), there is a vertex u € N(v;) such that

(s, u), xy ™" () # (g, 0(w) oy ™ (o (w).
If X(t V) # Xg_l (0(u)) then the induction hypothesis holds and X(t V() #

ij, 1)( (w)). If (v, uw) # (v, o(u)), then we invoke our assumption to say ¢’ (v;, u) #
¢’ (v;, w) and the statement holds.

Thus, in both cases, Xw (vl) + Xw’ (vj)

To finish the proof, we show that G and H are distinguishable by the sparse ¢’ WL test. Given
that G and H are distinguishable by sparse ¢ WL, there is some ¢ > 0 such that {{XE;)(%‘) T €

Vol # {XS)(vj) :v; € Vg}}. So, for any bijection o : Vo — Vg, there is a vertex v € Vg
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such that xg) (v) # xy(o(v)). From the above, this implies that ij,) (v) # xy (o(v)). Therefore,
{{Xg,)(vl) cv; € Vel # {XEZ/)(’U]‘) :vj € Vi }, so sparse 1)’ WL also distinguishes G and H. [

Note In the following theorems, some of the constants in the theorem statements are slightly different
than in the body of the paper as we had to revise these proofs in finishing the appendix. However,
the statements of these theorems are the same beyond these small changes.

Theorem 6.2. Let G and H be graphs with n vertices that are distinguishable by sparse k-harmonic
WL for some k. Then for all but O(n®) values of k' € RY, G and H are distinguishable by the sparse
k’-harmonic WL test.

Proof. Let G and H be graphs that are distinguishable by k-harmonic WL. For all pairs of nodes
u,v € Vgand z,y € vy, let

e 7k _ g7k
K(u,v,2,y) = 0 . . if H (y,v)—H (z,y) forall k € R
{k eR: H*(u,v) = H*(x,y)} otherwise
Now let K = Uy vevg, z,yevy K (0, v,2,y) and let & € R\ K. By construction, for any pairs
u,v € Vg and x,y € Vg, if H*(u,v) # H¥(z,y), then H* (u,v) # H¥ (x,y). Therefore, the
k’-harmonic distance satisfies the conditions of Lemma B4, so G and H are distinguishable by the

sparse k’-harmonic WL test. Moreover, G and H each have at most n — 1 distinct eigenvalues, so
the size of K is O(n®). O

Theorem 6.3. Let [2n] = {1,2,...,2n}. For graphs on n vertices, the sparse [2n]-harmonic WL
test is equally strong as the sparse R-harmonic WL test.

Proof. Let [n] = {1,2,...,n}. For graphs on n vertices, the sparse [2n]-harmonic WL test is
equally as strong as the sparse R-harmonic WL test.

Recall that for two WL tests to be equally as strong as one another, if two graphs, G and H are
indistinguishable by x then they are indistinguishable by y, and vise versa. Another way to say this
is if G and H are distinguishable by x then they are distinguishable by y, and vise versa.

We invoke the result of Theorem B.2 which implies that either the HZ (u,v) = H¥ (z,y) for all
k € R, or that HE (u,v) = HE (z,y) for at most 2n — 2 values of k. As we are working with sparse
[2n] WL, if HE (u,v) = Hp(x,y) for 1 < 4 < 2n, it must be the case that HE, (u,v) = HY (z,y)
forall k € R.

This means that we can invoke Lemma B4 and say that if sparse [2n]|-harmonic WL distinguishes
G and H, then sparse R-harmonic WL can distinguish G and H. This implies that sparse R WL is
at least as strong as sparse [n]-harmonic WL.

The other direction follows easily. That is, if H&(u,v) = H&(z,y) , then vacuously HE (u,v) =
H Ikl, (z,y) for 1 <i < 2n, so we can apply Lemma B in the other direction. O

Theorem 6.4. Let Dy be a spectral distance. The sparse [2n]-harmonic WL test is as strong as the
sparse D ¢-harmonic WL test.

Proof. Let Dy be a spectral distance. We will prove the sparse [2n]-harmonic WL test is as strong
as the sparse D; WL test. By Lemma B4, it is only the case that HS (u,v) = H¥(z,y) for
1 <k < 2nif HE(u,v) = HY(x,y) for all K € R. However, by the proof of Lemma B3, it
is only the case that HE (u,v) = H¥(z,y) for all k € R if G and H have the same number ¢
of distinct eigenvalues, A; ¢ = A; g for 1 < ¢ < ¢, and p;(u,v) = p;(z,y) forall 1 < i < ¢.
However, if all three of these conditions are true, then for any spectral distance Dy, D f(u, v) =
Zle Ffic)pi(u,v) = Zle f(Nin)pi(x,y) = Df(x,y). Therefore, by Lemma B4, the sparse
[2n]-harmonic WL is as strong as the sparse D WL test for any function f. [

22



Under review as a conference paper at ICLR 2026

C EXPERIMENTS

Learnable k-Harmonic Distance In all reported experiments we initialize K = 1.5, chosen as
a midpoint between the commonly observed best results for each dataset (k = 1,2). This choice
avoids predisposing the model towards either value.

While we experimented with alternative initializations (k = 0, k = 3, k ~ U(0, 1)), they consis-
tently converge to similar values but yielded inferior performance, likely due to slower convergence
and difficulty fitting training data early on.

C.1 BREC

The BREC dataset includes several families of graphs ranging from 1-WL indistinguishable, to 4-
WL indistinguishable. We provide a quick overview of the dataset and justification for why the
results we received are consistent with our theoretical results.

Basic: Consists of 60 pairs of 1-WL indistinguishable graphs.

Regular: Consists of 140 pairs of regular graphs, subdivided into different families of regular
graph. 50 pairs of simple regular graphs which are 1-WL indistinguishable, 50 pairs of strongly
regular graphs which are 3-WL indistinguishable, 20 pairs of 4-vertex condition graphs which are
at least 3-WL indistinguishable, and 20 pairs of distance regular graphs which are at least 3-WL
indistinguishable.

Extension: Consists of 100 pairs of graphs that sit between 1-WL indistinguishable and 3-WL
distinguishable. These graphs were generated outside of the context of the WL hierarchy with
methods such as substructure counting, node marking, and n-hop subgraphs. The authors claim that
these graphs are meant to provide more granularity to the space between 1-WL and 3-WL.

CFI: Consists of 100 pairs of graphs generated by the intentionally difficult Cai, Furer, and Im-
merman method. 60 pairs of these graphs are 1-WL indistinguishable, 20 pairs are 3-WL indistin-
guishable, and a further 20 pairs are 4-WL indistinguishable.

Given that we have previously proven that sparse k-harmonic WL is strictly more expressive than
1-WL, but upper bound by 3-WL, we would expect any MPNN equipped with k-harmonic distance
to distinguish some amount of the graphs in BREC that are 1-WL indistinguishable, but none of the
graphs that are 3-WL indistinguishable and higher. Of note, it is well known that 1-WL = 2-WL
(Huang & Villat, P07T), so the tightest bound that can be achieved in the WL framework is between
1-WL and 3-WL.

Concretely, sparse k-harmonic WL is able to distinguish all 1-WL indistinguishable graphs barring
the exceptionally difficult CFI graphs. However, this is not without precedent. Black ef-all (20174H)
execute a similar experiment with transformer-based models that make use of effective resistance
and experience similar difficulties learning the CFI graphs while being able to learn all other 1-WL
indistinguishable graphs.

Further, Table B shows how both effective resistance and biharmonic distance respond to more layers
of message passing. That is, layers of message passing largely does not have an effect on results. It
is worth noting that in all experiments, the effective resistance is required to be normalized. That is,
without input normalization, effective resistance scores an average 41.75% accuracy on BREC, as
opposed to the 52% pictured. This is the only k-harmonic that improves with input normalization,
and it is unclear why this is the case. Perhaps most interestingly, the layers of message passing do
not have a significant effect on the realized expressivity of any k’s ability to distinguish graphs.

C.2 OGBG-MOLHIV

Notably, molhiv also provides edge features indicating the type of bond present between two nodes
(atoms), and node features that denote atom type, chirality, among other things. In our early experi-
ments, we see that bond types notably help the k-harmonic distances perform in all cases (o = 0.05)
and thus include them in all experiments. Specifically, the bond types are passed through a learnable
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Table 4: % Accuracy for each family of graph in BREC broken down by number of message passing
layers for both Effective Resistance and Biharmonic Distance

Resistance Biharmonic
Layers 1 2 3 4 1 2 3 4
Basic 100 | 96.6 100 100 100 100 | 96.6 | 96.6
Regular 50 50 49 47 46 47 49 49
Extension | 95 97 94 95 95 99 93 94
CFI 3 3 4 4 4 6 6 5
Total 52 52 5175 | 51.5 | 51.25 | 52.5 | 51.5 | 51.5

linear layer and then summed with the k-harmonic distances that have also been passed through a
separate learnable linear layer.

Perhaps most importantly, we see that only £ = 1 and k£ = 2 give statistically significantly better
results than the control experiment (o = 0.05 via the paired Wilcoxon test). Though we ran several
tests experimenting with input normalization (mean, min/max, log), very few had any positive effect
on the results. Therefore, it is likely that higher values of & introduce too much numerical instability,
or simply lose too much structural information on this dataset. This is further corroborated by
the learnable k parameter tending towards 2 with little exploration or variance beyond & = 2.1,
suggesting that k values beyond 2 are simply suboptimal.

C.3 ZINC

We present the full results from the ZINC experiments in Table B, in a similar fashion to Table D.
Consistent with the learnable £ parameter settling around 1.15 across all experiments, we see that
effective resistance is likely the optimal value of k for this dataset over biharmonic or any other k.
Further, we verify that these results are statistically significant (o« = 0.05 via the paired Wilcoxon
test)

Table 5: MAE for ZINC. Results are averaged across 10 seeds.

k 1 Layer 2 Layers 4 Layers

k=1 0.244 +0.005 0.144 £+ 0.005 0.127 + 0.004
k=2 0.368 £0.017 0.188 £ 0.006 0.157 £ 0.006
k=3 0.401 £0.008 0.319 £0.020 0.495 + 0.417
k=4 0.504 £0.063 0.797 £ 0493 1.133 +0.434
learnable £ 0.218 +£0.047 0.142 +0.009 0.136 + 0.003

Further, we give a brief summary of extraneous experiments. That is, the inclusion of the edge
features that are native to the ZINC dataset (bond information) largely have no effect on results, so
we do not include them in our experimentation. Further, input normalization has very little effect in
most cases, and is statistically insignificant in all cases regardless of the type of normalization used
(min/max, logarithmic, or mean/standard deviation).

Settings, Hyperparameters, and Hardware The settings and hyperparameters for any given ex-
periment are contained in the configuration files that accompany our code.

All experiments were run on a single NVIDIA V100 GPU with 32GB of VRAM.

Code Our code builds off of (Rampasek et all, 2027; Black ef all, P074H; Miiller ef all, 2074)) and
use of the code is allowable under the MIT Licensing present

https://anonymous.4open.sclence/r/expressive power of k harmonic
distance—=9R0OC
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