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Grounded language acquisition through the eyes
and ears of a single child
Wai Keen Vong1*, Wentao Wang1, A. Emin Orhan1, Brenden M. Lake1,2

Starting around 6 to 9 months of age, children begin acquiring their first words, linking spoken words to
their visual counterparts. How much of this knowledge is learnable from sensory input with relatively
generic learning mechanisms, and how much requires stronger inductive biases? Using longitudinal
head-mounted camera recordings from one child aged 6 to 25 months, we trained a relatively generic
neural network on 61 hours of correlated visual-linguistic data streams, learning feature-based
representations and cross-modal associations. Our model acquires many word-referent mappings present
in the child’s everyday experience, enables zero-shot generalization to new visual referents, and aligns
its visual and linguistic conceptual systems. These results show how critical aspects of grounded word
meaning are learnable through joint representation and associative learning from one child’s input.

P
hilosophers and cognitive scientists have
argued that learning a new word re-
quires sorting through a vast, poten-
tially infinite set of candidate meanings
(1–3). For instance, when a child hears

the word “ball” in an utterance, how do they
learn to associate thiswordwith round, bouncy
objects (i.e., the correct visual referents), rather
than with other features, objects, or events?
Young children are highly adept word learners:
At 6 to 9 months, they begin connecting words
to their visual counterparts (4). By 18 to
24months, they can comprehend 300words on
average, mostly nouns (5, 6). How do children
get started onword learning?What ingredients
(e.g., learningmechanisms and representational
commitments) are needed to learnword-referent
mappings from early experience?
The nature of these ingredients is the sub-

ject of intense interest and debate. One promi-
nent theory is that word learning is driven by
simple, domain-general, associative learning
mechanisms (7–11), such as tracking the co-
occurrencesbetween stimuli inwaysnonspecific
to language. Alternative theories point to stron-
ger constraints on word learning (e.g., innate
knowledge or domain-specific inductive biases;
for instance, that different words have different
meanings) (12–14), or to other emerging cogni-
tive abilities that actively support word learn-
ing (e.g., reasoning and social cognition) (3, 15).
Each account is well-supported by empirical
studies in the lab (3, 9, 13, 14, 16, 17), but ac-
knowledging the evidence formultiple learning
mechanisms, often measured across different
developmental time points, does not reveal
their relative importance. Nor does it pro-
vide sufficient guidance for building compu-
tational models that, like children, aim to learn
outside the lab. If a model could perceive the

world through a child’s eyes and ears, would
it need strong inductive biases or additional
cognitive capacities to get word learning un-
derway? Or would a simpler account driven
by associative learning, in conjunction with
feature-based representation learning (18),
suffice?
In this article, we put the simplest theories

of word learning to an unprecedented test:We
examine the learnability of word-referent map-
pings from a single child’s longitudinal head-
mountedvideo recordings. Todo so,we introduce
the Child’s View for Contrastive Learning mod-
el (CVCL, as shown in Fig. 1B)which instantiates
a form of associative learning that is cross-
situational, tracking the co-occurrences between
words andpossible visual referents to determine
their mappings (10, 19–22). CVCL interprets this
idea through recent advances in multimodal
(e.g., vision-and-language) machine learning
that integrates representation learning and
associative learning (23–26), using a contras-
tive objective that coordinates two neural net-
works, a vision encoder and a language encoder.
Trained in a self-supervised manner (i.e., using
only the recordings from the child’s view and
no outside labels), the contrastive objective
brings together the embeddings (vectors) of
video frames and linguistic utterances that
temporally co-occur (treating the co-occurrences
as positive evidence),while separating those that
do not (treating the absence of co-occurrence
as implicit negative evidence), as shown in
Fig. 1B. Assuming that spoken utterances cor-
relate with observable visual referents, CVCL
converts these temporal associations into a
smooth learning signal for learning and align-
ing its multimodal representations. Without
strong constraints on word meaning, nor ad-
vance knowledge of possible visual referents,
this combination of representation learning
and associative learning enables the recovery
of many, although not all, of the underlying
word-referent mappings from a child’s re-
corded input.

We train CVCL on the SAYCam-S dataset of
longitudinal egocentric video recordings from
an individual child (27), which consists of clips
over a 1.5-year period of the child’s life (6 to
25months), with a total of 600,000 video frames
paired with 37,500 transcribed utterances (ex-
tracted from 61 hours of video; data examples in
Fig. 1A, with additional details in the Supple-
mentary Materials or SM S.4). Thus, SAYCam-S
provides an extended, first-person window into
one child’s experiences, but it only captures
about 1% of the child’s waking hours (28) and
misses other aspects of their experience (e.g.,
action and embodiment). Despite these lim-
itations, applying machine learning to the
most realistic proxy experience to date can
help illuminate the necessary ingredients
for learning (29, 30).
We find that CVCL can learn powerful multi-

modal representations from limited slices
of one child’s experience. In the following
sections, we show that CVCL is capable of
matching a range of everyday words to their
corresponding visual referents in categoriza-
tion tasks, generalizing to highly novel vi-
sual exemplars not seen during training, and
achieving broad-scale alignment between vi-
sual and linguistic conceptual systems. Our
results suggest that multimodal representa-
tion learning paired with domain-general,
associative learning mechanisms provides a
computational foundation for breaking into
word learning.

Evaluating acquired word-referent mappings

After training was completed, we evaluated
CVCL and various alternative models for the
quality of their learnedword-referentmappings.
Adapting a common procedure for testing
children (Fig. 1, C and D) (31), models were
prompted with a target category label and
selected the corresponding visual referent among
four candidate images (based on their cosine
similarity to the label). Figure 2A shows the
results for Labeled-S: an evaluation dataset
of frames annotated with 22 visual concepts
that were jointly present in this child’s visual
and linguistic experience. This dataset was
adapted from (32) [see supplementarymaterials
(SM) S.5 for additional details]. Overall, CVCL’s
classification accuracy was 61.6%. Figure 2D
shows the breakdown in performance across
thedifferent evaluation categories,whereCVCL’s
performance for 11 out of the 22 concepts was
found to be within 5% of the upper-bound
estimate from CLIP (25), a similar image-text
contrastive neural network, but trained on sev-
eral orders ofmagnitudemore data (400million
image-text pairs from theweb). To address any
potential issues related to category overlap in
the evaluation frames, we also conducted a
follow-up evaluation using amanually filtered
subset with 15 mutually exclusive categories
(see SM S5 and fig. S3).
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CVCL was compared to alternatives (see SM
S2 for details) that aimed to capture meaning-
ful lower and upper bounds on perform-
ance (Fig. 2A). To lesion the visual-linguistic
co-occurrences, we trained a variant using a
training dataset in which the co-occurring
frames and utterances were randomly shuffled
and instead paired with other frames and ut-
terances from the training set (CVCL-Shuffled),
breaking the original co-occurrence links while
preserving the information from each indepen-
dent modality. This model performed at chance
(mean, M = 26.7%), showing the critical role
of consistent visual and verbal co-occurrence

for learning. To lesion the use of strong visual
embeddings (CVCL-Random Features), CVCL’s
vision encoder was randomly initialized and
frozen during training. Again, performance
dropped substantially (M = 38.0%), although a
few concepts such as “sand” and “car” were
partially acquired (Fig. 2D). We also estimated
two upper bounds on performance based on
models that use either outside or oracle training
data, beyond what a child has access to.
Evaluating CLIP (25) out-of-the-box achieved
66.7% accuracy, a 5.1% improvement over CVCL,
owing to the relative improvement of a few
concepts such as “kitchen,” “toy,” and “basket.”

Thus, CVCL’s performance is comparable to
a strong web-scale contrastive model when
tested within-distribution. Finally, to exam-
ine the performance achievable with direct
supervision with individual category labels
(from the manually annotated Labeled-S eval-
uation set) rather than child-directed utter-
ances, we trained a Linear Probe model. This
Linear Probe was constructed by fitting a
linear classifier on top of the frozen pre-
trained vision encoder (initialized from self-
supervision) and achieved 81.6% accuracy
based on thousands of within-distribution
supervised examples.

Fig. 1. CVCL model architecture and evaluation procedure. (A) Examples of
paired frames and child-directed utterances (transcribed) from a single video in
the SAYCam-S dataset, highlighting the noisy and sparse co-occurrences
between visual and verbal information. (B) Images and utterances are embedded
in a joint vector space through separate modality-specific neural networks.
During training, matching pairs are brought closer (higher cosine similarity)

whereas mismatching pairs are pushed apart. Example evaluation trials with
(C) visually similar or (D) visually distinct images from those seen during
training. The goal is to select the image matching the target concept’s label.
(E) During evaluation trials, the encoders produce embeddings for the target
concept’s label and each of the candidate images. The image with the highest
cosine similarity with the label is selected.
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As a follow-up,we aimed to quantify the value
of a word occurring in a natural utterance ver-
sus in a directly labeled example. As shown in
Fig. 2B, we trained additional Linear Probes
with fewer labeled examples (using 10 and 1%
of the available labeled data), with the number
of natural language examples for CVCL and
directly labeled examples for the Linear Probes

displayed in table S2. Reducing the amount
of directly labeled supervision resulted in an
expected decrease in classification accuracy
to 77.2 and 65.9%, respectively (with per cat-
egory performance in fig. S2). Despite the
limited number of labeled examples in the
1% Linear Probe, its performance was margin-
ally better than and most comparable to

that of CVCL (Fig. 2B). Furthermore, by com-
paring their relative frequencies, we can
conservatively estimate that one directly lab-
eled example is worth at least seven examples
from natural language. Nevertheless, natural
language supervision has the advantage ofmore
accurately representing what children learn
from, and enabling a flexible representational
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Fig. 2. Image classification accuracy from Labeled-S evaluation. (A) Performance of CVCL (green) compared to alternative models that represent upper
and lower bounds. The performance of the upper bounds cannot be directly compared to CVCL because they are trained with much more (or cleaner) data.
(B) Performance of CVCL compared to multiple Linear Probes trained with varying levels of direct supervision. (C) Performance of CVCL compared to CVCL
model variants. (D) Performance broken down by target category. In each graph, error bars represent standard error across models trained with three different
random seeds, and the dashed line represents chance accuracy.
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Fig. 3. Zero-shot classification accuracy from Konkle objects evaluation.
(A) Performance of CVCL as evaluated using 64 visual categories. Error bars
represent standard error across three models trained with different random
seeds, and the black dashed line represents chance accuracy. The colored dash
lines represent the overall accuracy across all trials for CVCL, as well as the other
upper and lower bounds. CVCL performed significantly above chance, and
better than either lower-bound estimate, but still struggled across many

categories, whereas both upper bounds were close to ceiling (owing to
training on these types of images). (B) In each row, two randomly selected
training examples (image-utterance pairs) for four different visual concepts
(in bold) are shown, alongside four test examples corresponding (left to right) to
the two top, the median, and the worst exemplars. The percent correct
below each generalization example refers to performance when this image is
the target.
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scheme that accommodates an unbounded
number of visual concepts. Separately, to ex-
amine whether other factors influenced the
learnability of word-referent mappings, we
also trained and evaluated additional var-
iants of the CVCL model, varying either
aspects of the model architecture or the train-
ing procedure, although none performed
better than CVCL itself (see Fig. 2C and SM
S2 for details). Overall, our findings sug-
gest that many of the earliest word-referent
mappings can be acquired from as few as
10 to a hundred naturally occurring word-
referent pairs.

Generalizing to novel visual exemplars

Using the same training runs, we also mea-
sured CVCL performance on the Konkle Objects
evaluationdataset, containingnaturalistic object
categories derived from (33) [see Fig. 1D and
fig. S1 (right panel) for example trials, and SM
S5 for details]. This evaluation included 64 visual
concepts whose corresponding words were all
present in CVCL’s vocabulary (34), with images
containing a single object on a white back-
ground, inspired by the kinds of laboratory
experiments used to study infant language
development (4). This allowed us to examine
whether the words learned by CVCL generalize
to out-of-distribution visual stimuli—that is, novel
category examples on an atypical background.
As summarized in Fig. 3A, CVCL demonstrates
modest knowledge of these additional visual
concepts, with 16 of the 64 concepts scoring
better than 50% correct and an additional
42 concepts scoring above chance (25%). The
overall accuracy was 34.7%, and although this
was lower than the Labeled-S evaluation, the
task demands a larger set of concepts (whose
word frequency in the training set was highly
varied; see table S3), as well as the additional
difficulty of out-of-distribution generalization.
Additionally, both of the lower bounds were
around chance accuracy (25.6 and 23.4% for
the CVCL-Shuffled and CVCL-Random Features
models respectively),whereas bothupper-bound
estimates were near ceiling (99.4 and 90.7%
for CLIP and the Linear Probe models, re-
spectively), as bothmodels are trained on these
types of images.
These results show how CVCL’s multimodal

representations can permit out-of-distribution
generalization, consistent with other larger-
scale demonstrations of this ability (25, 35).
To illustrate the degree of visual generalization
required in this evaluation, Fig. 3B presents some
naturalistic training instances (from the child’s
view) of a word embedded in an utterance,
matched with novel test images used for eva-
luation (alongwith their classification accuracy).
Furthermore, this evaluation closely resembles
the kinds of stimuli presented in classic infant
word learning experiments (4, 31), demonstrating
that representations acquired outside the lab

can explainhow infants generalize tonovel visual
stimuli inside the lab.

The organization of multimodal
representations

In this section, we present three families of
analyses exploring the structure of the learned
multimodal representations in CVCL. First, we
examined the extent to which CVCL’s visual
and linguistic conceptual systems align. For
example, if both the vision and word embed-
dings for “car” are independentlymore similar
to “road” than “ball,” this would indicate good
multimodal alignment (36, 37).
Using the 22 concepts from Labeled-S, we

computed a visual prototype for each concept
by randomly sampling 100 annotated frames,
extracting their imageembeddingsandaveraging
across frames. We also retrieved each concept’s
correspondingword embedding.Next, we com-
puted all pairwise cosine similarities from these
embeddings (both within and across modal-
ities) and visualized their relationship using
t-distributed stochastic neighbor embedding
(t-SNE) as shown in Fig. 4, A and B. In Fig.
4A, the dashed lines represent the distance
between each concept’s corresponding visual
centroid and word embedding. Because many
of these cross-modal distances are small, we
examined whether the within-modal similari-
ties between concepts (via cosine) are related
across vision and language, finding a signifi-
cant degree of conceptual alignment (correla-
tion coefficient r = 0.37, p < 0.001). These
relationships did not hold for either of the two
lower bounds for CVCL (fig. S4). Furthermore,
alignment distance was also strongly nega-
tively correlated to classification performance
(r = −0.65, p = 0.001), with some of the least
accurate categories exhibiting the largest dis-
tance between their respective visual proto-
type and word embeddings [e.g., “hand” (38);
fig. S5]. Figure 4B illustrates a subset of la-
beled image embeddings from each concept,
highlighting that different visual concepts
vary in how tightly clustered their examples
are. By considering visual variability as the
average Euclidean distance of a concept’s vi-
sual embeddings to its visual prototype (37),
we also find a strong negative correlation
to classification performance (r = −0.48, p =
0.025), suggesting that CVCL’s difficulty with
word-referent mappings such as “hand” and
“toy” is linked to their visual variability, com-
pared to tightly clustered concepts like “car”
and “crib.”
Next, we visualize how different word em-

beddings interact with image embeddings in
CVCL (Fig. 4C). Examining three different con-
cepts, we observe that the images that themodel
predicts to bemost similar to a particular word
embedding (shown in green) closely approxi-
mate the true set of labeled images from each
class (shown in blue), with the full set of concepts

shown in fig. S6. We find that CVCL learns to
represent different sets of visually similar
items from a concept as distinct subclusters,
despite using a single vector per word. For
example, the word embedding for “stairs”
most strongly activates two separate clusters
representing indoor versus outdoor stairs,
whereas “puzzle” produces two other clusters
that represent alphabet versus animal puzzles.
Previous psychological theories of concept
learning often required explicit, built-inmech-
anisms to capture substructurewithin concepts
(39, 40), but in CVCL, we find that multicluster
representations emerge implicitly through con-
trastive learning.
We also qualitatively examined CVCL’s ability

to localize referents. For a given image, we
obtained an attention map by applying Grad-
CAM (41), highlighting image regions most rel-
evant to the target category by computing a
weighted sumof the final convolutional layer’s
featuremaps (using weights based on a spatial
average of the gradient of the image-text cosine
similarity with respect to the featuremaps).We
can overlay this attention map over the image
and check for any correspondence between
the location of the referent and the attention
map. Figure 5 presents multiple examples of
attention maps from four concepts. For some
classes, CVCL’s attentionmaps provide evidence
of object localization: The highest activating
regions in the attention map closely track
the locationof the referent. Additional randomly
selected attention maps are shown in fig. S7.

Discussion

In this article, we introduced the CVCLmodel,
a deep neural network for grounded word
learning from slices of one child’s egocentric
experience. Across a series of experiments, we
found that CVCL can acquire word-referent
mappings through naturalistic learning, gen-
eralize beyond the specific visual referents in
the child’s environment, and align its visual
and linguistic representations. Our work builds
on recent advances in multimodal machine
learning (23, 25, 26, 42), which also learn to
associate words and visual referents, although
through increasingly large and unrepresentative
training datasets compared to how children
learn. Owing to this data gap (43), the rel-
evance of these machine learning advances
for understanding early language acquisition
has been, until now, unclear. Here, we showed
how CVCL can effectively learn words from
developmentally realistic data from an indi-
vidual child. Establishing learnability from indi-
vidual (rather than aggregate) data (30, 44–47) is
noteworthy because children must learn
language from their own limited input. In this
more rigorous and ecologically valid setting,
CVCL suggests that paired representation and
associative learning provides a genuine start
to this problem.
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CVCL’s successes have broader implications
for theories of word learning. Alternative theo-
ries posit reliance on strong inductive biases,
specialized language machinery, or other cog-
nitive abilities, in part, because word learn-

ing was assumed to be too hard otherwise
(2, 3, 13, 14) (with different perspectives fo-
cusing on evidence from different develop-
mental ages). CVCL’s focus on learnability
withminimal ingredients shows how represen-

tation learning and associative, cross-situational
mechanisms (9, 19, 22, 48) are sufficient to
acquireword-referentmappings fromonechild’s
first-person experiences. Rather than count-
ing co-occurrences between discrete symbolic

Fig. 4. Conceptual alignment of visual and language modalities. (A) A t-SNE
plot derived from the cosine similarities between the mean image embeddings
and text embeddings from concepts in Labeled-S, showing the high degree of
alignment across the visual and linguistic conceptual systems. (B) t-SNE plots
showing 100 labeled image embeddings for each concept (randomly chosen),
highlighting how concepts vary both in how many distinct clusters are required to
represent them and how tightly clustered or loosely scattered points from the
same class can be. Additionally, for each concept, we also show its corresponding
text embedding (diamond) and mean image embedding (circle). (C) In each plot, we
visualize how CVCL predictions compare to the labeled examples using t-SNE, using

a subset of the frame embeddings from the Labeled-S evaluation. The blue points on
the left correspond to the 100 frames belonging to a particular category, and the
green points on the right correspond to the 100 highest activating frames (based on
the cosine similarity to each concept’s word embedding from CVCL). Below
each plot, we show multiple example frames belonging to either one or multiple
subclusters for each concept, capturing how word embeddings interact with image
embeddings in the joint embedding space. For example, for the word “stairs,” we see
that one cluster represents images of indoor wooden stairs, and the other main
cluster represents images of the outdoor blue set of stairs. All of the t-SNE plots in
these figures are derived from the same set of joint image and text embeddings.
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entities like traditional cross-situational models,
CVCL encodes both words and images using
distributed vectors (49–52). The contrastive ob-
jective leverages the temporal co-occurrence of
words and images as an associative learning
signal, enabling the incremental acquisition
and alignment of multiple word-referent map-
pings jointly, and sidestepping previous con-
ceptualizations of word learning as a discrete
search over a vast number of candidate hypo-
theses (1, 53). Contrastive learning is also a

broadly applicable and domain-general learn-
ing strategy (26, 52, 54), allowing CVCL to
learn representations informed by both within-
domain [e.g., word-to-word (49–51)] and across-
domain (e.g., word-to-image) correlations (36).
Although our primary aim was establishing

the learnability of word-referentmappingswith
minimal ingredients, CVCL’s successes do not
rule out more sophisticated forms of represen-
tation and reasoning, especially ones that might
emerge in later development (55). These include

mutual exclusivity (13), the principle of contrast
(12), the shape bias (56), syntactic cues (57),
social or gestural cues (15), or hypothesis gen-
eration (58). Each of these additional factors
has empirical support and their inclusionmay
further improve learning, to the extent that
they do not already emerge from training. Sub-
sequent research could systematically test
for their contributions on top of CVCL, by
incorporating these biases into the architecture
or training procedure (59, 60). Nevertheless, our

Fig. 5. Attention maps generated by Grad-CAM for four different categories
showing some object localization capabilities in CVCL. Each plot contains eight
different examples from a category, with the corresponding normalized attention
map below, where yellow indicates regions with the highest attention. For the top
two categories (ball and car), we see that the model can localize the intended

referent across different views. However, in the bottom two categories (cat and
paper), the attention maps are sometimes misaligned with the referent, showing
that this ability to localize referents is not consistent across all categories. Images
were manually selected from Labeled-S where the referent was visible and clear
but did not take up the entire frame.
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findings suggest that they are not essential
formaking genuine progress onword learning
from one child’s experience.
Future work could aim to bring learning

in children and models closer together by
incorporatingmore cognitively plausible assump-
tions into the model. For example, children
learn from temporally extended episodes (61),
whereas CVCL learns from independent still
frames, likely affecting the learnability of verbs
and other abstract words. Second, children
are fundamentally active, embodied learners,
whereas CVCL must learn passively from re-
corded visual-linguistic experience. CVCL’s suc-
cesses are implicitly supported, in part, by the
child’s actions, attention, and social engage-
ment, although other benefits of active learn-
ing are beyond the model’s reach (62). Third,
children learn continually from an ongoing
stream of experience, whereas CVCL learns by
revisiting its training data repeatedly overmulti-
ple epochs, although continual contrastive
learning has been successful too (63). Finally,
young childrenmust learn from speechwhereas
CVCL learns from transcribed utterances, trad-
ing useful speech cues like intonation and em-
phasis for explicit word boundaries (30).
Even with these modeling and data limita-

tions, CVCL demonstrates how grounded word
learning is achievable from slices of a single
child’s experience. There are other aspects of
word meaning, such as links to beliefs, inten-
tions, and general semantic knowledge (64, 65),
that are beyond the scope considered here. Still,
CVCL’s promising performance on naturalistic
word learning shows the power of combining
representation learning and associative learn-
ing for addressing a long-standing challenge
in early language acquisition.
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