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Abstract—Recent advancements in learnable spatial represen-
tation structures, such as Neural Radiance Fields (NeRF) and
3D Gaussian Splatting, have improved 3D scene reconstruction
from 2D images, enhancing computational efficiency, scalability,
and memory usage. However, in multi-view environments, recon-
struction performance degrades in regions with limited field of
view (FOV) overlap, especially in Forward-Facing Scene datasets.
To address this, we assume extended camera poses and use
Depth Image-Based Rendering (DIBR) for data augmentation,
generating new views beyond the original FOV. Additionally, we
employ diffusion models to generate new viewpoints in data-
scarce areas and fine-tune them with Low-Rank Adaptation
(LoRA) to maintain spatial consistency with existing views.
Our approach significantly improves reconstruction quality in
outer regions by combining extended camera poses, DIBR, and
diffusion models. It works effectively in both single-image and
multi-view setups, enhancing 3D reconstruction from sparse
camera coverage and limited training data.

Index Terms—novel view synthesis, neural rendering

I. INTRODUCTION

Research utilizing learnable spatial representation structures
such as Neural Radiance Field (NeRF) and 3D Gaussian
Splatting to reconstruct 3D scenes from 2D images has been
actively pursued. These studies propose various approaches
with the goals of more efficient computation, higher scala-
bility, and lower memory usage. Most research is conducted
in a multi-view environment, where data is captured from
multiple cameras at different angles of the same scene. Multi-
view environments are essential for high-quality reconstruction
because they help maintain spatial consistency within the
scene, reducing noise and enabling accurate 3D reconstruction.
Therefore, multi-view datasets form an important foundation
for evaluating the performance of these techniques.

However, even in multi-view environments, consistently
high reconstruction quality cannot be guaranteed across all
areas. High-quality reconstruction is achieved in regions with a
large overlap of fields of view (FOV), but in outer regions with
less overlap, reconstruction performance deteriorates. This
issue is especially prominent in areas captured by only a few
cameras, which becomes a major factor in reducing overall
reconstruction accuracy. This problem arises because many

Fig. 1. In LLFF, Poorly Rendered Poses occur when the field of view is
limited, leading to degraded reconstruction quality in areas with insufficient
camera coverage.

existing 3D Gaussian Splatting studies utilize datasets con-
structed with forward-facing camera arrays (Forward-Facing
Scenes). For instance, in environments like the LLFF dataset,
multiple cameras are typically arranged in grids, such as 7×3
or 8×2, to create a multi-view environment.

These Forward-Facing Scene datasets are often substituted
by synthetic datasets like 360° Object-Centric Views, as cap-
turing real scenes in the required configuration is challenging.
A 360° Object-Centric View, which captures images from
various angles centered on an object, has the advantage of
evenly distributing FOV overlaps. However, 360° capturing
is often difficult in real environments, and most real-scene
datasets still rely on the Forward-Facing Scene format. As a
result, in Forward-Facing Scenes, reconstruction performs well
only in areas with FOV overlap, while performance in outer
regions suffers.

To address this issue, we assume extended camera poses
to relax the constraints of the existing camera array and
improve reconstruction quality in outer regions. Based on
this, we employ Depth Image-Based Rendering (DIBR) to
perform data augmentation by generating new views beyond
the original FOV range. DIBR utilizes depth information to



generate images from new viewpoints that were not originally
captured, effectively increasing the visual diversity in multi-
view environments without additional data collection. This
approach complements the limitations of previous research and
significantly improves the quality of reconstruction in outer
regions, contributing to more uniform spatial consistency.

In addition, we use diffusion models to enhance scene
reconstruction quality and overcome the limitations of the
training views. By using generative models to extend areas
with insufficient data, our objective is to improve the overall
quality of the scene. To achieve this, it is necessary to maintain
the reliability of the existing training views while generating
additional areas through the diffusion model. When applying
the diffusion model, we must ensure that the new viewpoints
generated by the model maintain consistency with the existing
scene. Therefore, we fine-tune the model using Low-Rank
Adaptation (LoRA) [1] to generate plausible spaces. This
allows the diffusion model to generate realistic new spaces
while preserving spatial consistency with the original views.
This approach plays a crucial role in improving the accuracy of
scene reconstruction and ensuring visual diversity from various
viewpoints.

In this paper, we propose several novel approaches to
address the limitations of traditional 3D scene reconstruction
methods:

• Extended Camera Pose Assumption: We alleviate the con-
straints imposed by traditional camera arrays, improving
reconstruction quality in outer regions by using Depth
Image-Based Rendering (DIBR) for data augmentation.

• Use of Diffusion Models: We leverage diffusion models
to extend data-scarce areas, overcoming the limitations of
the training views and enhancing the overall scene quality
by generating new perspectives while maintaining spatial
consistency. Additionally, this approach can be applied
to expand both single images and multi-view setups,
generating new viewpoints to improve reconstruction
from limited data or sparse camera coverage.

• Improved Spatial Consistency: Through the integration
of these techniques, we significantly enhance the spatial
consistency of the reconstructed scene, ensuring a more
reliable and diverse reconstruction from various view-
points.

II. RELATED WORKS

Monocular Depth Estimation-based 3D Reconstruction
Early 3D reconstruction methods, such as Pixel2Mesh [2],
represented objects as triangular meshes, while PIFu [3], [4]
utilized memory-efficient implicit functions to recover fine
details, including occluded regions. However, these approaches
heavily relied on object-specific priors and 3D supervision,
which limited their generalizability to diverse or complex
scenes. Other methods, such as Make3D [5], segmented scenes
into planar regions and combined their orientations and posi-
tions to construct a coherent 3D structure. Earlier approaches
often depended on hand-crafted priors, such as shading [6] or
edge contours [7], to infer 3D geometry. [8] also addresses the

challenge of estimating accurate 3D scene shapes from single
monocular images by proposing a two-stage framework that
predicts depth up to an unknown scale and shift, then refines
it using 3D point cloud data.

Recent advancements leverage Monocular Depth Estimation
(MDE) to generate depth maps for scene reconstruction. MDE,
which estimates the distance of every pixel in a 2D image,
has seen significant progress with diffusion-based models like
Marigold [9] and foundation-model-based approaches such as
MiDaS [10] and Depth Anything [11], which produce finely
detailed depth maps. These models adopt affine-invariant
depth learning strategies that enhance geometric consistency
in depth estimation. However, they are limited to relative depth
predictions and lack the metric depth information required
for complete 3D reconstruction. Addressing this limitation
requires estimating the missing depth shift and focal length.
ZoeDepth [12] is able to accomplish this and generate metric
depth, but has to fine-tune on a similar dataset for it.

Also, there have been several attempts to leverage different
type of domain data as a multi-modal in monocular depth
estimation task. VPD [13] proposed a multi-modal architecture
which took an image and a text prompt as inputs. It extracted
feature maps from both data respectively and trained the
correlation between them. The concatenated feature is then
delivered to a decoder which outputs the estimated depth
map. EVP [14] carried on the methods of [13] by enhancing
the denoising UNet. It proposed multi-attention methods to
refine multi-scale feature maps which were the output of the
denoising UNet, so the correlation map could be delivered
efficiently to a decoder. These methods had the similarity
of taking both image and text as inputs and generate the
correlational feature maps, which were then processed by the
decoder to produce the depth map. However, they require
additional text prompt data and performance of image-text
alignment fails to meet expectations.

LeReS [15] incorporates a 3D point cloud encoder to predict
these parameters, enabling the recovery of realistic 3D scene
shapes. For this reason, we adopt LeReS as the monocular
depth estimation model used in this study.

Sparse-view 3D Reconstruction Enhancement Learning-
based spatial representation methods, such as Neural Radiance
Fields (NeRF) [16] and 3D Gaussian Splatting (3DGS) [17],
have emerged as essential tools for reconstructing 3D scenes
from 2D images. NeRF employs neural networks to model
the radiance field, enabling high-quality scene rendering [18]–
[20], while 3DGS offers a memory-efficient approach by
representing scenes as Gaussian splats. However, both methods
are highly dependent on multi-view settings with overlapping
fields of view (FOV) to maintain spatial consistency.

While most research focuses on reconstructing scenes using
a sufficient number of views, real-world capturing scenarios
often involve sparse views, with a focus on key regions. This
has sparked research focused on overcoming the challenges
of sparse-view environments. Such studies aim to develop
methods that can achieve high-quality 3D reconstruction even
with limited views, with a particular emphasis on techniques



Fig. 2. Our model framework. The initial image can be either a multi-view or a single image. From this, a scene is constructed using initial 3D Gaussians.
Efficient rasterization enables rendering of both RGB and depth maps. When rendering outside the camera group poses, rendering RGB and depth from an
expanded pose can lead to confused results. Since a reliable mask cannot be obtained directly, a trustworthy mask is generated through Depth Image-Based
Rendering (DIBR) by warping the mask for the expanded pose. This mask is then multiplied with the RGB image to construct a scene matching the expanded
pose.

that perform effectively in sparse-view settings. [21] unifies
neural rendering and probabilistic image generation to handle
uncertainty and generate unseen regions in sparse-view 3D
reconstruction.

Sparse-view Novel View Synthesis (NVS) introduces fur-
ther challenges for methods such as 3DGS. To address this,
MVPGS [22] integrates learning-based Multi-view Stereo
(MVS) and forward-warping techniques, enhancing geometric
initialization quality and mitigating overfitting through ap-
pearance constraints and monocular depth regularization. By
introducing view-consistent geometry constraints for Gaus-
sian parameters, it enables high-quality scene reconstruction
in sparse-view settings with real-time rendering. Building
upon this, MVSGaussian [23] introduces a generalizable 3D
Gaussian representation based on MVS, improving novel
view synthesis with a hybrid Gaussian rendering method and
facilitating fast fine-tuning through a multi-view geometric
aggregation strategy for per-scene optimization. Compared to
NeRF-based methods and vanilla 3DGS, MVSGaussian offers
superior synthesis quality, real-time rendering, and reduced
computational costs, achieving state-of-the-art generalization
and efficiency across various datasets.

Sparse-view scenarios are relatively uncommon in practical
applications. In forward-facing or 360-degree photography,
cameras typically focus on capturing key areas of the scene,
prioritizing relevant information. This means that sparse-view
configurations are seldom encountered. Methods addressing
sparse-view synthesis may not always reflect the typical con-

straints encountered in practical 3D reconstruction tasks. Thus,
we focus on scenarios such as LLFF, where we aim to address
the sparse-view challenges commonly encountered in forward-
facing or 360-degree capture methods.

Diffusion based 3D Generating Diffusion models, ini-
tially developed for generative image synthesis, have been
increasingly applied to 3D scene reconstruction and data aug-
mentation. These models utilize a probabilistic framework to
iteratively generate realistic images by reversing the diffusion
process. DreamGaussian [24] refines 3D representations by
leveraging the diffusion process. In the initial stage, random
points are used to generate preliminary Gaussians via SDS
loss, which often results in blurry and low-detail outputs.
To improve this, a Mesh Extraction process is introduced to
generate textured meshes from the Gaussian representations.
These meshes are then refined using a diffusion model to
enhance texture quality and resolve spatial inconsistencies.
Finally, the UV map is refined, producing high-quality 3D
data that strikes a balance between computational efficiency
and visual fidelity. 3D Gaussian Enhancer [25] presents a VAE
(Variational Autoencoder)-based framework that incorporates
a video diffusion prior for novel view enhancement. This
method effectively improves both image quality and view
consistency in diffusion-based 3D generation. Sparse images
are initially used to build the Gaussian space, followed by
novel view rendering with noise. These rendered images are
treated as a video, with a video diffusion model, including
a denoising U-Net, applied to remove noise. This process



Fig. 3. RealFill framework. A random mask is applied to the reference image,
and image diffusion inpainting is performed. The diffusion model is modified
using LoRA to learn how to generate the predicted clean image. The model
is trained using the input image and a reconstruction loss.

ultimately yields clean video RGB frames and camera poses.
[26] leverages large-scale vision model priors to enhance 3D
Gaussian Splatting for sparse-view 3D reconstruction, address-
ing challenges in data scarcity and reconstruction quality.

Together, these two research directions underscore the im-
portance of both learning-based spatial representations and
generative diffusion techniques in addressing the limitations
of 3D scene reconstruction. By combining efficient 3D rep-
resentations with generative models, our work aims to bridge
the gap between high-quality reconstruction and real-world
applicability in multi-view environments.

III. MAIN METHOD

A. Preliminary

Introduction to 3D Gaussian Splatting (3DGS) Here, we
provide a concise overview of the formulation and rendering
process of 3D Gaussian Splatting (3DGS) [27]. 3DGS models
a scene as a collection of anisotropic 3D Gaussian spheres,
enabling high-quality novel view synthesis (NVS) with ex-
ceptionally low rendering latency. Each Gaussian sphere is
defined by its center position µ ∈ R3, a scaling factor s ∈ R3,
and a rotation quaternion q ∈ R4. The corresponding Gaussian
distribution is expressed as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where the covariance matrix Σ = RSSTRT is determined by
the scaling matrix S (derived from s) and the rotation matrix
R (computed from q). To capture view-dependent appearance,
each Gaussian sphere also includes spherical harmonics (SH)
coefficients C ∈ Rk (where k is the number of SH functions)
and an opacity parameter α ∈ R. The Gaussian distribution
defined in Eq. 1 is utilized to compute both color and opacity.

In the rendering process, all 3D Gaussian spheres are
projected onto the 2D camera plane using a differentiable
Gaussian splatting pipeline. The covariance matrix Σ′ in
camera coordinates is computed using the viewing transfor-
mation matrix W and the Jacobian matrix J of the affine
approximation of the projective transformation:

Σ′ = JWΣWTJT . (2)

This differentiable splatting efficiently maps 3D Gaussian
spheres to 2D Gaussian distributions, facilitating fast α-
blending for rendering and enabling color supervision. For
each pixel, the final color is computed by aggregating con-
tributions from M overlapping Gaussian spheres, which are
sorted by depth along the viewing direction. The color at a
pixel is given by:

C =
∑
i∈M

Ciαi

i−1∏
j=1

(1− αi). (3)

This process ensures accurate blending of colors and opacities
for photorealistic rendering.

Leveraging Diffusion Models for Scene Reconstruction
RealFill [28] is a generative approach for image comple-
tion that fills missing areas in an image using content de-
rived from up to n reference images (n ≤ 5), denoted as
Xref := {Ikref}nk=1. The method also uses a target image Itgt ∈
RH×W×3 and an associated binary mask Mtgt ∈ {0, 1}H×W ,
where 0 represents the existing regions in Itgt, and 1 indicates
the areas to be filled. The model generates a realistic output
image Iout ∈ RH×W×3 by conditioning on the target image
Itgt and mask Mtgt.

To achieve this, a pretrained generative model is fine-tuned
on the reference images to incorporate scene-specific knowl-
edge. This fine-tuned model then generates Iout conditioned
on Itgt and Mtgt, ensuring that the generated content aligns
with the scene’s context. The process begins with the Stable
Diffusion v2 inpainting model [29], into which LoRA weights
are injected into its text encoder and U-Net. The model is
subsequently fine-tuned on both Xref and Itgt using randomly
generated binary masks m. The loss function is defined as:

L = Ex,t,ϵ,m∥ϵθ(x, t, p,m, (1−m)⊙ x)− ϵ∥22, (4)

where x ∈ Xref ∪ {Itgt}, p is a fixed language prompt
containing a rare token, ⊙ denotes the element-wise product,
and (1−m)⊙ x represents the masked clean image. For the
target image Itgt, the loss is calculated only in the regions that
exist in the original image. To create the random mask m for
each training example, random rectangles are generated, and
either their union or the complement of their union is used as
the mask, as illustrated in Fig. 3.

During inference, a Denoising Diffusion Probablistic Model
(DDPM) [30], [31] sampler generates the image Igen, condi-
tioned on p, Itgt, and Mtgt. To ensure a seamless transition
between the generated region and the original content of Itgt,
the binary mask Mtgt is feathered, producing Mfeathered,
which blends the boundaries. The final output image Iout is
then obtained by alpha compositing Igen and Itgt based on
Mfeathered, as expressed in the following equation:

Iout = Mfeathered ⊙ Igen + (1−Mfeathered)⊙ Itgt. (5)

Since the diffusion process depends on random seeds, gen-
erated images vary across runs. Therefore, multiple samples
are generated in a batch {Iout}. To select the best output, the



Fig. 4. The leftmost image is the one rendered using 3D Gaussian. The middle
image is the masked version of the rendered image, and the rightmost image
is the final out-painted result.

filled region of each Iout is compared to the reference images
Xref based on the number of feature correspondences. The
outputs are then ranked, and the highest-quality result is used.

B. Scene Initialization

Single Image When scene expansion is performed with a
single image, only one image is used as input. We use a pre-
trained monocular depth model to generate a depth map for
the input image. Using the generated depth map and the input
image, we reconstruct 3D points as follows:

ps = [R|t] ·

D(u, v) ·K−1

u
v
1

 , (6)

where ps represents the reconstructed 3D point, and K denotes
the camera’s intrinsic parameters. For a single input image, the
camera pose is set as the identity matrix, and the intrinsic focal
length is determined based on the image resolution.

The 3D points reconstructed from monocular depth are
used for Gaussian initialization and data augmentation. For
Gaussian initialization, the reconstructed points serve as the
initial mean values, while the covariance parameters are set in
the same manner as in 3D Gaussian Splatting [27]. Training a
3D Gaussian with a single image can result in significant over-
fitting to that specific view. To mitigate this issue, we employ
depth image-based rendering (DIBR) for data augmentation,
generating a support set of eight views around the input image.
This support set is used for supervised training of the initial
3D Gaussian alongside the input image.

Multi View Image When multi-view images are used as
input, we initialize the 3D Gaussian using camera parameters
and point clouds obtained from COLMAP. The 3D Gaussian
is trained using these parameters, and the trained model is
subsequently used to render depth for the input multi-view
images. Both the trained 3D Gaussian and the rendered depth
maps are used as initialization values. Unlike the single image
case, additional support set generation using depth image-
based rendering (DIBR) is not performed for multi-view
inputs, as sufficient diversity is inherently provided by the
multi-view setup.

C. Progressive Scene Expansion

We expand the scene progressively by training the initial-
ized 3D Gaussian and applying out-painting, enabling the

Fig. 5. progressive outpainting. The intuitive independent inpainting strategy
simultaneously performs rendering and inpainting for each view. Since there
are no 3D constraints during 2D inpainting, the overlapping regions inpainted
in different views can be view-inconsistent (as shown in the red box). In con-
trast, the progressive inpainting strategy achieves view-consistent inpainting
results by reflecting the previously inpainted content into the next view.

continuous and natural generation of the scene. First, a new
camera pose is generated in the direction of expansion by
applying rotation and translation to the previous camera pose.
The initialized 3D Gaussian is rendered for this new camera
pose, but it cannot fully cover the entire image. To address
this limitation, out-painting is applied to fill the uncovered
regions. To generate the mask required for out-painting, depth
image-based rendering (DIBR) is performed for all previously
utilized views in the direction of the new camera pose. During
DIBR, textures from existing views are projected, and regions
where textures cannot reach are identified as unseen areas,
which are then masked. These masked regions represent areas
to be expanded. The generated images and masks are input
into an out-painting model to produce extended images, which
are added to the training dataset of the 3D Gaussian Splatting
model. The 3D Gaussian is further trained using the updated
dataset, continuing from its previously learned state. This
process is iteratively repeated, progressively expanding the
scene.

IV. EXPERIMENTS

A. Datasets

We utilized a video dataset captured using a multi-camera
setup mounted on a fixed rig. The videos were recorded in
static scenes without dynamic objects, and the 0th frame of
each video was extracted for training. Since the diffusion-
based out-painting model is limited to a resolution of 512,
we cropped the scenes to a size of 512 for expansion. When
expanding the scene using a single image, we used the cropped
images. For scene expansion using multi-view data, we utilized
the original FHD-resolution videos, proceeding with a size of
512 in the direction of expansion.

B. Results of Rendering

Qualitative Results. We conducted scene expansion exper-
iments in two cases: single-view and multi-view inputs. The
results for single-view input can be observed in Fig 6 and Fig



Fig. 6. Single View Qualitative Results. Single view scene expansion results
using RealFill. Scene expanded using only the central image as input.

Fig. 7. Single View Qualitative Results. Results of scene expansion for a
single view through parameter adjustment.

7. It was confirmed that continuously expanded images can
be rendered even with a single input. Fig 8 shows the results
of expanded images obtained with multi-view input. A total
of 21 images were used as input, and the expanded images in
the outer regions can be observed.

Fig. 8. Single View Qualitative Results.

V. CONCLUSION

We proposed a novel methodology for expanding scenes
using a 3D rendering model. By utilizing 3D Gaussian Splat-
ting, we obtained a representation of the 3D space while
simultaneously expanding the scene using an out-painting
model. The expanded scene was progressively updated into
the 3D GS model. This approach can be applied in future
tasks to render continuous scenes with only a few views and
can also be used to expand 3D spaces. However, a limitation
remains due to the resolution constraints of diffusion-based
models.
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