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Abstract

How can we trust the correctness of a learned model on a particular input of in-
terest? Model accuracy is typically measured on average over a distribution of in-
puts, giving no guarantee for any fixed input. This paper proposes a theoretically-
founded solution to this problem: to train Self-Proving models that prove the cor-
rectness of their output to a verification algorithm V" via an Interactive Proof. Self-
Proving models satisfy that, with high probability over an input sampled from a
given distribution, the model generates a correct output and successfully proves
its correctness to V. The soundness property of V' guarantees that, for every in-
put, no model can convince V' of the correctness of an incorrect output. Thus, a
Self-Proving model proves correctness of most of its outputs, while all incorrect
outputs (of any model) are detected by V. We devise and analyze two generic
methods for learning Self-Proving models: Transcript Learning (TL) which relies
on access to transcripts of accepting interactions, and Reinforcement Learning
from Verifier Feedback (RLVF) which trains a model by emulating interactions
with the verifier.

1 Introduction

Bob is studying for his algebra exam and stumbles upon a question () that he cannot solve. He
queries a Large Language Model (LLM) for the answer, and it responds with a number: 42. Bob
is aware of recent research showing that the LLM attains a 90% score on algebra benchmarks (cf.
Frieder et al.|[2023)), but should he trust that the answer to his particular question @ is indeed 42?

Bob could ask the LLM to explain its answer in natural language. Though he must proceed with cau-
tion, as the LLM might try to convince him of an incorrect answer [Turpin et al.,[2023]]. Moreover,
even if 42 is the correct answer, the LLM may fail to produce a convincing proof [Wang et al.,[2023]].
If only the LLM could formally prove its answer, Bob would verify the proof and be convinced.

This paper initiates the study of Self-Proving models (Fig. [I)) that prove the correctness of their
answers via an Interactive Proof system [[Goldwasser et al.,[1985]. Self-Proving models successfully
convince a verification algorithm V' with worst-case soundness guarantees: for any question, V'
rejects all incorrect answers with high probability over the interaction. This guarantee holds even
against provers that have access to Vs specification, and unbounded computational power.

Our contributions are as follows.

* We define Self-Proving models (Section [2)).

* We propose two methods for learning Self-Proving models (Section [3). The first, Tran-
script Learning (TL), relies on access to transcripts of accepting interactions. The second
method, Reinforcement Learning from Verifier Feedback (RLVF), trains a model by emu-
lating interactions with the verifier.

* Authors listed alphabetically.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Input x
N\

Self-Proving Verification
Model _ d1] Algorithm
ay

Output y

. )

Pg - P qg V

}

accept/reject

Figure 1: Self-Proving models. For input x, Self-Proving model Py generates an output y and
sends it to a Verification Algorithm V. Then, over ¢ € [R] rounds, V' sends query g;, and receives
an answer a; from Pp. Finally, V' decides (“accept/reject”) whether it is convinced that y is a correct
output for x.

* We prove gradient approximation lemmas for both methods (Lemmas [3.2] and [3.3)), and a
convergence bounds for TL under convexity and Lipschitzness assumptions (Section [).
These are supplemented by empirical validation on a simple arithmetic capability (Ap-
pendix [F). Code and data are athttps://github.com/orrp/self-proving-models

This paper develops a theory of learned models that prove their own correctness via an interactive
proof system, and thus lies at the intersection of machine learning and Interactive Proof systems.
We defer the discussion of relevant prior work from these areas to the related work section in Ap-
pendix [A] The rich and well-studied question of which settings are verifiable within an interactive
proof system is beyond our scope. Our theory is general in that it applies to any setting which is ver-
ifiable within an interactive proof system, e.g., any decision problem solvable in polynomial space
[Shamir, |1992]. For a broader introduction to proof systems, see |Goldreich| [2008]].

2 Defining Self-Proving Models

We introduce and formally define our learning framework in which models prove the correctness of
their output. We start with preliminaries from the learning theory and proof systems literatures in
Section 2.1 We then introduce our main definition in Section[2.2]

2.1 Preliminaries

Let X be a finite set of tokens and X* denote the set of finite sequences of such tokens. We consider
sequence-to-sequence models Fy: ¥* — X*, which are total functions that produce an output for
each possible input sequence. A model is parameterized by a real-valued, finite dimensional vector
6. We consider models as randomized functions, meaning that Fy(x) is a random variable over X*,
of which samples are denoted by y ~ Fp(x).

Before we can define models that prove their own correctness, we must first define correctness.
Correctness is defined with respect to an input distribution i over ¥*, and a ground-truth F'* that
defines correct answers. For simplicity of presentation, we focus on the case that each input z € ¥*
has exactly one correct output F*(z) € 3*, and a zero-one loss function on outputs (the general
case is deferred to Appendix [C). The fundamental goal of machine learning can be thought of as
learning a model of the ground-truth F'*. Formally,

Definition 2.1 (Correctness). Let u be a distribution of input sequences in * and let F'* : ¥* — X*
be a fixed (deterministic) ground-truth function. For any o € [0, 1], we say that model Fy is -
correct (with respect to 1) if

Pr [y=F"(z)] >«

T
y~Fp(x)

An interactive proof system |Goldwasser et al.l [1985] is a protocol carried out between an efficient
verifier and a computationally unbounded prover. The prover attempts to convince the verifier of the
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correctness of some assertion, while the verifier accepts only correct claims. The prover is powerful
yet untrusted; in spite of this, the verifier must reject false claims with high probability.

In the context of this work, it is important to note that the verifier is manually-defined (as opposed to
learned). Formally, the verifier is a probabilistic polynomial-time algorithm tailored to a particular
ground-truth capability F'*. Informally, the verifier is the anchor of trust: think of the verifier as an
efficient and simple algorithm, hosted in a trustworthy environment.

Given an input x € ¥*, the model Fy “claims” that y ~ Fp(x) is correct. We now define what
it means to prove this claim. We will use Py to denote Self-Proving models, noting that they are
formally the same objec as non-Self-Proving (“vanilla”) models Fy. This notational change is to
emphasize that Py first outputs y ~ Py(x) and is then prompted by the verifier, unlike Fy who only
generates an output y ~ Fy(z).

A Self-Proving model proves that y ~ Py (x) is correct to a verifier V over the course of R rounds of
interaction (Figure . In each round ¢ € [R], verifier V' queries Py on a sequence g; € ¥* to obtain
an answer a; € X%.*; once the interaction is over, V' accepts or rejects. For fixed =,y € ¥*, the deci-
sion of V' after interacting with Py is a random variable over Vs decision (accept/reject), determined
by the randomness of V' and P,. The decision random variable is denoted by (V, Fy) (z,y).

Next, we present a definition of Interactive Proofs restricted to our setting.

Definition 2.2. Fix a soundness error s € (0,1), a finite set of tokens ¥ and a ground-truth
F*:¥* — ¥* A verifier V (in an Interactive Proof) for F'* is a probabilistic polynomial-time
algorithm that is given explicit inputs x,y € X* and black-box (oracle) query access to a prover
PP| Ir interacts with P over R rounds (see Figure |I) and outputs a decision (V, P) (x,y) €
{reject, accept}. Verifier V satisfies the following two guarantees:

» Completeness: There exists an honest prover P* such that, for all x € X%,
Pr[(V, P*)(x, F*(x)) accepts] = 1,
where the probability is over the randomness of V.E]
* Soundness: For all P and for all x,y € ¥*, if y # F*(x) then
<

Pr[(V, P) (z,y) accepts] < s,

where the probability is over the randomness of V and P, and s is the soundness error.

The efficiency of an interactive proof is usually measured with respect to four parameters: the round
complexity R, the communication complexity (the overall number of bits transferred during the
interaction), P*’s efficiency and Vs efficiency. These complexity measures scale with the com-
putational complexity of computing the ground-truth F*. For example, an interactive proof for a
complex F™* may require multiple rounds of interaction.

Remark 2.3 (Verifier efficiency). Definition requires that V' is a polynomial-time algorithm
whereas provers are unbounded. This captures a requirement for efficient verification. We chose
polynomial time as a measure of efficiency because it is common in the Proof systems literature. That
said, one could adapt Definition 2.2 to fit alternative efficiency measures, such as space complexity
[|Condon and Lipton, |1989|] or circuit depth [|Goldwasser et al.l | 2007|]. Regardless of which measure
is taken, to avoid a trivial definition it is crucial that V should be more efficient than the honest
prover P*; else, V can simply execute P* to perform the computation itself.

By definition, the soundness error s of a verifier V' bounds the probability that it is mistakenly
convinced of an incorrect output; in that sense, the smaller s, the “better” the verifier V. In our
setting, we think of a manually-defined verifier V' who is formally proven (by a human) to have a
small soundness error by analysis of Vs specification.

As depicted in Figure 1} each of the model’s answers depends on all previous queries and answers
in the interaction. This captures the setting of stateful models, e.g. a session with a chatbot.

2Both are randomized mappings from 3* to 2*.

3We intentionally write P rather than Pp: Interactive Proofs are defined with respect to all possible provers,
not just parameterized ones.

*WLOG, the honest prover is deterministic by fixing the optimal randomness of a randomized prover.



Table 1: Formal guarantees. Completeness and soundness are fundamental guarantees of a veri-
fication algorithm V. Verifiability (novel in this work) is a feature of a model P, with respect to a
verifier V and input distribution x. Importantly, V’s soundness holds for any input = and output y.

Guarantee Type Def.
V' Completeness & Soundness  Worst-case: Vz,y
Py Verifiability Average-case: = ~ 1, y ~ Pp(x) [2.4

Towards defining Self-Proving models (Section [2.2)), let us observe the following. Completeness
and soundness are worst-case guarantees, meaning that they hold for all possible inputs z € »*.
In particular, completeness implies that for all x € ¥*, the honest prover P* convinces V of the
correctness of F*(z); in classical proof systems there is no guarantee that an “almost honest” prover
can convince the verifier (cf. Paradise[2021). Yet, if we are to learn a prover Py, we cannot expect it
to agree with P* perfectly, nor can we expect it to always output F*(x). Indeed, Self-Proving mod-
els will have a distributional guarantee with respect to inputs x ~ . This distinction is summarized
in Table[Tl

2.2 Self-Proving Models

We define the Verifiability of a model Py with respect to an input distribution x4 and a verifier V.
Intuitively, Verifiability captures the ability of the model to prove the correctness of its answer
y ~ Py(x), when the input z is sampled from p. We refer to models capable of proving their
own correctness as Self-Proving models. Notice that, as in Definition [2.2] the verifier is fixed and
agnostic to the choice of the Self-Proving model.

Definition 2.4 (Self-Proving model). Fix a verifier V for a ground-truth F*: ¥* — ¥* as in
Definition and a distribution | over inputs ¥*. The Verifiability of a model Py: ¥* — ¥* is
defined as
very,,(0) = LRSL [(V, Py) (z,y) accepts] . (1)
y~Po(z)
We say that model Py is B-Self-Proving with respect to V and p if very,,(6) > f.

Remark 2.5 (Verifiability = correctness). Notice that the ground-truth F* does not appear in
Definition except for the first sentence. Indeed, once it is established that V' is a verifier for F'*
(as per Definition [2.2)), then Verifiability w.r.t V implies correctness w.rt F*: Consider any input
distribution u, ground-truth F'*, and a verifier V for F'* with soundness error s. By a union bound,
if a model Py is B-Verifiable, then it is (§ — s)-correct. That is to say, Verifiability is formally a
stronger guarantee than correctness when V' has small soundness error s.

As depicted in Figure [T} a Self-Proving model P plays a dual role: first, it generates an output
y ~ Py(x), and then it proves the correctness of this output to V. Note also that Verifiability is a
feature of a model, unlike completeness and soundness which are features of a verifier (see Table[T).

The benefit of Verifiability over correctness is captured by the following scenario. Alice wishes
to use a model Py to compute some functionality F™* on an input z( in a high risk setting. Alice
generates yo ~ Pp(xo). Should Alice trust that yo is correct? If Alice has a held-out set of la-
beled samples, she can estimate Py’s average correctness on p. Unfortunately, (average) correctness
provides no guarantee regarding the correctness of the particular (xg,yo) that Alice has in hand.
If, however, Alice has access to a verifier V' for which Pj is Self-Proving, then she can trust the
model on an input-by-input (rather than average-case) basis: Alice can execute V on (zg, yo) and
black-box access to . Soundness of V' guarantees that if g is incorrect, then V rejects with high
probability, in which case Alice should either generate Py (z() again—or find a better model.

3 Algorithms for Learning Self-Proving Models

With a sound verifier V' at hand, obtaining Self-Proving models with respect to V' holds great
promise: a user that prompts the model with input z does not need to take it on good faith that
Py(x) is correct; she may simply verify this herself by executing the verification protocol. How,
then, can we learn models that are not just approximately-correct, but Self-Proving as well?



We focus on differentiable autoregressive models, and assume that the learner has access to input
samples « ~ p and correct outputs F™*(x), as well as the verifier’s specification (code). Additionally,
the learner can emulate the verifier, as the latter is computationally efficient (Remark [2.3)).

Importantly, we may not assume that the verifier V' is differentiable—it is an arbitrary (efficient
oracle) Turing machine—and so we cannot directly compute gradients of its decision with respect
to model parameters. The challenge is to align the model with a verifier. Algorithms [I] and 2]
address this challenge by (essentially) computing unbiased estimators for the Verifiability very (6)
or a surrogate (lower-bound) thereof. We formally prove these properties in Lemmas [3.2]and [3.3]

Our approach is inspired by Reinforcement Learning from Human Feedback [Christiano et al.,
2017], a method for aligning models with human preferences, which has recently been used to
align sequence-to-sequence models [Ouyang et al.,[2022]. However, there are two important differ-
ences between humans and algorithmic verifiers: (1) Verifiers are efficient algorithms which may
be emulated by the learner. This is unlike humans, whose preferences are costly to obtain. On the
other hand, (2) verifiers make a single-bit decision at the end of an interaction, but cannot guide the
prover (model) in intermediate rounds. In RL terms, this is known as the exploration problem for
sparse reward signals (e.g. |Ladosz et al.[2022).

The full specification of the learning model can be found in Appendix [D.1l We will refer
to the transcript of an interaction between a verifier and a prover (see Figure [I), denoted by
7= (y,q1,0a1,...,qr,ar). Let T, € L5~ denote the s-token long prefix of 7.

3.1 Transcript Learning

We first present an algorithm for learning Self-Proving models which relies on access to a distribu-
tion of accepting transcripts. We focus on the algorithm first, and then discuss how the learner may
obtain accepting transcripts in Section [3.1.1} The idea is to learn a model not just of z — y* for a
correct output y*, but of x — y*7*, where 7* is a transcript of an interaction in which the verifier
accepted. Formally, Transcript Learning assumes access to a transcript generator—a random vari-
able over transcripts that faithfully represents the interaction of the verifier with some prover for a
given input. An honest transcript generator is one which is fully supported on transcripts accepted
by the verifier. These are defined next.

Definition 3.1 (Transcript generator). Fix a verifier V in a proof system of R € N rounds. A
transcript generator Ty for V is a randomized mapping from inputs x € ¥* to transcripts T =
(y,q1,a1,-..,qr,aR) € X*. For any input x, Ty (x) satisfies that for each r < R, the marginal o

Ty (x) on the v™ query q, agrees with the corresponding marginal of the query generator (‘Q)Té
A transcript generator Tf = Ty is honest if it is fully supported on transcripts 7 for which the
verifier accepts.

Notice that for any verifier V, there is a one-to-one correspondence between transcript generators
and (possibly randomized) provers. We intentionally chose not to specify a prover in Definition [3.1]
to emphasize that transcripts can be “collected” independently of the honest prover (see complete-
ness in Definition[2.2)), and in fact can be collected “in advance” prior to learning (see Figure[2). As
long as the generator is fully supported on honest transcripts, it can be used for Transcript Learning
as depicted in Algorithm [T)and Figure 2]

TL trains a Self-Proving model by autoregressively optimizing towards generating accepting tran-
scripts. At a high level, it works by repeatedly sampling = ~ p and y*7* ~ T *(z), and updating the
logits log pp towards agreeing with y*7* via Gradient Ascent. While TL does not directly estimate
the Verifiability gradient Vgvery (6), we are able to show that it estimates a gradient of a lower-
bounding function A(f) < very (#). Therefore, as it ascends the gradient, it optimizes very ()
via the surrogate. Formally, the lower-bounding function A(#) is the agreement of the transcripts
generated by the current model Py, with the transcripts generated by the honest transcript generator.
That is, A(6) := Pr[r = 7*] where the probability is over x ~ 1, mp ~ T{¢(z), and 7* ~ T ().

A query generator V, corresponding to V' takes as input a partial interaction and samples from the dis-
tribution over next queries by V. Formally, for any » < R, given input z, output y, and partial interaction
(qi,ai)i—1, Vy(z,y,q1,0a1,...,qr, ar) is a random variable over =79, For completeness’ sake, we can say
that when prompted with any sequence z that does not encode an interaction, V(%) is fully supported on a
dummy sequence L --- 1 € 2ta,
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Algorithm 1: Transcript Learning (TL)

Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.

Input: An autoregressive model family { Py }gcra, verifier specification (code) V', and sample
access to an input distribution ¢ and an accepting transcript generator 777 (+).

Output: A vector of parameters f € R,

Initialize 6, := 0.
fori:=0,...,N —1do
Sample z ~ pand 7 = (y*, ¢}, a],...,q%, a%) ~ Ty (z). Denote ag = y*.
foreach Round of interactionr =0, ..., R do
Let S(r) denote the indices of the 7" answer a, in 7*, and let 7, denote the prefix of
the partial transcript (v, ¢7, af, ..., ¢).
for s € S(r) do
Compute
as(0;) = Pr  [o=m7}]
o~p, (TT<s)
dy(6;) == Vglogas(6;) = Volog  Pr [0 =]
o~pe, (TT<s)

Update
i1 =0;+ X J[ oau(0:)- D du(0y).
re[R]U{0} re[R]JU{0}
seS(r) seS(r)

Output § == ien bi-

Lemma 3.2 (TL gradient estimation). Fix an input distribution p over ¥* and a verifier V' with
round complexity R and answer length L,. Fix an honest transcript generator Ty;. Let 0 denote the

parameters of the model Py, let A(0) be as defined above and let the terms S(r), as(0), and d,(6)
be as defined in Algorithm[I} Then,

VAWB)= E I «o- > do

ﬂf:%; re[Rju{0} re[R]U{0}
s€S(r) s€S(r)

The proof is deferred to Appendix[D.2] Note that Lemma[3.2)is true for any model Py. Moreover, the
random vector over which the expectation is taken (in the right hand side) is precisely the direction
of the update performed in Algorithm(I] In Section[d] we will use Lemma 3.2]to prove convergence
bounds for TL under certain conditions.

3.1.1 Access to Accepting Transcripts

As mentioned, Transcript Learning relies on access to accepting transcripts. In this section we
discuss how such access can be realized (grounded in the theory of Interactive Proofs).

Doubly-Efficient Interactive Proofs. When the honest prover P* is efficient (polynomial time),
the learner (who has the code for P* and V) can execute P* on input x to collect accepting
transcripts—asuming no distribution shift at inference time. This setting is formalized by the notion
of Doubly-Efficient Interactive Proofs (DEIPs), introduced in the foundational work of |Goldwasser
et al.| [2015]], who construct DEIPs for all problems computable by log-space uniform families of
polynomial-size circuits with polylogarithmic depth. Their protocols ensure that the verifier runs in
nearly linear time, while the prover operates in polynomial time—or more generally, in time pro-
portional to the circuit size. Later, [Reingold et al.[[2016] showed that any problem computable by
a Turing machine running in polynomial time and sublinear space admits a constant-round DEIP.
Subsequent theoretical works (e.g., (Goldreich and Rothblum/[2018alb) have constructed DEIPs for
specific problems, while applied works (e.g., Zhang et al.|[2021} [Thaler|2013) have improved the
time and space complexity of such protocols in practice.
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Figure 2: Transcript Learning, visualized. To understand Algorithm |1, consider the above visu-
alization. In Phase 1, N honest transcripts are collected by interacting an honest prover with the
Verifier; these serve as samples from the transcript generator 7,7 (x). Phase 2 runs Algorithm

for each transcript 7* (lines 2-3) and each prefix 75 (lines 4-6), the values as(6;) and d;(@,') are
computed via forward and backward passes (line 7), followed by a parameter update (line 8).

Backward Data Generation. Recent works on “Al for advanced mathematical problems” [Char-
ton et al.,| 2021} |Alfarano et al.||2024]] propose to reverse the generation process of problem-solution
pairs as follows: rather than sampling problems and searching for solutions, one first samples so-
lutions and then constructs the corresponding problems. In our setting, this inspires the following
approach. Suppose it is computationally hard in the worst case to start with the input x and generate
an accepting transcript 7 = (y,q1, a1, - . .,qr,ar) for z. Could we instead jointly sample (x, ),
or first sample a transcript 7 and then extract the input = for which 7 is an accepting transcript?
As long as the resulting x’s are distributed the same as inference time, this would enable Transcript
Learning of such instances.

We explain the idea further with a cryptographic example. Setting up a Diffie-Hellman key-
exchange scheme for security parameter 1* requires producing as a public parameter a prime p
in a factored form, namely p — 1 = Tlg;* where g; are primes. However, factoring (p — 1) is gen-
erally hard. Instead, one could go “backwards:” first generate (p — 1) in factored form by choosing
primes g; and exponents «; [Kalai, 2003 and then testing if p = 1 + IIg;** is prime. By the prime
number theorem, p is likely to be prime after a few attempts. In the context of our paper, one may
ask a Self-Proving model to produce certified primes, training it on tuples (z = p, 7 := (g5, @;);).

3.2 Reinforcement Learning from Verifier Feedback (RLVF)

As mentioned in Section 3.1} Transcript Learning uses access to an honest transcript generator to
estimate gradients of (a lower bound on) the Verifiability of a model P,. Next we present Reinforce-
ment Learning from Verifier Feedback (RLVF, Algorithm [2)), which estimates this gradient without
access to a transcript generator.

Note that the parameters are updated (line 11) only when an accepting transcript was generated.
This means that the learner can first fully generate the transcript (lines 6-7), and then take backwards
passes (line 9) only if the transcript was accepted by V. This is useful in practice (e.g. when using
neural models) as backwards passes are more computationally expensive than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization 6 to have Verifiability
bounded away from 0, so that accepting transcripts are sampled with sufficient probability. Fortu-
nately, such a Self-Proving base model can be learned using TL. This gives a learning paradigm
in which a somewhat-Self-Proving base model is learned with TL (with Verifiability § > 0), and
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Algorithm 2: Reinforcement Learning from Verifier Feedback (RLVF)

Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.

Input: An autoregressive model family { Py }ycpa, initial parameters 6, € R?, verifier
specification (code) V', and sample access to an input distribution .

Output: A vector of parameters § € R%.

fori=0,....,N—1do

Sample x ~ pu.
Initialize ag == y ~ Py, (z).
foreach Round of interactionr = 1,... R do
Sample the " query
qr ~ ‘/(1(1'7 ag,q1, A1, .-+ 5qr—1, a’l‘—l)'
Sample the r™ answer
Ay ~ P@-L(xaa()aqhah e aqr)-
Let 7 := (ao,q1,- -, ar—1,qr).

for s € [L,] do
Let a,. ; denote the st token in a,.. Compute

cz;(t%) =Vglog Pr [o=a;]

o~pe, (2Tr)
if V(z,y,q1,01,...,qr,ar) accepts then
Update
Oipr =0+ X1 > di(6:).

re[R]U{0}
s€[Lq]

Output § := > (v bi-

then “amplified” to a fully Self-Proving model using RLVF. This can be seen as an adaptation of the
method of [Nair et al.| [2018] to the setting of Self-Proving models.

When comparing Algorithms|[TJand 2] we see that the latter (RLVF) does not keep track of the prob-
abilities as. This is because, in RL terms, RLVF is an on-policy algorithm; it generates transcripts
using the current learned model, unlike TL that samples them from a distribution whose parameter-
ization is unknown to the learner. Hence, the update step in RLVF is simpler than TL.

We show that the update step in RLVF maximizes the Verifiability of Py.

Lemma 3.3 (RLVF gradient estimation). Fix an input distribution | over ¥* and a verifier V
with round complexity R and answer length L,. For any transcript (z,y,q1,...,aR) we let
Accy (z,y,q1,...,ar) denote the indicator random variable which equals 1 if and only if V ac-
cepts the transcript. For any model Py, denote by ver(0) the verifiability of Py with respect to V
and 1 (Definition2.4)). Then, for any 6,

VQVGI'(Q) = fo\E;u ACCV(xa Y,q1, ... >aR) : Z d_;(ﬁ)
y~Po(z) re[R]u{0}
((IT7(17‘)§:1 SE[La]

where (q,,a,)E_| are as in lines 5-6 ofAlgorithmE] and d(0) is as defined in line 8 therein.

Note that, because Accy (-) is a 0-1 indicator of whether a transcript was accepted, then the right
hand side of the above equation is precisely the direction of the step taken in RLVF (line 9). The
proof of Lemma [3.3|can be found in Appendix



4 Convergence of Transcript Learning

As an application of Lemma [3.2] we prove that, under certain conditions, Transcript Learning (TL,
Algorithm [T)) is expected to output a Self-Proving model. While the theorem relies on simplifying
assumptions such as convexity and Lipschitzness, it offers clean mathematical guarantees that illu-
minate the core dynamics of Transcript Learning. As we discuss following the theorem statement,
such conditions are common in theoretical machine learning literature, allowing us to build intuition
even when the assumptions may not hold in practice.

Theorem 4.1 (informal). Fix a verifier V, an input distribution u, and an autoregressive model
family { Py} gcpa. Fix an honest transcript generator Tif. Assume the following:

1. The agreement A(6), informally defined as the probability that Py generates transcripts
agreeing with Ty, is concave in 0. Additionally, the logits of Py are B ip-Lipschitz in 0.

2. There exist parameters 0* with ||0*|| < BNorm Such that Py~ is (1 — £/2)-Self Proving.

3. The number of tokens sent by the prover in the proof system is at most C.
Then, in expectation, TL run on O(C? B, Bty /€) samples outputs a (1—¢)-Self Proving model.

The full statement and proof of Theorem [4.1] are deferred to Appendix [D.4} Its conditions can be
split into two parts. First (item 1), convexity and Lipschitzness, which are simplifying assumptions
commonly needed to prove SGD convergence. While convexity does not hold in general for DNNSs,
analyzing convex settings provides clean mathematical tools for establishing foundational results—
an approach commonly used in ML theory, particularly for DNNs. Indeed, several works have
addressed the problem of proving convergence without convexity [Du et al.| 2019, [Bartlett et al.,
2006, [Khaled and Richtarikl 2023]].

Norm-boundedness (item 2), on the other hand, is a (necessary) realizability assumption: if the
architecture { Py} cannot be instantiated with parameters 6, then it cannot be trained to be Self-
Proving. This assumption is well-grounded for transformer architectures, as recent theoretical work
has established their Turing-completeness [Bhattamishra et al., 2020} [Dehghani et al., [ 2019].

Finally (item 3), the bound C' on the communication complexity of the prover in the Interactive Proof
system. This parameter directly affects the efficiency of TL, as reflected in the number of iterations

(and sampled transcripts): it depends on both the optimization landscape complexity BI%IOHHB%ip /?

and the communication complexity C*. Reducing communication has long been a central objective
in the study of proof systems (e.g., |Goldreich and Hastad||1998| |Goldreich et al.[2002} |Reingold
et al|2016). Theorem .| formalizes how communication-efficient proof systems improve the per-
formance of Self-Proving models.

Remark 4.2 (Towards a convergence theorem for RLVF). RLVF can be derived by viewing Self-
Proving as a reinforcement learning problem in which the agent (prover) is rewarded when the
verifier accepts. Indeed, RLVF is the Policy Gradient method [Sutton et al., |1999] for a verifier-
induced reward. Convergence bounds for Policy Gradient methods are a challenging and active
area of research (e.g. |Agarwal et al.|2021)), and so we leave the full analysis to future work.

5 Conclusions

Trust between a learned model and its user is fundamental. Interactive Proofs [[Goldwasser et al.,
1985]] provide a general framework for establishing trust via verification algorithms. This work
shows that models can be trained to formally prove their outputs within such systems—we call these
Self-Proving models. Self-Proving models connect the theory of Interactive Proofs with the goal of
Trustworthy ML: they offer formal worst-case soundness guarantees; enabling users to be confident
when their models generate correct answers—and detect incorrect answers with high probability.

We support our definition with two general-purpose training methods: Transcript Learning (TL)
and Reinforcement Learning from Verifier Feedback (RLVF), whose analyses draw on learning
theory, RL, and computational complexity. This work can be extended in several directions: finding
conditions for the convergence of RLVF, improving sample complexity bounds for TL, or designing
altogether different learning algorithms (e.g., by taking advantage of properties of the verifier).
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Definitions are formally stated in the body of the paper. Claims are stated and
proven in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the body and in Appendix [B]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Definitions and theorems are formally stated and proved. Formal proofs ap-
pear in the appendix, with an overview and discussion of the theorems in the body of the
paper.
Guidelines:
* The answer NA means that the paper does not include theoretical results.
e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.
* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.
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* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments are presented in Appendix [F] with full details needed for repro-
ducibility in Appendix[G.2]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Model, data and code are released in https://github.com/orrp/
self-proving-models

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, in Appendix[G.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard errors are reported.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, in Appendix[G.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses societal impacts throughout the body. As this is a theo-
retical paper, immediate impact is limited.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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11.

12.

13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The experiments on a simple arithmetic capability pose no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, codebases used in the experiments are cited and used under the appro-
priate license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
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Justification: The details of the model and data released as a part of this paper are detailed
in https://github.com/orrp/self-proving-models

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NO IRB approval was required.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Related Work
We overview related work from machine learning (ML) and interactive proof systems (IPs) literature.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals. |Anil
et al.| [2021] introduce Prover—Verifier Games (PVGs), a game-theoretic framework for learned
provers and learned verifiers. Since our paper initially appeared, PVGs were further investigated
in at least two subsequent works: |Hammond and Adam-Day| [2025] study multi-prover and Zero
Knowledge variants of PVGs. Additionally, |[Kirchner et al.| [2024] successfully utilize PVGs to-
wards obtaining human-legible outputs from LLMs. Notably, they require a relaxed completeness
guarantee of their learned proof system—this requirement is the same as our Definition [2.4] of Self-
Proving models.

Beyond PVGs,|Wildchen et al.|[2024] cast the problem of model interpretability as a Prover—Verifier
interaction between a learned feature selector and a learned feature classifier. Debate systems [Con-
don et al. [1995], a multiprover variant of IPs, were considered for aligning models with human
values [Irving et al., |2018| Brown-Cohen et al.l 2024]. In such Debate systems, two competing
models are each given an alleged answer y # 4, and attempt to prove the correctness of their an-
swer to a (human or learned) judge. Lastly, Murty et al.| [2023]] define Pseudointelligence: a model
learner Lj; and an evaluator learner Ly are each given samples from a ground-truth; Ly, learns
a model of the ground-truth, while Lg learns an evaluator of such models; the learned evaluator
then attempts to distinguish between the learned model and the ground-truth in a Turing Test-like
interaction.

All of these works consider learned verifiers, whereas our work focuses on training models that
interact with a manually-defined verifier. More related in this regard is IP-PAC [Goldwasser et al.,
2021], in which a learner proves that she learned a model that is Probably Approximately Correct
[Valiant,|1984]]. We, however, consider models that prove their own correctness on a per-input basis,
rather than learners that prove average-case correctness of a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm with for-
mal completeness and soundness guarantees (see Definition[2.2). In this sense, Self-Proving models
generate a formal proof of the correctness of their output. Several works propose specialized models
that generate formal proofs.

AlphaGeometry [Trinh et al., 2024] is capable of formally proving olympiad-level geometry prob-
lems; Others have trained models to produce proofs in |Gransden et al.|[2015]], Polu and Sutskever
[2020] and others train models to produce proofs in Coq [Gransden et al., 2015[], Metamath [Polu
and Sutskever, 2020], Lean [Yang et al., [2023[], or manually-defined deduction rules [Tafjord et al.,
2021]]; FunSearch [Romera-Paredes et al.| 2024]] evolves LLM-generated programs by systemati-
cally evaluating their correctness. Indeed, all of these can be cast as Self-Proving models developed
for specific proof systems. Meanwhile, this work defines and studies the class of such models in
general. Several works (e.g. [Welleck et al.||2022) consider models that generate natural language
proofs or explanations, which are fundamentally different from formal proofs (or provers) verified
by an algorithm.

Training on intermediate steps. Chain-of-Though (CoT, |Wei et al.|[2022) refers to additional
supervision on a model in the form of intermediate reasoning steps. CoT is known to improve
model performance whether included in-context [Wer1 et al.l 2022] or in the training phase itself
[Yang et al.| [2022]). Transcript Learning (TL, Section [3.1)) can be viewed as training the model on a
Chain-of-Thought induced by the interaction of a verifier and an honest prover (Definition [2.2).
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To complete the analogy, let us adopt the terminology of |Uesato et al.|[2022]], who consider outcome
supervision and process supervision. In our case, the outcome is the decision of the verifier, and the
process is the interaction between the verifier and the model. Thus, Reinforcement Learning from
Verifier Feedback (RLVF, Section [3.2)) is outcome-supervised while TL is process-supervised. In a
recent work, |[Lightman et al.| [2024]] find that process-supervised transformers outperform outcome-
supervised ones on the MATH dataset [Hendrycks et al., 2021].

Subsequent work on RLVFE. Following the preprint version of this paper on May 2024, Rein-
forcement Learning from Verifier Feedback (RLVF, Section [3.2) has been implemented and widely
adopted. Of particular note is RLVR (Reinforcement Learning from Verifiable Reward, |Lambert
et al.|2024), which implements RLVF by adding KL regularization to the RL objective of Algo-
rithm 2| This implementation provided valuable empirical validation and state-of-the-art perfor-
mance on full-scale LLMs, sparked additional empirical analysis [Wu et al., 2025a, Zhou et al.,
2025], and led to widespread adoption across numerous domains including medical reasoning, com-
puter vision, and robotics [Zhang et al., 2025/ [Wu et al., 2025b, Song et al., [2025]]. Most recently,
Pyatkin et al.| [2025]] presented IFBench which measures performance in interactive (3-round) proof
systems. These empirical contributions complement our theoretical foundations, demonstrating the
surprising power and applicability of RLVF as a practical post-training method.

B Limitations

First, in our current learning methods, each individual ground-truth capability requires training a
separate Self-Proving model. A natural generalization of this approach is to adapt our definition and
methods to deal with a single generalist Self-Proving model that proves its correctness to multiple
verifiers of different ground-truths.

Moreover, the second strategy presented in Section [3.1.T—namely, generating accepting transcripts
first and then constructing matching inputs—has an inherent limitation: the resulting training dis-
tribution is biased by the design of the generator. As a consequence, models may end up learning
patterns of the construction process, rather than acquiring generalizable reasoning capabilities. This
highlights the importance of using sufficiently diverse generators, and of evaluating model perfor-
mance on out-of-distribution inputs.

C A Definition for General Loss Functions and One-To-Many Relations

We present variants of Self-Proving models (Definition [2.4)) generalized to one-to-many relations,
and general bounded loss functions. While these generalizations provide a richer framework that
may accommodate a wider range of applications, the theorems in this paper are based on the forgoing
Definition[2.4] which captures the essential properties while remaining mathematically manageable.

General (bounded) loss functions. In Definition[2.1|we implicitly use the 0-1 loss when measur-
ing the correctness of a model: For any x € X, we measure only whether the model generated the
correct output y = F™*(x), but not how “far” the generated y was from F*(z). It is often the case
in machine learning that we would be satisfied with models that generate a “nearly-correct” output.
This is formalized by specifying a loss function £: ¥* x ¥* — [0, 1] and measuring the probability
that ¢(z,y) is smaller than some threshold A € [0, 1), where x is drawn from the input distribution
1, and y is generated by the model when given input x.

In the context of language modeling, different loss function allow for a more fine-grained treatment
of the semantics of a given task. As an example, consider the prime-counting task:

* Given an integer x < 10°, output the number of primes less than or equal to .

In the notation of Section[2] the prime-counting task would be captured by the ground-truth function
F*(x) = |{p € N|p < x, pis prime}| f]

Per Definition any output other than F*(x) is “just as incorrect” as any other. Yet, we might
prefer outputs that are closer to the correct answer, say, in L1 norm. This preference can be captured

SFormally, the input and output are strings in ©* representing integers (e.g. in decimal representation).

23



by the following bounded loss function

y— F*(z)]-107? ify < 10°

In particular, if we are interested in knowing the answer only up to some additive constant C, we
could say that an output y is “correct-enough” if /1 (z,y) < C - 1079,

More generally, we relax Definition [2.T]to capture approximate correctness as follows.

Definition C.1 (Approximate correctness). Let p be a distribution over input sequences in ¥* and
let £: X* x ¥* — [0,1] be a loss function. For any a, A € [0, 1], we say that model Fy is (a, A)-
correct with respect to | if

Pr [l(z,y) <A >a.

T~
y~Fp(x)

One-to-many-relations. In Section[2] we focused on the setting of models of a ground-truth func-
tion F*: ¥* — X¥*. That is, when each input z has exactly one correct output, namely F*(x). A
more general setting would be to consider a ground-truth relation L C ¥* x ¥*. Then, we say that
y is a correct output for z if (z,y) € L. Importantly, this allows a single « to have many possible
correct outputs, or none at all.

Note that we must take care to choose a loss function £ that captures correctness with respect to the
relation L, i.e., ¢(z,y) = 0 if and only if (x,y) € L. Equivalently, any loss function ¢ induces a
relation L = {(z,y) | ¢(x,y) = 0}. Therefore, our relaxation to approximate-correctness Defini-
tion [C.1] already captures the setting of one-to-many relations, since an input  may have multiple
y* such that ¢(x, y*) = 0.

C.1 The General Definition

We first present a relaxed definition of Interactive Proof systems for verifying approximate-
correctness.

Definition C.2 (Definition generalized). Fix a soundness error s € (0,1), a threshold \ €
[0,1), a finite set of tokens X, and a loss function £: ¥* x ¥* — [0,1]. A verifier V for ¢ with
threshold A is a probabilistic polynomial-time algorithm that is given explicit inputs x,y € ¥* and
black-box (oracle) query access to a prover P. It interacts with P over R rounds (see Figure [I))
and outputs a decision (V, P) (x,y) € {reject,accept}. Verifier V satisfies the following two
guarantees:

» Completeness: There exists an honest prover P* such that, for all x,y € ¥*, if {(z,y) = 0
then
Pr[(V, P*)(x,y) accepts] = 1,

where the probability is over the randomness of V.
* Soundness: For all P and for all x,y € 3%, if {(x,y) > A then
Pr[(V, P) (z,y) accepts] < s,
where the probability is over the randomness of V and P, and s is the soundness error.

Indeed, for a given ground-truth function F*: ¥* — ¥*, Definition[2.2] can be recovered by choos-
ing the 0-1 loss

1 ifzx £ F*y
EF* (xvy) = {O else ( )
and any threshold A € [0,1).

Remark C.3 (Connection to Interactive Proofs of Proximity). Definition can be seen as a
slight generalization of (perfect completeness) Interactive Proofs of Proximity (IPPs, |Rothblum et al.
2013). An IPP for a relation L C ¥* x X* with proximity parameter \ is obtained by instantiating
Deﬁnitionwith the loss function {yamming defined by

#i |y # vy}
|yl

ZHamming(xay) = mln{ (.’L’,y*) € L7 |y*‘ = |y|}7
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that is, {Hamming (T, Yy) is the fraction of tokens in y that must be changed to obtain an output
y* with (x,y*) € L. However, the motivation of |[Rothblum et al.| [2013|] was studying sublinear
time verification, whereas ours is to relax the requirements of traditional Interactive Proofs towards
meeting common desiderata in machine learning.

With this relaxed notion of Interactive Proofs in hand, we are now ready to define Self-Proving
models for general (bounded) loss functions.
Definition C.4 (Definition [2.4} generalized). Fix a loss function £: ¥* x ¥* — [0,1], a verifier
V for £ with threshold A € [0,1) as in Definition and a distribution | over inputs 3*. The
Verifiability of a model Py = ¥* — X* is defined as

very,,(8) = Pr [(V,Py) (z,y) accepts].

T

y~Py(z)

We say that model Py is 3-Self-Proving with respect to V and p if very,,(0) > f.

Analogously to Remark[2.5] we observe that Verifiability as per Definition[C.4]implies approximate-
correctness: Suppose Py is 5-Self-Proving model with respect to a verifier V' that has soundness
error s and threshold parameter \ for loss function ¢. Then, by a union bound,

y~Po(z)

Importantly, as emphasized throughout this paper, soundness of V' implies that for all inputs =, any
output y such that £(z,y) > A is rejected with high probability (1 — s).

D Formal proofs

Appendix [D.T|formally specifies the setup in which our results reside. We then prove Lemma[3.2]in
Appendix [D.2] Lemma[3.3]in Appendix [D.3] and Theorem[.T]in Appendix [D.4]

D.1 Specification of the Learning Model

In this section, we fully specify the theoretical framework in which our results reside. We define
a learner as an algorithm A with access to a family of autoregressive models { Py }y and samples
from the input distribution £ ~ p. In our setting of Self-Proving models (and in accordance with
the Interactive Proofs literature), we give the learner the full specification of the verifier V. More
formally,

Definition D.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic ora-
cle Turing Machine A with the following access:

* A family of autoregressive models { Py }gcpa where d € N is the number of parameters in
the family. For each 0 and z € ¥*, the random variable Py(z) is determined by the logits
logpe(z) € RI¥. Forany » € ©* and o € %, the learner A can compute the gradient of
the o™ logit, that is, Vg log Pro/ p,(»)lo = o']. In particular, 10g Py p, )0 = o'] is
always differentiable in 0.

» Sample access to the input distribution p. That is, A can sample x ~ p.

* The full specification of the verifier V, i.e., the ability to emulate the verification algorithm
V. More specifically, A is able to compute V'’s decision after any given interaction; that
is, given input x, output y, and a sequence of queries and answers (g;, a;)1,, the learner
A can compute the decision of V' after this interaction.

D.2 Proof of Lemma[3.2]

We let ’T‘f denote the transcript generator induced by the model Py when interacting with V: for
each z, T¢(x) is the distribution over transcripts of interactions between V' and P on input z. We

stress that 7* ~ T(x) and m ~ T¢(z) are transcripts produced when interacting with the same
verifier queries; we can think of the verifier as simultaneously interacting with the honest prover
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and with the model P9 In what follows, we use 7 ~ Tii(z) and 7 ~ T¢(z) to denote two
transcripts that share the same queries. That is, taking 7* = (y*,q},a},...,qR,a}) to denote
an accepting transcript sampled from 7y (z), and 7 = (y, 45, a1, ..., ¢k, ar) to denote a random
transcript sampled from T‘f(x), we say that m and 7* agree if they agree on the prover answers,
namely if:
(yvalv' . 'aaR) = (y*vaTa .. '7a'*R)'

This definition implicitly uses the independence of the verifier and model’s randomness. We now
prove that TL correctly estimates the gradient of A(#) in its update step.

Proof of Lemma[3.2] Throughout this proof, expectations and probabilities will be over the same
distributions as in the lemma statement. First, we use the law of total probability together
with the autoregressive property of Py (Section [3) to switch from probabilities on transcripts,
to products of next-token probabilities. Formally, consider a fixed input x, an honest transcript

™ = (y*, ¢}, a3, ..., qk, ak), and denote a random transcript sampled from 7% () when using the
same verifier queries by 7 = (y,4f,a1,...,q5, ar). For any r € [R] denote the random variable
T <" = T¢(ygia1 - ar_1;). Then,
P:rr [r=7"] = l?rr[(y, a,...,agr) = (y*,aj,...,ax)] )
= Pr [y=y"]- Pr [a=a)
) ] Tgﬂ GNTVG:O[ 2
= Pr [y=y*]- Pr [o=m} €)]
yNPs(r)[ ] rg%] o pmzs){ ]
seS(r)
= H as(0), 4)
re[RJU{0}
seS(r)

where, as noted above, Equation @I) uses the independence of the verifier and model’s random-
ness, Equation uses the autoregressive property of Py (Definition [D.1])), and Equation is by
definition of s and of ag. Next, a basic calculus identity gives

Vo (l?rr [ = 7r*]) = P:rr [f =7"]-Vglog (f:rr [r = W*]) . 5)

This implicitly assumes that Pr, [x = «*] is differentiable in #; indeed, this follows from Defini-
tion where the logits of the model were assumed to by differentiable. Let us focus on the
rightmost factor. By Equation (4],

valog(gr[w:w*]):valog [T e®)|= > Vologes(®)= > du(0)
re[R]JU{0} re[R|U{0} re[R|U{0}
seS(r) seS(r) seS(r)

(6)
where the last equality is by definition of d:(@) Combining Equation @) and Equation (5) gives
Vo(rir=n) = [ a0 > o).
" relR]U{0} re[RIU{0}
seS(r) s€S(r)

By the law of total probability and the linearity of the gradient,

E [ve (ljrr 7 = n*])} =V ( E [P:rr [ = w*]D =V ( Pr [r= w*]) = V,A(6).

x,m* x,m* x, T,

which concludes the proof. O

"The way it is presented in the algorithm, first the verifier is called by 77 and outputs queries (¢}, . .. ¢k).
and then the model is prompted with the verifier queries one a time. This maintains soundness, since a proof
system is sound as long as the prover does not know the verifier’s queries in advance.
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D.3 Proof of Lemma[3.3]

Recall the transcript generator of Py, denoted by Tﬂ (see Lemma . By the definitions of Verifi-
ability in Definition2.4and V (2,9, q1, . .., ar) in the lemma statement,

ver () = %13;1;J [(V, Pp) (x,y) accepts]
y~Po(x)
= E  [Accv(z,y,q1,..,aR)]
y~Py ()
(grar)B

= E

T

7rNl;’_‘g(r)[AccV (z,7) ]1 @)

Now, for every input z, let II*(z) C 3* denote the set of accepting transcripts:
IT*(z) == {r* € ¥* : Accy (z,7*) = 1}.

We can assume that IT*(x) has finite cardinality, since Vs running time is bounded and hence the
number of different transcripts that it can read (and accept) is finite. For any fixed input x, we can
express its acceptance probability by the finite sum:

Pr J[Accy(z, )] = Pr [r=7"]. (8)
ﬂ'NT‘? (z) - E;(x) WNT‘f ()

We will use Equations (2) through (€) from the proof of Lemma [3.2] Up to a change in index
notation, these show that, for any 7*,

V¢ Pr [n=7n*]= Pr [r=7"]" Vg(fﬁ.
‘n'NTG(x)[ ] TrN'TQ(a:)[ ] TERZU{O} S( )
SE[Lq]

Combining Equations (7) and (8)), by linearity of expectation we have that

Vover(9) = E | Y Vy Pr [r=n"|

~ ~T0
T T T TO ()

- E > ﬂﬁg(x}w_w D Vada(

T
m*€Il* () re RU{0}
Se[La]

= E E A v d
o | wm T (@) ccv €, 7T Z 9
re RU{0}

L s€[Lg)

= E Accy (x, ) Z Ved

ﬂj’;#(:v) re RU{0}
S€[Lq4]

E ACCV(x7y7Q1a"'aaR) : Z VQJ;(G) )

T
y~Poy(z) re RU{0}
(qmar)f':l SE[LG]

where in the last equality, the probability is over (g, a,-) sampled as in Algorlthml 2 and it follows
from the definition of the transcript generator 77 (). O
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D.4 Proof of Theorem[d.1]

We first restate Theorem [4.1]in full formality.

Theorem D.2. Fix a verifier V, an input distribution i, an autoregressive model family {Py}ocrd,
and a norm || - || on R%. Fix an honest transcript generator T, and assume that the agreement
function A(0) := Pr [ = 7*] is concave in 0, where the verifier queries are the same in 7 and T,
and the probability is over x ~ 1, T9 ~ T¢(x), and 7 ~ Tii(x). For any & > 0, let Bnorm, BLip
and C be upper-bounds such that the following conditions hold:

s There exists 0* € R with ||0*|| < Bxorm such that A(6*) > 1 —¢/2.

* Forall §, the logits of Py are Byip-Lipschitz in 0. That is, supypa || Ve log pe(2)|| < BLip.
zEX™

* In the proof system defined by V, the total number of tokens (over all rounds) is at most C.

Denote by 0 the output of TL running for N > (4-C? - B, . - Bﬁip) /2 iterations and learning

rate A = BNorm/ C’BLip\/]v . Then the expected Verifiability (over the randomness of the samples
collected by TL) of 0 is at least 1 — ¢. That is, Eg[very ,(6)] > 1 —e.

The proof of Theorem [D.2] goes by reduction to Stochastic Gradient Descent (SGD). Lemma [3.2]
showed that the learner can use its only available tools—sampling honest transcripts, emulating the
verifier, and differentiating the logits—to optimize the agreement A(6). Since A(6) lower bounds
the Verifiability of Py, the former can be used as a surrogate for the latter.

For convenience of the reader, we first provide a description of Stochastic Gradient Ascent (equiv.
to SGD) and quote a theorem on its convergence. We adapt the presentation in Shalev-Shwartz and
Ben-David| [2014]], noting that they present Stochastic Gradient Descent in its more general form
for non-differentiable unbounded functions. The familiar reader may skip directly to the proof in

Appendix [D.4.3]

D.4.1 Preliminaries on Stochastic Gradient Ascent

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization. Given a
concave function f: R? — [0, 1], SGA starts at wy = 0 € R? and tries to maximize f(w) by taking
a series of “steps.” Than directly differentiating f, SGA instead relies on an estimation V f(w): in
each iteration, SGA takes a step in a direction that estimates V f (w).

Definition D.3 (Gradient estimator). Fix a differentiable function f : R? — R for some d. A gradient
estimator for f is a randomized mapping D : R? — R whose expectation is the gradient of f. That
is, for all w € R,

B [v] = Vf(w).

v~ Dy (w)
Note that this is an equality between d-dimensional vectors.

Algorithm 3: Stochastic Gradient Ascent
Hyperparameters: Learning rate A > 0 and number of iterations N € N.
Input: A function f: R? — R to maximize and a gradient estimator D i for f.
Output: A vector @ € R?.
Initialize wg := 0 € R4,
fori=1,...,N—1do
Sample v; ~ D¢(w;—1).
Update w; == w;_1 + X - v;.
Output @ = > e (] Wi-

Theorem 14.8 in|Shalev-Shwartz and Ben-David|[2014] implies the following fact.

Fact D.4. Fix a concave f: R — [0, 1], a norm || - || on R%, and upper-bounds Bxorm, BLip > 0.
Let
w* € argmax f(w),
w:||w||<BNorm
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and let w denote the output of Algorithm[3|run for N iterations with learning rate

_ BNorm

a BLip\/N-

If at every iteration it holds that ||v;|| < Bu,p, then

B (/@) > fw) - e,

D.4.2 Learning with Stochastic Gradient Ascent/Descent

Fact[D.4] captures the general case of using SGA for maximization of concave problems. It is more
common for the literature to discuss the equivalent setting of Stochastic Gradient Descent (SGD)
for minimization of convex problems. Specifically, a common application of SGD is for the task of
Risk Minimization: given a loss function and access to an unknown distribution of inputs, the goal
is to minimize the expected loss with respect to the distribution. Assuming that the loss function
is differentiable, the gradient of the loss serves as a gradient estimator (see Definition [D.3) for the
risk function. We refer the reader to |Shalev-Shwartz and Ben-David| [2014) Section 14.5.1] for a
complete overview of SGD for risk minimization.

For the sake of completeness, we formulate Transcript Learning (TL, Algorithm [I) in the frame-
work of Risk Minimization for Supervised Learning. This is not strictly needed for the proof of
Theorem [D.2] but is an illuminating connection. Although multiple loss functions may achieve our
ultimate goal—learning Self-Proving models—in what follows we define the loss that corresponds
to TL.

Fix a verifier V and let 7, denote a distribution over accepting transcripts. We define

loss (0, (z, 7)) = Pr [n#x], )

m~TE ()

where 7* and 7 share the same verifier messages (as in Lemma so the inequality is
only over the prover’s messages, namely Pr 7o, [T # 7] = Proo,)[(y,a1,...,ar) #
(y*,a1,. . ap)lf
The risk function is the expected value of the loss over the joint distribution of inputs and accepting
transcripts po x T35 (p):

Risk(§) = E |[loss (6, (z,7"))],

T~
w~Ty

which means that the agreement function defined in Theorem[D.2}

A®)= Pr [r=n].
T~ Ty (@)

T~TE ()
satisfies A() = 1 — Risk(6).

Thus, maximizing the agreement is equivalent to minimizing the risk. The hypothesis class over
which the optimization is performed is the ball of radius Bnorm, i.€., {9 eRe: 19| < BNorm}.
The assumption that A is concave in 6 implies that the loss function is convex in 6, which is the
required assumption for using SGD for risk minimization.

D.4.3 Proof of Theorem [D.2]

Our strategy is to cast TL as Stochastic Gradient Ascent and apply Fact Let €, BNorm, Brip and
C as in the theorem statement be given. Let §* be such that A(0*) > 1 —¢/2 and ||6*|| < Bnorm-

First, notice that

E [very., (8)] > ELA(D)]

8This loss is not to be confused with those discussed in Appendix Here, we are simply explaining how
TL can be viewed as a supervised risk minimizer for the loss function defined in Equation @])
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This holds because, for any = and model Py, whenever the transcript generated by 79 (x) agrees
with 7*, then the verifier accepts (because 7* is honest). Therefore, to prove the theorem it suffices
to show that

E[A(0)] 21 —e.

0

Following the notation in Algorithm in every iteration ¢ € [N] the norm of the update step is

[T ) > don|=| [I es09]-] D dut)

re[RJU{0} re[RJu{0} re[RJU{0} re[RJu{0}
seS(r) seS(r) seS(r) seS(r)
<13 |den)|.
re[R]U{0}
s€S(r)

where the inequality is because «(6;) are probabilities, so < 1. Moreover, we have

> |den| = > Bup < By
re[R]U{0} re[R]U{0}
seS(r) seS(r)
The first inequality is by definition of By, as an upper-bound on the gradient of Py’s logits. The
second is because, by definition, C' is an upper-bound on the number of tokens sent by the prover in
the proof system, which is exactly the number of terms in the sum: r indexes rounds, and s indexes
tokens sent in each round.

To conclude, Lemmashows that TL samples from a gradient estimator for A(#), while the above
equation shows that the gradient is upper-bounded by C' - By;;,. We can therefore apply Fact[D.4]to
obtain

E[A(0)] > A(0*") —e/2>(1—¢/2) —¢/2=1—F¢,

0

where the inequality is by definition of 8*. This completes the proof of Theorem

E Learning from annotations

To minimize the length of messages exchanged in an Interactive Proof system, the honest prover is
designed to send the shortest possible message to the verifier, containing only essential information.

However, when training Self-Proving model, it may be useful for it to first generate an “annotated”
answer a which is then trimmed down to the actual answer a to be sent to the verifier. We adapt
Sections [2] and [3] to this setting via Annotated Transcripts. The TL and RLVF algorithms natu-
rally extend to annotated transcripts as well. Table [2| shows that annotations significantly improve
performance of TL in practice.

Annotations can be viewed as adding Chain-of-Thought [Wei et al.| 2022]. As a concrete example,
consider our experiments on computing the GCD. As detailed in Appendix [F.2] a proof 7 in this
setting is the output of an iterative process—the extended Euclidean algorithm—starting from the
input x: r — m > e +— --- +— 7. The annotation of the proof 7 consists the first T' steps
(m1,...,mp) up to some fixed cutoff T'. These are prepended to the proof and shown to the model
during TL training. At inference time, the model is evaluated only on whether it generated the proof
m correctly.

We formally capture annotations by introducing a transcript annotator and an answer extractor
incorporated into the training and inference stages, respectively. Fix a verifier V in an R-round
proof system with question length L, and answer length L,. An annotation system with annotation

length L, consists of a transcript annotator A, and an answer extractor E.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources as
an honest prover in the system (see Definition [2.2), and the answer extractor as an extremely simple
algorithm (e.g., trim a fixed amount of tokens from the annotation).

To use an annotation system the following changes need to be made:
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Table 2: Self-Proving transformers computing the GCD. We train a 6.3M parameter GPT to com-
pute the GCD of two integers sampled log-uniformly from [10%]. Vanilla GPT correctly generates
the GCD for almost all inputs, but does not prove correctness to a simple verification algorithm. GPT
trained with Transcript Learning (GPT+TL) proves its answer 60.3% of the time; adding Reinforce-
ment Learning from Verifier Feedback (+RLVF) increases this to 78.3%; training with Annotated
Transcript Learning (GPT+ATL) gives the highest Verifiability score of 96%.

LEARNING METHOD  CORRECTNESS VERIFIABILITY

GPT (BASELINE) 99.8% -

GPT+TL 98.8% 60.3%
GPT+TL+RLVF 98.9% 78.3%
GPT+ATL 98.6% 96.0%

* At training time, an input x and transcript 7 is annotated to obtain 7 := A(x, ), e.g. before
the forwards backwards pass in TL (line 3 in Algorithm|[I)).

* At inference time (i.e., during interaction between V' and Fp), the prover keeps track of
the annotated transcript, but in each round passes the model-generated (annotated) answer
through the extractor F before it is sent to the verifier. That is, in each round r € [R), the
prover samples

d\;' ~ Pe(xayaqlvdvlv s 7a7“—1aq7‘)'

The prover then extracts an answer a, := E(a,) which is sent to the verifier.

F Experiments

We describe our experimental setup, and present ablation studies that shed additional light on the
effect of annotation and representation on Verifiability.

F.1 Setup: Training transformers to predict the GCD

Charton| [2024]] empirically studies the power and limitations of learning GCDs with transformers.
We follow their setup and two conclusions on settings that make for faster learning: Training from
the log-uniform distribution, and choosing a base of representation with many prime factors.

We fix a base of representation B = 210 and use x to denote an integer x encoded as a B-ary stringﬂ
For sequences of integers, we write (x1X2) to denote the concatenation of x; with x2, delimited by
a special token. The vocabulary size needed for this representation is |X| =~ 210.

We choose the input distribution z to be the log-uniform distribution on [10%], and train the trans-
former on sequences of the form (x1x2y), where 1,22 ~ pand y = GCD(x1,x2). This is a
scaling-down of |Charton| [2024]], to allow single GPU training of Self-Proving transformers. In all
of our experiments, we use a GPT model [Vaswani et al., 2017] with 6.3M parameters trained on a
dataset of 1024K samples in batches of 1024. Full details are deferred to Appendix [G.2]

Proving correctness of GCD. Following (Charton| [2024] as a baseline, we find that transformers
can correctly compute the GCD with over 99% probability over (z1,x3) ~ p. To what extent can
they prove their answer? To answer this question, we first devise a natural proof system based on
Bézout’s theorem. Its specification and formal guarantees are deferred to Appendix We denote
its verification algorithm by V, and highlight some important features of the experimental setup:

* The proof system consists of one round (R = 1). The verifier makes no query, and simply
receives a proof 7 from the prover.

 Completeness: For any 1,2,y € [10%] such that y = GCD(z1, z3), there exists a proof
7 such that V (x1x2y7) accepts. As detailed in Appendix [G.1] the proof 7 consists of a
pair of integers who are Bézout coefficients for x1, zs.

°B = 210 is chosen following (Charton| [2024] to be an integer with many prime factors.
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* Soundness: Ify # GCD(x1, x2), then V (x1x2y ) reject{ V| for any alleged proof 7 € ¥*.

To measure Verifiability, we train a Self-Proving transformer using Transcript Learning on sequences
(x1x2y7) and estimate for how many inputs x1, 22 ~ p does the model generate both the correct
GCD y and a valid proof 7. We test on 1000 pairs of integers z}, x5 ~ p held-out of the training
set, prompting the model with (x}x5) to obtain (y'n’), and testing whether V' (x} x5y'7") accepts.

Table [2] shows our main experimental result, which has the following key takeaways:
1. Transcript Learning (TL) for 100K iterations (=100M samples) results in a Self-Proving
transformer that correctly proves 60.3% of its answers.

2. A base Self-Proving Model with fairly low Verifiability of 40% can be improved to 79.3%
via Reinforcement Learning from Verifier Feedback (RLVF). Although it does not rely on
honest transcripts, RLVF trains slowly: this nearly-twofold improvement took four million
iterations.

3. Most efficient is Annotated Transcript Learning, which yielded a model with 96% Verifia-
bility in 100K iterations. We further investigate their effect next.

F.2 Models generalize beyond annotations
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Figure 3: Verifiability with increasing amounts of annotation. 7 is the number of steps added in
Annotated Transcript Learning. Dashed lines indicate Euclidean depth, that bound the Verifiability
of models that prove only for integers up to a certain number of steps. Each 7" was run with three
seeds, with mean = standard error depicted. The upper graph provides a zoomed-in view of the 82%
to 98% range from the lower graph, which spans a broader scale from 20% to 100%.

The proof 7 is annotated by including intermediate steps in its computation. Details are deferred to
Appendix roughly speaking, we observe that the proof 7 for input (a, b) is obtained as the last
element in a sequence a, b, 7y, ma, . . . computed by the Euclidean algorithm. We annotate the proof
7 by prepending to it the sequence of Euclidean steps (71, . .., 7T) up to some fixed cutoff 7.

Figure |3 shows how T affects the Verifiability of the learned model. As suggested by |Lee et al.
[2024], training the model on more intermediate steps results in better performance; in our case,
increasing the number of intermediate steps 1" yields better Self-Proving models. One might suspect

""With probability 1, i.e., s = 0 in Deﬁnition
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Figure 4: Annotated TL Verifiability as a function of the number of samples V. Each iteration
(X axis) is a batch of 1024 samples from a dataset of ~10M sequences. Every 10k iterations,
Verifiability was evaluated on a held-out dataset of 1k inputs. 7" is the number of steps in Annotated
Transcript Learning (Figure [3), and 7' = 0 is non-annotated Transcript Learning. Each 7" was run
with three seeds, with mean depicted by the curve and standard error by the shaded area.

that models only learn to execute the Euclidean algorithm in-context. To rule out this hypothesis, we
derive an upper bound on the possible efficacy of such limited models. This bound is based on the
Euclidean depth of integers (21, x2), which we define as the number of intermediate steps that the
Euclidean algorithm makes before terminating on input (z1,23). Indeed, a model that only learns
to compute (in-context) the arithmetic of the Euclidean algorithm would only be able to prove the
correctness of inputs (z1, z2) whose depth does not exceed the annotation cutoff 7.

Figure [3|tells a different story: For each cutoff T', we estimate the probability that integers z1, x2 ~
i have Euclidean depth at most 7" on 10° sampled pairs. Larger annotation cutoff 7" increases
Verifiability, but all models exceed their corresponding Euclidean depth bound.

F.3 Base of representation

As mentioned previously, |Charton| [2024]] concludes that, for a given base of representation B,
transformers correctly compute the GCD of integers 1, xo that are products of primes dividing
B. Simply put, choosing a base B with many different prime factors yields models with better
correctness (accuracy), which suggests why base B = 210 = 2 - 3 - 5 - 7 yielded the best results. To
test if B’s factorization has a similar effect on Verifiability, we train transformers on 68 bases varying
the number of prime divisors from w(B) = 1 (i.e., B is a prime power) to w(B) = 4. Figure
shows that w(B) correlates not just with correctness [Charton, 2024], but also with Verifiability.
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Figure 5: The number of prime divisors of a base w(B) determines Verifiability. For each
o € [4], we sampled 17 bases B € {2,...,1386} such that w(B) = o. A Self-Proving transformer
was trained via Transcript Learning for twenty epochs on an identical dataset of 1024K samples
encoded in base B. For each w(B) we depict the mean =+ standard error.

Although the finding is statistically significant (no overlapping error margins), the difference is by
a few percentages; we attribute this to the smaller (10%) number of samples on which models were
trained, relative to other experiments.

Verifiability
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Figure 6: RLVF Verifiability as a function of the number of samples N. Starting from a base
model with Verifiability 48% (obtained via Transcript Learning), in each iteration a batch of 2048
inputs are sampled; the model generates a proof for each; the Verifier is used to check which proofs
are accepted; then, the model parameters are updated accordingly (see Algorithm [2). Verifiability
was evaluated on a held-out dataset of 1k inputs.
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Algorithm 4: Extended Euclidean algorithm

Input: Nonzero integers g, z; € N.
Output: Integers (y, 2o, 21), such that y = GC D(xg, 1) and (20, z1) are Bézout coefficients
for (zg, z1).
Initialize ro = x¢, 71 = %1, S0 = 1, s1 = 0,and ¢ = 0.
while r; # 0 do
Update q == |ro/r1].
Update (rg,71) :== (r1,70 — ¢ X 71).
Update (s, s1) == (81,50 — ¢ X S1).
Output GCD y = 1 and Bézout coefficients zg := sg and z1 := (rg — so - o) /1.

G Full details of the experimental setup

G.1 The Bézout proof system for GCD

The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is
possibly the oldest algorithm still in use today [Knuthl [1969]. Its extended variant gives a simple
proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Prover Paul has two
integers 212 and 159; he claims that GC'D(212,159) = 53. An inefficient way for Verifier Veronica
to check Paul’s answer is by executing the Euclidean algorithm on (212, 159) and confirm that the
output is 53. In an efficient proof system, Veronica asks Paul for a short string 7* (describing two
integers) with which she can easily compute the answer—without having to repeat Paul’s work all
over. On the other hand, if Paul were to claim that “GCD(212,159) = 517 (it does not), then for
any alleged proof 7, Veronica would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Fact G.1 (Bézout’s identity [Bezout, [1779]). Let xg,z1 € Nand 2y,21 € Z. If zp - x¢g + 21 - 1
divides both xo and x4, then zo - o + 21 - ©1 = GCD(zg, x1).

Any coefficients zg, z; satisfying the assumption of Fact are known as Bézout coefficients for
(20, 21). Fact|G.1]immediately gives our simple proof system: For input = (o, z1) and alleged
GCD y, the honest prover sends (alleged) Bézout coefficients (zg, z1). The Verifier accepts if and
only if y = 2o - ¢ + 21 - 1 and y divides both o and x1.

In this proof system the Verifier does not need to make any query; to fit within Definition[2.2] we can
have the verifier issue a dummy query. Furthermore, by Fact it is complete and has soundness
error s = 0. Lastly, we note that the Verifier only needs to perform two multiplications, an addition,
and two modulus operations; in that sense, verification is more efficient than computing the GCD in
the Euclidean algorithm as required by Remark [2.3]

Annotations. To describe how a proof z = (zp, z1) is annotated, let us first note how it can be
computed. The Bézout coefficients can be found by an extension of the Euclidean algorithm. It is
described in Algorithm

Referring to Algorithm [4] the annotation of a proof z = (2, z1) will consist of intermediate steps
in its computation. Suppose that in each iteration of the While-loop, the algorithm stores each of r,
sp and ¢ in an arrays 7, so and ¢. The annotation Z of z is obtained by concatenating each of these
arrays. In practice, to avoid the transformer block (context) size from growing too large, we fix a
cutoff 7" and first trim each array to its first 7" elements.

We formalize this in the terminology of Appendix [E]by defining a Transcript Annotator and Answer
Extractor. Note that, since our proof system consists only of one “answer” z send from the prover
to the verifier, the entire transcript 7 is simply z = (2, 21). Since the verification is deterministic,
this means that the proof system is of an NP type (however, note that the search problem of finding
the “NP-witness” z = (2o, 21) is in fact in P).

""Our description follows https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm,
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* Transcript Annotator A: For a fixed cutoff T and given input = (x,x1) and transcript
z = (z0,21), A executes Algorithm 4| on input © = (xo,x1). During the execution, A
stores the first 7" intermediate values of rg, so and ¢ in arrays 7(, Sy and ¢. It outputs
Az, z) = (10, 50, 2)-

* Answer Extractor E: Given an annotated transcript Z = (7%, $9, ¢, z), outputs E(Z) = z.

We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithmf]
(up to additional space due to storing intermediate values). As for E, it can be implemented in
logarithmic space and linear running time in |Z|, i.e., the length of the description

G.2 Implementation details

Code, data and models are available at https://github.com/orrp/self-proving-models,

Model architecture. We use Karpathy’s nanoGP7E-] implementation of GPT. Note that we train
the model “from scratch” only on sequences related to the GCD problem, rather than starting from
a pretrained checkpoint. We use a 6.3M parameter architecture of 8 layers, 8 attention heads, and
256 embedding dimensions. We optimized hyperparameters via a random hyperparameter search,
arriving at learning rate 0.0007, AdamW g; = 0.733 and 82 = 0.95, 10% learning rate decay factor,
no dropout, gradient clipping at 2.0, no warmup iterations, and 10% weight decay.

Data. We sample integers from the log;,-uniform distribution over {1,...,10%}. Models in Ta-
ble 2 and Fig. [3] are trained for 100K iterations on a dataset of ~10M samples. For Figure [5] (base
ablation) we train for 20K iterations on a dataset of ~1M samples; this is because this setting re-
quired 68 many runs in total, whereas the annotation-cutoff ablation required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM,
and 32 CPU cores. The longest experiment was the single RLVF run, which took one month and
four days. The annotation-cutoff ablation runs took about 75 minutes each. Base of representation
ablation runs were shorter at about 15 minutes each. The total running time of the Transcript Learn-
ing experiments was approximately 40 hours (excluding time dedicated to a random hyperparameter
search), and the RLVF experiment took another month and four days. The overall disk space needed
for our models and data is 4GB.

Representing integers. We fully describe how integer sequences are encoded. As a running ex-
ample, we will use base 210. To encode a sequence of integers, each integer is encoded in base 210,
a sign is prepended and a delimiter is appended, with a unique delimiter identifying each component
of the sequence. For example, consider the input integers zo = 212 (which is 12 in base 210) and
x1 = 159. Their GCD is y = 53, with Bézout coefficients zo = 1 and z; = —1. Therefore, the
sequence (212, 159,53, 1, —1) is encoded as

+,1,2,x0,+,159,x1,+,53,y,+,1,z0,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad
all sequences in a dataset to the same length. Both the input and the padding components are ignored
when computing the loss and updating parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step 7
delimited by a unique token. Since different integer pairs may require a different number of inter-
mediate steps to compute the Bézout coefficients, we chose to pad all annotations to the same length
T by the last step 77 in the sequence (which consists of the final Bézout coefficients). This ensures
that the final component output by the model in each sequence should be the Bézout coefficient,
and allows us to batch model testing (generation and evaluation) resulting in a 1000x speed-up over
sequential testing.

12That is, if integers are represented by n-bits, then E has space complexity O(logn + log T') and running
time O(n - T).
Phttps://github. com/karpathy/nanoGPT.
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As an example, consider the inputs xy = 46 and x; = 39. Tracing through the execution of
Algorithm 4] we have

xo | |y| S0 |70 || 2 21
46 | 39 1 |46 |1
0 [39]5
1 711
514 |1
6 3 |3

1 —11 | 13

To encode this as an annotated transcript for the transformer, we must specify a base of represen-
tation and an annotation cutoff. Suppose that we wish to encode this instance in base B = 10 and
cutoff 7' = 3. Then the input with the annotated transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,y,
+,1,2z0’,+,4,6,z1’ ,+,1,q9’,
+,0,z0’,+,3,9,z1”,+,5,q9”’,
+,1,z0”,+,7,21" ,+,1,97,
-,1,1,z0,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. No-
tice the three types of tokens: signs, digits, and delimiters. Notice also that the output y is added
immediately after the input, followed by the annotated transcript (whose six tokens comprise the
proof itself). Since the Self-Proving model we train has causal attention masking, placing the output
y before the proof means that the model “commits” to an output and only then proves it.
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