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Abstract

Understanding causality is key to the success001
of NLP applications, especially in high-stakes002
domains. Causality comes in various perspec-003
tives such as enable and prevent that, despite004
their importance, have been largely ignored in005
the literature. This paper introduces a first-of-006
its-kind, fine-grained causal reasoning dataset007
that contains seven causal relations and defines008
a series of NLP tasks, from causality detection009
to event causality extraction and causal reason-010
ing. Our dataset contains human annotations of011
25K cause-effect event pairs and 24K question-012
answering pairs within multi-sentence samples,013
where each can contain multiple causal relation-014
ships. Through extensive experiments and anal-015
ysis, we show that the complex relations in our016
dataset bring unique challenges to state-of-the-017
art methods across all three tasks and highlight018
potential research opportunities, especially in019
developing “causal-thinking” methods.020

1 Introduction021

Causality has received much research attention in022

recent years (Gao et al., 2019a; Schölkopf et al.,023

2021; Feder et al., 2021; Scherrer et al., 2021).024

It has been shown that causal reasoning entails a025

new goal of building more powerful AI systems026

beyond making predictions using statistical cor-027

relations (Kaushik et al., 2021; Srivastava et al.,028

2020; Li et al., 2021). In particular, understanding029

fine-grained causal relations between events in a030

document is an important step in language under-031

standing and is beneficial to various NLP applica-032

tions – information extraction, question answering,033

and machine reading comprehension, especially in034

high-stakes domains such as medicine and finance.035

Much work has been done on detecting a shallow036

“cause” relationship automatically for text (Khoo037

et al., 1998; Mirza et al., 2014; Chang and Chen,038

2019; Mariko et al., 2020b). However, a single039

“cause” relationship cannot cover a plethora of040

causal concepts in the real-world scenarios reported041
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Figure 1: Comparisons between existing datasets and
our dataset in the task of event causality analysis.

by the previous psychology research (Talmy, 1988; 042

Wolff et al., 2005). For example, the spread of 043

COVID-19 has led to the boom in online shopping – 044

i.e., (cause) – but it also has deterred – i.e. (prevent) 045

– people from going shopping-centres. According 046

to classical psychology (Wolff and Song, 2003), it 047

is important to understand possible fine-grained re- 048

lationships between two events from three different 049

causal perspectives, including cause, enable, and 050

prevent. 051

In this paper, we construct a large-scale, hand- 052

labeled, fine-grained causal reasoning (FineCR) 053

dataset in the financial domain. A contrast between 054

our dataset and the previous causality detection 055

dataset is shown in Fig. 1. As can be seen, given the 056

same passage “COVID-19 has accelerated change 057

in online shopping, and given Amazon’s ... it will 058

result in economic returns for years to come and 059

offering more competitive prices compared to an 060

offline business that brings pressures for the offline 061

business recruitment.”, previous work can extract 062

facts such as “COVID-19 causes an increase in on- 063

line shopping”, yet cannot detect the subsequence 064

for Amazon to “offer more competitive prices”, 065

and further the negative influence on offline busi- 066

ness recruitment, both of which can be valuable for 067

predicting the future events. 068
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Depressed realized prices due to lack of market access have forced capital spending cuts, stalling the growth
potential of the company's oil sands assets.

cause
enable 

prevent 

LABEL 1: <CAUSE, RELATION, EFFECT> LABLE 2: What-if and Why questions

Input Text:

Output Labels:

(a) (b)

Figure 2: Illustration of our crowdsourcing tasks using an example that contains all three types of causal relationship.

Our dataset can also potentially benefit down-069

stream applications such as financial analysis (Ding070

et al., 2015) and BioNLP (Demner-Fushman et al.,071

2021). As one practical application, we investigate072

the utility of our dataset for the causal question073

reasoning (CausalQA) task (Oh et al., 2016) in this074

work. The resulting dataset, FineCR, consists of075

25, 193 cause-effect pairs and 24, 486 question-076

answering pairs, in terms of almost all questions077

involving “why” and “what-if” scenarios belonging078

to three fine-grained causalities. To establish the079

benchmark performance on FineCR, which con-080

sists of causality detection, fine-grained causality081

extraction, and CausalQA tasks, we explore sev-082

eral state-of-the-art neural models. Experimental083

results show a significant gap between machine and084

human ceiling performance (74.1% vs. 90.53% ac-085

curacy in fine-grained classification). To the best of086

our knowledge, FineCR is the first human-labeled087

fine-grained event causality dataset, and we define088

a novel CausalQA task based on that.089

2 Dataset090

We collected a financial analyst report dataset091

from Yahoo Finance1, which contains 6,786 well-092

processed articles between December 2020 and093

July 2021. Each instance corresponds to a specific094

financial analyst report on a U.S. listed company,095

which highlights the financial strengths and weak-096

nesses of the company business.097

2.1 Crowdsourcing098

The original FineCR dataset consists of 6,786 arti-099

cles in 54, 289 sentences. We employ editors from100

a crowd-sourcing company to complete several hu-101

man annotation tasks. Several pre-processing steps102

required crowd-sourcing efforts were carried out103

to prepare the raw dataset, including (1) A binary104

1We have received the written consent from the Yahoo
Finance.

Metric Counts
Causality Sentence Classification (Task1)

#Positive Instances 21,046
#Negative Instances 29,979
#Multi-sentence Samples 846
#Average Token Length of POS Samples 42.8
#Average Token Length of NEG Samples 41.3

Cause-Effect Event Pairs (Task2)
#Causal Text Chunks 45, 710
#Uni-causal Text Spans 18, 457
#Multi-causal Text Spans 3, 017
#Average Token Length of Cause Spans 16.0
#Average Token Length of Effect Spans 15.2

CausalQA Pairs (Task3)
#Total Number of QA pairs 24, 486
#Average Token Length of Context 191.7
#Average Token Length of Questions 20.1
#Average Token Length of Answers 15.4
#Variance of Answer Length 69.15

Table 1: Statistics for causality detection, cause-effect
pairs and QA pairs.

classification task for the causality detection; (2) 105

Mark the cause and effect formatted as text chunks 106

(a given instance may contain multiple causal rela- 107

tions), and give event pairs a fine-grained causal- 108

ity label, including cause, cause_by), enable, en- 109

able_by), prevent, prevent_by), and irrelevant re- 110

lation, where the suffix “_by” means the effect 111

comes before its cause; (3) Generating the follow- 112

ing question-answering dataset by using the labeled 113

event triples. 114

Causality Detection. We first focus on a bi- 115

nary classification task of the causality detection, 116

as such, removed sentences with outcome types of 117

non-causal relationships, leaving only those text se- 118

quences (one or two sentences) that are considered 119

containing at least a causal relation. 120

Fine-grained Event Causality. Given the sen- 121

tences each containing at least one event causal- 122

ity, human annotators are required to highlight all 123

the event causalities and give each instance a fine- 124

grained label. As shown in Fig. 2(a), a single 125

sentence can have more than one event causality, 126
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Figure 3: The pipeline of experiments based on the FineCR dataset.

which will be stored as triples containing ⟨ cause,127

relation, effect ⟩.128

CausalQA. As shown in Fig. 2(b), we design129

a novel and challenging causal reasoning QA task130

based on the fine-grained causality labels. We ex-131

pand each < cause, relation, effect > triple for132

generating a plausible question-answer pair. Differ-133

ent templates have been designed for different types134

of questions. For example, the active causal rela-135

tions – CAUSE, ENABLE, and PREVENT – could136

usually be used for generating why-questions while137

the corresponding passive causal relations could be138

used for generating what-if questions.139

Quality Control. To ensure high quality, we140

restricted the participants to experienced human la-141

belers with relevant records. For each task, we con-142

ducted pilot tests before the crowd-sourcing work143

officially began, receiving feedback from quality144

inspectors and revising instructions accordingly.145

We filter out the sentences regarding the estima-146

tion of the stock price movement due to the nat-147

urally high-sensitive features and uncertainty of148

the complex financial market. After the first-round149

annotation (half of the data), we manually orga-150

nized spot checks for 10% samples in the dataset151

and revised the incorrect labels. After review, we152

revised roughly 3% of instances and refused the la-153

belers with above 10% error rate from participating154

in the second-round data annotation. Finally, the155

inter-annotators agreement ratio is 91% for fine-156

grained causality labels, and the F1 score of the157

inter-annotators agreement ratio is 0.94 for causal158

question-answer pairs.159

Finally, we obtained a dataset of 51,025 in-160

stances (21,046 contain at least one causal relation)161

with fine-grained labels of cause-effect relations162

that were subsequently divided into training, valida-163

tion, and testing sets for the following experiments.164

It may be worth noting that we sort the dataset in165

chronological order because the future data is not 166

expected to be used for predictions. 167

2.2 Discussion 168

The primary data statistic of the FineCR dataset 169

is shown in Table 1 for three different tasks. We 170

observe that there is no significant difference in 171

the average token numbers between positive and 172

negative examples for Task 1 and 2, which shows 173

that predictive models are difficult to learn from 174

shortcut features (Sugawara et al., 2018, 2020; Lai 175

et al., 2021) (e.g., the instance length) during the 176

training process. Furthermore, our dataset con- 177

tains 846 multi-sentence samples, and 3,017 text 178

chunks contain more than one causal relation in 179

one instance, which requires a complex reasoning 180

process to get the correct answer, even for a hu- 181

man. Most importantly, unlike other QA datasets 182

(Sugawara et al., 2018, 2020) that can easily benefit 183

from the test-train overlap as revealed by (Lewis 184

et al., 2021a; Liu et al., 2021; Wang et al., 2021), 185

our dataset is sorted in chronological order so that 186

the future test data could be theoretically difficult 187

to coincide with the training set. This allows us to 188

obtain greater insight into what extent models can 189

actually generalize. 190

2.3 Meta-information 191

Our dataset contains multi-sentence instances 192

with fine-grained causality labels and the meta- 193

information (company names and published dates). 194

As shown in Fig. 4, we list the number of financial 195

documents from different sectors, where the top 196

three largest sectors belong to Consumer Cyclical, 197

Industrial, and Technology. In contrast, compa- 198

nies from the Utilities are the smallest group in 199

our dataset. The use of the meta-information is 200

two-fold. First, we choose the top three largest 201

domains to perform out-of-domain evaluations (see 202
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Figure 4: Sector distributions on companies and reports.

Appendix A). Second, company names would be203

used for generating question templates. Besides,204

the meta-information is crucial for benefiting the205

potential applications in NLP related to the domain206

of Finance (Tang et al., 2021; Chen et al., 2021).207

3 Tasks and Methods208

The pipeline of our experiments is shown in Fig.209

3. We define three tasks on our FineCR dataset210

and build strong benchmark results for each task.211

First, as a prerequisite, models are evaluated on a212

binary classification task to predict whether a given213

text sequence contains a causal relation (Task 1).214

Second, we set up a joint event extraction and fine-215

grained causality task for identifying text chunks216

describing the cause and effect, respectively, and217

which fine-grained causality category it belongs to218

(Task 2). Finally, we design cause-effect question219

answering (Task 3).220

3.1 Data Settings221

For hold-out evaluation, we split our dataset into222

mutually exclusive training/validation/testing sets223

in the same ratio of 8:1:1 for all tasks. Predic-224

tive models and data splitting strategies have been225

kept the same among these tasks for building the226

benchmark results of each task. In line with the227

best practice, model hyper-parameters are tuned228

using the validation set. Both validation results and229

testing results will be reported in experiments.230

3.2 Models231

We consider using both classical deep learning232

models – CNN-Test (Kim, 2014) and HAN (Yang233

et al., 2016) – and Transformer-based models down-234

loaded from Huggingface2 – BERT (Devlin et al.,235

2019), RoBERTa (Liu et al., 2019), and SpanBERT236

(Joshi et al., 2020) – as predictive models.237

2https://github.com/huggingface/models

In addition, we perform a causal reason- 238

ing QA task by leveraging six Transformer- 239

based pre-trained models provided by Hugging- 240

face (Wolf et al., 2020) on our dataset, in- 241

cluding BERT-base, BERT-large, RoBERTa-base, 242

RoBERTa-large, RoBERTa-base-with-squad, and 243

RoBERTa-large-with-squad3. Furthermore, pre- 244

trained seq2seq models such as T5 (Raffel et al., 245

2020), or BART (Lewis et al., 2020) are fine-tuned 246

on QA-pairs as the benchmark methods of the gen- 247

erative QA tasks. In particular, we consider T5- 248

small, T5-base, T5-large, BART-base, and BART- 249

large models for building the benchmark results. 250

We use Adam as the optimizer and adopt the 251

trick of decay learning-rate with the steps increase 252

to train our model until converging for all models. 253

3.3 Methods 254

Our methods are built on the recently advanced 255

Transformer architectures (Vaswani et al., 2017a) 256

with the framework provided by Huggingface4. As 257

follows, we introduce the detailed implementation 258

of deep neural methods on three tasks completed 259

on the FineCR dataset. 260

3.3.1 Causal Detection 261

The dataset consists of instances labeled with pos- 262

itive for the binary classification task if a given 263

instance contains one causal relation and negative 264

non-causal instances. The input data is extracted 265

from the raw dataset directly, which contains 846 266

multi-sentence samples. We include multi-sentence 267

samples besides a single sentence because causality 268

could be found in multi-sentence contexts. 269

3.3.2 Fine-grained Event Causality Extraction 270

We use [CLS] and [SEP] to mark the event’s be- 271

gin and end positions, respectively. For example, 272

we have “[CLS] Better card analytics, increased 273

capital markets and M&A offerings, and bolt-on 274

acquisitions [SEP] should help drive [CLS] growth 275

in fee income [SEP]”, in which “Better card analyt- 276

ics, increased capital markets and M&A offerings, 277

and bolt-on acquisitions” is a “cause” event and 278

“growth in fee come” is an “effect” event. In to- 279

tal, there are 33, 634 event triples with seven-class 280

labels used for our experiments. 281

Then, we conduct the cause-effect extraction 282

between samples. We consider cause-effect extrac- 283

3https://huggingface.co/navteca/
roberta-large-squad2

4https://github.com/huggingface/
transformers
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Methods Dev. Test
F1 Acc F1 Acc

CNN-Text 81.35 81.59 80.03 81.01
HAN 81.18 81.23 80.60 81.26

BERT-base 83.72 84.23 84.02 84.43
BERT-large 84.03 84.41 84.63 84.90

SpanBERT-base 84.09 84.38 84.51 84.72
SpanBERT-large 84.43 84.80 84.55 84.82
RoBERTa-base 84.59 85.16 84.31 84.76
RoBERTa-large 84.39 84.75 84.64 84.89

Human - - 94.32 95.94
Best Results
@FinCausal - - 97.75 97.76

Table 2: The results of the causal sentence classification.
’F1’ refers to the Macro F1. ’ACC.’ is short for the
accuracy.

tion a multi-span event extraction task as complex284

causal scenarios containing multiple causes or ef-285

fects within a single instance is under considera-286

tion. We set the label for the first token of a cause287

or effect to “B”, the rest of the tokens within the288

detected text chunks are given the label “I”, and the289

other words in a given instance are set to “O”. The290

results of event causality extraction are reserved for291

generating causal questions.292

3.3.3 CausalQA293

Both extractive methods and generative meth-294

ods have been evaluated. For the extractive QA295

task, we adopt the same methods as the previous296

Transfomer-based QA works (Kayesh et al., 2020).297

In particular, we first convert the context C =298

(c1, c2, ..., cl) and question Q = (q1, q2, ..., ql′)299

into a single sequence X = [CLS] c1c2 . . . cl300

[SEP ] q1q2 . . . ql′ [SEP], passing it to the pre-301

trained Transformer encoders for predicting the302

answer span boundary (start and end).303

3.4 Metrics304

The F1-score and accuracy are used for evaluat-305

ing the event causality analysis task, and the exact306

match and F1-score are used for CausalQA.307

The Macro F1-score is defined as the mean of308

label-wise F1-scores:309

Macro F1-score =
1

N

N∑
i=0

F1-score i (1)310

where i is the label index and N is the number of311

classes.312

4 Results and Discussion313

We present the results of Tasks 1-3 based on our314

dataset in this section.315

4.1 Causality Detection 316

The causal detection result is shown in Table 2. 317

We find that although Transformer-based methods 318

achieve much better results than other methods – 319

CNN and HAN using ELMO embeddings – on 320

judging whether an instance contains at least a 321

causal relationship (RoBERTa-Large can get the 322

highest F1 Score – 84.64), it is still significantly 323

below the human performance (84.64 vs. 94.32). 324

The results of human performance are reported by 325

quality inspectors from the crowdsourcing com- 326

pany. It is worth noting that the best results on the 327

FinCausal (Mariko et al., 2020b) dataset can reach 328

the human-level result (F1 = 97.75), providing indi- 329

rect evidence that our dataset is more challenging 330

caused by more complex causality instances. 331

4.2 Fine-grained Event Causality Extraction 332

The results of the fine-grained event causality ex- 333

traction task are shown in Table 3. We find that 334

SpanBERT and RoBERTa model can achieve the 335

best performance for event causality extraction (F1 336

= 86.82 and EM = 60.26) and fine-grained clas- 337

sification (F1 = 68.99 and EM = 74.09), respec- 338

tively. Nevertheless, all methods perform dramat- 339

ically worse on the more challenging joint task, 340

where the prediction is judged true only if event 341

extraction and classification results exactly match 342

the ground truth. Although the SpanBERT-large 343

model can achieve the highest 21.78 EM on the test 344

set, there is still much room for improvement. 345

We find that the large Transformer-based models 346

(Vaswani et al., 2017b) with larger parameter sizes 347

could not improve the performance on these tasks 348

based on the FineCR dataset by comparing the test 349

performance of BERT-base (63.72 in F1, 71.72 350

in ACC) with BERT-large (60.24 in F1, 69.85 in 351

ACC) on the task of the fine-grained classification. 352

It sheds new light that increasing the parameter size 353

could not be helpful for causal reasoning tasks. 354

A more detailed error analysis by using the best- 355

performed RoBERTa-Large model is given in Ta- 356

ble 4. The model performs well in terms of the F1 357

score when predicting simple causal relations – Ir- 358

relevant (84.40), Cause (74.00), Cause_by (79.62), 359

and Prevent (76.34). In contrast, complex relations 360

– Enable (62.61) and Enable_by (41.49) – and the 361

category with few examples – Prevent_by (64.46) – 362

are not well predicted. 363
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Model Event Causality Extraction Fine-grained Classification Joint Evaluation
Dev. Test Dev. Test Dev. Test

F1 EM F1 EM F1 ACC F1 ACC EM EM
BERT-base 84.37 51.48 85.30 53.53 71.74 70.43 63.72 71.72 21.21 20.15
BERT-large 85.13 50.34 86.93 52.88 70.90 64.16 60.24 69.85 17.54 21.73

RoBERTa-base 85.67 53.41 86.32 56.04 73.09 68.37 65.99 71.63 20.45 19.08
RoBERTa-large 85.12 54.70 85.95 56.77 74.54 71.99 68.99 74.09 20.46 19.77
SpanBERT-base 85.84 55.40 86.82 57.26 71.18 68.40 63.73 70.52 21.17 21.09
SpanBERT-large 85.50 57.40 86.33 60.26 73.65 68.15 64.43 72.93 23.01 21.78

Human Performance - - 94.32 81.34 - - 88.61 90.53 - -

Table 3: The results of the joint event causality detection (task2), ’F1’ refers to the Macro F1. ’ACC.’ is short for
the accuracy, ’EM’ refers to exact match and spe.

Category Counts Dev. Test
F1 Acc F1 Acc

Irrelevant 8,441 84.17 86.49 84.40 85.55
Cause 8,428 73.60 73.93 74.00 76.61
Cause_By 7,437 80.21 84.94 79.62 83.69
Enable 5,506 63.42 60.91 62.61 58.70
Enable_By 2,367 47.66 41.06 41.49 35.68
Prevent 1,086 79.79 71.43 76.34 67.87
Prevent_By 369 55.88 52.78 64.46 65.00

Table 4: Error analysis for fine-grained classifications.

Dev. TestCausalQA F1 EM F1 EM
BERT-base 79.90 55.52 79.33 55.70
BERT-large 82.48 59.24 82.37 58.71
RoBERTa-base 82.96 60.13 83.11 60.33
SQuAD2.0-only 64.87 26.71 65.20 27.36
SQuAD2.0-enhanced 84.39 61.22 84.34 61.17
RoBERTa-large 84.28 61.69 84.35 61.76
SQuAD2.0-only 63.99 26.02 63.82 25.26
SQuAD2.0-enhanced 84.65 61.63 84.65 61.58

Generative Methods
BART-base 74.34 35.81 74.35 36.16
BART-large 65.52 27.24 65.70 26.48
T5-small 75.98 42.31 76.40 41.61
T5-Large 81.95 48.17 81.77 47.43

Table 5: The results of causal reasoning QA us-
ing both extractive methods and generative methods.
’SQuAD2.0’ refers to the evaluation results using the
model trained with the training set of SQuAD2.05 only.

4.3 CausalQA364

We provide both quantitative analysis and qualita-365

tive analysis for CausalQA. In addition, we com-366

pare the best performance on our dataset and other367

popular QA datasets.368

4.3.1 Quantitative Analysis369

The results of CausalQA are given in Table 5,370

where the bold values indicate the best performance371

while the italic values show the results of transfer372

learning methods trained by the SQuAD2.0 training373

data only. We find that the best-performing genera-374

tive model – T5-Large – can achieve comparable375

results with the RoBERTa-large in terms of the F1376

(81.77 vs. 84.35). Meanwhile, the average EM 377

of generative methods is largely below the extrac- 378

tive methods using the same training data. Second, 379

the results of models trained with SQuAD2.0 data 380

are much worse than those models trained with the 381

original FineCR training set in terms of the F1 score 382

(65.20 vs. 83.11 for RoBERTa-base and 63.82 vs. 383

84.35 for RoBERTa-large). On the other hand, we 384

note a distinct improvement of using SQuAD2.0 385

data for initially training for both RoBERT-base 386

(from 83.11 to 84.34) and RoBERTa-large (from 387

84.35 to 84.65), which indicates that the training 388

with additional well-labelled data could bring sig- 389

nificant benefits for CausalQA. This may hint that 390

the current QA data sources are still helpful for 391

improving the performance of the causal reasoning 392

QA task, although further research is required, as 393

to what extent models can actually benefit from the 394

additional data for the generalization is hard to be 395

evaluated. 396

4.3.2 Qualitative Analysis for Answers 397

Table 6 presents a qualitative analysis for 398

CausalQA, where we highlight the question and an- 399

swer parts extracted from the raw context. Human 400

labelers label the gold answers while the BERT- 401

based model generates the output answers. The 402

first three questions are answered correctly by the 403

model, while the last two instances show two typ- 404

ical patterns prone to errors. In the first incorrect 405

example, the model outputs “targeted marketing” 406

using the keyword “through” but fails to give the 407

gold answer “analyzing the data and applying ar- 408

tificial intelligence”. This could be because the 409

model fails to identify the difference between the 410

same word appearing in two different positions. 411

The last example shows that the model tends to out- 412

put the answer closer to the question in the context 413

instead of observing the whole sentence. The real 414

reasons – “equity and credit markets” and “Brexit” 415
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Context Question Gold Answer Output Answer
(Relation: Cause) Amazon’s 2017 purchase of Whole
Foods remains a threat ... The COVID-19 outbreak
has lifted near-term revenue as shoppers spend more
time at home.

Why the COVID-19
outbreak has lifted
near-term revenue for
Amazon?

Shoppers spend
more time at home

Shoppers spend
more time at
home

(Relation: Enable) As a first mover in the local-
market daily deals space, Groupon has captured a
leadership position, but not robust profitability.

What enable Groupon
capture a leadership
position?

A first mover in the
local-market daily
deals space

A first mover in
the local-market
daily deals space

(Relation: Prevent_By) In neurology, RNA therapies
can reach their intended targets via intrathecal ad-
ministration into spinal fluid, directly preventing the
production of toxic proteins

What will be prevented
if intrathecal admin-
istration into spinal
fluid?

The production of
toxic proteins

The production
of toxic proteins

Examples of Incorrect Predictions
(Relation: Enable_By) ... Through analyzing the data
and applying artificial intelligence, the advertisers
can improve the efficiency of advertisements through
targeted marketing for Tencent ...

What can help adver-
tisers to improve the
efficiency of advertise-
ments?

Analyzing the data
and applying artifi-
cial intelligence

Targeted market-
ing

(Relation: Cause_By) Given expectations for more
volatile equity and credit markets, as well as some
disruption as Brexit moves forward, it remain doubt-
ful that flows will improve too dramatically, a nega-
tive 3%-5% annual organic growth...

Why a negative 3%-5%
annual organic growth
happened?

Given expectations
... as well as
some disruption as
Brexit moves for-
ward

It remains doubt-
ful that flows
will improve too
dramatically.

Table 6: Qualitative analysis of “Why” and “What-if” questions answering tasks based on the best-performed
RoBERTa-Large model. The company name can be found in the meta-information of our dataset. Cause and
Effect are extracted from the original context. The inputs of models consist with the context and question.

Dataset Method F1 ACC EM
SQuAD1.1 (Rajpurkar et al., 2016) LUKE (Yamada et al., 2020) 95.7 - 90.6
SQuAD2.0 (Rajpurkar et al., 2018) IE-Net (Gao et al., 2019b) 93.2 - 90.9
DROP (Dua et al., 2019) QDGAT (Chen et al., 2020) 88.4 - -
HotpotQA (Yang et al., 2018) BigBird-etc (Zaheer et al., 2020) 95.7 - 90.6
Reasoning Based Datasets
LogiQA(Liu et al., 2020) DAGAN (Huang et al., 2021) - 39.3 -
CausalQA (Ours) RoBERTa-SQuAD 84.7 85.6 61.6

Table 7: The comparison of best performance between our dataset and other popular QA datasets.

– are ignored as it is relatively away for the question416

position.417

4.3.3 Challenges by CausalQA418

We are interested in better understanding the dif-419

ficulty of the CausalQA task compared to other420

popular datasets regarding prediction performance.421

We list the best-performing model of several pop-422

ular datasets in Table 7. In general, we find423

that reasoning-based tasks are more complex than424

other tasks in terms of the relatively low accuracy425

achieved by the state-of-the-art method. LogiQA426

is more challenging than our dataset (39.3 vs. 85.6427

in accuracy) because it requires heavy logical rea-428

soning rather than identifying causal relations from429

text. Moreover, we find that the state-of-the-art430

result on our dataset (RoBERTa-SQuAD) is dra-431

matically worse than the best performance on other432

datasets (EM = 90.9 on SQuAD2.0 while EM =433

61.6 on CausalQA). This may suggest that the434

model tends to output the partially right answer435

but fails to output the utterly correct answer, al-436

though further research is required, as the model 437

still could be easily perturbed by the length of an 438

event. Meanwhile, the human performance is still 439

ahead of the best-performing model’s result in the 440

causal reasoning QA task. Thus, we argue that 441

CausalQA is worth investigating by using more 442

“causal-thinking” methods in the future. 443

5 Related Work 444

This paper brings together two interesting ideas – 445

event causality and causal question answering –and 446

in what follows, we briefly introduce the existing 447

relevant works and datasets to the present work. 448

Event Causality. There is a deep literature on 449

causal inference techniques using non-text datasets 450

(Pearl, 2009; Morgan and Winship, 2015; Keith 451

et al., 2020; Feder et al., 2021), and a line of work 452

focusing on discovering the causal relationship be- 453

tween events from textual data (Gordon et al., 2012; 454

Mirza and Tonelli, 2016; Du et al., 2021).Previous 455

efforts lie on the graph-based event causality detec- 456
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Datasets Event
Extraction

Causal
Reasoning

Fine-grained
Causality

Span-based
QA Sources

FinCausal (Mariko et al., 2020b) " " % % Finance
COPA (Roemmele et al., 2011) % " % % Open
SQuAD (Rajpurkar et al., 2018) % % % " Wikipedia
LogiQA (Liu et al., 2020) % " % % Examination
HotpotQA (Yang et al., 2018) % % % " Wikipedia
DROP (Dua et al., 2019) % % % " Wikipedia
DREAM (Sun et al., 2019) % " % % Examination
RACE (Lai et al., 2017) % " % % Examination
FineCR (Ours) " " " " Finance

Table 8: Comparisons of our fin-grained causal reasoning dataset and related public datasets.

tion tasks (Tanon et al., 2017; Li et al., 2020; Du457

et al., 2021) and the event-level causality detection458

tasks (Mariko et al., 2020a; El-Haj et al., 2021; Gu-459

sev and Tikhonov, 2021). However, causal reason-460

ing for text data with a special focus on fine-grained461

causality between events has been relatively little462

considered. For this reason, we build a fine-grained463

causality dataset in the financial domain and ex-464

pect to see whether the state-of-the-art models can465

achieve human-like accuracy on several causal rea-466

soning tasks, and if not, to what extent.467

Datasets. Table 8 compares our dataset with468

datasets in the domain of both event causality and469

question answering (QA). FinCausal (Mariko et al.,470

2020a) dataset is the most relevant to ours, which471

developed a relatively small dataset from the Edgar472

Database6 focusing on the simple “cause” relation473

only and do not contain QA tasks. In addition, exist-474

ing popular question answering datasets (Sun et al.,475

2019; Liu et al., 2020; Cui et al., 2020) mainly476

focus on what, who, where and when questions,477

making their usage scenarios somewhat limited.478

SQuAD (Rajpurkar et al., 2016, 2018) consists of479

factual questions concerning Wikipedia articles,480

and some unanswerable questions are involved in481

SQuAD2.0. Although there are some datasets con-482

tain the causal reasoning tasks (Lai et al., 2017;483

Sun et al., 2019; Cui et al., 2020), none of them484

consider answering questions by text span. Span-485

based question answering problems have gained486

wide interest in recent years (Yang et al., 2018;487

Huang et al., 2019; Lewis et al., 2021b). HotpotQA488

(Yang et al., 2018) focuses on multi-hop QA where489

the question can only be answered through analyz-490

ing multiple documents. The answers in the (Dua491

et al., 2019) may come from different spans of a492

passage and require some combination technolo-493

6https://www.sec.gov/edgar/
searchedgar/

gies to get the correct answer. Compared with these 494

datasets, that none of them have features of causal 495

reasoning and span-based QA simultaneously, our 496

dataset is the first to leverage fine-grained human- 497

labeled causality for designing the CausalQA task 498

consisting with “Why” and “What-if” questions. 499

Our task is similar to the machine reading com- 500

prehension setting (Huang et al., 2019) where the 501

algorithms make a multiple-choice selection given 502

a passage and a question. Nevertheless, we focus 503

on causal questions, which turn out to be more chal- 504

lenging. To the best of our knowledge, we are the 505

first to evaluate models on the event causality anal- 506

ysis and causal question answering (CausalQA) 507

tasks based on the fine-grained causality dataset. 508

We will release our code and dataset on Github. 509

6 Conclusion 510

We explored the efficacy of current state-of-the-art 511

methods for causal reasoning tasks by considering a 512

novel fine-grained reasoning setting and developing 513

a dataset with rich human labels. Experimental 514

results using the state-of-the-art neural language 515

models provide the evidence that there is still much 516

room for improvement on causal reasoning tasks, 517

where there is a need for designing better solutions 518

to correlation discovery related to event causality 519

analysis and Why/What-if QA tasks. 520

7 Ethical Statement 521

This paper honors the ACL Code of Ethics. Pub- 522

lic available financial analysis reports are used to 523

extract fine-grained event relationships. No private 524

data or non-public information was used. We ob- 525

tain permission from Yahoo Finance for non-profit 526

research. All annotators have received labor fees 527

corresponding to their amount of annotated corpus. 528
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A Appendix: Out-of-domain Test886

Sec Consumer Industrial Technology
F1 Acc F1 Acc F1 Acc

Con 59.69 69.01 50.03 66.47 47.95 63.74
Ind 50.60 67.39 51.14 64.61 47.49 64.09
Tec 48.65 65.87 47.70 63.56 50.39 61.12

Table 9: Out-of-domain test results of the BERT-base
model for the fine-grained causality classification task.

Sec Consumer Industrial Technology
F1 EM F1 EM F1 EM

Con 86.26 49.54 85.75 48.37 85.20 47.26
Ind 84.23 49.83 86.00 50.68 84.90 47.45
Tec 86.24 47.99 86.03 47.50 87.09 61.12

Table 10: Out-of-domain test results of the Span-Large
model for the cause-effect extraction task.

It has been shown that sector-relevant features887

from a given domain could become spurious pat-888

terns on the other domains, leading to performance889

decay under distribution shift (Ovadia et al., 2019).890

We use instances from three sectors with the largest891

amounts of samples in our dataset for conducting892

out-of-domain generalization text. These observe893

in line with recent works revealing that current deep894

neural models mostly memorize training instances895

yet struggle to predict on the out-of-distribution896

data (Gururangan et al., 2018; Kaushik et al., 2020;897

Srivastava et al., 2020). To evaluate whether meth-898

ods can generalize on the out-of-distribution data,899

and to what extent, the results of the out-of-domain900

test are shown in Table 9 and Table 10.901

In particular, the model achieves the best perfor-902

mance when the training and test sets are extracted903

from the articles of the same domain companies.904

In the out-of-domain test, the model shows varying905

degrees of performance decay for both tasks. For906

example, in the fine-grained causality classification907

task, the model trained with the data from the Con-908

sumer Cyclical domain achieves 59.69 F1 Score909

when testing on the Consumer Cyclical data while910

decreasing to 47.95 when testing on technology911

companies. Moreover, in the cause-effect extrac-912

tion task, the model trained with the data from913

the Consumer Cyclical domain achieves 86.26 F1914

Score when testing on itself while decreasing to915

85.20 when testing on Technology. This shows that916

the domain-relevant patterns learned by the model917

cannot transfer well between domains.918

Content Choose Relation add
cause

add
effect

Annotate Result

cause

effect

deleterelation: cause

Figure 5: The annotation platform provided the crowd-
sourcing company for collecting annotations for fine-
grained causality reasoning and CausalQA.

B Appendix: Annotation Instructions 919

The annotation platform used in this work is in- 920

troduced in Fig. 5. As follows, we provide the 921

detailed annotation instructions used for training 922

the human labelers. Also, we show the annotation 923

of some real examples stored in our dataset. 924

B.1 General Instruction 925

This is a annotation task related to event causality. 926

In this task, you are asked to find all the cause- 927

effect pairs and the fine-grained event relationship 928

types from give passages. 929

B.2 Steps 930

1. Please read your assigned examples carefully. 931

2. A sentence is considered contains event 932

causality if at least two events occur in it and 933

the two events are causally related. 934

3. If a sentence contains causality, mark it as 935

Positive; otherwise, mark it as Negative. 936

4. For the positive sentence, first find all the 937

events that occur in the sentence, and then 938

pair the events to see if they constitute a causal 939

relationship. The relationship much be one of 940

Cause, Enable and Prevent. 941

5. “A causes B” means B always happens if A 942

happens. “A enables B” means A is a possible 943

way for B to happen, but not necessarily. “A 944

prevents B” means A and B cannot happen at 945

the same time. 946

6. Remember to annotate all event causality 947

pairs. If there is no more pairs, process to 948

the next passage. 949
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B.3 Examples950

Here are some annotation examples, please read it951

before starting your annotation.952

Example 1: Moreover, we do not think that953

DBK’s investment banking operation has the neces-954

sary scale and set-up to outcompete peers globally955

or within Europe.956

Answer: # Negative957

Explanation: This is a sentence that contains958

no causal relationship between events.959

Example 2: In our view, customers are likely960

to stay with VMware because of knowledge of961

its product ecosystem as well as the risks and962

complexities associated with changing virtual963

machine providers.964

Answer: # Positive965

Explanation: This is a causal sentence. There966

exist two events marked by yellow color. You967

should first annotate the two events and then give968

them the label according to their relationship, us-969

ing one of Cause, Enable and Prevent. Here the970

relationship is Cause.971

Example 3: Depressed realized prices due to972

lack of market access have forced capital spend-973

ing cuts, stalling the growth potential of the com-974

pany’s oil sands assets.975

Answer: # Positive976

Explanation: This is a causal sentence and there977

exist four events. You need to mark out all four of978

these events and then pair them up to see if they’re979

related. If so, determine what kind of relationship980

they belong to.981
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