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Abstract

The rise in screen time and the isolation brought by the different containment
measures implemented during the COVID-19 pandemic have led to an alarming
increase in cases of online grooming. Online grooming is defined as all the
strategies used by predators to lure children into sexual exploitation. Previous
attempts made in industry and academia on the detection of grooming rely on
accessing and monitoring users’ private conversations through the training of
a model centrally or by sending personal conversations to a global server. We
introduce a first, privacy-preserving, cross-device, federated learning framework
for the early detection of sexual predators, which aims to ensure a safe online
environment for children while respecting their privacy.

1 Introduction

The unprecedented rise in screen time and isolation brought about by the COVID-19 pandemic has
left children more vulnerable than ever to online sexual exploitation. In 2021 alone, 85 million
pictures and videos of child sexual abuse have been reported worldwide [13]. In May 2022, to fight
against these growing numbers, the European Commission proposed a new regulation to compel
chat apps to scan private user messages for child abuse and exploitation [13]. This new regulation
was strongly condemned by privacy experts, who believed that implementing such mechanisms and
breaking end-to-end encryption of users’ messages could lead to mass surveillance [31].

Previous work on the identification of sexual predators has shown that the sexual predators’ discourse
contains specific indicators that can be leveraged for the detection of online grooming [26, 20, 25].
Some researchers focused on finding these linguistic cues by extracting lexical, syntactical, and
behavioral features from chat messages [16, 22]. Others have used deep learning techniques to learn
useful representations from text [33, 24]. Only a few treated the grooming detection problem as an
early risk detection task [19, 32], i.e. recognizing grooming while it is happening and intervention
is possible, as opposed to detection afterward. Furthermore, none of the proposed solutions were
concerned with ensuring the privacy of the training examples. This represents a major limitation for
the applicability of these models in a real-life setting, which is the main focus of this paper.

We present a novel privacy-preserving decentralized approach to train a context-aware language
model [8] for the early detection of sexual predators in ongoing conversations. To do this, we leverage
federated learning (FL) [23], an alternative to centralized machine learning (ML) that relies on a
global server orchestrating the training of different entities without sharing any raw data, enhanced
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with differential privacy (DP) [9] to provide formal privacy guarantees. Our key contributions are: (1)
a practical, cross-device, privacy-preserving FL framework for the early detection of sexual predators
in ongoing conversations; (2) an end-to-end implementation of our framework with an extensive
evaluation on a real-world dataset.

The remainder of this paper is organized as follows: in Section 2 we present the existing related work.
Section 3 introduces the preliminaries of our framework, which is then introduced in Section 4. In
Section 5 we discuss its implementation details and evaluate it on a real-world dataset. Finally, we
conclude with the ethical considerations surrounding such an application in Section 6 and discuss
possible future works in Section 7.

2 Related Work

In this section, we review the most relevant works to our proposed approach in three main categories.
First, we look at what has been done in the literature for the detection of sexual predators, then we
introduce related work on the early detection of sexual predators before presenting existing work on
decentralized text classification.

Detection of sexual predators. A competition organized at PAN-12 attracted attention to the task
of identifying sexual predators with the creation of a new annotated dataset for the detection of
grooming in messages [16]. Two problems were to be solved: (1) identify the predators among all
the users and (2) identify the grooming messages. The winners of the first problem [30] used neural
networks and SVMs to identify suspicious conversations on a pre-filtered version of the PAN-12
dataset, whereas the winners of the second problem [27] treated texts as sequences of symbols and
used kernel-based learning methods to classify the grooming messages. Recent work mainly adopted
deep learning techniques to solve the task [33, 24]. But all these approaches treated the problem from
a forensic perspective rather than for prevention.

Early risk detection. To block harm from occurring, grooming should be detected before a victim is
lured. Escalante et al. [11] made the first attempt at the early detection of sexual predators by adapting
a naive Bayes classifier for grooming prediction with partial information. The authors evaluated the
performance of their model with different percentages of words from the test set in a chunk-by-chunk
evaluation framework that was later extended using profile-based representation [12, 19]. More
recently, Vogt et al. [32] formally defined the task of early detection of sexual predators (eSPD),
moving away from existing work to propose a sliding window evaluation, and creating a new dataset
that is better suited for the task. We build on top of this work and use their proposed evaluation
framework and dataset.

Federated learning for text classification. The approaches above assume training and deployment
of models for grooming detection without concerns for privacy, i.e. while fully disclosing the users’
personal messages to a central server for model training. FL, a method for training models in a
decentralized fashion at the clients’ end, and intermittently aggregating them via a central server,
has been proposed as an alternative for natural language processing and text classification tasks (see
e.g. [14, 15]). While privacy is preserved to some extent in FL because no raw data is disclosed,
information about the clients’ training data may leak from the gradients or model parameters sent
to the central server [5, 6]. This information leakage can be mitigated by combining FL with
another privacy-enhancing technology such as differential privacy (DP), e.g. by training models with
differentially private gradient descent (DP-SGD) [1]. Basu et al. [3] have for instance recently applied
FL and DP-SGD for financial text classification. To the best of our knowledge, privacy-preserving
early detection of abusive content in a decentralized manner by leveraging both FL and DP-SGD, as
we propose in this paper, has not been investigated in the literature.

3 Preliminaries

In this section, we review several key topics upon which our proposed privacy-preserving early
detection of sexual predator framework relies. In our work, we leverage federated learning and
differential privacy to protect the privacy of users, hence we first introduce DP and then provide a
brief overview of the DP-SGD algorithm.
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Whilst FL protects the privacy of the clients by not requiring any raw data to be disclosed, FL in
itself does not offer formal privacy guarantees, and the resulting model can leak information about
the training data [6]. To mitigate such information leakage, FL can be combined with DP [9] to
provide plausible deniability regarding an instance being in a dataset, i.e. offering protection against
membership inference attacks.

Formally, DP revolves around the idea of a randomized algorithm – such as an algorithm to train
ML models – producing very similar outputs for adjacent inputs. In the context of this paper, two
datasets d and d′ are considered adjacent if they differ in one record (one labeled instance). A
randomized algorithm M : D 7→ R with domain D and range R is said to be (ϵ, δ)-differentially
private if for any adjacent datasets d and d′ and for all subsets of outputs S ⊆ R we have Pr[M(d) ∈
S] ≤ eϵPr[M(d′) ∈ S] + δ, where ϵ is the metric of privacy loss (privacy budget) whereas δ is
the probability of data being accidentally leaked. The smaller these values, the stronger the privacy
guarantees.

An (ϵ, δ)-DP randomized algorithm M is commonly created out of an algorithm M∗ by adding
noise that is proportional to the sensitivity of M∗, in which the sensitivity measures the maximum
impact a change in the underlying dataset can have on the output of M∗. This technique is used in
the differentially private stochastic gradient descent (DP-SGD) algorithm which aims at controlling
the influence the training data has on the final model by making the minibatch stochastic optimization
process differentially private through clipping and adding noise to the gradients [1]. At the end of
the training, the overall privacy cost of the mechanism (ϵ, δ) can be computed from the accumulated
costs across all training iterations. Often, a target ϵ is defined in advance whereas δ should be smaller
than the inverse of the size of the training data. We refer to Abadi et al. [1] for details.

4 Methodology

While protecting children from cybercrime is important, the main challenge is the balance between
safety and users’ privacy. In this section, we introduce the two steps of our privacy-preserving
framework for the identification of sexual predators. Our proposed framework consists of, first,
training a model in a federated manner on the local personal conversation of users with local DP
(training phase), and then evaluating its performance for the early detection task on the test set
(inference phase).

4.1 Training Phase: eSPD via Federated Learning

We introduce a cross-device federated architecture for the early detection of online grooming: our
model is intended to be deployed on each user’s cellular device and trained locally on their local data
without the need for monitoring them.

Our framework addresses multiple task-specific challenges: (1) training with imbalanced data, (2)
training with non-independent and identically distributed (non-IID) data and (3) ensuring that users’
personal data are protected during training.

(1) Dealing with imbalanced data. To deal with the problem of imbalanced data – namely very few
positive instances – that often comes with early risk detection problems, we implement Errecalde
et al. [10]’s oversampling technique. They considered that the minority class is formed not only
by the complete conversation but also by portions of the full conversation at different time steps.
Therefore, to account for the sequential nature of the eSPD problem we enrich our dataset with
chunks of conversations from the minority class, in our case, the conversations with a predator. By
giving our system more training examples of the beginning of a conversation with a predator, we
are able to gain detection speed. Furthermore, in a federated setting, having more data gives more
weight to a client during aggregation when we use the FedAvg algorithm, which helps alleviate the
imbalance problem.

(2) Training with non-IID data. One of the major challenges of FL is dealing with non-IID data
since each client’s local data distribution is not representative of the population [35]. This statistical
challenge is even more prevalent in the context of online grooming since most users are less likely
to interact with sexual predators. Thus, the detection of online grooming in a federated setting can
be viewed as an extreme case of non-IID data where most users will only have access to one label
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Figure 1: Early Detection of Sexual Predators: Training Phase

for training. Indeed, only the victims of online grooming will have access to both grooming and
non-grooming conversations.

We use Zhao et al. [34]’s data-sharing strategy during training in which a small portion of warm-up
data is distributed to each device in addition to the initial model. The warm-up data, which contains
public examples from both classes and is balanced, can be seen as a starting point for training, and
helps alleviate the statistical challenge. In their paper, Zhao et al. [34] also suggested sharing a
warm-up model with each client: a model trained centrally on the warm-up data. We experimented
with this strategy but realized that each client did not have enough data and with this strategy the
warm-up model may not learn from users’ raw data. Instead, we decided to only share a small fraction
of the warm-up data with each user during the training phase.

(3) Protecting users’ privacy. Although each client’s local data does not leave their device during
federated training, it has been shown that it is possible to reconstruct a client’s private data using its
shared updates [17], hence a federated architecture by itself does not guarantee privacy. We therefore
train each client’s model using DP-SGD (see Section 3), to mitigate leakage of personal information
to the server. By clipping the gradient norm of outliers and randomly adding noise during training,
we ensure that our model does not memorize any particular information about a single training data
point.

Figure 1 illustrates the training phase of our framework. A global server selects clients to participate
and distributes a model to them; the clients will then further train the model in a privacy-preserving
manner on their mobile devices using their own personal data as well as a portion of warm-up data,
as we can see in Alice’s cellular device.

4.2 Inference Phase: Early Detection of Sexual Predators

Our work is an extension of the framework proposed by Vogt et al. [32] for eSPD, i.e. the early risk
detection problem [21] of sequentially classifying a conversation and detecting early signs of online
grooming as soon as possible.

Vogt et al. [32]’s approach for the inference phase of an eSPD system relies on the use of a sliding
window for the sequential classification of a conversation. Here, a conversation consists of a sequence
of messages t1, t2, . . .

For a window of length l, at step s the classifier labels the sequence ts, ts+1, . . . , tl−1, at step s+ 1
the classifier labels the sequence ts+1, ts+2, . . . , tl etc.

After every window prediction, the system decides whether to raise a warning or not based on the
inferred labels of the last 10 window predictions. If a pre-defined threshold – called skepticism level –
is reached, a warning is raised and the whole conversation is classified as a grooming conversation. A
conversation is only classified as a non-grooming conversation if it is finite and no warning has been
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Figure 2: Early Detection of Sexual Predators: Inference Phase

raised. Indeed, an eSPD system never classifies a conversation as non-grooming if there are messages
left, or if it is still ongoing.

In Figure 2, we can see how the different messages received by Alice are analyzed by first being
turned into word embeddings and then passed to a classifier given a sliding window for classification.
Note that the final prediction is determined based on the previous sequence of predictions and that a
warning notification is triggered only when multiple messages are sequentially classified as being
grooming messages.

We can envision a system where users will be able to report their own suspicious conversations to the
messaging platforms, and will receive a notification if a warning is raised (see Figure 3).

5 Evaluation

In this section, we show the effectiveness of our proposed approach for the early detection task by
performing an empirical evaluation. All our experiments were performed on the PANC dataset.

5.1 Data

The PANC dataset was introduced by Vogt et al. [32] as a better alternative for the eSPD task. It was
created by merging the “negative” (non-grooming) conversations from the PAN 12 competition [16],
sampled from IRC logs and the Omegle forum,1 and the “positive” (grooming) conversations from
the ChatCoder2 dataset [22]: 497 complete conversations extracted from the Perverted Justice (PJ)
website2. They filtered the full grooming conversations and split them into segments to make them
comparable to the non-predatory examples and create a corpus better suited for the task of early
detection. Despite its numerous limitations, such as the lack of full negative conversations and
small differences in formatting between the two classes, we found that the PANC dataset is the most
appropriate available data for our task.

The PANC dataset (see Table 1) was split into a training set (60%) and a test set (40%). The training
set consists of 1,753 positive segments (representing in total 298 full-length positive conversations
and 9.06% of the training examples) and 17,598 negative segments, whereas the test set contains
10.84% examples of grooming.

In Figure 3, we present a visualization of a synthetic setup based on our proposed framework using a
predatory conversation from the PANC dataset. It can take weeks or even months before a warning
notification is triggered when a child is being lured by an abuser. Our goal is to minimize the harm by
detecting the abuse early and sending a notification to the user. It is up to the user to decide whether
to continue the conversation or report the predator. Note that in our framework, both training and

1https://www.omegle.com
2http://www.perverted-justice.com/
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Table 1: Statistics about the PANC dataset [32]

Number of segments Words/segment Messages/segment

Label train test train test train test

0 17, 598 (91%) 11, 733 (89%) 173 (±1, 385) 184 (±1529) 36 (±25) 36 (±26)
1 1, 753 (9%) 1, 426 (11%) 289 (±218) 292 (±222) 64 (±43) 65 (±43)

Figure 3: Visualization of eSPD in which the risk is detected, a warning is raised after passing a
threshold, and the user is notified as early as possible.

inference phases are happening locally and users’ personal conversations are never shared with a third
party. Moreover, the global aggregated model from the server can further be tuned and personalized
based on users’ local data.

5.2 Evaluation Metrics

In addition to the established metrics of precision, recall, and F1 score, we use the latency-weighted
F1 score introduced by Sadeque et al. [28] for the early risk detection task. The F-latency metric
measures the trade-off between the speed of detection (i.e. how early in a converation grooming is
detected) and the accuracy of the warning by applying a penalty that increases with the warning
latency. A higher F-latency score means a better-performing eSPD system. The warning latency is
defined as the number of messages exchanged before a warning is raised [32]. The penalty can be
computed for each warning latency l ≥ 1 as follows:

penalty(l) = −1 +
2

1 + e(−p·(l−1))

where p defines how quickly the penalty should increase. As suggested by Sadeque et al. [28], p
should be set such that the latency penalty is 50% at the median number of messages of a user.

The “speed” of an eSPD system over a test set of grooming conversations is defined as speed =
1− median{penalty(l) | l ∈ latencies} where “latencies” corresponds to the list of warning latencies
produced by the system for all grooming conversations for which a warning is raised.

We can then formally define F-latency as: F-latency = F1 · speed.
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While F1 is computed across the entire test set of positive and negative messages, penalty and speed
are computed for the positive conversations only. This is common practice in the literature as the
delay needed to detect true positives is a key component of the early risk detection task [21, 28].

5.3 Experimental Set-Up

Data manipulation. As explained in Section 4, we leverage the oversampling technique proposed
by Errecalde et al. [10] to our training data to improve the speed of our system’s detection. As such,
we add four additional segments to each grooming conversation in our training set: the first 10%
characters of the full conversation, then 20%, 30%, and 40% of the full conversation. We selected the
number of augmented data portions with the help of hyperparameter tuning.

Furthermore, to implement the data-sharing strategy, we split the augmented PANC training set into
three: 10% of the dataset is randomly selected to create the warm-up data, and the rest is split between
a training set (81%) and a validation set (9%). Finally, since neither the test set nor real-life data will
be augmented, we remove the additional chunks of data from the validation set.

To ensure that no bias came from the warm-up split, we repeated the process three times and tested
our model with every split. We have also experimented with different sizes of warm-up data (1% and
5%) and concluded that a 10% split was better suited for the task.

Federated set-up. In our cross-device federated framework, we create each client by randomly
selecting one user from the training set. In our dataset, each user corresponds to a unique conversation,
either predatory or non-predatory. And as seen in Subsection 5.1, whereas each "positive" user has
multiple segments of data, each "negative" user only has one segment of data.

Therefore, to compensate for the lack of non-predatory examples, if the user selected is a "negative"
user, we then select 10 additional "negative" users and combine their data. Furthermore, at initial-
ization, each client receives a random, balanced portion of the warm-up data: 10 segments with a
“negative” label and 10 segments with a “positive” one to complement their own data.

Choice of the classifier. Although fine-tuning BERT has been shown to give better results for the
early detection task [32], we use the pre-trained feature-based approach with logistic regression (LR)
since it is far less computationally expensive and better suited for scaling federated training to a large
number of clients.

In our framework, each user uses the BERTBASE model to create a context-aware representation
of their personal conversation by extracting fixed features from the pre-trained model. The [CLS]
representation of the last layer is then used as an input for LR with a binary cross entropy loss
function. For each user’s segment, we, therefore, obtain a 768 length vector.

Implementation. We use Flower [4], an FL framework that facilitates large-scale experiments
through its simulation tools, to implement our setup and collaboratively train a logistic regression
model with 10,000 clients for 100 rounds. At each round of training, we select 10% of the clients
randomly to participate in the training, and the parameters are aggregated with the FedAvg algorithm
[23].

The optimal number of rounds was determined by following the evolution of the validation loss of
different models during training.

Training with DP-SGD. Every client selected for the training process will train its data with logistic
regression with differentially private stochastic gradient descent. A random grid search was conducted
to test for different hyperparameters: notably, the selected range for the gradient clipping level is
(0.5, 1, 2, 5, 7), and we tried (0.01, 0.05, 0.001, 0.0001) for the learning rate, (8, 16, 32, 100) for the
batch size, and (5, 10, 15, 20, 100) for the number of local epochs of training.

All the models were evaluated using a 50-message sliding window and a skepticism level of 5, i.e.
5 of the last 10 predictions had to be positive before a warning was raised. Finally, Appendix A
presents the resources used for training our models. Our eSPD implementation can be found at
https://github.com/khaoulachehbouni/fl-espd.

5.4 Empirical Results

We investigate three research questions in our experiments:
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Table 2: Evaluation results of the early online grooming detection task

Model F1 Recall Precision Speed F-latency FPR

Baseline 0.50 0.98 0.33 0.96 0.48 0.24
Centralized 0.75 0.95 0.62 0.83 0.63 0.07

Cross-Device FL 0.82 0.85 0.79 0.79 0.64 0.03
Cross-Device FL+DP-SGD (ϵ = 1) 0.76 0.86 0.68 0.81 0.61 0.10

RQ1: How is the utility of the eSPD system affected by the FL framework?

To address the first research question, we compare the utility of our cross-device approach with two
baselines: (1) Baseline (warm-up data): A logistic regression model trained centrally on the warm-up
data only, to ensure that our framework is not too biased by the warm-up data distributed to each
client; and (2) Centralized LR: A logistic regression model trained centrally on the training data and
the warm-up data.

Both centralized models used five-fold cross-validation for hyperparameter tuning whereas the best
hyperparameters for the federated models have been chosen using a random search.

In Table 2 we can see that the federated frameworks show competitive results for the early detection
task. Indeed, the cross-device FL model has the higher F-latency score, and the loss of utility
that comes with making our model differentially private is moderate. We believe that this good
performance can be attributed to the fact that cross-device training gives more importance to the
minority class than centralized training. Indeed, the FedAvg algorithm takes into consideration the
amount of data held by each client to aggregate the models, and in our case, the "positive" users train
with more examples. The warm-up data also alleviates the imbalance problem by giving each user
enough examples of both class.

In addition to showing slightly better results for the early detection task (with a 64% F-latency score),
the cross-device framework also has the lowest false positive rate (3%).

Furthermore, we see that the speed of the baseline model is very high but it also comes with a higher
false positive rate (FPR): detection speed always comes at the cost of precision. The baseline model
also has a very low F-latency: our model is therefore not biased by the data sharing strategy and it is
indeed learning from each client’s personal data.

RQ2: How to reduce the harm of false positives in eSPD?

In eSPD, the emphasis is often put on the detection of predators since missing one could cause a lot
of harm. Indeed, the F-Latency metric depends on both the F1-score and the speed. And while the
F1-score takes into consideration both recall and precision, the speed does not penalize for precision:
a model that predicts every conversation as being predatory will have a very high speed. Therefore,
we propose an approach to adjust our model to consider the cost of falsely accusing someone as
predator.

For this purpose, for each of our models, we identify the classification threshold that is needed to
achieve a 1% false positive rate (FPR) when evaluated on the test set. Using this new threshold, we
re-evaluate our models. Table 3 shows that varying the threshold comes with a loss in speed, which is
to be expected since higher prediction scores are now needed to classify a window as a grooming
conversation. Furthermore, the results for the baseline model are not presented because the smaller
FPR attained for this model with a 0.99 classification threshold is 9%, showing that it was falsely
classifying non-predatory conversations as predatory.

Finally, we notice a decrease in F-latency for all the models, a necessary trade-off to achieve better
precision.

Figure 4 shows the distribution of the warning latencies after we change the classification thresholds
of each model to attain a target low false positive rate (FPR=1%). We can see that a larger number of
messages is needed in average to attain better precision. In early risk detection, a trade-off is always
necessary between the speed of detection and the precision of a warning.

RQ3: How does differential privacy impact the eSPD system?

To evaluate the cost of privacy on eSPD systems, we experiment with adding various amounts of
noise ϵ to the training process.
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Table 3: Evaluation results for a 1% FPR

Model F1 Recall Precision Speed F-latency

Baseline – – – – –
Centralized 0.85 0.83 0.88 0.69 0.59

Cross-Device FL 0.83 0.78 0.89 0.73 0.61
Cross-Device FL+DP-SGD (ϵ = 1) 0.78 0.70 0.88 0.72 0.57

Figure 4: Warning latencies for a skepticism level of 5 with the classification threshold needed to
achieve a 1% FPR

We observe that the less performing model is the one with the highest privacy constraints: with an ϵ
of 0.50, we notice a drop of 8% of the F-latency score for the most private model as seen in Figure 6.
However, we notice that there is no loss in utility when ϵ is greater than 10. Furthermore, as we can
see in Figure 5, the precision graph has a steeper slope and therefore seems to be more impacted by
the differentially-private training.

Indeed, it has been shown that DP-SGD does not affect the performance of a model equally and that
minority classes may be more affected by the training process [2]. In our case, making our model
more private may result in a decrease in its ability to detect predators adequately.

6 Limitations and Ethical Considerations

In this section, we explore the limitations of our proposed approach and ethical considerations relating
to the implementation of such a tool in a real-life setting.

Beyond the privacy issues, a main challenge in addressing the sexual predators’ identification task
through machine learning comes from the lack of publicly available labeled and realistic datasets. The
different datasets used in the literature all take their grooming examples from the PJ website, which
are examples of conversations between predators and adults posing as children to catch them. Such
chats have been shown to differ from real-life conversations and lack certain aspects of grooming
like overt persuasion and sexual extortion [29]. Indeed, volunteers are often actively trying to get
the offenders to be sexually explicit and to arrange an encounter, which is not the case in real-life
settings. Furthermore, the non-grooming examples often come from forums and chatrooms where
strangers can interact or engage in cyber-sex. Lack of negative examples of trusting and intimate
relationships between family members, friends, or partners is an issue of the current datasets which
are essential components for a realistic eSPD task.

9



Figure 5: Impact of the privacy budget on the utility of a cross-device federated model. All the
models were evaluated on the full test set.

Figure 6: Impact of the privacy budget on the early detection performance of a cross-device federated
model. All the models were evaluated on the full test set.
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We hope that the federated architecture we propose in this paper, will give access to a larger range
of training examples. Indeed, since each user will be given the option to report abusive content, the
conversations flagged as alleged grooming will then be added to the pool of training examples, thus
alleviating the lack of realistic and available labeled datasets. Such a system will allow the training
examples to be updated regularly and will consider the growing speed at which language, especially
internet slang, evolves.

However, we can imagine that even with such a framework, the labeling will still be an issue since it
will rely on users self-reporting cases of grooming. We could think of a preliminary training phase
with real data of convicted predators before deploying a pre-trained model to evaluate each user’s
personal conversation and send a notification where a warning is raised by the eSPD system. Such
a model will also alleviate the privacy cost since the first training phase will happen on publicly
available data. In this setting, the user will be able to give feedback on the model’s prediction. But
such a set-up is certainly not ideal, since actual victims of online grooming often trust their abuser
and may not realize that they are being manipulated. Notifying a third party, such as a legal guardian
or a social worker tasked with monitoring the flagged content, may increase the chances of a case of
grooming being reported but will undoubtedly infringe on the privacy of the victim.

Involving law enforcement could also have disastrous consequences. As we have mentioned in
subsection 5.4, the resulting model could be biased towards certain populations like sex workers,
people from the LGBTQI+ community, or people prone to online dating. Evaluating and selecting the
best model based on a classification threshold that guarantees a 1% false positive rate can be a first
step towards ensuring that the eSPD system does not falsely incriminate. Furthermore, pre-trained
language models used to extract a context-aware representation of personal conversations, like BERT,
have been shown to reproduce racial and gender biases [18]. Using such models as a basis for
identifying potential suspects to be prosecuted could lead to unanticipated outcomes. Such a system
should therefore never be used directly by law enforcement agencies at the risk of exacerbating
existing social inequalities and persecuting innocents.

Finally, the literature and datasets used for our experiments concern male predators, both heterosexual
and homosexual, that do not know their victims. The lack of data available about female abusers does
not allow us to assume that our model is applicable to the detection of female predators.

7 Conclusion and Future Directions

In the wake of the new European Commission’s regulation [13], social media companies will be
expected to take action to ensure that their underage users are safe from sexual exploitation when
using their platforms. Doing so would entail breaking end-to-end encryption and monitoring users’
content, which can easily lead to human rights infringements as we have seen recently with the case
of the teenager charged for abortion in Nebraska after Meta turned over her personal chat messages
to the police [7]. Alternatives to existing privacy-invasive monitoring systems are therefore more
pressing since the COVID-19 pandemic has increased the need for children’s safety. In this paper, we
presented a first-of-its-kind federated learning framework for the early detection of sexual predators
and we showed that the utility of our system is comparable to the utility of a model trained in a
centralized manner while fully protecting users’ personal data rights.

We believe that protecting children from sexual exploitation should not come at the cost of privacy
or additional abuse. Finally, it is also essential to consider the possible biases such a model could
have and the high cost of falsely accusing someone as a predator since large pre-trained models come
with racial and gender biases inherited during training [18]. Addressing these challenges remain as
future direction of this work. Finally, we believe that our framework can be extended to any early
risk detection problem: future work could explore the use of our framework for the detection of
cyberbullying or depression.
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A Appendix: Computational ressources

A.1 Training phase

Table 4: Time and resources used to train the different models

Model Memory CPUs Time

Baseline 16 GB 4 1 min
Centralized 16 GB 4 1 min

Cross-Silo FL 32 GB 4 2 min
Cross-Device FL 32 GB 4 3 h

Cross-Device FL+DP-SGD (ϵ = 1) 32 GB 8 3 h

Table 4 presents the resources used to train the different models. Note that the embedding extraction
with BERT was done separately and with an NVIDIA Tesla T4 GPU (it takes around 20 minutes).

Many of the experiments performed in this work were limited by scalability issues. For example, we
could not use a GPU while running an experiment with more than 10,000 clients since, in the Flower
simulation setting, resources must be shared between all participating devices, which is not the case
in a real-life setting where each device brings its own resources.

A.2 Inference phase

The early detection evaluation takes around 2 hours with an NVidia A100 GPU (with 40 GB of
memory).
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