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ABSTRACT

Recent Large Language Models (LLMs) and Large Vision-Language Models
(LVLMs) increasingly use Reinforcement Learning (RL) for post-pretraining,
such as RL with Verifiable Rewards (RLVR) for objective tasks and RL from Hu-
man Feedback (RLHF) for subjective tasks. However, RLHF incurs high costs and
potential reward–policy mismatch due to reliance on human preferences, while
RLVR still wastes supervision by discarding rollouts and correctness signals af-
ter each update. To address these challenges, we introduce the Synergistic Policy
And Reward Co-Evolving FrameworK (SPARK), an efficient, on-policy, and sta-
ble method that builds on RLVR. Instead of discarding rollouts and correctness
data, SPARK recycles this valuable information to simultaneously train the model
itself as a generative reward model. This auxiliary training uses a mix of objec-
tives, such as pointwise reward score, pairwise comparison, and evaluation condi-
tioned on further-reflection responses, to teach the model to evaluate and improve
its own responses. Our process eliminates the need for a separate reward model
and costly human preference data. SPARK creates a positive co-evolving feed-
back loop: improved reward accuracy yields better policy gradients, which in turn
produce higher-quality rollouts that further refine the reward model. Our unified
framework supports test-time scaling via self-reflection without external reward
models and their associated costs. We show that SPARK achieves significant per-
formance gains on multiple LLM and LVLM models and multiple reasoning, re-
ward models, and general benchmarks. For example, SPARK-VL-7B achieves an
average 9.7% gain on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks,
and 1.5% on 8 general benchmarks over the baselines, demonstrating robustness
and broad generalization.

1 INTRODUCTION

Reinforcement learning (RL) is a standard step of post-pretraining improvement and alignment for
Large Language Models (LLMs) and Large Vision-Language Models (LVLMs). In practice, current
RL systems rely on two complementary routes: (1) RL with verifiable rewards (RLVR) (Lambert
et al., 2024a; Guo et al., 2025; Team et al., 2025), which uses a verifier to address objective and ver-
ifiable problems like math and code. (2) Reward-model–based pipelines such as RL from Human
Feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022), which distill human or synthetic prefer-
ences into a learned reward model to guide policy optimization on subjective tasks. These two RL
stages have yielded significant gains in reasoning quality, safety, and truthfulness, and have become
a cornerstone in modern LLM/LVLM training.

Despite impressive progress, current RL pipelines for LLMs/LVLMs still exhibit several limi-
tations. Approaches based on verifiable rewards (RLVR) are effective only for tasks with ex-
plicit verifiers, leaving open-ended objectives like helpfulness and safety unaddressed. Conversely,
reward-model–based pipelines (RLHF) can handle subjective tasks with reward models (Su et al.,
2025a) or LLM-as-a-judge (Zheng et al., 2023; Gunjal et al., 2025) but demand substantial and
costly curated human preference data. Furthermore, training the reward model as a separate com-
ponent causes it to lag the evolving policy, inducing reward-policy mismatch, reward hacking, and
brittle generalization under out-of-distribution queries (Skalse et al., 2022; Gao et al., 2023). Finally,
dependence on external reward models or judge models introduces significant latency and serving
costs during both training and test-time scaling (Zhao et al., 2025).
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Figure 1: (a) Early studies of RL with Verifiable Rewards (RLVR) and RL from Human Feedback (RLHF)
that rely on reward models. (b) We propose SPARK that recycles the rollouts from the RLVR, and further
trains the model itself as a generative reward model. (c) SPARK consistently outperforms early RL approaches
in both reasoning and reward model benchmarks.

To mitigate the limitations of early RL studies, such as costs of human preference labeling and de-
ployment, we turn to an internalized source of supervision. Our method builds on RL with Verifiable
Rewards (RLVR), where n candidate responses or rollouts {o1, o2, . . . , on} are generated, and score
them against a ground-truth label to update the policy model (see Fig. 1 (a)). However, these valu-
able rollouts are typically discarded after this single use. Our key insight is to recycle the rollouts
and correctness data to further train the model itself as a generative reward model simultaneously.
We use the RLVR-derived correctness scores to train the model on a mix of objectives: a pointwise
objective to determine if a response is correct, a pairwise objective to identify which response is
better, and a reflection objective to learn how to fix an incorrect response to get the correct one.

The proposed auxiliary training paradigm for RLVR, the Synergistic Policy And Reward Co-
Evolving FrameworK (SPARK), enhances reward accuracy, yielding stronger policy gradients and
improving the model’s reasoning abilities (see Fig. 1 (b)). We further use this internal judge for
self-reflection at test time, extending alignment to tasks beyond strictly verifiable domains while re-
taining the robustness of verifiable feedback. SPARK has four advantages: (1) Data- and compute-
efficient: no extra human preference data annotation or separate reward model training loop is
required, as the signals come “for free” from RLVR training rollouts. (2) On-policy and stable:
reward data are continually sampled from and calibrated to the model’s current behavior, reducing
reward–policy mismatch. (3) Co-evolving: improved reward accuracy yields better gradients for the
policy, which produces high-quality rollouts, further refining the reward. (4) Unified development:
our framework enables RL training and test-time scaling, removing the dependency on an external
reward model, and thereby saving GPU memory and reducing the communication overhead.

Our SPARK is applicable to both LLMs (e.g., Qwen2.5 (Yang et al., 2025a)) and LVLMs (e.g.,
Qwen2.5-VL (Bai et al., 2025)). As shown on Fig. 1 (c), SPARK achieves clear improvements on
various mathematical reasoning and reward model benchmarks. For LVLMs, SPARK-VL-7B im-
proves by 9.7% on 7 reasoning and 12.1% on 2 reward benchmarks, in addition to an average 1.5%
gain on 8 general benchmarks. These improvements are observed also with larger LVLM mod-
els (SPARK-VL-32B) and pure LLMs (SPARK-7B), demonstrating the robustness across different
model scales and architectures.

Our key contributions are: (1) We introduce an efficient, on-policy, and stable framework SPARK
that builds on RLVR but recycles the valuable rollouts that are typically discarded after policy up-
dates. We use the RLVR-derived correctness scores to train the model itself to become a generative
reward model, which eliminates the need for human preference data to train a separate, external
reward model with additional development costs. (2) Our SPARK is designed as a co-evolving
mechanism. Improved reward accuracy yields better gradients for the policy, which in turn produces
higher-quality rollouts. These high-quality rollouts further refine the reward model, creating a posi-
tive feedback loop that leads to stronger overall performance and stability. (3) Extensive experiments
show that SPARK achieves substantial improvements on multiple LVLM and LLM models. SPARK-
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VL-7B achieves average 9.7% gains on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks,
and 1.5% on 8 general benchmarks, demonstrating the strong generalization ability.

2 RELATED WORKS

Reinforcement Learning with Verifiable Reward. Following the success of DeepSeek-R1 (Guo
et al., 2025), the GRPO (Shao et al., 2024) algorithm—driven by verifiable rewards—has demon-
strated strong potential across a variety of reasoning-intensive tasks, particularly in mathematics and
programming. Moreover, this RLVR paradigm has been successfully extended to a wide range of
domains, including perception (Zheng et al., 2025; Su et al., 2025b; Liu et al., 2025a; Peng et al.,
2025), agent (Jin et al., 2025; Liu et al., 2025b) and so on. In this work, we adopt a GRPO-based al-
gorithm to build our synergistic policy and reward co-evolving framework. Through reinforcement
learning, our framework jointly enhances the policy’s reasoning and the reward’s judging abilities
in a unified model, breaking the isolation between policy and reward models in prior approaches.

Reinforcement Learning from Human Feedback. Reinforcement Learning from Human Feed-
back (RLHF) optimizes policy models using human preference data. These data are either directly
collected from human annotations or generated by teacher models, and are typically used to first train
an independent reward model. The reward model then provides feedback signals that guide policy
optimization (Cai et al., 2024; Zhu et al., 2023; Zang et al., 2025; Kim et al., 2023; Yuan et al.,
2024; Lambert et al., 2024b; Ivison et al., 2023). However, a key limitation of existing paradigms
is that policy and reward models are usually developed in isolation, which restricts their interac-
tion and reduces the potential for mutual improvement. In this work, we instead treat policy and
reward as complementary capabilities, and introduce SPARK, a unified framework where the two
evolve jointly, reinforcing each other and ultimately achieving stronger overall performance. We
also discuss related work on self-reward and self-reflection; please refer to Appendix. A.3.

3 METHODS

In this section, we provide a detailed introduction to the SPARK approach. Specifically, Sec. 3.1
presents the SPARK training framework with verifiable reward, Sec. 3.2 outlines the on-policy re-
ward&reflection data generation of SPARK, and finally, Sec. 3.3 details the test-time scaling evalu-
ation strategy used in SPARK.

3.1 SPARK TRAINING WITH VERIFIABLE REWARD

Fig. 2 (a) illustrates our Synergistic Policy and Reward Co-Evolving Framework. In contrast to prior
approaches, our method integrates the training of policy and reward into a unified framework, where
both components are optimized within a single model under the guidance of verifiable rewards. In
this section, we detail how SPARK employs verifiable rewards to guide optimization during training,
enabling the model to co-evolve its policy and reward capabilities. Through this process, the model
develops not only into a strong reasoning system but also into an effective reward model.

Step 1: Sampling an answer group. As shown in Fig. 2(a), given a Visual Question Answering
(VQA) sample d = (q, a, I), or d = (q, a) in the case of a language-only LLM without visual input,
the model generates an answer group of size n, denoted as

G =
{(

oicot, o
i
ans

)}n

i=1
, (1)

where q denotes the input prompt, a the ground-truth answer, I the input image, oicot the i-th reason-
ing trace, and oians the corresponding final answer. To facilitate a clear separation between reasoning
and the final output, we design a prompt that requires the answer to be enclosed in \box{}, as
illustrated in Appendix A.2.

Step 2: Verifiable reward. Each final answer is evaluated by a rule-based, verifiable reward:

R(q, o) =
{
1, if o = a,

0, otherwise.
(2)

For the i-th sample in the answer group G, we denote its reward as ri = R
(
q, oians

)
.
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Figure 2: SPARK Framework. (a) Training: Our method recycles the valuable rollouts from verifiable
reward-guided generation to simultaneously train a unified policy model πθ , also as a generative reward model.
(b) Inference: at test time, the single unified model can handle reasoning, judgment, and reflection tasks for
test-time scaling, eliminating the need for external reward or judge models.

Step 3: Advantage computation. Following GRPO-style normalization, we compute a standard-
ized advantage for each candidate:

r̄ =
1

n

n∑
j=1

rj , s =

√√√√ 1

n

n∑
j=1

(
rj − r̄

)2
+ ϵ, Ai =

ri − r̄

s
, (3)

where r̄ is the mean reward across the n candidates, s is the standard deviation with a small constant
ϵ > 0 for numerical stability, and Ai is the normalized advantage used for policy gradient updates.

Step 4: Overall objective. The training objective maximizes the expected verifiable reward while
regularizing the learned policy πθ towards a reference policy πref:

Eo∼πθ(· | q)
[
R(q, o)

]
− λKL

(
πθ(· | q) ∥πref(· | q)

)
, (4)

where λ is a hyperparameter controlling the KL-divergence. This formulation ensures that the opti-
mization signal comes directly from task-defined correctness, enabling efficient and stable training
whenever outputs are objectively verifiable.

3.2 SPARK ON-POLICY DATA GENERATION

Unlike early RL methods that optimize only the policy model, the advantage of SPARK lies in the
joint co-evolution of policy and reward within a single model. To achieve this, SPARK generates
reward and reflection data on-policy during the reasoning process, which requires neither additional
preference annotations nor teacher models, making it highly efficient.

Beyond computing the advantage for gradient optimization in Eq. 3, the reward values ri also guide
the on-policy generation of reward and reflection data, as illustrated in Fig. 2. Specifically, we
categorize the generated data into three forms: pointwise, pairwise, and reflection, each contributing
to different aspects of judgment and self-reflection.

Pointwise. We reorganize (q,G) into binary judgment samples of the form

Dpointwise =
{(

q, oi
ans, R(q,oi

ans)
)}

, (5)

where the model is asked to determine whether a single candidate answer oians is correct. This
formulation directly trains the model’s ability to judge the validity of individual answers.
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Pairwise. We also construct comparison-style samples:

Dpairwise =
{(

q, oi
ans, o

j
ans, R(q,oi

ans), R(q,oj
ans)

)}
, (6)

where two candidate answers oians and ojans are drawn from G, and the model must select the better
one. This encourages preference-style judgment, allowing the model to distinguish between rela-
tively stronger and weaker outputs. Notably, in both pointwise and pairwise settings, oans can be
replaced with reasoning traces ocot to shift supervision toward intermediate steps.

Reflection. Finally, we construct reflection-style samples:

Dreflect =
{(

q, oi
ans, R(q,oi

ans)
)}

, (7)

where the model first verifies correctness and, if R(q, oians) = 0, the incorrect answer is then fed
back to the model for reflection and refinement. This process explicitly stimulates the model’s self-
reflection capability.

The combined dataset is then given by
Don-policy = Dpointwise ∪ Dpairwise ∪ Dreflect, (8)

which is used to further optimize the unified policy–reward model, strengthening both its judgment
and self-reflection abilities. Representative prompt templates used for data generation are provided
in Appendix. A.2.

3.3 TEST TIME SCALING WITH SELF-REFLECTION

Benefiting from the co-evolution of policy and reward capabilities, SPARK functions not only as
a strong policy model but also as a strong reward model. The synergy between these two abilities
further enhances the model’s capacity for self-reflection, which proves especially valuable in the
context of test-time scaling (TTS).

As illustrated in Fig. 2(b), we adopt a TTS procedure to evaluate the model’s reasoning, judgment,
and reflection abilities. Formally, given a question q and image I , the model generates a candidate
answer at step t as

ot = πθ( q, I ), (9)
where πθ denotes the model, and ot = (ct, at) consists of a reasoning chain ct and a final prediction
at. The model then assesses its own output through a judgment prompt:

rt = πθ

(
q, I, judge(ct, at)

)
, rt ∈ {0, 1}, (10)

where judge(ct, at) instructs the model to verify whether (ct, at) is correct.

Based on this evaluation, the model either accepts the result or performs iterative refinement:

ot+1 =

{
ot, if rt = 1,

πθ

(
q, I, reflect(ct, at)

)
, if rt = 0,

(11)

where reflect(ct, at) prompts the model to critique its prior reasoning and generate a revised solu-
tion. The process terminates once the model produces an answer it judges correct, and accuracy is
computed by comparing this final prediction with the ground truth.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks To comprehensively evaluate the effectiveness of SPARK, we conduct experiments
on three categories of benchmarks: mathematical, reward-related, and general. For mathematical
benchmarks, we assess both multimodal and language-only reasoning using representative datasets
such as MathVista (Lu et al., 2023) and GSM8k (Cobbe et al., 2021). For reward-related evaluation,
we employ RewardBench2 (Malik et al., 2025) and VL-RewardBench (Li et al., 2025), including
their mathematical subsets for fine-grained analysis. For general capabilities, we test on widely used
multimodal benchmarks such as MMBench (Liu et al., 2023) and MMStar (Chen et al., 2024). For
the complete list of benchmarks used in this work, please refer to Sec. A.1.2.
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Table 1: Evaluation Results on SPARK-VL-7B. We evaluate SPARK on multiple mathematical and reward-
related benchmarks. Here, RB2 denotes RewardBench2, and VL-RB denotes VL-RewardBench.

Model VLM Math Benchmark Avg-M Reward Benchmark Avg-R Avg-All
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Baseline
Qwen2.5-VL-7B 68.2 25.1 62.1 49.2 53.3 40.4 45.1 49.1 45.8 38.8 47.7 35.5 42.0 46.5
OpenVLThinker-7B 70.2 25.3 64.3 47.9 - - 60.6 - 48.5 37.3 33.2 33.1 38.0 -
Vison-R1-7B 73.5 27.4 75.0 52.4 54.9 37.1 36.7 51.0 32.6 28.1 - - - -
R1-OneVision-7B 64.1 29.9 61.8 47.1 - 39.1 39.8 - 35.7 33.1 37.6 37.4 36.0 -
VL-ReThinker-7B 73.7 28.4 67.9 54.0 57.3 42.7 64.9 55.6 42.3 35.0 47.1 32.5 39.2 49.6
MM-Eureka-7B 73.0 26.9 66.1 50.3 56.9 48.9 64.5 55.2 44.9 41.0 48.8 36.8 42.9 50.7

Qwen2.5-VL-7B + GRPO
+ Policy-Only 72.0 28.5 67.9 51.2 54.9 44.9 66.9 55.2 46.1 40.4 51.5 62.1 50.0 53.3
+ Reward-Only 72.1 27.9 67.1 51.0 54.7 44.0 58.8 53.7 48.1 39.3 53.9 62.7 51.0 52.7
+ Policy&Reward 74.2 28.9 70.9 51.3 56.3 46.2 67.9 56.5 48.9 43.7 54.4 63.9 52.7 55.1

Ours
SPARK-VL-7B 75.9 31.1 70.3 53.0 58.7 50.7 71.8 58.8 49.3 39.2 62.7 65.1 54.1 57.1
∆ +7.7 +6.0 +8.2 +3.8 +5.4 +10.3 +26.7 +9.7 +3.5 +0.4 +15.0 +29.6 +12.1 +10.6

The figure in the drawing consists of five isosceles right triangles of the same size. Find the area (in ��2 ) of 
the shaded figure. Please first conduct reasoning, and then answer the question. Repeat the final answer using 
a '\\boxed{}'.

Reasoning Trace:
To determine the area of the shaded figure, we start by analyzing the given information and the geometric configuration......Since the triangles are arranged in a way 
that their hypotenuses form the base of the figure, the total length of the base is \\( 5x \\).\n\nThus, we have:\n\\[ 5x = 30 \\]\nSolving for \\( x \\), we get:\n\\[ x = 6 
\\]\n\nThe area of one isosceles right triangle is given by:\n\\[ \\text{Area} = \\frac{1}{2} \\times x \\times x = \\frac{1}{2} \\times 6 \\times 6 = 18 \\, \\text{cm}^2 
\\]\n\nSince there are five such triangles, the total area of the figure is:\n\\[ 5 \\times 18 = 90 \\, \\text{cm}^2 \\]\n\nHowever, the shaded figure consists of three of 
these triangles. Therefore, the area of the shaded figure is:\n\\[ 3 \\times 18 = 54 \\, \\text{cm}^2 \\]\n\nThe final answer is:\n\\[ \\boxed{54} \\]

Judgement:
The given answer is 54 cm², which is incorrect. Thus, the judgment is \\boxed{No}.

Self-Reflection:
1. Since the figure consists of five isosceles right triangles of the same size, let's denote the length of the legs of each triangle as \\( x \\). The hypotenuse of each 
triangle will be \\( x\\sqrt{2} \\).\n\n......4. Since there are five such triangles, the total area of the figure is:\n   \\[\n   5 \\times 18 = 90 \\text{ cm}^2\n   \\]\n\n5. 
However, the figure is divided into two equal parts by the central line, and the shaded part is half of the total area of the figure. Therefore, the area of the shaded figure 
is:\n   \\[\n   \\frac{90}{2} = 45 \\text{ cm}^2\n   \\]\n\nThe correct final answer is:\n\\[\n\\boxed{45}\n\\]

Figure 3: Math Reasoning Case. We illustrate the reasoning process of SPARK on a mathematical task,
covering reasoning, judgment, and reflection. For brevity, parts of the content are omitted.

Baseline Methods Our experiments are built upon the Qwen2.5-VL (Bai et al., 2025) and
Qwen2.5 (Yang et al., 2025a) model series. For comparison, we include representative RL-based
baselines such as VL-Rethinker (Wang et al., 2025), MM-Eureka (Meng et al., 2025), Vision-
R1 (Huang et al., 2025), as well as the standard GRPO baselines, where Policy-Only and Reward-
Only denote models trained to improve reasoning or judgment in isolation. Full details of the base-
line models are provided in Sec. A.1.1 of the supplementary material.

4.2 RESULTS ON MATHEMATICAL AND REWARD BENCHMARKS

Results on SPARK-VL-7B. Tab. 1 reports the results of SPARK-VL-7B on both mathematical
and reward-related benchmarks. Compared with the Qwen2.5-VL-7B baseline, our model achieves
consistent and substantial gains. Specifically, SPARK delivers an average improvement of 9.7% on
mathematical benchmarks and 12.1% on reward benchmarks, resulting in an overall gain of 10.6%.

The Qwen2.5-VL-7B+GRPO ablations further provide insight into the effect of different training
signals. Training with Policy-Only data slightly favors mathematical reasoning, while Reward-Only
training better enhances judgment ability. When both sources are combined (+Policy&Reward), the
model surpasses either single-source variant, indicating the complementarity of policy and reward
supervision. Building on this, SPARK-VL-7B advances through the co-evolution of policy and
reward capabilities, and further incorporates reflection-driven data generation, which strengthens
the integration between reasoning and judgment and brings additional performance improvements.
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Table 2: Evaluation Results on SPARK-7B. We evaluate SPARK on multiple mathematical and reward-
related benchmarks. Here, RB2 denotes RewardBench2.

Model LLM Math Benchmark Avg-M Reward Benchmark Avg-R Avg-All

AIME24 AIME25 AMC23 GSM8k Math-500 MMLU-STEM RB2 RB2-Math

Baseline
Qwen2.5-7B 6.7 6.7 50.0 91.9 76.2 75.8 51.2 49.5 41.0 45.3 49.7
Simple-RL-Zero 16.7 6.7 62.5 92.0 78.0 64.5 53.4 31.0 38.7 34.9 48.8
Eurus-2-7B-PRIME 26.7 - 57.8 - 79.2 71.0 - - - - -
Open-Reasoner-Zero-7B 13.3 - 47.0 - 79.2 70.3 - 31.4 37.3 34.4 -
Qwen2.5-Math 13.3 - 50.6 - 79.8 60.2 - - - - -

Qwen2.5-7B + GRPO
+ Policy-Only 6.7 6.7 52.5 92.4 76.0 76.2 51.8 48.4 40.4 44.4 49.9
+ Reward-Only 13.3 3.3 50.0 90.2 73.6 79.3 51.6 43.6 40.4 42.0 49.2
+ Policy&Reward 16.7 3.3 50.0 92.7 76.6 80.1 53.2 48.3 43.7 46.0 51.4

Ours
SPARK-7B 16.7 6.7 62.5 93.2 79.4 81.1 56.6 58.8 55.7 57.3 56.8
∆ +10.0 +0.0 +12.5 +1.3 +3.2 +5.3 +5.4 +9.3 +14.7 +12.0 +7.1

Table 3: Evaluation Results on SPARK-VL-32B. We evaluate SPARK on multiple mathematical and reward-
related benchmarks. Here, RB2 denotes RewardBench2, and VL-RB denotes VL-RewardBench.

Model VLM Math Benchmark Avg-M Reward Benchmark Avg-R Avg-All
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Baseline
Qwen2.5-VL-32B 74.7 38.4 69.1 48.5 61.3 55.4 52.9 57.2 57.0 59.6 59.2 56.0 58.0 57.5
VL-ReThinker-32B 78.8 40.5 76.7 56.9 62.9 51.8 72.9 62.9 53.9 51.8 49.9 23.5 44.8 56.3
Vision-R1-32B 73.2 35.7 78.9 53.8 62.9 54.2 55.2 59.1 53.4 68.9 - - - -
MM-Eureka-32B 74.8 34.4 73.4 56.5 62.1 53.4 72.2 61.0 56.4 58.5 58.3 56.6 57.5 59.7

Qwen2.5-VL-32B + GRPO
+ Policy&Reward 78.2 40.2 77.1 57.7 60.9 57.4 72.3 63.4 56.3 56.4 57.1 53.6 55.9 60.7

Ours
SPARK-VL-32B 79.1 40.2 76.7 59.2 62.9 59.4 77.4 65.0 60.3 62.7 61.4 59.6 61.0 63.5
∆ +4.4 +1.8 +7.6 +10.7 +1.6 +4.0 +24.5 +7.8 +3.3 +3.1 +2.2 +3.6 +3.0 +6.0

Notably, from Tab. 1 we also observe that SPARK-VL-7B achieves significant improvements on both
reward-related benchmarks, including RewardBench2 (+3.5%) and VL-RewardBench (+15.0%).
Although all reward-related data generated during training are mathematics-specific, these two re-
ward benchmarks span diverse domains. This indicates that SPARK is able to generalize its judg-
ment ability beyond mathematics and perform strongly on broader tasks.

Overall, these results demonstrate that policy and reward are not in competition but instead mutually
reinforcing. Joint optimization, when augmented with reflection, produces a synergistic effect that
drives simultaneous and significant improvements in both reasoning and judgment. Representative
reasoning cases on mathematical are illustrated in Fig. 3. More cases can be found in Appendix A.4.

Results on SPARK-7B To further assess the generalizability of our approach, we conduct ad-
ditional experiments on the LLM Qwen2.5-7B. As shown in Tab. 2, SPARK-7B achieves average
improvements of 5.4% on mathematical benchmarks, 12.0% on reward benchmarks, and 7.1%
overall, demonstrating consistent gains across diverse evaluation settings.

Models such as Simple-RL-Zero (Zeng et al., 2025) and the Policy-Only variant of Qwen2.5-7B
show declines on reward benchmarks, which reflects the trade-off between reasoning and judgment
ability. Moreover, we observe that Reward-Only GRPO training performs worse than Policy-Only
training on both reasoning and reward tasks. This suggests that the model tends to overfit to re-
ward signals, which in turn weakens its reasoning ability and prevents it from excelling in either
skill. The Policy&reward GRPO variant partially alleviates this issue by training both capabilities
simultaneously. Building on this, SPARK-7B further leverages on-policy co-evolution and reflection
mechanisms to more effectively fuse and reinforce reasoning and judgment, ultimately achieving a
substantial performance leap.
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Table 4: Evaluation Results on General Multimodal Benchmarks. We select multiple general multimodal
benchmarks to assess the generalization and robustness of our method.
Models MMBench MMStar MMMU MMVet ScienceQA POPE SeedBench RealWorldQA Average

Qwen2.5-VL-7B 82.2 64.1 58.0 69.7 89.0 85.9 77.0 68.4 74.3
VL-Rethinker-7B 82.3 65.4 59.0 69.3 87.8 86.1 76.3 69.3 74.4
MM-Eureka-7B 84.2 65.3 57.8 68.9 88.8 85.8 76.8 65.1 74.1

SPARK-VL-7B 84.4 67.3 58.7 71.5 90.8 88.2 77.2 68.5 75.8
∆ +2.2 +3.2 +0.7 +1.8 +1.8 +2.3 +0.2 +0.1 +1.5

Precision by Datasets

Dyn
aM

ath
Log

icV
ist

a

M
M

K12

M
ath

Vers
e

M
ath

Visi
on

M
ath

Vist
a

W
eM

ath

Recall by Datasets

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Qwen2.5-VL-7B Spark-VL-7B

+0.24
+0.71

+0.26

+0.29
+0.66

+0.25

+0.54 +0.51 +0.45

+0.56

+0.68

+0.27 +0.39

Dyn
aM

ath

Log
icV

ist
a

M
M

K12

M
ath

Vers
e

M
ath

Visi
on

M
ath

Vist
a

W
eM

ath

Log
icV

ist
a

M
M

K12

M
ath

Vers
e

M
ath

Visi
on

M
ath

Vist
a

W
eM

ath

Dyn
aM

ath

F1 Score by Datasets

0.0

0.2

0.4

0.6

0.8

1.0
+0.25

+0.38

+0.79
+0.45

+0.34

+0.43 +0.67

Qwen2.5-VL-7B Spark-VL-7B Qwen2.5-VL-7B Spark-VL-7B

Sc
or

e +0.88

Figure 4: Study on Model’s Reward Accuracy. We evaluate the model’s judgment ability by measuring its
accuracy in determining whether its own answers are correct.

Results on Qwen2.5-VL-32B To further examine the scalability of our approach, we conduct ex-
periments with Qwen2.5-VL-32B as the backbone. As shown in Tab. 3, SPARK-VL-32B achieves
improvements of +7.8% on mathematical benchmarks and +3.0% on reward benchmarks. These
results confirm that SPARK scales effectively to larger models, with the co-evolving mechanism
continuing to deliver consistent gains by leveraging the richer capacity of the backbone. This high-
lights both the robustness of our framework and its potential for application to even stronger models.

4.3 RESULTS ON GENERAL BENCHMARKS

We further assess our approach on a suite of general-purpose benchmarks to evaluate its capabil-
ities beyond mathematics and judgment tasks. As presented in Tab. 4, SPARK-VL-7B achieves
improvements of 2.2%, 3.2%, and 1.8% on MMBench (Liu et al., 2023), MMStar (Chen et al.,
2024), and MMVet (Yu et al., 2023), respectively, leading to an average gain of 1.5% across eight
benchmarks. Compared with other reinforcement learning approaches, SPARK extends its reason-
ing and reflection abilities beyond the mathematical domain, demonstrating stronger generalization
to diverse tasks.

4.4 JUDGMENT ACCURACY ANALYSIS

To further compare the judgment ability of SPARK with the Qwen2.5-VL-7B baseline, we conduct
an additional evaluation on self-judgment accuracy. Specifically, we use data from seven mathemat-
ical datasets as input: the model is required to first perform reasoning and then assess the correctness
of its own prediction. Based on these judgments, we compute recall, precision, and F1 scores. The
results, shown in Fig. 4, indicate that SPARK consistently outperforms the baseline across all three
metrics, with particularly pronounced gains on MMK12 (Meng et al., 2025), MathVerse (Zhang
et al., 2024), and WeMath (Qiao et al., 2024). These findings demonstrate that our training frame-
work enables strong self-judgment ability without relying on manually annotated preference data or
larger teacher models.

4.5 ABLATION STUDIES

Ablation Study on Test-Time Scaling In SPARK, we adopt a reflection-augmented test-time
scaling (TTS) strategy to activate the model’s integrated capabilities of reasoning, judgment, and
self-reflection. As shown in Tab. 5, applying TTS to Qwen2.5-VL-7B leads to a noticeable perfor-
mance drop across multiple benchmarks, primarily because its weak judgment and reflection skills
cause frequent misjudgments, especially when the number of reasoning rounds increases. For the
GRPO+Policy setting, TTS yields only marginal improvements. In contrast, SPARK achieves sub-
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Table 5: Ablation on Test-Time Scaling. We conduct ablation studies on the TTS. Specifically, we apply
judge-reflection-based TTS to both the Qwen2.5-VL-7B model and the GRPO-trained model to evaluate its
effectiveness.
Model MathVista MathVision WeMath MathVerse DynaMath LogicVista MMK12 Average
Baseline
Qwen2.5-VL-7B 68.2 25.1 62.1 49.2 53.3 40.4 45.1 49.1
Qwen2.5-VL-7B+TTS 68.5 18.4 24.1 29.9 52.7 43.1 42.8 39.9
Qwen2.5-VL-7B + GRPO
+ Policy 72.0 28.5 67.9 51.2 54.9 44.9 66.9 55.2
+ Policy & TTS 73.1 28.7 67.5 51.9 57.7 48.9 68.9 56.6

SPARK-VL-7B 75.9 31.1 70.3 53.0 58.7 50.7 71.8 58.8

Table 6: Ablation Study on Answer- vs. CoT-based Data Generation. We generate data on-policy using
either final answers, chains of thought (CoT), or a combination of both, and evaluate the impact of these
strategies on performance.

Model VLM Math Benchmark Avg-M Reward Benchmark Avg-R Avg-All

MathVista MathVision WeMath MathVerse DynaMath LogicVista MMK12 RB2 RB2-Math VL-RB VL-RB-Math

SPARK + Ans 73.8 29.1 69.0 51.9 58.1 46.2 69.9 56.9 47.2 41.8 57.9 63.9 52.7 55.3
SPARK + CoT 73.6 29.7 67.4 50.4 57.3 48.4 71.3 56.9 52.5 44.0 62.3 60.8 54.9 56.2
SPARK + Ans&CoT 75.9 31.1 70.3 53.0 58.7 50.7 71.8 58.8 49.3 39.2 62.7 65.1 54.1 57.1

stantially larger gains, benefiting from its inherently enhanced reasoning, judgment, and reflection
capabilities.

Ablation Study on Answer- vs. CoT-based Data Generation In SPARK training, on-policy
reward data can be generated either from final answers or from chains of thought (CoT). As shown
in Tab. 6, we compare three settings: using only answer-based data (55.3), using only CoT-based
data (56.2), and combining both (57.1). The results indicate that integrating both sources leads to
the best performance, suggesting that the complementary nature of answer- and CoT-based data
provides richer training signals and ultimately enhances the model’s learning effectiveness.

Table 7: Comparison between RM-based RL and
SPARK.

RM-based RL SPARK (Ours)
Extra Data (Preference) ✓ ✗
Extra RM Training ✓ ✗
GPU Cost ∼2× 1×
Reward Signal RM inference Rule-based signal
Efficiency Slower Faster

Cost Analysis Unlike traditional RM-based
RL methods, SPARK removes the need for an
additional reward model and extra preference
data. As shown in Tab. 7, RM-based RL re-
quires a separate RM training stage with large-
scale human or teacher annotations, and dur-
ing RL optimization, it repeatedly calls the RM
for reward inference, which doubles GPU us-
age and slows training. In contrast, SPARK
directly employs lightweight rule-based verifi-
able rewards to generate feedback on-policy, allowing a single unified model to optimize both policy
and reward. This design not only reduces data and computational costs but also ensures a faster and
more scalable training pipeline.

5 CONCLUSION

We presented the Synergistic Policy And Reward Co-Evolving FrameworK (SPARK), an efficient,
on-policy, and stable paradigm that unifies policy optimization and reward modeling within a sin-
gle model. Unlike prior RL pipelines that treat policy and reward in isolation or rely on costly
external reward models, SPARK recycles RLVR rollouts into judgment and reflection objectives,
enabling the model itself to function as both a strong policy and a generative reward model. This
co-evolving mechanism establishes a positive feedback loop: improved reward accuracy enhances
reasoning ability, while stronger reasoning in turn refines reward judgment, fostering self-reflection
and stability. Demonstrating substantial improvements on mathematical, reward, and general bench-
marks, SPARK offers a scalable and generalizable solution for RL, advancing a new paradigm where
reasoning, judgment, and reflection evolve synergistically.
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A APPENDIX

USAGE OF LARGE LANGUAGE MODELS

In this work, we made limited use of a large language model (LLM) as a writing assistant. Specifi-
cally, the LLM was employed solely for language polishing and minor grammatical improvements
of the manuscript text. It was not used for research ideation, experimental design, data analysis, or
substantive content generation. All technical contributions, results, and conclusions were developed
entirely by the authors.

OUTLINE

In the appendix, we provide additional supporting materials to facilitate a deeper understanding of
our work. First, in Sec. A.1, we summarize all the models, datasets, and benchmarks used in the
experiments of SPARK. Second, in Sec. A.2, we present the prompt templates employed in our
study, including those used during evaluation as well as the on-policy prompt designs adopted by
SPARK for reward and reflection data generation. Third, Sec. A.3 discusses related works on self-
reward and self-reflection. Finally, in Sec. A.4, we provide several illustrative reasoning cases from
SPARK on mathematical and reward benchmarks.

A.1 MODEL, DATASET AND BENCHMARK STATISTIC

A.1.1 MODELS

In our study, we adopt the Qwen family of models as the backbone, including Qwen2.5-VL-7B (Bai
et al., 2025), Qwen2.5-VL-32B (Bai et al., 2025), and Qwen2.5-7B (Yang et al., 2025a). Based
on these backbones, we train three corresponding variants of our proposed framework: SPARK-
VL-7B, SPARK-VL-32B, and SPARK-7B. These variants allow us to comprehensively evaluate the
effectiveness of SPARK across both multimodal and text-only settings, as well as across different
model scales.

For comparison, we benchmark against a wide range of existing RL-based approaches. In the
multimodal domain, we include VL-Rethinker-7B (Wang et al., 2025), MM-Eureka-7B (Meng
et al., 2025), OpenVLThinker-7B (Deng et al., 2025), Vision-R1-7B (Huang et al., 2025), and
R1-OneVision-7B (Yang et al., 2025b), all of which represent recent efforts to strengthen reason-
ing capacity in vision–language models through reinforcement learning. In the language domain,
we compare with Qwen2.5-Math-7B-Instruct (Yang et al., 2024), Simple-RL-Zero-7B (Zeng et al.,
2025), Eurus-2-7B-PRIME (Cui et al., 2025), and Open-Reasoner-Zero-7B (Hu et al., 2025), which
focus primarily on mathematical or general reasoning tasks within the NLP setting.

To further examine the generalization ability of SPARK across different scales, we additionally
evaluate against larger multimodal baselines, including VL-Rethinker-32B (Wang et al., 2025), MM-
Eureka-32B (Meng et al., 2025), and Vision-R1-32B (Huang et al., 2025). These larger-scale models
provide an important reference point to test whether the improvements introduced by SPARK are
preserved when scaling up.

A complete summary of all models used in our experiments, along with their categories (multimodal
vs. language-only, 7B vs. 32B scale), is provided in Tab. 8 of the supplementary material.

A.1.2 BENCHMARKS

We evaluate SPARK across three major categories of benchmarks: mathematical reasoning, reward-
related evaluation, and general multimodal understanding. This comprehensive setup ensures that
our analysis covers not only specialized domains but also broader tasks.

Mathematical Benchmarks. For multimodal mathematical reasoning, we adopt MathVista (Lu et al.,
2023), MathVision (Wang et al., 2024), WeMath (Qiao et al., 2024), MathVerse (Zhang et al., 2024),
DynaMath (Zou et al., 2024), LogicVista (Xiao et al., 2024), and MMK12 (Meng et al., 2025).
For text-only reasoning, we include AIME24, AIME25, AMC23, GSM8k (Cobbe et al., 2021),
Math500 (Lightman et al., 2023), and the MMLU STEM (Hendrycks et al., 2020). These datasets
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Table 8: Model Sources. We have compiled a list of all the models involved in the experiments along with
their parameter scale.

Models Parameter
Baseline
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 7B
Qwen2.5-VL-32B-Instruct (Bai et al., 2025) 32B
Qwen2.5-7B-Instruct (Yang et al., 2025a) 7B
Multimodal
VL-Rethinker-7B (Wang et al., 2025) 7B
VL-Rethinker-32B (Wang et al., 2025) 32B
MM-Eureka-7B (Meng et al., 2025) 7B
MM-Eureka-32B (Meng et al., 2025) 32B
OpenVLThinker-7B (Deng et al., 2025) 7B
Vision-R1-7B (Huang et al., 2025) 7B
Vision-R1-32B (Huang et al., 2025) 32B
R1-OneVision-7B (Yang et al., 2025b) 7B
Language-Only
Qwen2.5-Math-7B-Instruct (Yang et al., 2024) 7B
Simple-RL-Zero-7B (Zeng et al., 2025) 7B
Eurus-2-7B-PRIME (Cui et al., 2025) 7B
Open-Reasoner-Zero-7B (Hu et al., 2025) 7B

Table 9: Benchmark Sources. We have included information for all the benchmarks tested in the paper in
the table.

Setting Models

Mathematical
Multimodal
Benchmark

MathVista (Lu et al., 2023)
MathVision (Wang et al., 2024)
WeMath (Qiao et al., 2024)
MathVerse (Zhang et al., 2024)
DynaMath (Zou et al., 2024)
LogicVista (Xiao et al., 2024)
MMK12 (Meng et al., 2025)

Reward
Benchmark

RewardBench2 (Malik et al., 2025)
VL-RewardBench (Li et al., 2025)

General
Multimodal
Benchmark

MMMU (Yue et al., 2024)
MMVet (Yu et al., 2023)
MMBench (Liu et al., 2023)
MMStar (Chen et al., 2024)
POPE (Li et al., 2023)
ScienceQA (Lu et al., 2022)
SeedBench (Ying et al., 2025)
RealWorldQA

collectively test numerical reasoning, symbolic manipulation, logical deduction, and competition-
style problem solving under both textual and multimodal settings.

Reward-related Benchmarks. We adopt RewardBench2 (RB2) (Malik et al., 2025) and VL-
RewardBench (VL-RB) (Li et al., 2025) as representative reward evaluation benchmarks. Both focus
on assessing models’ ability to judge correctness and quality of generated outputs. In addition, we
separately report results on the mathematical subsets of these benchmarks, in order to analyze the
interplay between reward judgment and mathematical reasoning.

General-purpose Multimodal Benchmarks. To assess generalization and robustness beyond
math and reward domains, we evaluate on a diverse set of multimodal benchmarks, including
MMMU (Yue et al., 2024), MMVet (Yu et al., 2023), MMBench (Liu et al., 2023), MMStar (Chen
et al., 2024), POPE (Li et al., 2023), ScienceQA (Lu et al., 2022), SeedBench (Ying et al., 2025),
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"Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end.\nQuestion: 
How many objects are preferred by more than 90 percent of people in at least one category?
Please first conduct reasoning, and then answer the question. Repeat the final answer using a '\\boxed{}'."

Prompt for Mathematical Evaluation

Figure 5: Mathematical Prompt. Prompt suffix used for mathematical benchmark evaluation.

You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions. Please analyze the 
following image and question, then determine which of the two provided answers is better.

Question: {query}

Answer 1: {answers[0]}

Answer 2: {answers[1]}

Please evaluate both answers based on the following criteria:
1. Accuracy: How well does the answer align with the visual information in the image?
2. Completeness: Does the answer fully address all aspects of the question?
3. Clarity: Is the answer easy to understand and well-articulated?
4. Relevance: Does the answer directly relate to the question and the image?

After your evaluation, please:
1. Explain your reasoning for each criterion.
2. Provide an overall judgment on which answer is better (Answer 1 or Answer 2). For example: Overall Judgment: Answer X is 
better.

Your response should be structured and detailed, demonstrating your understanding of both the visual and textual elements 
of the task.

Prompt for VL-RewardBench Evaluation

Figure 6: Prompt for VL-RewardBench. In the figure, the placeholders query and answer should be replaced
with the specific content of each task.

and RealWorldQA. These benchmarks cover a wide spectrum of multimodal reasoning and under-
standing tasks, ranging from knowledge-intensive QA to real-world perception challenges.

A complete statistical summary of all benchmarks is provided in Tab. 9.

A.1.3 TRAINING DATA PREPARATION

Previous approaches that aimed to train a model’s judgment or reflection capabilities typically relied
on either reward data generated by a teacher model or manually annotated reflection traces. In
contrast, SPARK is able to generate the required reward and reflection training data on-policy during
policy’s RFT, guided by verifiable reward signals. This approach not only greatly reduces the cost
of data collection, but also ensures that the generated data evolves alongside model optimization and
remains consistently aligned with the model’s current policy distribution.

Leveraging SPARK ’s ability to generate reward and reflection data on-policy, we only need to
collect VQA triples consisting of images, questions, and answers. In our experiments, 19k randomly
sampled instances from ViRL-39k (Wang et al., 2025) are used to train SPARK-VL-7B, while 24k
difficulty-filtered instances from the same dataset are used for SPARK-VL-32B. For the language-
only variant SPARK-7B, we employ the Simple-RL-Zero-25k dataset (Zeng et al., 2025). All data
are represented in the form of (q, a, I), where q denotes the question, a the ground-truth answer,
and I the corresponding image. Notably, this setup requires no manually annotated reward data,
reflection traces, or judgment-oriented CoT trajectories.
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You're given a question and two possible answers. (A) and (B) may differ in correctness. Please analyze both answers carefully 
and decide which one is correct. After reasoning, restate your final choice using \\box{}.\n\n<Questions>:\n{question}\n\n(A) 
{answer_a}\n(B) {answer_b}\n\n<Judgement>:

You are a specialist in answer evaluation. For the given question and answer, perform logical reasoning to assess the answer's 
correctness. Then state your judgment as 'Yes' or 'No'. Finally, repeat your judgment inside 
\\box{}.\n\n<Questions>:\n{question}\n\n<Answers>:\n{answer}\n\n<Judgements>:

You are given a question and a reasoning process (CoT). Your task is to judge whether both the reasoning and the final answer 
are correct. If correct, summarize the logic and repeat the answer. If not, provide a correct reasoning process and 
answer.\n\nQuestion:\n{question}\n\nProvided CoT:\n{cot}\n\nPlease first conduct reasoning, and then answer the question. 
Repeat the final answer using a '\\boxed{}'.

You are given a question and a proposed answer. Judge whether the answer is correct. If it is, briefly confirm it. If it is 
incorrect, provide correct reasoning and the correct answer.\n\nQuestion:\n{question}\n\nAnswer:\n{answer}\n\nPlease 
first conduct reasoning, and then answer the question. Repeat the final answer using a '\\boxed{}'.

Prompt for On-Policy Data Generation

Figure 7: On-Policy Data Generation Prompts. The figure illustrates four different prompt templates used
for generating reward and reflection data.

A.2 PROMPTS

Evaluation Prompts During dataset evaluation, we appended an additional prompt at the end of
each mathematical problem to facilitate the separation of reasoning steps from the final answer. To
avoid over-constraining the model with rigid output formats (e.g., <think><answer>), we in-
stead instructed the model to enclose the final answer within \box{} after completing its reasoning
process. A concrete example is provided in Fig. 5.

For reward-related benchmarks, we followed the official evaluation prompts provided by each
benchmark. For instance, in VL-RewardBench (Li et al., 2025), we adopted the original prompt
format as illustrated in Fig. 6.

On-Policy Data Generation Prompts A key step in the policy–reward co-evolving training of
SPARK is the on-policy generation of reward and reflection data. During GRPO optimization, the
reward signals serve two purposes: on the one hand, they are used to compute the advantage for
updating model parameters; on the other hand, they guide the construction of reward and reflection
data. Specifically, chain of thought (CoT) or final answers filtered by reward values are wrapped
with carefully designed prompts and reorganized into new training samples. These samples further
enhance the model’s judgment and reflection abilities. Examples of the prompts used for reward and
reflection data generation are shown in Fig. 7.

A.3 RELATED WORKS

Self-Reward and Self-Reflection. Early studies have explored incorporating self-reward and self-
reflection into supervised fine-tuning (SFT) pipelines by generating reward or reflection data to
enhance reasoning abilities. For example, STaR (Zelikman et al., 2022) iteratively generates chain-
of-thought traces to improve its own reasoning capability. S2R (Ma et al., 2025) employs pre-
annotated self-verification and self-correction data for both SFT and RL training. COOPER (Hong
et al., 2025) leverages an external assistant to generate preference data, which are then used to train
a reward model. While these approaches demonstrate the potential of self-reward and self-reflection
for improving reasoning, they still rely on either external annotation data or independently trained
reward models. In contrast, our method is the first to unify policy and reward capabilities within a
single model by optimizing the GRPO framework. This co-evolving design breaks the conventional
paradigm of separately trained reward models, enabling policy and reward to mutually reinforce
each other, and integrates reasoning, judgment, and self-reflection into a unified process—without
the need for preference annotation or external reward modeling.
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Choice:
 ["A kitchen counter with a sink, blue plate, and knife block, along with cabinets below and above it; a dishwasher at the base of the cabinetry; a 
window with curtains on the left side; a towel rack on the wall to the right of the sink; a bottle on the counter; and a silver exhaust hood above the 
stove.",  "A clean and well-organized kitchen showcases a stainless steel gas cooktop, positioned centrally on the counter. Nearby, a stack of plates 
rests on a shelf above the dishwasher. The wall-mounted air vent is to the left of the sink and gas stove, while the paper towel holder containing 
white paper towels sits on the right, closer to the dishwasher. A chopping board with a knife lies on the counter, next to a green coffee mug and a 
bottle, both placed near the edge of the counter. The window's view reveals a glimpse of trees in the distance."]

Judgement:
To evaluate the answers, let's break down each criterion:\n\n1. **Accuracy**:\n   - **Answer 1**: This answer accurately describes the kitchen counter with a sink, blue plate, 
and knife block. It mentions cabinets, a dishwasher, a window, a towel rack, a bottle on the counter, and a silver exhaust hood. However, it does not mention the presence of a 
stove or a gas cooktop, which is a significant omission.\n   - **Answer 2**: This answer includes a stainless steel gas cooktop, a stack of plates, a wall-mounted air vent, a paper 
towel holder, a chopping board, a green coffee mug, and a bottle. It also correctly identifies the window and its view. However, it does not mention the sink, the blue plate, or the 
knife block, which are present in the image.\n\n......4. **Relevance**:\n   - Both answers are relevant to the question and the image, but Answer 1 is more accurate and 
complete.\n\n**Overall Judgment**: Answer 1 is better.\n\nThe reasoning is that Answer 1 is more accurate and complete, providing a clearer and more detailed description 
of the kitchen's contents and layout without including any inaccuracies. Answer 2, while attempting to be more descriptive, introduces errors and omissions that do not align with 
the visual information in the image.

You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions. Please analyze the following image and 
question, then determine which of the two provided answers is better......

Figure 8: Reward Reasoning Case. The example is taken from VL-RewardBench (Li et al., 2025).

A.4 CASE STUDY

In Fig. 9, we present several reasoning cases on mathematical problems, which provide an intuitive
demonstration of SPARK ’s integrated capabilities in reasoning, judgment, and reflection. The se-
lected examples highlight scenarios where the model engages in both reasoning and self-judgment.

Furthermore, in Fig. 8, Fig. 10 and Fig. 11, we showcase cases from VL-RewardBench. These
examples demonstrate that the judgment ability acquired by our method in mathematical tasks can
directly transfer and generalize to broader visual domains.
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Prompt:
The letter T is formed by placing two $ 2\\times 4$ inch rectangles next to each other, as shown. What 
is the perimeter of the T, in inches?\n\n
Please first conduct reasoning, and then answer the question. Repeat the final answer using a '\\boxed{}'.

<Reasoning>
To determine the perimeter of the letter T formed by placing two \\(2 \\times 4\\) inch rectangles next to each other, we need to visualize the 
shape and calculate the total perimeter step-by-step.\n\n1. **Visualize the T Shape:**\n   - When two \\(2 \\times 4\\) inch rectangles are 
placed next to each other, they form a T shape.\n   - The T shape has a vertical rectangle on the right and a horizontal rectangle on top.\n   - The 
vertical rectangle is \\(4\\) inches wide and \\(2\\) inches tall.\n   - The horizontal rectangle is \\(2\\) inches wide and \\(4\\) inches tall.\n\n2. 
**Calculate the Perimeter:**\n   - The perimeter of a shape is the sum of the lengths of all its sides.\n   - For the T shape, the perimeter is the 
sum of the lengths of the outer edges.\n   - The T shape has two vertical sides of \\(4\\) inches each, two horizontal sides of \\(2\\) inches each, 
and one additional side that is the overlap of the two rectangles, which is \\(2\\) inches.\n   - Therefore, the perimeter is calculated as follows:\n     
- Two vertical sides: \\(4 + 4 = 8\\) inches\n     - Two horizontal sides: \\(2 + 2 = 4\\) inches\n     - One additional side (overlap): \\(2\\) inches\n   
- Adding these together gives: \\(8 + 4 + 2 = 14\\) inches\n\nThe perimeter of the T is \\(\\boxed{16}\\) inches.
<Judgement>
The given answer is 16 inches. The answer is incorrect.\n\nTherefore, the judgment is \\boxed{No}."
<Reflection>
To determine the perimeter of the letter T formed by placing two \\(2 \\times 4\\) inch rectangles next to each other, we need to calculate the 
total perimeter of the resulting shape.\n\n1. **Identify the dimensions of the T-shaped figure:**\n   - The T-shaped figure consists of two \\(2 
\\times 4\\) inch rectangles placed one above the other.\n   - The top rectangle has a length of 4 inches and a width of 2 inches.\n   - The bottom 
rectangle also has a length of 4 inches and a width of 2 inches.\n\n2. **Calculate the perimeter:**\n   - When the two rectangles are placed next 
to each other, the top rectangle's right side and the bottom rectangle's left side will be aligned, forming a straight line.\n   - The perimeter of 
the T-shaped figure will be the sum of the outer edges of the two rectangles, minus the overlapping edges.\n   - The total perimeter can be 
calculated as follows:\n     - The top rectangle contributes 2 lengths (4 inches each) and 2 widths (2 inches each) to the perimeter.\n     - The 
bottom rectangle contributes 2 lengths (4 inches each) and 2 widths (2 inches each) to the perimeter.\n     - However, the overlapping edges (the 
4-inch sides of the rectangles) are not part of the perimeter of the T-shaped figure.\n   - Therefore, the perimeter is \\(2 \\times 4 + 2 \\times 
2 + 2 \\times 4 + 2 \\times 2 - 4= 8 + 4 + 8 + 4 -4 = 20\\) inches.\n\nThe correct final answer is \\(\\boxed{20}\\).

Prompt:
As shown in the diagram, there are several points around the protractor. Which point is located to 
the northwest of point A?\nA. Point B; B. Point C; C. Point D; D. No correct answer.
Please first conduct reasoning, and then answer the question. Repeat the final answer using a 
'\\boxed{}'.

<Reasoning>
To determine which point is located to the northwest of point A, we need to understand the direction indicated by the protractor. 
The protractor is oriented with the north direction at the top, which means that angles measured clockwise from the north 
direction will give us the directions.\n\n1. Identify the direction of point B relative to point A:\n   - Point B is located at an angle of 
30 degrees clockwise from the north direction.\n   - Therefore, point B is located 30 degrees east of north.\n\n2. Identify the 
direction of point C relative to point A:\n   - Point C is located at an angle of 0 degrees clockwise from the north direction.\n   - 
Therefore, point C is directly north of point A.\n\n3. Identify the direction of point D relative to point A:\n   - Point D is located at 
an angle of 45 degrees clockwise from the north direction.\n   - Therefore, point D is located 45 degrees north of east.\n\nSince 
the northwest direction is 45 degrees north of west, and point D is 45 degrees north of east, point D is not in the northwest 
direction. Point B is 30 degrees east of north, which is not northwest. Point C is directly north, which is not northwest. Therefore, 
none of the points are located to the northwest of point A.\n\nThe final answer is \\boxed{D}.",
<Judgement>
The given answer D is incorrect.\n\n\\boxed{No}"
<Reflection>
To determine which point is located to the northwest of point A, we need to understand the direction indicated by the protractor 
and the compass rose.\n\n1. The protractor is oriented with the top of the protractor aligned with the north direction. This means 
that the angles measured from the north direction will give us the directions of the points relative to north.\n2. Point A is the 
origin of the protractor, and we need to find a point that is northwest of A. Northwest is a direction that is 45 degrees west of 
north.\n3. Looking at the protractor, we see that point B is located at an angle of 45 degrees from the north direction. This means 
that point B is indeed northwest of point A.\n4. Point C is located at an angle of 90 degrees from the north direction.\n5. Point D is 
located at an angle of 30 degrees from the north direction.\n\nSince point B is the only point that is northwest of point A, the 
correct answer is:\n\n\\boxed{A}"

Figure 9: Math Inference Case.
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Prompt:
 You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions. Please analyze 
the following image and question, then determine which of the two provided answers is better.

Question:
How do the elements in the image relate to each other in terms of positioning or composition?

Spark Judgement:
### Evaluation Criteria\n\n

#### **1. Accuracy**\n- **Answer 1**: \n  - The description of the child attempting to catch a frisbee is accurate.\n  - The mention of a person 
near the end of the sidewalk is somewhat speculative, as the image does not clearly show another person walking.\n  - The car parked further away 
is accurately described, providing context for the urban environment.\n- **Answer 2**:\n  - The description of the child (young boy in blue jeans 
and a black jacket) is accurate.\n  - The frisbee is correctly identified as red and positioned above the child's head.\n  - The sidewalk, another 
person walking further down the pathway, and the parked cars are accurately described.\n  - The mention of a fire hydrant and a trash bag 
introduces elements not clearly visible in the image, which reduces accuracy.\n\n**Reasoning**: Answer 1 is slightly more accurate because it 
avoids introducing elements (like the fire hydrant and trash bag) that are not clearly visible in the image. However, both answers are generally 
accurate in describing the main elements.\n\n

#### **2. Completeness**\n- **Answer 1**:\n  - Focuses on the child, the frisbee, and the urban environment (sidewalk, car).\n  - Mentions a 
person near the end of the sidewalk, which adds context but is not explicitly shown in the image.\n  - Does not mention details like the child's 
clothing or the color of the frisbee, which are visible in the image.\n- **Answer 2**:\n  - Provides detailed descriptions of the child's clothing, the 
frisbee's color, and the surrounding environment (sidewalk, cars, fire hydrant, trash bag).\n  - Includes more specific details about the scene, such 
as the parallel street and the positioning of objects.\n  - While some elements (fire hydrant, trash bag) are not clearly visible, the answer is more 
comprehensive in its description.\n\n**Reasoning**: Answer 2 is more complete as it provides detailed descriptions of the child, the frisbee, and 
the surrounding environment. However, the inclusion of elements not clearly visible in the image slightly detracts from its completeness.\n\n

#### **3. Clarity**\n- **Answer 1**:\n  - The language is clear and easy to understand.\n  - The description is well-structured, focusing on the 
child's action and the urban setting.\n  - The flow of the answer is smooth, making it easy to follow.\n- **Answer 2**:\n  - The language is also 
clear and easy to understand.\n  - The description is detailed and provides a vivid picture of the scene.\n  - The answer is well-structured, but the 
inclusion of elements not clearly visible in the image (fire hydrant, trash bag) slightly complicates the clarity.\n\n**Reasoning**: Both answers are 
clear and well-articulated. However, Answer 1 is slightly clearer because it avoids introducing elements that are not clearly visible in the 
image.\n\n

#### **4. Relevance**\n- **Answer 1**:\n  - Directly addresses the question by focusing on the relationship between the child, the frisbee, and 
the urban environment.\n  - The description of the child's action and the surrounding elements is relevant to the question.\n  - The mention of a 
person near the end of the sidewalk is somewhat tangential but still related to the scene.\n- **Answer 2**:\n  - Addresses the question by 
describing the child's action, the frisbee, and the surrounding environment.\n  - Introduces elements (fire hydrant, trash bag) that are not clearly 
visible in the image, which reduces relevance to the question.\n  - The detailed description of the scene is relevant but includes unnecessary 
elements.\n\n**Reasoning**: Answer 1 is more relevant because it focuses on the elements that are clearly visible in the image and directly 
relates to the question. Answer 2 introduces elements that are not clearly visible, which reduces its relevance.\n\n

### **Overall Judgment**\n- **Answer 1** is better because it is more accurate, relevant, and clear. It avoids introducing elements that are 
not clearly visible in the image and focuses on the main elements of the scene (child, frisbee, urban environment) in a straightforward manner.\n- 
**Answer 2**, while more complete in its description, introduces elements that are not clearly visible in the image, which reduces its accuracy and 
relevance.\n\n**Final Answer: Answer 1 is better.**"
       

Answer 1: 
"In the image, a child is reaching out and attempting to catch a frisbee. The child's positioning suggests that they are standing on a sidewalk, while 
their arm extends out in an attempt to grasp the flying disc....In addition to the child and frisbee, there is a person near the end of the sidewalk, 
possibly observing or involved in the play. There is also a car parked further away from the main action, providing context of the urban 
environment surrounding the scene."

Answer 2:
"In the image, a young boy wearing blue jeans and a black jacket is actively engaged in catching a red frisbee. He is positioned on a sidewalk that 
stretches across the scene, with another person walking further down the pathway. .... A fire hydrant can also be seen near one of the parked cars, 
indicating the presence of urban infrastructure. Additionally, there's a trash bag placed behind the first car on the right side of the image. 
Overall, these elements come together to create an active and lively street scene centered around the boy playing frisbee."

Please evaluate both answers based on the following criteria:
1. Accuracy: How well does the answer align with the visual information in the image?
2. Completeness: Does the answer fully address all aspects of the question?
3. Clarity: Is the answer easy to understand and well-articulated?
4. Relevance: Does the answer directly relate to the question and the image?

After your evaluation, please:
1. Explain your reasoning for each criterion.
2. Provide an overall judgment on which answer is better (Answer 1 or Answer 2). For example: Overall Judgment: Answer X is better.

Your response should be structured and detailed, demonstrating your understanding of both the visual and textual elements of the task.

Figure 10: VL-RewardBench Inference Case 1.
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Prompt:
 You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions. Please analyze 
the following image and question, then determine which of the two provided answers is better.

Question:
Create a detailed description describing the elements of the given worldwide landmark image. Identify the name of 
the landmark and describe the objects, colors, perspectives, etc.

Spark Judgement:
### Evaluation Criteria\n\n

#### **1. Accuracy**\n- **Answer 1**: The description mentions a \"deep, green lake\" and \"rugged mountains,\" which aligns with the image. 
However, the mention of a \"clear blue sky\" is not evident in the image, as the sky is not visible. The name \"sa_1563\" is provided but is not a 
recognized landmark name, which introduces an element of inaccuracy.\n- **Answer 2**: This answer accurately describes the deep green color of 
the water and the rocky terrains surrounding the lake. It also correctly notes the perspective, which appears to be from a higher vantage point. 
Unlike Answer 1, it avoids mentioning elements (like the sky) that are not present in the image.\n\n**Reasoning**: Answer 2 is more accurate 
because it sticks to the visual elements present in the image without introducing unnecessary or incorrect details.\n\n

#### **2. Completeness**\n- **Answer 1**: While it provides a detailed description of the landscape, including the lake, mountains, and 
perspective, it includes the name \"sa_1563,\" which is not a recognized landmark. This adds incomplete or irrelevant information. Additionally, it 
does not explicitly address the question of identifying the landmark, which is a key part of the prompt.\n- **Answer 2**: This answer focuses on 
the elements visible in the image, such as the lake, rocks, and perspective. It acknowledges the challenge of identifying the exact landmark due to 
the lack of specific features, which is a honest and complete response given the information available.\n\n**Reasoning**: Answer 2 is more 
complete because it addresses the limitations of the image (e.g., the inability to identify the landmark) and focuses on the visible elements without 
adding unnecessary details.\n\n

#### **3. Clarity**\n- **Answer 1**: The answer is generally clear and well-articulated, with a smooth flow of description. However, the 
inclusion of the name \"sa_1563\" without explanation can be confusing and detracts from the clarity.\n- **Answer 2**: This answer is also clear 
and well-structured. It uses simple language to describe the scene and acknowledges the ambiguity regarding the landmark's identity, which adds 
to its transparency and clarity.\n\n**Reasoning**: Both answers are clear, but Answer 2 is slightly better because it avoids confusion by not 
introducing unclear terms like \"sa_1563.\"\n\n

#### **4. Relevance**\n- **Answer 1**: The answer is somewhat relevant, as it describes the image's elements. However, the inclusion of the 
name \"sa_1563\" is irrelevant and distracts from the actual content of the image. The description of the \"clear blue sky\" is also irrelevant 
since the sky is not visible.\n- **Answer 2**: This answer is highly relevant. It directly addresses the visual elements in the image, such as the 
lake, rocks, and perspective, and honestly discusses the difficulty of identifying the landmark. It stays focused on the image and the 
question.\n\n**Reasoning**: Answer 2 is more relevant because it stays focused on the image and the question, avoiding irrelevant details.\n\n

### Overall Judgment\n**Answer 2 is better.**\n\n**Reasoning**:\n- **Accuracy**: Answer 2 is more accurate as it avoids introducing 
elements not present in the image (e.g., the sky, the name \"sa_1563\").\n- **Completeness**: Answer 2 is more complete because it honestly 
addresses the limitations of identifying the landmark and focuses on the visible elements.\n- **Clarity**: Both answers are clear, but Answer 2 is 
slightly better for its transparency about the unknowns.\n- **Relevance**: Answer 2 is more relevant as it stays focused on the image and the 
question without introducing irrelevant details.\n\nOverall, Answer 2 provides a more precise, honest, and focused description of the image and its 
elements."

Answer 1: 
"The image showcases a breathtaking view of a mountainous region with a deep, green lake nestled amidst the rocky terrain. The perspective is 
from a high vantage point, providing a panoramic view of the landscape. The landmark, identified as \"sa_1563\", is a testament to the natural 
beauty and diversity of our world. The combination of the rugged mountains, the clear blue sky, and the vibrant green lake creates a serene and 
awe-inspiring scene."

Answer 2:
"The image showcases a serene mountain lake, nestled amidst rocky terrains. The deep green color of the water contrasts with the surrounding 
landscape, creating a tranquil scene. This landmark is a natural beauty, located in a hilly or mountainous region. The perspective of the image gives 
a sense of being high above the lake, looking down upon it. However, without specific identifiable features, it's challenging to determine the exact 
landmark from the description."

Please evaluate both answers based on the following criteria:
1. Accuracy: How well does the answer align with the visual information in the image?
2. Completeness: Does the answer fully address all aspects of the question?
3. Clarity: Is the answer easy to understand and well-articulated?
4. Relevance: Does the answer directly relate to the question and the image?

After your evaluation, please:
1. Explain your reasoning for each criterion.
2. Provide an overall judgment on which answer is better (Answer 1 or Answer 2). For example: Overall Judgment: Answer X is better.

Your response should be structured and detailed, demonstrating your understanding of both the visual and textual elements of the task.

Figure 11: VL-RewardBench Inference Case 2.
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