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Abstract

Models of human driving behavior have long been used for prediction in autonomous vehi-
cles, but recently have also started being used to create non-playable characters for driving
simulations. While such models are in many respects realistic, they tend to suffer from unac-
ceptably high rates of driving infractions, such as collisions or off-road driving, particularly
when deployed in map locations with road geometries dissimilar to the training dataset. In
this paper we present a novel method for fine-tuning a foundation model of human driving
behavior to novel locations where human demonstrations are not available which reduces
the incidence of such infractions. The method relies on inference in the foundation model to
generate infraction-free trajectories as well as additional penalties applied when fine-tuning
the amortized inference behavioral model. We demonstrate this “titration” technique using
the ITRA foundation behavior model trained on the INTERACTION dataset when trans-
ferring to CARLA map locations. We demonstrate a 76-86% reduction in infraction rate and
provide evidence that further gains are possible with more computation or better inference
algorithms.

1 Introduction

Predicting the behavior of human-operated vehicles is a crucial capability for self-driving cars. Traditional
approaches are based on simple kinematic models (Cosgun et al., [2017; |Ziegler et al., 2014} |Lefevre et al.)
2014; Haarnoja et al.,[2016) or hand-coded decision-making systems (Kesting et al.;2009), which may include
parameters learned from data (Bhattacharyya et al. [2021). Recently data-driven approaches utilizing deep
learning have become increasingly popular (Lee et al.,[2017; Tang & Salakhutdinovl,2019; Djuric et al., [2020;
Mo et al., [2020; Rhinehart et al., 2019 |Gupta et al., 2018} [Sadeghian et al., 2019} [Zhao et al.| |2020; Hong
et al.l [2019; |Zhao et al., |2019).

Apart from their use in on-board prediction systems for planning in self-driving cars, models of human driving
behaviors are also used to create realistic non-playable characters (NPCs) for simulators in which self-driving
cars can be tested and trained (Suo et all [2021}; |Bergamini et al [2021). In both settings it is problematic if
the models too-frequently generate behaviors that result in serious infractions, such as colliding with other
agents or going off-road too often, as the resulting simulations would be sufficiently unrealistic to adversely
impact downstream task performance. The problem of excess infractions can be to some extent mitigated
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Figure 1: Overview of our model “titration” method. Starting from a pretrained foundation behavior model
p(s1.7) on observed human behavior (gray shaded boxes are taken as a given starting point), our aim is to
transfer its predictive power to out of distribution (OOD) map geometries, particularly so as to use nearly-
infraction-free behavior models to drive non-playable-characters (NPC)s in AV simulators. Our method is
rooted in the use of inference to generate infraction-free trajectories in OOD locations from the conditional
distribution p(sy.r|A) where A is shorthand for the event “no infractions occur.” By sampling behavioral
rollouts from this distribution we generate synthetic data which is then, in turn, used to train a parametric
“amortized” infraction-free behavior model pg(s1.7) = p(s1.7|A).

by introducing additional penalties for infractions at foundation behavior model training time, which are
referred to as “common sense losses” in [Suo et al.| (2021)).

Like all machine learning models, the ones predicting human driving behavior suffer from degraded perfor-
mance under domain shift, which in this case, in particular, occurs when the models are deployed in locations
not covered in the training dataset. This includes increased infraction rates, which is a major obstacle when
creating simulations with NPCs learned from data collected on different roads. In this paper we present a
general algorithm for fine-tuning behavior prediction models to novel settings where human demonstrations
are not available.

Our key observation is that models predicting a distribution over possible future behaviors, rather than just
a single behavior, often predict distributions that contain good predictions, but also others that perform
infractions. Such predictions can be improved by further conditioning on not performing such infractions.
While in certain settings such conditioning can be performed online during simulation (Suo et al., [2021)),
doing so is generally too computationally expensive.

We generate infraction-free trajectories in target locations from the conditional distribution defined by the
predictive model via probabilistic inference offline. Subsequently, we use these trajectories to train a new
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predictive model, typically by fine-tuning the original one, which targets the infraction-free conditional
distribution. This effectively creates a synthetic dataset of behaviors that avoids infractions in the target
locations, which can be used for learning behavior models through the usual means. This can be seen as a
kind of highly structured data augmentation process. Alternatively, we can view this process as an instance
of amortized inference, where the observations are known in advance, but the model is further conditioned,
here on constraints. Figure [I] graphically illustrates our approach.

In this paper, we use ITRA (Scibior et al., 2021) trained on the INTERACTION dataset (Zhan et all 2019)
as our foundation model (Bommasani et al., 2021]) and target the creation of NPCs for CARLA (Dosovitskiy!
et all 2017). We find that out-of-the-box ITRA generates trajectories that are in many ways realistic
but suffer from unacceptably high rates of collisions and off-road driving on CARLA maps motivating the
development of the method presented in this paper. We call the model output by applying our methodology
TITRATED, which stands for “Training ITRA to Emulate Desiderata”. The name is also loosely inspired
by a form of “titration” we perform in Section as we increase the number of rejection sampling attempts.

2 Related Work

Whether for producing onboard agent behavior predictions for autonomous vehicles (AV) or for generating
realistic non-playable character (NPC) behaviors for AV simulators, behavior prediction models are at the
heart of solving the AV control problem. The imitation of human driving behavior has been used to learn
control policies for autonomous vehicles (Bojarski et al., [2016; [Hawke et al.| |2020]). More recently, emphasis
was put on probabilistic prediction models that behave more human-like and realistic (Suo et al., [2021}
Bergamini et al.l [2021} [Scibior et al., 2021). All machine learning data-driven behavior models suffer from
generalizability issues, especially when the available training data is limited in the diversity of road structures
and interesting agent interactions. To improve the performance of behavior models, Bansal et al.| (2019)
proposed using collision and off-road losses during training to reduce infraction rates. These losses are
computed in the pixel space from the generated birdview representation masking the corresponding disallowed
areas (i.e. the other agent and off-road parts). They complement the standard imitation loss that is used
against human-recorded ground truth data, and thus, as training progresses, the model produces fewer and
fewer infractions, leading the auxiliary losses to provide less information compared to the initial stages of
training. On the other hand, |[Park et al.| (2020) proposed to give as input to the probabilistic behavior model
a probability heatmap that explicitly highlights the areas that are considered non-drivable. |Zhu et al.| (2021))
suggested using an unlikelihood loss during training that will minimize the likelihood of undesired predictions
possibly reducing the diversity of the predicted trajectories. Rhinehart et al.| (2018]) proposed R2P2 which is
a single agent model that uses an autoregressive Gaussian at every step, that is conditionally dependent on
all the previous steps. R2P2 emphasizes the use of a custom loss, which is a symmetrized cross-entropy loss
between the model and data. This resembles a forward and reverse KL term. The latter is evaluated by rolling
out under the model and evaluating an approximate data density, either a KDE estimate or a custom model
scoring drivable surfaces trained separately. In contrast, in this work, we are interested in improving the
performance of existing foundation probabilistic behavior models in OOD locations where acquiring human
demonstration is difficult or even impossible. We amortize the inference process of generating infraction-free
synthetic examples by finetuning with these examples and additionally applying collision and off-road losses
by rolling out under the model during training.

3 Method

3.1 Foundation Model

Our starting point is ITRA (Scibior et al.l [2021) pre-trained on the INTERACTION dataset. This is the
foundation model of driving behavior that we use in this work, but any other sufficiently general probabilistic
behavior prediction model (e.g. (Zhao et all 2019; |Suo et al.l 2021)) trained on any other dataset with
sufficient coverage could equally well have been used. The method we develop is model-agnostic.

For convenience we share notation with ITRA. Let s* = {si,...,s!,..., sk} denote a sequence of states s!
for agent ¢ where ¢ € {1,..., N;} and N; is the number of agents in the scene at time ¢t. Each agent state is a
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Figure 2: Examples from finetuning ITRA to the novel setting of CARLA. On its own ITRA produces
unacceptable levels of infractions on CARLA maps, both in terms of collisions (top row) and off-road-
driving (bottom row). Our method, TITRATED, substantially reduces both forms of infractions. Colored
lines indicate the path moving vehicles took to get where they are.

tuple s; = (z7,y;, 9, v;) € R* where (z}, ;) is the geometric center of the agent, 1f is the agent’s orientation,
and v} is its speed. Each agent has a fixed rectangular shape with length I* and width w?, which is assumed
known and implicitly a part of each agents’ state.

In ITRA, the interactions of the agents with each other and the environment are mediated through a birdview
image, which for each agent i and time ¢ is obtained via differentiable rendering Z{ = render (i, stLN *). These
images are centered on each ego vehicle ¢ and rotated to match its orientation, but otherwise are similar to
the images shown in Figure [2albeit without the colored paths. Based on Z} and a hidden recurrent state, the
agent i at time ¢ selects action al = (al, 3!), consisting of acceleration and steering, which is translated into
subsequent state st 41 using a bicycle kinematic model (Polack et al., 2017). This combination of birdview
images and action space is selected to facilitate domain transfer of ITRA predictions to novel maps.

Each agent in ITRA is modeled as a conditional variational recurrent neural network (VRNN) (Chung et al.,
2015), with latent variables zi. The joint predictive distribution of ITRA factorizes as

T N

p(svr) HH/ Zt stlz-tlvztv t— 1a5t 1) dz%qut (1)
t=1i=1
where
p(z) = N'(2£;0,1) (2)
p(st+1‘zt77zt> t— 1a5t) /\/(k‘ln(st,at) ol) (3)
t+17az:@(1t7zfa t 1) (4)

with ¢ denoting the neural network and kin the kinematic bicycle model. The model is trained as usual,
jointly with a separate inference network, by maximizing the evidence lower bound (ELBO). We refer the
interested reader to (Scibior et al., |2021)) for more details.

3.2 Infractions

We start by formalizing the notion of infraction, notably collision and off-road invasion. We chose metrics
that can indicate both the presence of such infractions and their severity. In Section [3.4] we use these metrics
directly as losses in training.

For each agent i and time ¢, the current state si and the fixed dimensions (I%,w’) define a bounding box
C} € R**2, represented as four corners of the vehicle. The overlap between bounding boxes can be quantified
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using the standard Intersection-over-Union (IoU) metric

|B; N Bj|
IoU(B;, Bj) = =71,
J |B; U Bj|

Using that, we define our collision metric as the sum of individual IoUs across time

T N,

o(Crr) =Y ToU( (6)

t=1 j#1

As this metric is generally expensive to compute, particularly in a differentiable fashion, we use an approxi-
mate version of it described in|Zhou et al.| (2019)). Contrary to other methods (Suo et al.,|[2021; Rempe et al.,
2022) that employ a differentiable collision loss that approximates each vehicle as 5 circles and maximizes
the distance between the closest centroids, our use of the technique of |Zhou et al.| (2019) is novel in that
it is a highly accurate differentiable collision loss that directly minimizes the overlapping area between two
collided vehicles.

For off-road infractions, we assume that we have access to a triangle mesh V' defining the driveable area
(road surfaces, etc.). Given a function ® that computes the distance from a point to a triangle, we define
a novel off-road infraction metric as the sum of distances of the corners of all vehicles from the road mesh
across time

T N
EOR(Cl T7 ZZ Z m1n<I> Cj, (7)
t=11i=1¢; ECI

This metric can be computed efficiently in a differentiable manner (Eberly, [1999) and well-established im-
plementations eXistE| When used in training, this metric is referred to as the point-to-surface loss (Smith
et al. 2019). Note that it is zero only when all four corners of all vehicles are contained within the driveable
area.

3.3 Inference

Let A be the event that no vehicle performed an infraction within the specified time window
A= (Lc=0)A(Lor =0) (8)

where A means logical and. The probability of A under the real-world distribution of human driving be-
haviors is remarkably close to 1, but in predictive models such as ITRA it can be much lower, indicating
an unacceptable, unrealistic number of infractions. Our key insight is that we can obtain a better model
by further conditioning on not performing infractions, denoted here as the conditional density p(s1.7|4, V).
Note that in order to keep the notation relatively uncluttered we have throughout deliberately elided nota-
tion that indicates the conditional dependence on the underlying map layout V. It should be kept in mind
throughout that all of our objectives are averaged over V.

Unfortunately, sampling from the conditional distribution p(s;.7|A) can be computationally expensive. This
is particularly problematic in the simulation context, where we would normally unroll the predictive model
one step at a time to derive NPC behaviors, but conditioning on not performing infractions in the future
requires also sampling subsequent states. For this reason, in Section we learn a model py(si.r) =~
p(s1.7|A), which can be sampled from sequentially in fixed time. First, we show how to use inference to
generate examples of infraction-free trajectories in an off-line setting.

Given a collection D of initial conditions on target maps, we can construct a synthetic dataset D of infraction-
free trajectories by repeatedly sampling joint trajectories from the predictive model and rejecting them until
no infractions are found. This procedure is simple but can be computationally expensive, since rejection
sampling can take arbitrarily long to produce acceptable samples. In order to limit computational cost, we
introduce a max__trials parameter, which indicates the maximum number of sampling attempts performed,

Thttps://github.com/NVIDIAGameWorks/kaolin
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Algorithm 1 Infraction-Free Dataset Generation
Input: Initial conditions dataset D
Driving behaviour model p(sy.7)
Maximum number of trials max_trials
Output: Infraction-Free dataset D
1: D — 0
2: for (sg,V) € D do
found + false
for n < 1 to max__trials do
Sample rollout s1.7 from p(s1.7|s0)
Convert states s1.r to bounding boxes Cy.1
if EC(CI:T) =0 and EOR(CLT, V) =0 then
found < true
break
10: if found then
11: D <+ DU{(s1.1,V)}

12: return D

o

© X N> a R

after which the (sg, V) tuple is excluded from the dataset if an acceptable sample was not found. The details
of this dataset generation process are given in Algorithm Note that this process can be done “just-in-
time”, interleaved with training, which is what we actually do in our experiments. This has the advantage
of not allowing the fine-tuned model to overfit to specific examples and requires, instead, it to fit the full
conditional distribution.

3.4 Amortized Inference

Using the synthetic data consisting of infraction-free trajectories from Section [3.3] we can train an amortized
“titrated”, model with ELBO, following the standard training process of ITRA outlined in Section [3.1} This
process minimizes the negative ELBO, defined as

T—1 N,
Lowpo = X3 ( [log po (st 41 1T 24, 1)) = Dice. [as(311a, T, ) Ipo(=0)] ) |
S1: T""p s1.r|A) t=1 i=1 Zt‘at)Itvh )
< E [logpe(SLT)} 9)

st.7~p(s1:7|A)
where ¢4 is a separate inference network trained jointly with the model pg.

As discussed in Section [} learned models of human driving behavior, such as ITRA, are prone to generate
excessive infractions. We ameliorate this problem by introducing explicit infraction penalties in the form of
the collision metrics from Section [3:2 obtained when sampling from the amortized model py, as additional
loss terms

L =—LgrLBo + AcLc + AorLor. (10)

This is the final training objective for TITRATED, although some care needs to be taken when minimizing
it, since Lgppo involves sampling from the inference network, while Lc and Logr involve sampling from the
prior. We address this by performing two separate rollouts for each training example, as shown in detail in
Algorithm [2]

4 Experimental Results

In our experiments, we, at a high level, learn human driving behaviors from the INTERACTION dataset
(Zhan et al.l |2019) and use them to create NPCs in CARLA (Dosovitskiy et al., [2017). More specifically
we take a pre-trained ITRA model obtained exactly as described in [Scibior et al.| (2021) and fine-tune it
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Algorithm 2 Amortized Inference with Infraction Penalties Training Process

Input: Infraction-Free dataset D (Alg
Foundation model p
Output: Amortized model py

1: Initialize pg as p.
2: for (Sl;T,V) € D do
3: 81.7—1 ~ po(s1.7) using proposal distribution ¢,

4: Lo ¢ compute using s1.7 and §1.7_1 (Eq@
5:

6: S1.7—1 ~ pp(s1.7) using prior distribution B

7 Convert states 51.7—1 to bounding boxes C1.7—1
8: Lc <+ compute using C.7—1 (Eq

9: Lor + compute using C1.7—1 and V (Eq

10:

11: L+ —Lero + AcLc + AorLor (Eq[10)

122 0« 0—nik

13: return pg

Table 1: Summary of the dataset collected using CARLA autopilot. These are the initial conditions used to
adapt TITRATED to CARLA.

Avg. Num.
Scene Train / Val. Size | Agents Per

Trajectory
Town01_ Straight 7338 / 492 8.6
Town01_ 3way 18632 / 930 19.8
Town02_ Straight 36215 / 1916 35.5
Town02_ 3way 38206 / 2030 38.8
Town03__Roundabout 21830 / 1151 24.1
Town03_ Sway 22160 / 1076 24.1
Town03_ 4way 12822 / 753 13.8
Town03__ 3way_ Unprotected 14865 / 885 15.0
Town03_ 3way_ Protected 13045 / 688 14.5
Town03__GasStation 21127 / 1028 21.2
Town04_Merging 5268 / 292 7.3
Town04_ 3way_Large 3931 / 193 5.3
Town04_ 3way_Small 5076 / 394 6.2
Town04__4way_ Stop 7872 / 582 8.5
Town04_ Parking 12794 / 701 13.8
Town06_ Merge_ Single 13154 / 664 16.5
Town06_ 4way_ large 9110 / 362 9.7
Town06_ Merge Double 5028 / 240 7.5
Town07_ 3way 35601 / 1871 37.0
Town07__4dway 30412 / 1586 31.8
TownlOHD_4way 57826 / 3005 55.9
TownlOHD_3way Protected 30456 / 1485 30.0
TownlOHD_ 3way_ Stop 50747 / 2566 50.0

with the method described in Section [3] to obtain TITRATED models for a collection of selected locations
in CARLA. Our goal is to maintain maximum similarity to ITRA predictions while reducing the incidence
of driving infractions, consisting of collisions and off-road invasions, in these novel simulator contexts.

To create a collection of initial conditions required by Algorithm[I]in CARLA, we created a custom synthetic
dataset using the built-in autopilot. Specifically, in each town we recorded 200 minutes of driving at 10 frames
per second, featuring 100 randomly selected and placed vehicles. We then selected 23 locations of interest
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Table 2: Rates of driving infractions in various CARLA scenes, with (TITRATED) and without (ITRA) the
fine-tuning proposed in this paper. TITRATED (All maps) refers to a single model trained on all 23 distinct
locations.

Collision Rate x10~% Off-road Rate x10~*

Scene ITRA  TITRATED L LLRATED ©p duction | ITRA  TITRATED  LLLRATED g uction
(All maps) (All maps)

Town01_Straight 26.0 2.0 5.6 78.46% 42.7 0 0 100%
Town01_ 3way 19.4 4.8 4.3 77.84% 11.3 0 0 100%
Town02__ Straight 11.2 2.8 3.4 69.64% 51.5 1.6 4.9 90.49%
Town02_ 3way 10.0 3.3 3.1 69.00% 33.9 0 0.5 98.53%
Town03__Roundabout 5.0 1.7 1.2 76.00% 134.0 47.1 7.4 94.48%
Town03_ 5way 4.6 1.6 0.9 80.43% 95.8 37.5 3.7 96.14%
Town03_ 4way 6.0 2.5 1.3 78.33% 67.2 34.2 19.6 70.83%
Town03__3way__ Unprotected 6.3 2.7 2.6 58.73% 74.8 42.3 25.1 66.44%
Town03_ 3way_Protected 10.4 4.9 3.9 62.50% 84.9 41.5 27.4 67.73%
Town03__ GasStation 6.6 0.6 0.3 95.45% 32.8 13.2 19.1 41.77%
Town04_ Merging 0.2 0.1 0 100% 47.8 0 0 100%
Town04_ 3way_ Large 8.0 2.3 1.4 82.5% 11.2 0 0 100%
Town04_3way_Small 16.6 6.4 3.4 79.52% 29.6 0.8 0 100%
Town04_ 4way_ Stop 10.9 4.7 2.0 81.65% 324 11.6 0.09 99.72%
Town04__ Parking 6.5 4.7 1.1 83.08% 44.7 5.3 0.1 99.78%
Town06_ Merge_ Single 1.7 1.1 1.3 23.53% 109.6 27.6 20.0 81.75%
Town06__ 4way_large 1.7 0.3 0 100% 7.3 1.5 3.3 54.79%
Town06_ Merge_ Double 1.8 0.5 0 100% 2.3 0 0 100%
Town07__3way 6.9 2.2 2.0 71.01% 45.3 3.1 1.0 97.79%
Town07_ 4dway 7.8 2.3 2.6 66.67% 60.6 3.1 0.1 99.83%
TownlOHD_ 4way 3.6 1.7 1.0 72.22% 51.1 21.1 10.9 78.67%
TownlOHD_ 3way_ Protected 4.5 1.6 0.9 80.00% 76.2 26.3 21.0 72.44%
TownlOHD_ 3way_ Stop 3.6 1.9 1.3 63.89% 62.5 17.2 12.8 79.52%
Average | 7.8 2.4 1.8 76.11% | 526 14.5 7.6 86.55%

across 7 towns and cropped the recordings to a 100 meter radius from each of them, mimicking the structure
of the INTERACTION dataset. We then sliced those datasets into 4 second segments, consisting of 1 second
of history and 3 seconds of predictions, taking the 1 second history from those segments as initial conditions.
The dataset is summarized in Table[I[] We emphasize that the autopilot-generated trajectories are only used
to specify initial conditions, the trajectories recorded in the subsequent 3 seconds are never used in training.

In the evaluation we are only interested in the frequency of infractions and not their severity, so we define
infraction rates using indicator functions on the metrics defined in Section Specifically, we define the
collision rate as

N K
. 111
Collision Rate = NKET Zl /; ; 1£c(s§fi)>0 (11)

where N is the number of validation examples and K is the number of samples generated for each example
n € N. Contrary to other methods (Suo et al. [2021)), we apply zero collision tolerance since our method is
able to detect collisions precisely instead of approximately. We define the off-road rate as

N K
111
Off-road Rate = N Z Z Z 150R(s§f1”')>0 (12)

n=1k=1t=1

=
N

where ¢ refers to the index of the ego-vehicle.

In each of the CARLA locations, we produce a separate version of TITRATED by fine-tuning ITRA from
the checkpoint trained on the INTERACTION dataset. In addition, we train a single TITRATED model
for all CARLA locations. We use ITRA (Scibior et all 2021) as our baseline model pre-trained on the
whole INTERACTION dataset (Zhan et al |2019)). We follow the same hyper-parameter setup as described
in [Scibior et al.| (2021) and fine-tune a mirror copy of the ITRA model for each unseen location from the
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Table 3: The effect of more effective inference on TITRATED infraction rates.

Max Trials

\
| 1 10 20 50 100 | 1 10 20 50 100 | 1 10 20 50 100
|

‘ Scene Collision Rate x107% ‘ Off-road Rate x10~% ‘ Rejected Examples ‘
Straight Road 11.21 2.09 2.07 2.02 1.58 2.25 0 0 0 0 7.5% 2.6% 2.1% 1.7% 1.5%
Roundabout 3.45 1.72 1.72 1.44 1.43 63.32 47.15 37.88 35.18 34.60 10.1% 5.4% 4.8% 4.1% 3.7%
4-way Intersection 1.05 0.34 0.30 0 0 2.60 1.53 1.38 0.92 0.46 2.8% 1.3% 1.2% 1.0% 0.9%

Collision Rate Off-road Rate

o

o
®

1.0 /’.
/
0.8 .
/

0.6 o/ e Straight Road
g Roundabout
04 A * 4-way Intersection

o
o

o Straight Road
Roundabout
«  4-way Intersection

)
S
Normalized Error Rate

Normalized Error Rate

o
o

o
o

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 0.0% 2.0% 4.0% 6.0% 8.0% 10.0%
Percentage of Rejected Training Examples Percentage of Rejected Training Examples

Figure 3: Scatter plots of infraction rates achieved by TITRATED versus the number of items rejected
from the synthetic dataset. Different points correspond to max_ trials values € {1, 10,20, 50,100} used in
rejection sampling, increasing to the left. Straight lines are fit with least squares to extrapolate performance
to a setting with perfect inference algorithms where no items are rejected.

synthetic dataset using the proposed methodology. Specifically, we set the model hidden size dj to 64, the
latent representation size d, to 2 and the number of recurrent layers to 2. We use differentiable rendering
as described in [Scibior et al| (2021) and a birdview image of size 256x256. We use the ADAM optimizer
(Kingma & Bal, [2015)) with default values and 1 x 10~3 learning rate. The batch size is set to 8 trajectories
using class-mates forcing (Scibior et al.| 2021} |Tang & Salakhutdinov], |2019)) and trained on a single NVIDIA
RTX 2080 Ti GPU. We set the hyperparameters Ac and Aor to 1 x 10% and 1 x 10? respectively and use
maz__trials of 10 and just-in-time sampling of infraction-free training examples.

Table 2] shows that TITRATED is able to significantly reduce the collision and off-road rates of ITRA.
Specifically, we first generate an ITRA rollout for each initial condition in the corresponding CARLA dataset
(see Table[l)) and compute infraction rates. We do the same for TITRATED rollouts. We see that, averaged
across all CARLA locations, individually trained TITRATED models are able to reduce collisions by 69%
and off-road invasions by 72%. In some cases, TITRATED even achieves a full 100% reduction, entirely
eliminating off-road driving in all validation examples. Furthermore, our single TITRATED model trained
on all CARLA locations is producing a 76% reduction in collisions and 86% in off-road infractions. Figure
and the related discussion in the following section suggest that TITRATED is likely to reduce infractions even
further with increased quality of inference, albeit at potentially greater computational expense to construct
infraction-free examples for all initial conditions.

4.1 Better Inference Leads to Lower Infraction Rates

The key component of TITRATED is the Bayesian inference algorithm for computing and sampling from the
conditional distribution p(s1.7|A4). In the main experiment, we used rejection sampling with max_ trials =
10, resulting in a reasonable trade-off between computational cost and infraction metric improvements.
However, this choice excludes many examples for which no accepted sample could be found in ten tries.
Crucially, these are “difficult” examples in the sense that ITRA is likely to produce high infraction rates on
them. This raises the following question: would finding accepted samples for all of these difficult examples
drive TITRATED model infraction rates to zero?
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Figure 4: Top row: three representative scenes from our CARLA dataset; a straight road, a roundabout,
and a 4-way intersection. Bottom row: the structurally similar maps from the INTERACTION dataset that
we used for the acceleration distribution comparison in Figure

To answer this question, we investigated how using increasingly more powerful inference algorithms could
impact the performance of TITRATED, trying to extrapolate to the setting of a perfect inference oracle
that is able to produce samples with no infractions in all cases. For simplicity, we conducted this study
using rejection sampling with increasing max_ trials to stand in for a sequence of increasingly powerful
inference algorithms, although in practice one could use a different sequence of sampling techniques of
growing sophistication or computational expense instead.

We selected three representative locations from the CARLA dataset, covering a straight road, a roundabout,
and a 4-way intersection, as depicted in Figure [4 For each of those locations, we ran the full TITRATED
training procedure with varying values of maz_ trials € {1,10,20,50,100}. As expected, both the number
of rejected examples and the infraction rate decrease monotonically with increasing max_ trials, as shown in
Table (3] This procedure of gradually increasing the number of rejection sampling attempts loosely resembles
titration, further motivating the naming of our method.

To analyze the scaling behavior as the inference algorithm improves, we plotted the infraction rate of
TITRATED against the fraction of rejected examples in Figure[3] Somewhat surprisingly, this scaling tends
to be close to linear, allowing us to extrapolate to a setting with a perfect inference algorithm that finds
acceptable samples for all training examples. In most, but not all cases, the extrapolated line achieves zero
infraction rate before achieving full dataset coverage, suggesting that the use of better inference algorithms
could remove infractions entirely.
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Figure 5: Kernel density estimates of acceleration distributions for TITRATED, ITRA, CARLA autopilot,
and real human data. Acceleration values are normalized using highest values present in human data.

4.2 Assessing Human-likeness of Driving Behavior

The primary motivation for this work was to create NPCs for CARLA exhibiting human-like driving be-
havior. While this is largely subjective and no definitive metrics are agreed-upon by the community, in
this experiment we seek to demonstrate that in some sense, TITRATED indeed generates more human-like
driving behavior than the CARLA autopilot.

When actual human trajectories for specific maps are available, prediction metrics such as average and
final displacement error can be used to judge the realism of behavior models (Bergamini et al., [2021)), but
unfortunately those are not available in CARLA. For comparing different learning-based models, infraction
rates can be used, but hand-coded models such as CARLA autopilot can easily achieve zero infraction rates
while still not being very realistic.

The only alternative approach we are aware of is to compare the distributions of various quantities associated
with driving (Chao et al., 2020). In Figure |5| we present the probability densities of vehicle acceleration.
We chose three representative scenes from the CARLA dataset, the same ones as used in Section [£.I} and
selected similar scenes from the INTERACTION dataset for comparison with humans in a similar scenario.
The scenes are depicted in Figure

In all three cases, CARLA autopilot has a highly peaked acceleration distribution around zero, while the
distribution of human acceleration values is more spread, corresponding to a higher diversity of controls
applied by humans. We see that both ITRA and TITRATED are more realistic than the CARLA autopilot,
in the sense of the distribution of accelerations being more spread. As might be expected, the additional
conditioning in TITRATED sometimes leads to less realistic acceleration distributions, reducing the variance
on 4-way Intersection and introducing excessive braking on Roundabout. On the other hand, on Straight
Road the TITRATED distribution is slightly less peaked than ITRA, indicating a more realistic acceleration
distribution after conditioning on not performing infractions.

5 Discussion

A limitation of TITRATED is that it can only be used to address infractions that we never want to see
in predictions. However, humans commit those infractions in the real world at a non-zero rate, and a
realistic model should be able to replicate this rate of infractions. This is even more important for less
catastrophic infractions, such as running a red light or failing to yield. Our proposed methodology for
amortized conditional inference is agnostic to the type and number of conditions. In principle, one can use
more sophisticated conditioning to achieve such goals. A promising avenue for future work is accommodating
soft constraints that we expect humans to satisfy usually, but not always, like obeying traffic rules or executing
specific maneuvers and commands. Taking advantage of more powerful interference algorithms is essential
for achieving this goal, thus we are currently investigating alternatives in this context.
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6 Conclusion

TITRATED provides a way to transfer learned models of human driving behaviors to new settings while
avoiding unrealistic infractions typically associated with such domain transfer. The crucial ingredient of the
process is generating samples from the model conditioned on not performing such infractions, which is chal-
lenging, but better inference algorithms used for this purpose may result in large performance improvements.
TITRATED is already used to provide NPCs for CARLA based on human driving trajectories recorded in
the real world.

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC),
the Canada CIFAR AI Chairs Program, and the Intel Parallel Computing Centers program. Additional
support was provided by UBC’s Composites Research Network (CRN), and Data Science Institute (DSI).
This research was enabled in part by technical support and computational resources provided by WestGrid
(www.westgrid.ca), Compute Canada (www.computecanada.ca), and Advanced Research Computing at the
University of British Columbia (arc.ubc.ca).

References

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. ChauffeurNet: Learning to Drive by Imitating the
Best and Synthesizing the Worst. In Proceedings of Robotics: Science and Systems, FreiburgimBreisgau,
Germany, June 2019. doi: 10.15607/RSS.2019.XV.031.

Luca Bergamini, Yawei Ye, Oliver Scheel, Long Chen, Chih Hu, Luca Del Pero, Blazej Osinski, Hugo
Grimmet, and Peter Ondruska. SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations. In 2021 IEEFE International Conference on Robotics and Automation (ICRA), pp. — IEEE,
2021.

Raunak Bhattacharyya, Soyeon Jung, Liam A. Kruse, Ransalu Senanayake, and Mykel J. Kochenderfer.
A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling Through Particle Filtering. IEEFE
Transactions on Intelligent Transportation Systems, pp. 1-14, 2021. doi: 10.1109/TITS.2021.3119415.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
End to end learning for self-driving cars, 2016. URL https://arxiv.org/abs/1604.07316.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the Opportunities and Risks of
Foundation Models, 2021. URL https://arxiv.org/abs/2108.07258.

Q. Chao, Z. Deng, Y. Xiao, D. He, Q. Miao, and X. Jin. Dictionary-based Fidelity Measure for Virtual
Traffic. IEEE Transactions on Visualization and Computer Graphics, 26(3):1490-1501, March 2020. ISSN
1941-0506. doi: 10.1109/TVCG.2018.2873695. Conference Name: IEEE Transactions on Visualization
and Computer Graphics.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville, and Yoshua Bengio. A
Recurrent Latent Variable Model for Sequential Data. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’'15, pp. 2980-2988, Cambridge, MA, USA,
2015. MIT Press.

Akansel Cosgun, Lichao Ma, Jimmy Chiu, Jiawei Huang, Mahmut Demir, Alexandre Miranda Anon, Thang
Lian, Hasan Tafish, and Samir Al-Stouhi. Towards full automated drive in urban environments: A demon-
stration in gomentum station, california. 2017 IEEFE Intelligent Vehicles Symposium (IV), Jun 2017. doi:
10.1109/ivs.2017.7995969.

12


https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/2108.07258

Published in Transactions on Machine Learning Research (08/2022)

Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin,
Nitin Singh, and Jeff Schneider. Uncertainty-aware Short-term Motion Prediction of Traffic Actors for
Autonomous Driving. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Mar
2020. doi: 10.1109/wacv45572.2020.9093332.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pp. 1-16, 2017.

D. Eberly. Distance Between Point and Triangle in 3D. In Geometric Tools, 1999.

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social GAN: Socially
Acceptable Trajectories with Generative Adversarial Networks. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Jun 2018. doi: 10.1109/cvpr.2018.00240.

Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf: Learning discriminative
deterministic state estimators. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 4383-4391, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

Jeffrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele Reda, Nikolay Nikolov, Przemyslaw
Mazur, Sean Micklethwaite, Nicolas Griffiths, Amar Shah, and Alex Kndall. Urban driving with conditional
imitation learning. 2020 IEEFE International Conference on Robotics and Automation (ICRA ), May 2020.
doi: 10.1109/icra40945.2020.9197408. URL http://dx.doi.org/10.1109/ICRA40945.2020.9197408.

Joey Hong, Benjamin Sapp, and James Philbin. Rules of the Road: Predicting Driving Behavior with a
Convolutional Model of Semantic Interactions. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2019. doi: 10.1109/cvpr.2019.00865.

Arne Kesting, Martin Treiber, and Dirk Helbing. Agents for traffic simulation. Computational Analysis, Syn-
thesis, € Design Dynamic Systems, pp. 325-356, Jun 2009. ISSN 2154-9826. doi: 10.1201/9781420070248.
chll.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip H. S. Torr, and Manmohan Chan-
draker. DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents. 2017 IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017. doi: 10.1109/cvpr.2017.233.

S. Lefevre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment for intelligent
vehicles. ROBOMECH Journal, 1:1-14, 2014.

Xiaoyu Mo, Yang Xing, and Chen Lv. ReCoG: A Deep Learning Framework with Heterogeneous Graph for
Interaction-Aware Trajectory Prediction. arXiv:2012.05032 [cs], December 2020. URL http://arxiv.
org/abs/2012.05032. arXiv: 2012.05032.

Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat, Minseok Kang, Jonathan Francis, Ashwin Jadhav,
Paul Pu Liang, and Louis-Philippe Morency. Diverse and admissible trajectory forecasting through mul-
timodal context understanding. Lecture Notes in Computer Science, pp. 282-298, 2020. ISSN 1611-3349.
doi: 10.1007/978-3-030-58621-8 17. URL http://dx.doi.org/10.1007/978-3-030-58621-8_17.

Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle. The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles? In 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 812-818, 2017. doi: 10.1109/IVS.2017.7995816.

Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fidler, and Or Litany. Generating Useful Accident-
Prone Driving Scenarios via a Learned Traffic Prior. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

13


http://dx.doi.org/10.1109/ICRA40945.2020.9197408
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2012.05032
http://arxiv.org/abs/2012.05032
http://dx.doi.org/10.1007/978-3-030-58621-8_17

Published in Transactions on Machine Learning Research (08/2022)

Nicholas Rhinehart, Kris M. Kitani, and Paul Vernaza. R2p2: A reparameterized pushforward policy for
diverse, precise generative path forecasting. In Proceedings of the Furopean Conference on Computer
Vision (ECCV), September 2018.

Nicholas Rhinehart, Rowan Mcallister, Kris Kitani, and Sergey Levine. PRECOG: PREdiction Conditioned
On Goals in Visual Multi-Agent Settings. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Oct 2019. doi: 10.1109/iccv.2019.00291.

Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and Silvio Savarese.
SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019. doi: 10.1109/
cvpr.2019.00144.

Adam Scibior, Vasileios Lioutas, Danicle Reda, Peyman Bateni, and Frank Wood. Imagining The Road
Ahead: Multi-Agent Trajectory Prediction via Differentiable Simulation. In 2021 IEEE 2jrd International
Conference on Intelligent Transportation Systems (ITSC), 2021.

Edward Smith, Scott Fujimoto, Adriana Romero, and David Meger. GEOMetrics: Exploiting geometric
structure for graph-encoded objects. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 58665876, Long Beach, California, USA, 09-15 Jun 2019. PMLR.

Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. TrafficSim: Learning To Simulate
Realistic Multi-Agent Behaviors. In IFEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pp. 10400-10409. Computer Vision Foundation / IEEE, 2021.

Charlie Tang and Russ R Salakhutdinov. Multiple Futures Prediction. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019.

Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximilian Naumann, Julius Kiimmerle,
Hendrik Konigshof, Christoph Stiller, Arnaud de La Fortelle, and Masayoshi Tomizuka. INTERACTION
Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Sce-
narios with Semantic Maps. arXiv:1910.03088 [cs, eess], 2019.

Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen,
Yuning Chai, Cordelia Schmid, Congcong Li, and Dragomir Anguelov. TNT: Target-driveN Trajectory
Prediction. arXiv:2008.0829/ [cs], pp. 12, August 2020. URL http://arxiv.org/abs/2008.08294.
arXiv: 2008.08294.

Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao Zhao, Yizhou Wang, and
Ying Nian Wu. Multi-Agent Tensor Fusion for Contextual Trajectory Prediction. 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun 2019. doi: 10.1109/cvpr.2019.01240.

Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo Yin, Yuchao Dai, and Ruigang Yang. Iou loss for
2d/3d object detection. 2019 International Conference on 3D Vision (3DV), Sep 2019. doi: 10.1109/3dv.
2019.00019. URL http://dx.doi.org/10.1109/3DV.2019.00019.

Deyao Zhu, Mohamed Zahran, Li Erran Li, and Mohamed Elhoseiny. Motion forecasting with un-
likelihood training in continuous space. In 5th Annual Conference on Robot Learning, 2021. URL
https://openreview.net/forum?id=4u25M570Iji.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt,
C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz,
H. Mock, M. Hein, and E. Zeeb. Making Bertha Drive—An Autonomous Journey on a Historic Route.
IEEF Intelligent Transportation Systems Magazine, 6(2):8-20, 2014. ISSN 1941-1197. doi: 10.1109/MITS.
2014.2306552. Conference Name: TEEE Intelligent Transportation Systems Magazine.

14


http://arxiv.org/abs/2008.08294
http://dx.doi.org/10.1109/3DV.2019.00019
https://openreview.net/forum?id=4u25M570Iji

	Introduction
	Related Work
	Method
	Foundation Model
	Infractions
	Inference
	Amortized Inference

	Experimental Results
	Better Inference Leads to Lower Infraction Rates
	Assessing Human-likeness of Driving Behavior

	Discussion
	Conclusion

