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Speech Reconstruction from Silent Lip and Tongue Articulation
by Diffusion Models and Text-Guided Pseudo Target Generation

Anonymous Authors

ABSTRACT
This paper studies the task of speech reconstruction from ultra-
sound tongue images and optical lip videos recorded in a silent
speaking mode, where people only activate their intra-oral and
extra-oral articulators without producing real speech. This task
falls under the umbrella of articulatory-to-acoustic (A2A) conver-
sion and may also be referred to as a silent speech interface. To
overcome the domain discrepancy between silent and standard vo-
calized articulation, we introduce a novel pseudo target generation
strategy. It integrates the text modality to align with articulatory
movements, thereby guiding the generation of pseudo acoustic
features for supervised training on speech reconstruction from
silent articulation. Furthermore, we propose to employ a denoising
diffusion probabilistic model as the fundamental architecture for
the A2A conversion task and train the model using a combined
training approach with the generated pseudo acoustic features. Ex-
periments show that our proposed method significantly improves
the intelligibility and naturalness of the reconstructed speech in
the silent speaking mode compared to all baseline methods. Specifi-
cally, the word error rate of the reconstructed speech decreases by
approximately 5% when measured using an automatic speech recog-
nition engine for intelligibility assessment, and the subjective mean
opinion score for naturalness improves by 0.14. Moreover, analyti-
cal experiments reveal that the proposed pseudo target generation
strategy can generate pseudo acoustic features that synchronize bet-
ter with articulatory movements than previous strategies. Samples
are available at our project page1.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Natural language generation.

KEYWORDS
articulatory-to-acoustic conversion, silent speech interface, diffu-
sion probablistic model, pseudo target

1 INTRODUCTION
The human speech production process intricately involves the co-
ordination of various vocal organs, particularly the collaboration
between the lips and tongue, which manipulate the shape of the
1Samples are available at https://anonymous.4open.science/w/Diff-A2A-F494/.
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vocal tract to produce different phonemes. Therefore, articulatory
and acoustic features are intrinsically linked [26]. Motivated by
the above theory, this paper studies the articulatory-to-acoustic
(A2A) conversion task, focusing on reconstructing speech from lip
videos and ultrasound tongue images [3, 18]. This task also falls
under the umbrella of silent speech interfaces (SSIs), which rely
on non-acoustic signals generated during the speech production
process to enable communication in scenarios where regular verbal
communication is impossible [5, 7, 38]. The exploration of A2A
conversion not only deepens the understanding of speech produc-
tion mechanisms but also provides diverse practical applications,
such as facilitating speech communication for patients with dys-
phonia and assisting communication when speech is not available
or desirable.

Over the past few years, there has been a great deal of work
studying speech reconstruction from either the tongue[4, 8, 21, 43],
lip[9–11, 19, 20, 44], or a combination of both [15, 16, 49]. These
studies mainly look at a standard vocalized speaking mode, where
speakers’ larynx and lungs function normally, and they naturally
receive auditory feedback while speaking. However, people adopt
different speaking modes in different scenarios. Under some cir-
cumstances where silence is required, or for some laryngectomy
patients, speakers tend to utilize a silent speaking mode instead of
the standard vocalized mode. In this mode, speakers only activate
their oral and nasal articulators but suppress their laryngeal activity,
and consequently, no speech is produced as output. Reconstructing
speech from silent articulation faces the following two challenges.
First, models trained on the vocalized data cannot be directly ap-
plied to the silent mode due to the domain discrepancy between
vocalized and silent articulation, including incomplete, reduced,
and prolonged articulator movements in the silent speaking mode
[6, 36, 41, 42, 49]. Second, since no speech signals are produced in
the silent speaking mode, traditional supervised training paradigms
cannot be directly applied to training models with silent articula-
tion as input. A previous study has proposed to employ pseudo
target generation, accompanied by domain adversarial training and
iterative training strategy [50] to address these challenges, show-
casing certain improvements of speech reconstruction in the silent
speaking mode.

Nevertheless, the discrepancy between vocalized and silent ar-
ticulation can lead to low-quality pseudo targets generated by the
previous strategy [50], thereby impacting the overall performance
of reconstructing speech from silent articulation. To overcome this
challenge, this paper introduces a novel pseudo target generation
strategy, named the dubbing strategy. This strategy integrates a new
text modality to describe the linguistic content of the silent articula-
tion, without resorting to cumbersome iterativemethods or complex
adversarial training strategies to learn from corresponding vocal-
ized articulation, as utilized in previous work [50]. Specifically, by
learning the alignment between text and articulation, the dubbing

https://anonymous.4open.science/w/Diff-A2A-F494/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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strategy generates pseudo acoustic features synchronized better
with the given articulatory movement than previous method while
maintaining content consistency with the provided text, thereby im-
proving the overall task performance. Notably, as text information
is usually unfeasible in practical applications, the generated pseudo
acoustic features serve solely as supervision targets for training
A2A conversion models in the silent speaking mode.

Furthermore, we propose an A2A conversion architecture based
on a denoising diffusion probabilistic model (DDPM) [12], which is
conditioned on lip and tongue articulatory representations. DDPMs,
abbreviated as diffusion models, have obtained state-of-the-art per-
formance across various speech generation tasks, including neural
vocoder [1, 22], speech enhancement [30, 47], and text-to-speech
(TTS) synthesis [14, 17, 24, 25]. In line with these methods, we
construct a diffusion-based A2A conversion architecture. Specifi-
cally, the proposed architecture involves an articulation encoder
for transforming lip videos and ultrasound tongue images into hid-
den articulatory representations and a diffusion-based spectrogram
denoiser to synthesize acoustic features from random noise condi-
tioned on these hidden representations step-by-step. Our proposed
diffusion-based architecture demonstrates the ability to generate
less over-smoothing and more diverse acoustic features than pre-
vious non-probabilistic generative models. Moreover, training the
proposed diffusion-based A2A conversion model with a combi-
nation of pseudo acoustic features generated by different pseudo
target generation strategies can further improve the naturalness
and intelligibility of the speech reconstructed from the silent lip
and tongue articulation, as proven by the experimental results.

The main contributions of this paper are summarized as follows:
(1) To overcome the domain discrepancy between vocalized

and silent articulation, we introduce a novel pseudo target
generation strategy, integrating the text modality to guide
the generation of pseudo acoustic features for supervised
training on speech reconstruction from silent articulation.

(2) We propose a diffusion-based A2A conversion model as the
fundamental architecture for reconstructing speech from lip
videos and ultrasound tongue images. Besides, a combined
training approach is proposed to further improve the natu-
ralness and intelligibility of the reconstructed speech in the
silent mode.

(3) Experimental results demonstrate that our proposed method
enhances the naturalness and intelligibility of the speech
reconstructed from lip videos and ultrasound tongue images
in the silent speaking mode. In addition, analytical experi-
ments reveal that the proposed dubbing strategy can gen-
erate pseudo acoustic features that synchronize better with
articulatory movements than the previous method [50].

2 RELATEDWORK
2.1 Diffusion-based TTS models
Diffusion models have achieved state-of-the-art performance across
various speech generation tasks, particularly in TTS [14, 17, 24, 25],
where they usually serve as the decoder to transform text embed-
dings into acoustic features. These diffusion models typically com-
prise a forward diffusion process and a reverse denoising process.
The diffusion process is defined by a fixed 𝑇 -step Markov chain

from initial data x0 to the latent variable x𝑇 ∼ N(0, I) as follows:

𝑞(x1, · · · , x𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1)

=

𝑇∏
𝑡=1

N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I),

(1)

which gradually converts the data x0 to whitened latent x𝑇 by
adding small random noise according to a predefined noise schedule
{𝛽𝑡 }𝑇𝑡=1. The reverse denoising process is a Markov chain from x𝑇
to x0, parameterized by shared 𝜃 , which aims to recover samples
from Gaussian noises:

𝑝𝜃 (x0, · · · , x𝑇−1 |x𝑇 ) =
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 |x𝑡 )

=

𝑇∏
𝑡=1

N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), 𝜎2𝑡 I),

(2)

where 𝜇𝜃 (x𝑡 , 𝑡) and 𝜎2𝑡 are the mean and variance of the added
Gaussian noise at 𝑡-th step, respectively.

Current diffusion-based TTS models can be classified into two
main categories: gradient-based models and generator-based mod-
els [14]. Gradient-based TTS models [17, 22, 24] parameterize the
denoising model 𝜃 by predicting Gaussian noises 𝜖 in the diffu-
sion process with a neural network 𝜖𝜃 . Therefore, the training loss
function is defined as the mean squared error in the 𝜖 space. How-
ever, these gradient-based TTS models usually require hundreds
of thousands of denoising steps to guarantee high sample quality,
leading to substantial computational costs. Different from gradient-
based TTS models, generator-based TTS models [14, 25] directly
predict clean data x0 with a neural network 𝑓𝜃 and then add back
perturbation using the posterior distribution 𝑞(x𝑡−1 |x𝑡 , x0). In this
case, the training loss function is defined as the mean squared er-
ror in the data x0 space. These generator-based TTS models have
the advantage of expediting sampling from a complex distribution
while retaining satisfactory TTS performance. In this paper, we
construct our proposed A2A conversion architecture based on a
generator-based diffusion model.

2.2 Speech Reconstruction from Lip and Tongue
Articulation

TaLNet [49] currently stands as the state-of-the-artmodel for speech
reconstruction from ultrasound tongue images and lip videos in
the vocalized speaking mode on Tongue and Lip (TaL) dataset [37]
with an encoder-decoder architecture. The encoder of TaLNet first
encodes the input tongue images and lip videos into articulatory hid-
den representations, which are then decoded into acoustic features
through a decoder. The produced acoustic features are ultimately
fed into a well-trained neural vocoder to synthesize the final speech
waveforms. The decoder of TaLNet is migrated from a Tacotron2-
based TTS acoustic model [39]. To train TaLNet, a multi-speaker
Tacotron2 model is first built on a multi-speaker TTS corpus. Then,
its decoder is transferred as a TaLNet decoder and jointly trained
with the encoder of TaLNet.
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Figure 1: Proposed A2A Conversion Architecture

Since TaLNet [49] focuses on speech reconstruction from vocal-
ized articulation, it suffers from significant performance degrada-
tion on silent articulation. Zheng et al. [50] have proposed further
enhancements for TaLNet [49] and achieved state-of-the-art results
of speech reconstruction in the silent speaking mode on the TaL
dataset [36]. Their method utilizes dynamic time warping (DTW)
to align the articulatory representations outputted by the TaLNet
encoder from corresponding vocalized and silent articulation whose
linguistic contents are the same. The acoustic features of the vo-
calized utterance are then aligned based on the alignment path to
obtain pseudo acoustic features and facilitate supervised training
on silent articulation. Additionally, their method incorporates a
domain discriminator to encourage the encoder to learn articula-
tion representations robust in both vocalized and silent domains.
Finally, iteratively conducting pseudo target generation and do-
main adversarial training are suggested to generate high-quality
pseudo acoustic targets. Although their method has improved the
model’s performance on silent articulation, it relies on complex ad-
versarial training strategies and intricate iterative steps, indicating
potential areas for further optimization. In particular, the DTW-
based pseudo target generation strategy depends on the alignment
between silent and vocalized articulation but overlooks their dis-
crepancy. To address this issue, we propose a novel text-guided
pseudo target generation strategy, resulting in pseudo acoustic
features well-synchronized with the silent articulatory movements.

3 PROPOSED METHOD
In this paper, we propose a new A2A conversion architecture based
on a diffusion model. The architecture is detailed in Fig. 1. To
overcome the discrepancy between vocalized and silent articulation,
we introduce a novel pseudo target generation strategy, named
dubbing strategy, to synthesize synchronized acoustic features for
silent articulation under the guidance of text. Further details are
depicted in Fig. 2. The proposed diffusion-based model is then
trained with the pseudo acoustic features generated by the dubbing

strategy using a combined training approach. We will introduce
each component in this section.

3.1 Diffusion-based A2A Conversion Model
The proposed A2A conversionmodel has an encoder-decoder frame-
work comprising an articulation encoder and a spectrogram de-
noiser, as shown in Fig. 1(a). Initially, the articulation encoder con-
verts input lip videos and ultrasound tongue images into articu-
latory hidden representations. Subsequently, the spectrogram de-
noiser generates predicted acoustic features conditioned on the
articulatory hidden representations. Finally, the generated acoustic
features are converted into speech waveforms through a vocoder.

3.1.1 Articulation Encoder. The structure of the encoder mirrors
that of the TaLNet [49] encoder, which includes two identical
parallel sub-encoders designed for processing ultrasound tongue
images I𝑡𝑜𝑛 = [I𝑡𝑜𝑛,1, · · · , I𝑡𝑜𝑛,𝐹 ] and optical lip videos I𝑙𝑖𝑝 =

[I𝑙𝑖𝑝,1, · · · , I𝑙𝑖𝑝,𝐹 ], where 𝐹 represents the length of input artic-
ulation frames. Each sub-encoder consists of several stacked 3D
convolutional and MaxPooling layers, as illustrated in Fig. 1(b). For
both tongue and lip frames, pixel-wise mean and standard deviation
are computed for each speaker, repeated, and then appended as
extra channels to the ultrasound and lip sequences. Therefore, the
resulting input is of dimension 3×𝐹×𝐻×𝑊 , where𝐻 and𝑊 denote
the height and width of the lip and tongue images. Within the sub-
encoder processing, the spatial dimensions 𝐻 and𝑊 are reduced
while the time dimension 𝐹 is preserved. The final convolutional
layer outputs are flattened along the time axis and pass through
a linear layer to produce a single vector for each frame. Lastly,
the vectors from each sub-encoder are fused and passed through
a fully connected layer to yield the final hidden representations
{H𝐴}𝐹𝑖=1 ∈ R𝐹×𝐷 , where 𝐷 is the feature dimension.

3.1.2 Spectrogram Denoiser. The spectrogram denoiser adopts a
similar architecture to the acoustic models in diffusion-based TTS
models [14, 25], as illustrated in Fig. 1(c). It employs a noncausal
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Figure 2: Pseudo Target Generation Module

WaveNet architecture [33], consisting of a 1× 1 convolutional layer
and 𝑁 convolution blocks with residual connections and projecting
the input articulatory representations with 𝐷 channels. All residual
blocks have a CNN-based speaker embedding transforming block.

The spectrogram denoiser, parameterized in a generator-based
manner, iteratively refines the articulatory representations into
acoustic features. Specifically, instead of directlymodelling 𝑝𝜃 (x𝑡−1 |x𝑡 )
by predicting x𝑡−1 from x𝑡 , the denoising function is modeled
as 𝑝𝜃 (x𝑡−1 |x𝑡 ) = 𝑞(x𝑡−1 |x𝑡 , x0), where x0 is predicted from dif-
fused sample x𝑡 by the denoising function 𝑓𝜃 parameterized with 𝜃 .
During training, a random step 𝑡 is first sampled uniformly from
[0, · · · ,𝑇 ], and x𝑡 are sampled according the following equation

𝑞(x𝑡 |x0) = N(x𝑡 ;𝛼𝑡x0,
√︃
1 − 𝛼2𝑡 I)), (3)

where 𝛼𝑡 =
∏𝑡

𝑡=1
√︁
1 − 𝛽𝑖 . Next, the sampled 𝑡 and x𝑡 are input to

the spectrogram denoiser together with the speaker embedding 𝑠
and articulatory representations H𝐴 to predict the initial data point
𝑥0 = 𝑓𝜃 (x𝑡 |𝑡, 𝑠,H𝐴). The spectrogram denoiser with parameters 𝜃
is trained with the following loss function

L𝜃 = | |𝑓𝜃 (𝛼𝑡x0 +
√︃
1 − 𝛼2𝑡 𝜖, 𝑡, 𝑠,H𝐴) − x0 | |22, 𝜖 ∼ N(0, 𝐼 ). (4)

During inference, the spectrogram denoiser 𝑓𝜃 (x𝑡 |𝑡, 𝑠,H𝐴) first pre-
dicts 𝑥0, and then x𝑡−1 is sampled using the posterior distribution
𝑞(x𝑡−1 |x𝑡 , x0). As 𝑡 gradually decreases from 𝑇 to 1, the final pre-
dicted x0 is obtained.

3.2 The Dubbing Strategy for Pseudo Target
Generation

We introduce a novel pseudo target generation strategy, named the
dubbing strategy, to apply the above A2A conversion architecture
for supervised training on silent articulation due to the absence of
audible speech in the silent mode. The previous DTW-based pseudo
target generation strategy suffers from the discrepancy between

vocalized and silent articulation and thus affects the overall perfor-
mance of the system. To address this, we incorporate text informa-
tion to produce pseudo acoustic features. Specifically, the pseudo
acoustic features generated for silent articulation maintain linguis-
tic content consistency with the provided phoneme sequences and
synchronize their duration with lip and tongue movements.

3.2.1 Overall Pipeline. Our proposed pseudo target generation
module, depicted in Figure 2, follows a pipeline similar to automatic
video dubbing tasks [13, 28, 29]. Taking phoneme sequences and
articulatory movements (lip videos and ultrasound tongue images)
as input, it align their representations using the text-articulation
attention aligner, resulting in expanded phoneme representations
whose length equals to that of the input articulatory movements.
Next, the expanded phoneme representations are processed by a
variance adaptor and then used as the condition 𝐶 for the spec-
trogram denoiser to generate acoustic features. The structure of
the articulation encoder and spectrogram denoiser in the proposed
module is the same as those in Fig. 1. The text encoder is identical
to that in FastSpeech2 [35], while the variance adaptor comprises a
pitch predictor from FastSpeech2 [35]. The text-articulation aligner
is the most vital part in this module, as it establishes correspondence
between text information and articulatory movements, controlling
the quality of the produced acoustic features.

3.2.2 Text-Articulation Aligner. The text-articulation aligner com-
prises an scaled dot-product attention module as in automatic video
dubbing tasks [13, 29]. In the attention module, articulatory hidden
representation H𝐴 serves as the query, and the phoneme hidden
representation H𝑃 output by the text encoder is used as both the
key and the value:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(H𝐴,H𝑃 ,H𝑃 )

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
H𝐴H𝑇

𝑃√
𝐷

)
H𝑃

= AH𝑃 ∈ R𝐹×𝐷 ,

(5)

where A ∈ R𝐹×𝐿 represents the attention weight matrix, 𝐿 de-
notes the length of the given phoneme sequence. Following the
attention module, the expanded phoneme hidden representation
is obtained by linear combination. A residual connection is em-
ployed to integrateH𝐴 for efficient training, with a dropout layer to
prevent acoustic features from excessively relying on articulation
information during training .

3.2.3 Training Criterion. The proposed pseudo target generation
module is trained on vocalized utterances because they simulta-
neously contain text, articulatory movements, and corresponding
speech. Since the spectrogram denoiser generates synchronized
acoustic features conditioned on C, the pseudo target generation
module employs the same loss function as Eq. 4.

To assist in learning the alignment between text information
and articulatory movements, we additionally propose supervising
the model using an attention loss instead of the diagonal loss in
most automatic video dubbing studies. Specifically, we employ the
following L1 loss function

L𝐴 = | |A − Â| |1 (6)
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where Â represents the generated attention matrix by the text-
articulation aligner, and 𝐴 denotes its groudtruth value. To acquire
the groundtruth value 𝐴, we utilize the montreal forced aligner
(MFA) tool2 [31] to obtain the alignment between phoneme se-
quences and real speech frames. Considering the correspondence
between speech and video frame rates (set to be the same in our
experiments), we further obtain the alignment between phoneme
sequences and articulation frames, serving as the ground truth
value for the attention matrix A.

Therefore, the overall loss function for training the pseudo target
generation module can be expressed as:

L = L𝜃 + L𝐴 . (7)

Once the pseudo target generation module is trained on vocalized
utterances, we apply it to silent articulation and generate pseudo
acoustic features for training A2A conversion model in the silent
mode accordingly.

3.3 Model Training
Our A2A conversion model training approach includes two steps.
Firstly, considering the absence of speech and the limited articula-
tion data in silent mode, the proposed A2A conversion model and
the dubbing-based pseudo target generation module are initially
trained on vocalized utterances, where corresponding speech can
be used as targets. Secondly, as the model trained on vocalized
utterances cannot be directly applied to silent articulation due to
domain discrepancy, we further train the proposed A2A conversion
model on silent articulation with pseudo acoustic features gener-
ated by the trained dubbing module. We also propose a combined
training approach to enhance the model’s performance on silent
articulation. The detailed training approach is described below.

3.3.1 First Step: Training on Vocalized Articulation. While training
the proposed A2A conversion model on vocalized utterances, we
employ a transfer learning strategy which has proved to be effective
in TaLNet [49]. Specifically, a multi-speaker TTS model is initially
trained on a large multi-speaker TTS corpus. This multi-speaker
TTS model shares a similar architecture with the proposed A2A
conversion model, except that the articulation encoder is replaced
by a text encoder and a variance adaptor in FastSpeech2 [35]. After
obtaining the pre-trained TTS model, its spectrogram denoiser is
transferred as that of the A2A conversion model, which is then
jointly trained with the articulation encoder on the TaL corpus [37].

The proposed dubbing-based pseudo target generation module
is also trained on vocalized utterances. Before training, we initialize
its articulation encoder and the rest parts with the pre-trained
vocalized A2A conversion model and TTS model, respectively. The
initialization makes it easier for the dubbing module to align text
with articulatory movements compared to learning from scratch.

3.3.2 Second Step: Training on Silent Articulation. After learning
from vocalized utterances, the proposed model is further trained
on silent articulation. Before training, we initialize the silent A2A
conversion model with the pre-trained vocalized model. Pseudo
acoustic features, generated by the trained dubbingmodule based on

2https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

the provided text, lip videos, and ultrasound tongue images recorded
in the silent speaking mode, are used as supervision targets.

Notably, after acquiring the pseudo acoustic features, a filter-
ing process is conducted. An automatic speech recognition (ASR)
engine is employed to transcribe the pseudo speech transformed
from the generated acoustic features using a vocoder. Utterances
with a word error rate (WER) surpassing a predefined threshold
are omitted from the training set. This exclusion is justified by the
presumption that such cases potentially indicate articulation errors
deriving from the absence of auditory feedback in silent mode.

A combined training approach is also adopted to train the pro-
posed A2A conversion model on silent articulation. This approach
involves combining pseudo acoustic features generated by both the
proposed dubbing strategy and the previous DTW strategy as su-
pervision targets. Specifically, during training, the pseudo acoustic
features generated by the proposed dubbing strategy are selected
as the supervisory target with a probability of 𝑝 , while the pseudo
acoustic features generated by the DTW strategy proposed in the
previous study [50] are chosen with a probability of 1 − 𝑝 .

4 EXPERIMENTS
4.1 Datasets
The TaL80 subset of the TaL dataset [37] was utilized in our ex-
periments, comprising 14,257 utterances in the vocalized speaking
modes from 81 native English speakers. Each utterance includes
corresponding text, synchronized audio, ultrasound tongue images,
and lip videos. Additionally, it contains 1,212 utterances in the
silent speaking mode, each accompanied by corresponding text,
ultrasound tongue images, and lip videos. We adopted the same
training, validation, and testing set partitioning described in [49]
for vocalized utterances and [50] for silent utterances, respectively.

4.2 Implementation Details
Consistent with previous studies [49, 50], we utilized mel-spectrogr-
ams as acoustic features and followed the data processing pipeline
outlined in [49] to obtain the lip videos, ultrasound tongue im-
ages, and mel-spectrograms as model inputs. We employed a well-
trained Parallel WaveGAN (PWG) [46] vocoder to transform the
synthesized mel-spectrograms into speech waveforms for fair com-
parison with [49, 50]. Considering the limited number of silent
utterances for each speaker, we developed our proposed model in
a speaker-independent manner without further fine-tuning using
speaker-dependent data. We extracted speaker embedding using
the DeepSpeaker system [23] for speaker representation.

We used the discretization of the continuous-time extension of
the diffusion process in Eq. 3 with the variance preserving (VP)
SDE [40] to compute the noise schedule {𝛽𝑡 }𝑇𝑡=1 for the spectro-
gram denoiser in both the proposed A2A conversion model and the
pseudo target generation module. Specifically, we set step 𝑇 = 4,
and computed {𝛽𝑡 }4𝑡=1 as:

𝛽𝑡 = 1 − exp
(
− 𝛽𝑚𝑖𝑛

𝑇
− 0.5(𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛)

2𝑡 − 1
𝑇 2

)
, (8)

where 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 were set to be 0.1 and 40 respectively.
The diffusion-based multi-speaker TTS model described in Sec-

tion 3.3.1 was trained on 460 hours data from 1150 speakers of

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
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Table 1: Objective and subjective evaluation results of speech reconstructed in vocalized and silent speaking modes. Vocoder
represents the vocoder-resynthesized natural speech in the vocalized speaking mode. Best results are highlighted in bold. All
results are the means on the test set. ± represents 95% confidence intervals.

Method Mode MCD/dB F0 RMSE/Hz STOI ESTOI WER/% CER/% MOSNet MOS
GroundTruth

Vocalized

/ / / / 3.80 2.13 4.31 4.02±0.06
Vocoder 1.92 13.49 0.94 0.88 5.29 3.07 4.31 3.93±0.06

TaLNet [49] 3.37 25.13 0.69 0.52 36.93 25.40 3.86 3.37±0.07
Proposed 3.22 24.98 0.69 0.52 37.18 25.36 4.25 3.46±0.07

TaLNet [49]
Silent

4.15 32.66 0.32 0.14 87.24 69.79 3.81 3.27±0.08
Zheng et al. [50] 3.78 33.74 0.31 0.15 78.24 58.31 3.71 3.35±0.08

Proposed 3.53 31.06 0.37 0.22 73.32 54.67 3.99 3.49±0.08

the LibriTTS corpus [48] using an Adam optimizer with an initial
learning rate 1𝑒 − 4 for 300k steps. The proposed A2A conversion
model and the pseudo target generation module were first trained
on vocalized utterances with an Adam optimizer whose learning
rate was dynamically adjusted as

𝑙𝑟 = 𝐷−0.5 ∗𝑚𝑖𝑛(𝑠𝑡𝑒𝑝−0.5, 𝑠𝑡𝑒𝑝 ×𝑤𝑎𝑟𝑚𝑢𝑝−1.5), (9)

where 𝐷 = 512 denotes the feature dimension of the hidden repre-
sentation, 𝑠𝑡𝑒𝑝 represents the training step, and𝑤𝑎𝑟𝑚𝑢𝑝 = 30, 000
respresents warmup steps. Furthermore, after transferring the spec-
trogram denoiser from the TTSmodel to the A2A conversion model,
its parameters were frozen for 30k steps and then optimized to-
gether with the other parts in subsequent steps. For training the
A2A conversion model on silent utterances, the threshold for filter-
ing utterances with articulation errors and the probability 𝑝 in the
combined training strategy described in Section 3.3.2 was empiri-
cally set to 40% and 0.5, respectively. An Adam optimizer with an
initial learning rate of 1𝑒 − 4 and a learning rate exponential decay
strategy was adopted. Specifically, the learning rate decayed by a
factor of 0.999 at the end of each epoch. The batch size for training
the A2A conversion model was 16, while the batch size for training
the pseudo target generation module was 8. All experiments were
conducted on an NVIDIA GeForce GTX 3090 GPU.

4.3 Evaluation Metrics
We included TaLNet [49] and the method proposed by Zheng et
al. [50], which were previous state-of-the-art methods on the TaL
dataset [37] in vocalized and silent modes, as baselines for com-
parison. The effectiveness of our proposed method were assessed
through both objective and subjective evaluations.

4.3.1 Objective Evaluation. For objective evaluation, mel-cepstral
distortion (MCD), F0 root mean squared error (F0 RMSE), short-
term objective intelligibility (STOI), and extended STOI (ESTOI)
were used as metrics. Since ground truth speech for the silent ut-
terances was unavailable, we used the speech corresponding to the
vocalized utterance from the same speaker with consistent linguis-
tic content as the reference speech. Before evaluation, we aligned
the generated speech with the reference speech using DTW. In
addition to these metrics, WER and character error rate (CER) from
an ASR engine were computed. We utilized the ASR API provided
in ESPNet3 [45] to transcribe the synthesized speech. Furthermore,

3https://github.com/espnet/espnet_model_zoo

to evaluate the naturalness of the synthesized speech, we employed
an automatic speech quality assessment system, MOSNet [27], to
assign naturalness scores.

4.3.2 Subjective Evaluation. Two groups of subjective listening
tests were also conducted to measure the naturalness mean opinion
scores (MOS) of reconstructed speech in the two modes, respec-
tively. In each test, thirty native English speakers were recruited on
Amazon’s Mechanical Turk4 and were asked to give a 5-point score
(1-very poor, 2-poor, 3-fair, 4-good, 5-excellent) for each utterance
they listened to. Twenty utterances in the vocalized mode and fif-
teen in the silent mode generated by each system were randomly
selected for MOS evaluation.

4.4 Experimental Results
4.4.1 Main Results. We first present the results of the proposed
diffusion-based A2A conversion model on speech reconstruction
from ultrasound tongue images and lip videos in the vocalized
speaking mode, as shown in the top four rows in Table 1. We can
see that the proposed A2A conversion model significantly improved
the naturalness of the speech reconstructed from vocalized articu-
lation compared to TaLNet [49]. Specifically, when using MOSNet
to assess the naturalness of the generated speech, the score in-
creased by approximately 10%. An increase of subjective MOS by
approximately 0.1 (𝑝 = 1.39× 10−2 in paired t-test) is also observed.

The evaluation results in the silent speaking mode are exhib-
ited in the last three rows of Table 1. These results show that our
proposed method outperformed all baselines across all metrics,
demonstrating its effectiveness. Specifically, when comparing the
proposed method with the previous state-of-the-art method in the
silent speaking mode by Zheng et al. [50], a notable increase of
subjective MOS by 0.14 (𝑝 = 1.12×10−2 in paired t-test) is observed,
along with a further 5% decrease in WER, indicating superior intel-
ligibility and naturalness of the reconstructed speech.

We also present spectrogram visualizations of the speech gen-
erated by various systems when provided with identical lip and
tongue articulation inputs in both vocalized and silent speaking
modes, as depicted in Fig. 3. In comparison to non-probabilistic
models like TaLNet [49], our proposed diffusion-based A2A con-
version model tends to produce speech with less over-smoothing
spectrograms for vocalized utterances, thus yielding more natural
speech. Moreover, our method for silent articulation demonstrates

4https://www.mturk.com/

https://github.com/espnet/espnet_model_zoo
https://www.mturk.com/
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(b) Synthesized Spectrograms in Silent Mode. 

(a) Synthesized Spectrograms in Vocalized Mode. 

Figure 3: Visualizations of the generated spectrograms by different systems in both vocalized and silent modes. For the vocalized
utterance, the corresponding text is “This is a very common type of bow, one showing mainly red and yellow, with little or no
green or blue”. For the silent utterance, the corresponding text is “These take the shape of a long round arch, with its path high
above, and its two ends apparently beyond the horizon”.

Table 2: Objective evaluation results of the proposed method on the task of speech reconstruction from silent lip and tongue
articulation in ablation studies. “’w/o pseudo targets” represents the proposed model trained solely on vocalized utterances
without further training with pseudo targets on silent articulation. Best results are highlighted in bold.

Method MCD/dB F0 RMSE/Hz STOI ESTOI WER/% CER/% MOSNet
Proposed 3.53 31.06 0.37 0.22 73.32 54.67 3.99

w/o Pseudo Targets by DTW 3.64 34.79 0.37 0.20 79.60 61.74 3.88
w/o Pseudo Targets by Dubbing 3.52 31.29 0.36 0.20 76.18 58.37 3.97
w/o Filtering Pseudo Targets 3.70 37.08 0.35 0.18 79.64 62.43 3.86

w/o Pseudo Targets 3.82 36.40 0.36 0.19 88.48 70.32 3.99

the capability to generate speech with more reasonable phoneme
boundaries while maintaining a diverse set of samples, ultimately
resulting in improved intelligibility of the reconstructed speech.

4.4.2 Ablation Studies. Ablation studies were conducted to exam-
ine the effectiveness of each part in our proposed training approach
for silent speaking mode. All the results are presented in Table 2.

Specifically, we evaluated the contribution of the combined train-
ing approach by comparing the performance of the proposed model
trained with mel-spectrograms generated by different pseudo tar-
get generation strategies, as demonstrated in the top three rows.
It is evident that the model trained solely with the pseudo targets
generated by either the dubbing strategy or the DTW strategy fails
to achieve optimal performance. Moreover, we include the results of
the proposed model trained on vocalized utterances without further
training with pseudo targets on silent articulation in the last row.
A comparison between the second row and the last row reveals
that training the proposed model with pseudo mel-spectrograms
generated by the dubbing strategy notably enhances the model’s
performance on silent articulation, demonstrating the efficacy of the
proposed dubbing strategy. Furthermore, we analyzed the benefits
of the filtering process proposed in Section 3.3.2, and the results of
training the proposed model with unfiltered pseudo targets are ex-
hibited in the fourth row. It reflects that not filtering the generated
pseudo targets yields inferior performance. Additionally, comparing

the last row of Table 2 with the fifth row of Table 1, we observe that
the proposed diffusion-based A2A architecture outperforms TaL-
Net [49] on most evaluation metrics, even without further pseudo
targets training on silent articulation. This further showcases the
superior generative capabilities of the proposed diffusion-based
framework over non-probabilistic models in silent speaking mode.

4.4.3 Analysis of the Pseudo Targets Generated by Different Strate-
gies. To delve deeper into the effectiveness of the proposed dubbing
strategy, we conducted supplementary experiments. We argue that
the effectiveness of the proposed dubbing strategy lies in its ability
to generate pseudo acoustic features well-synchronized with the
provided silent articulatory movements. To validate this argument,
we evaluated the pseudo speech (transformed from the acoustic
features using a PWG vocoder) generated by different pseudo tar-
get generation strategies from two distinct perspectives: speech
naturalness and synchronicity between speech and articulatory
movements. We employed MOSNet scores to assess the naturalness
of the generated speech. Additionally, we utilized a well-trained
SyncNet [2] model to measure the lip-sync error between the gen-
erated speech and the provided silent lip videos, following the
evaluation metrics proposed by Prajwal et al. [34]. The first eval-
uation metric is Lip Sync Error - Distance (LSE-D), representing
the average error measure calculated in terms of the distance be-
tween the lip and audio representations. A lower LSE-D denotes a
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Table 3: Analysis results of the pseudo targets generated by
different strategies. Mode indicates the speaking mode in
which pseudo target generation strategy is utilized to gener-
ate synthesized speech (transformed from acoustic features
with PWG vocoder).

Method Mode MOSNet LSE-D(↓) LSE-C(↑)
DTW Silent 4.05 9.79 1.42

Dubbing 3.99 9.67 1.50
Dubbing Vocalized 4.19 9.122 1.96

higher audio-visual match. The second metric is Lip Sync Error -
Confidence (LSE-C), denoting the average confidence score. The
higher the confidence, the better the audio-video correlation. Since
the SyncNet model available online is pre-trained on entire face
images, but the TaL80 dataset only contains lip videos of speakers,
we trained the SyncNet model on the TaL80 dataset following the
instructions provided in [32]5. The results are shown in Table 3.
We have also included evaluation results of speech generated by
the dubbing strategy on vocalized articulation to demonstrate the
performance of the proposed dubbing module when both training
and testing data originate from the same vocalized domain.

The results indicate that the dubbing strategy outperforms the
DTW strategy in lip-sync synchronicity. In contrast, while the
speech generated by the DTW strategy exhibits commendable nat-
uralness, its synchronicity falls short compared to the proposed
dubbing strategy. This difference arises from the fundamental ap-
proach of the dubbing strategy, which establishes a correspondence
between text and silent articulation. By identifying the bound-
aries of articulatory movements corresponding to the text, it gener-
ates speech from the text that is highly synchronized with these
movements. Conversely, the DTW strategy, relying on DTW align-
ment between vocalized and silent articulation representations,
may encounter alignment failures due to the discrepancy between
vocalized and silent articulation. As a result, though the pseudo
mel-spectrograms derived by aligning vocalized mel-spectrograms
from the DTW strategy ensure no missing and repeated linguistic
content, even in cases of alignment failure, they do not guarantee
precise synchronization between pseudo speech and articulatory
movements. Therefore, a combination of targets generated by the
DTW strategy, which prioritizes speech naturalness, with those
from the dubbing strategy, which emphasizes articulation synchro-
nization, could enhance speech reconstruction performance in the
silent speaking mode. Moreover, the second and third rows of Table
3 show a performance decline when the pseudo target generation
module trained on vocalized utterances is directly applied to silent
articulation, which can be attributed to two reasons. One is due
to the difference between the training and test data. The other is
that the lack of audio feedback for speakers in the silent speaking
mode potentially leads to articulation errors and alignment failure.
Consequently, generating appropriate speech for these silent utter-
ances based on the provided text and the articulatory movements
becomes challenging. In our proposed method, we use a filtering
process described in 3.3.2 to exclude the impact of these utterances
on model performance during training.
5https://github.com/joonson/syncnet_trainer
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Figure 4: An example of pseudo mel-spectrograms gener-
ated for silent utterances using both the DTW and Dub-
bing pseudo target generation strategy. The correspondence
between the articulatory movements and the phoneme se-
quence in (a) is manually annotated. The frame rate of the
lip video and ultrasound tongue images is 81.5fps.

Fig. 4 illustrates an example of generating pseudo mel-spectrogr-
ams for silent utterances using DTW and the proposed dubbing
strategies respectively. Specifically, the speaker starts speaking
around 1 second, as evidenced by the lip and tongue movements
from Fig. 4(a). However, in Fig. 4(b), though the DTW strategy
generates the mel-spectrogram with correct linguistic content, its
synchronization with the corresponding silent lip and tongue move-
ments is deficient due to the errors in the obtained DTW alignment
path, causing the generated mel-spectrogram to start displaying lin-
guistic content from around 0.3 seconds. Conversely, leveraging text
information, the dubbing strategy yields more reliable alignment
paths, particularly during silence segments, resulting in pseudo
mel-spectrograms with significantly enhanced synchronization as
shown in Fig. 4(c). More examples are available at our project page.

5 CONCLUSION
This paper solves the task of speech reconstruction from ultrasound
tongue images and lip videos in the silent speaking mode. We
propose a diffusion-based A2A conversion model and introduce
a novel text-guided pseudo target generation strategy, producing
pseudo acoustic features for the supervised training of the proposed
model on silent articulation. Experimental results demonstrate the
effectiveness of the proposed method in enhancing the naturalness
and intelligibility of the speech reconstructed from the silent lip and
tongue articulation. Our future endeavors will focus on developing
real-time systems for speech reconstruction from silent articulation,
aiming to provide speakers with auditory feedback during silent
articulation processes.

https://github.com/joonson/syncnet_trainer


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Speech Reconstruction from Silent Lip and Tongue Articulation by Diffusion Models and Text-Guided Pseudo Target Generation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and

William Chan. 2020. WaveGrad: Estimating Gradients for Waveform Generation.
In Proc. ICLR 2020.

[2] Joon Son Chung and Andrew Zisserman. 2017. Out of time: automated lip sync
in the wild. In Proc. Computer Vision–ACCV 2016 Workshops. 251–263.

[3] Tamás Gábor Csapó, Csaba Zainkó, László Tóth, Gábor Gosztolya, and Alexandra
Markó. 2020. Ultrasound-based Articulatory-to-Acoustic Mapping with WaveG-
low Speech Synthesis. Proc. Interspeech 2020, 2727–2731.

[4] Tamás Gábor Csapó, Tamás Grósz, Gábor Gosztolya, László Tóth, and Alexandra
Markó. 2017. DNN-Based Ultrasound-to-Speech Conversion for a Silent Speech
Interface. In Proc. Interspeech 2017. 3672–3676.

[5] Bruce Denby, Tanja Schultz, Kiyoshi Honda, Thomas Hueber, Jim M Gilbert, and
Jonathan S Brumberg. 2010. Silent speech interfaces. Speech Communication 52
(2010), 270–287.

[6] Christopher Dromey and Katherine M Black. 2017. Effects of laryngeal activity on
articulation. IEEE/ACM Transactions on Audio, Speech, and Language Processing
25 (2017), 2272–2280.

[7] Jose A Gonzalez-Lopez, Alejandro Gomez-Alanis, Juan M Martín Doñas, José L
Pérez-Córdoba, and Angel M Gomez. 2020. Silent speech interfaces for speech
restoration: A review. IEEE access 8 (2020), 177995–178021.

[8] Tamás Grósz, Gábor Gosztolya, László Tóth, Tamás Gábor Csapó, and Alexandra
Markó. 2018. F0 estimation for DNN-based ultrasound silent speech interfaces.
In Proc. ICASSP 2018. IEEE, 291–295.

[9] Jinzheng He, Zhou Zhao, Yi Ren, Jinglin Liu, Baoxing Huai, and Nicholas Yuan.
2022. Flow-based unconstrained lip to speech generation. In Proc. AAAI 2022,
Vol. 36. 843–851.

[10] Sindhu Hegde, Rudrabha Mukhopadhyay, CV Jawahar, and Vinay Namboodiri.
2023. Towards Accurate Lip-to-Speech Synthesis in-the-Wild. In Proc. ACM MM
2023. 5523–5531.

[11] Sindhu B Hegde, KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri,
and CV Jawahar. 2022. Lip-to-speech synthesis for arbitrary speakers in the wild.
In Proc. ACM MM 2022. 6250–6258.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[13] Chenxu Hu, Qiao Tian, Tingle Li, Wang Yuping, Yuxuan Wang, and Hang Zhao.
2021. Neural dubber: Dubbing for videos according to scripts. Advances in neural
information processing systems 34 (2021), 16582–16595.

[14] Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, Chenye Cui, and Yi Ren.
2022. Prodiff: Progressive fast diffusion model for high-quality text-to-speech. In
Proc. ACM MM 2022. 2595–2605.

[15] Thomas Hueber and Gérard Bailly. 2016. Statistical conversion of silent artic-
ulation into audible speech using full-covariance HMM. Computer Speech &
Language 36 (2016), 274–293.

[16] Thomas Hueber, Elie-Laurent Benaroya, Bruce Denby, and Gérard Chollet. 2011.
Statistical mapping between articulatory and acoustic data for an ultrasound-
based silent speech interface. In Proc. Interspeech 2011. 593–596.

[17] Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and
Nam Soo Kim. 2021. Diff-TTS: A Denoising Diffusion Model for Text-to-Speech.
In Proc. Interspeech 2021. 3605–3609.

[18] Christopher T Kello and David C Plaut. 2004. A neural network model of the
articulatory-acoustic forward mapping trained on recordings of articulatory
parameters. The Journal of the Acoustical Society of America 116, 4 (2004), 2354–
2364.

[19] Minsu Kim, Joanna Hong, and Yong Man Ro. 2021. Lip to speech synthesis with
visual context attentional gan. Advances in Neural Information Processing Systems
34, 2758–2770.

[20] Minsu Kim, Joanna Hong, and Yong Man Ro. 2023. Lip-to-speech synthesis in
the wild with multi-task learning. In Proc. ICASSP 2023. IEEE, 1–5.

[21] Naoki Kimura,Michinari Kono, and Jun Rekimoto. 2019. SottoVoce: An ultrasound
imaging-based silent speech interaction using deep neural networks. In Proc. CHI
Conference on Human Factors in Computing Systems 2019. 1–11.

[22] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020.
DiffWave: A Versatile Diffusion Model for Audio Synthesis. In Proc. ICLR 2020.

[23] Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying
Cao, Ajay Kannan, and Zhenyao Zhu. 2017. Deep speaker: an end-to-end neural
speaker embedding system. arXiv preprint arXiv:1705.02304 (2017).

[24] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. 2022. Diffsinger:
Singing voice synthesis via shallow diffusion mechanism. In Proc. AAAI 2022,
Vol. 36. 11020–11028.

[25] Songxiang Liu, Dan Su, and Dong Yu. 2022. Diffgan-tts: High-fidelity and efficient
text-to-speech with denoising diffusion gans. arXiv preprint arXiv:2201.11972
(2022).

[26] Zheng-Chen Liu, Zhen-Hua Ling, and Li-Rong Dai. 2016. Articulatory-to-
Acoustic Conversionwith Cascaded Prediction of Spectral and Excitation Features
Using Neural Networks.. In Proc. Interspeech 2016. 1502–1506.

[27] Chen-Chou Lo, Szu-Wei Fu, Wen-Chin Huang, Xin Wang, Junichi Yamagishi,
Yu Tsao, and Hsin-Min Wang. 2019. MOSNet: Deep Learning-Based Objective
Assessment for Voice Conversion. In Proc. Interspeech 2019. 1541–1545.

[28] Junchen Lu, Berrak Sisman, Rui Liu, Mingyang Zhang, and Haizhou Li. 2022.
VisualTTS: TTS with accurate lip-speech synchronization for automatic voice
over. In Proc. ICASSP 2022. IEEE, 8032–8036.

[29] Junchen Lu, Berrak Sisman, Mingyang Zhang, and Haizhou Li. 2023. High-
Quality Automatic Voice Over with Accurate Alignment: Supervision through
Self-Supervised Discrete Speech Units. In Proc. Interspeech 2023. 5536–5540.

[30] Yen-Ju Lu, Zhong-QiuWang, Shinji Watanabe, Alexander Richard, Cheng Yu, and
Yu Tsao. 2022. Conditional diffusion probabilistic model for speech enhancement.
In Proc. ICASSP 2022. IEEE, 7402–7406.

[31] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan
Sonderegger. 2017. Montreal forced aligner: Trainable text-speech alignment
using kaldi.. In Proc. Interspeech 2017. 498–502.

[32] Arsha Nagrani, Joon Son Chung, Samuel Albanie, and Andrew Zisserman. 2020.
Disentangled speech embeddings using cross-modal self-supervision. In Proc.
ICASSP 2020. 6829–6833.

[33] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[34] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar.
2020. A lip sync expert is all you need for speech to lip generation in the wild. In
Proc. ACM MM 2020. 484–492.

[35] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu.
2020. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. In Proc.
ICLR 2020.

[36] Manuel Sam Ribeiro, Aciel Eshky, Korin Richmond, and Steve Renals. 2021. Silent
versus modal multi-speaker speech recognition from ultrasound and video. In
Proc. Interspeech 2021. 641–645.

[37] Manuel Sam Ribeiro, Jennifer Sanger, Jing-Xuan Zhang, Aciel Eshky, Alan
Wrench, Korin Richmond, and Steve Renals. 2021. TaL: a synchronised multi-
speaker corpus of ultrasound tongue imaging, audio, and lip videos. In Proc. SLT
2021. 1109–1116.

[38] Tanja Schultz, Michael Wand, Thomas Hueber, Dean J Krusienski, Christian
Herff, and Jonathan S Brumberg. 2017. Biosignal-based spoken communication:
A survey. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25,
12 (2017), 2257–2271.

[39] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al.
2018. Natural TTS synthesis by conditioning WaveNet on mel spectrogram
predictions. In Proc. ICASSP 2018. 4779–4783.

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-
fano Ermon, and Ben Poole. 2020. Score-Based Generative Modeling through
Stochastic Differential Equations. In Proc. ICLR 2020.

[41] Kristin J Teplansky, Brian Y Tsang, and Jun Wang. 2019. Tongue and lip motion
patterns in voiced, whispered, and silent vowel production. In Proc. International
Congress of Phonetic Sciences 2019. 1–5.

[42] Kristin J Teplansky, Alan Wisler, Beiming Cao, Wendy Liang, Chad WWhited,
Ted Mau, and Jun Wang. 2020. Tongue and Lip Motion Patterns in Alaryngeal
Speech.. In Proc. Interspeech 2020. 4576–4580.

[43] László Tóth, Gábor Gosztolya, Tamás Grósz, Alexandra Markó, and Tamás Gábor
Csapó. 2018. Multi-Task Learning of Speech Recognition and Speech Synthesis
Parameters for Ultrasound-based Silent Speech Interfaces. In Proc. Interspeech
2018. 3172–3176.

[44] Yongqi Wang and Zhou Zhao. 2022. Fastlts: Non-autoregressive end-to-end
unconstrained lip-to-speech synthesis. In Proc. ACM MM 2022. 5678–5687.

[45] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba,
Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, et al. 2018. ESPNet: End-to-End Speech Processing Toolkit. In Proc.
Interspeech 2018. 2207––2211.

[46] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. 2020. Parallel WaveGAN: A
fast waveform generation model based on generative adversarial networks with
multi-resolution spectrogram. In Proc. ICASSP 2020. 6199–6203.

[47] Hao Yen, François G Germain, Gordon Wichern, and Jonathan Le Roux. 2023.
Cold diffusion for speech enhancement. In Proc. ICASSP 2023. IEEE, 1–5.

[48] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen,
and Yonghui Wu. 2019. LibriTTS: A Corpus Derived from LibriSpeech for Text-
to-Speech. In Proc. Interspeech 2019. 1526–1530.

[49] Jing-Xuan Zhang, Korin Richmond, Zhen-Hua Ling, and Lirong Dai. 2021. TaLNet:
Voice reconstruction from tongue and lip articulation with transfer learning from
text-to-speech synthesis. In Proc. AAAI 2021. 14402–14410.

[50] Rui-Chen Zheng, Yang Ai, and Zhen-Hua Ling. 2023. Speech reconstruction
from silent tongue and lip articulation by pseudo target generation and domain
adversarial training. In Proc. ICASSP 2023. IEEE, 1–5.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Diffusion-based TTS models
	2.2 Speech Reconstruction from Lip and Tongue Articulation

	3 Proposed Method
	3.1 Diffusion-based A2A Conversion Model
	3.2 The Dubbing Strategy for Pseudo Target Generation
	3.3 Model Training

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Evaluation Metrics
	4.4 Experimental Results

	5 Conclusion
	References

