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Abstract

The hallucinations of large language mod-
els (LLMs) have the potential to be solved
by Retrieval-Augmented Generation (RAG),
which incorporates external knowledge during
the generation process. Although effective, in-
correctly retrieved knowledge uncontrollably
carries rich noise, which damages RAG per-
formance. In this paper, we propose a sim-
ple yet highly effective prompting strategy: re-
thinking. Drawn inspiration from how humans
selectively learn with external knowledge, re-
thinking considers the retrieved knowledge can-
not be treated equally, which means selectively
retaining and removing knowledge. To gather
insightful and comprehensive selection process,
additionally, we develop a fine-grained and
in-depth interaction mechanism, which equips
knowledge with queries again, making them
have richer, back-and-forth interactions, ob-
taining fine-grained correlation or slight dif-
ferences. Experiments conducted on various
reasoning benchmarks and LLMs demonstrate
the effectiveness of the proposed re-thinking
framework.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance in understanding and gener-
ating natural language (Touvron et al., 2023a; Ope-
nAl, 2023). However, their training process heavily
relies on large-scale static collections of text, over-
looking the ever-changing nature of real-world data
(Kandpal et al., 2023). As aresult, LLMs still strug-
gle with hallucinations (Zhang et al., 2023a), par-
ticularly when faced with queries that go beyond
the scope of their training data. This issue sig-
nificantly undermines the reliability of LLMs and
hampers their practical application (Huang et al.,
2023). One promising solution to address this chal-
lenge is Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020b). By incorporating external
data during the generation process, RAG enhances
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i Query: What country bordering Slovakia has a capital called Prague?

I

i Retrieved Knowledge

: (1)The border between Slovakia and Ukraine stretches for 60 miles.

! (2)Slovakia is bordered by Poland to the north, Hungary to the south, Austria
i to the west, Ukraine to the east, and the Czech Republic to the northwest.

i (3)Prague: etymology is derived from an old Slavic word.

1 Answer:

Poland? Hungary? Austrig? N
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Figure 1: An example of adopting RAG and re-thinking
on reasoning of LLMs respectively.

the model’s ability to produce dependable and ac-
curate responses.

RAG offers a comprehensive and efficient ap-
proach to tackle hallucinations and knowledge de-
lays in LLMs (Gao et al., 2023). While it can be
beneficial in certain cases, there is also a risk of
reduced performance for LLMs when retrieving
incorrect knowledge with rich noise. Our analysis
reveals that sometimes the retrieved knowledge is
unrelated to the query at hand, and in other cases, it
is only partially supported. For example, in Figure
1, although retrieved Knowledge 3 and the input
query share the same word "Prague", they are not
actually related. Besides, Knowledge 1 and 2 carry
the country list bordering Slovakia but omit to in-
dicate which country’s capital is Prague, resulting
in the retrieved knowledge only supporting par-
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Figure 2: The EM score results of ChatGPT and
(ChatGPT + RAG) on two-well known datasets. EM
score measures the percentage of predicted responses
that match the answer. We utilize the version of
gpt-3.5-turbo-0301 for ChatGPT. From the results,
we find that RAG unexpectedly reduces the ChatGPT
reasoning performance.

tial queries. Besides detailed case analysis, we
further rigorously experiment on two well-known
datasets (Talmor and Berant, 2018; Su et al., 2016)
with RAG!'. Figure 2 demonstrates that with the
implementation of RAG, the score unexpectedly
decreased by 1.25% and 3.5%. Based on the above
analysis, we summarize the key factor briefly hin-
ders RAG is the retrieval knowledge noise.

To eliminate knowledge noise, we consider the
retrieved knowledge cannot be treated equally,
which means selectively retaining and removing
knowledge. Thereby, we propose a simple yet
highly effective prompting strategy: re-thinking.
LLM thinks and infers the retrieved knowledge
again, identifying any contradictions or missing
pieces of knowledge, later picking effective knowl-
edge. For example, in Figure 1, with re-thinking,
LLM discovers Knowledge 3 is not related to the
query (Step 1).

However, the primary re-thinking mechanism in
LLM is insufficient and superficial. LLM lacks
the ability to thoroughly in-depth analyze the con-
nection between a query and other coarse-related
knowledge, especially when there is some minor
noise, like presenting a list of similar countries that
are hard to distinguish. This limitation stems from
the fact that the current decoder-only causal lan-
guage modeling architecture typically works in a
linear manner. The retrieved knowledge cannot
reflect and reinforce processed information, poten-

'We carefully select information retrieval tools that are
open source and widely utilized by researchers (Pan et al.,
2023): https://github.com/deedy5/duckduckgo_search

tially overlooking the more intricate and interactive
thinking process that humans employ to solve com-
plex problems.

Drawing inspiration from how humans learn and
solve problems, in the re-thinking mechanism, we
furthermore develop knowledge re-thinking, which
equips the knowledge with queries again, engaging
them re-examining and in-depth reflecting on the
relevance between the information and queries. Ex-
emplified in Figure 1, with knowledge re-thinking
(Step 2), LLM detects central but subtle missing
information about "capital” in the query. By fol-
lowing this strategy, we can continuously reinforce
and enhance our initial understanding of the rela-
tionship between the information and the queries.
Overall, in the re-thinking mechanism, LLM firstly
infers the correlation between the query and the re-
trieved knowledge to export clue information. With
this clue information, LLM incorporates queries
again, allowing the query and the retrieved knowl-
edge to have richer, back-and-forth interactions,
obtaining in-depth and fine-grained correlation in-
formation. With the fine-grained correlation infor-
mation, LLM executes a re-search of knowledge
and ultimately provides the responses.

To demonstrate the effectiveness of the proposed
re-thinking mechanism, we conducted a compre-
hensive series of experiments, which proved that
re-thinking can consistently improve reasoning ac-
curacy on different datasets and LLMs. Meanwhile,
the case studies for different scenarios specifically
declare the capabilities of re-thinking.

The main contributions of this paper include:

* We focus on the RAG task and consider the
noise existing in the retrieved knowledge. To
eliminate knowledge noise, we propose a sim-
ple yet highly effective prompting strategy:
re-thinking, which lets LLM identify any con-
tradictions or missing pieces of knowledge,
later picking effective knowledge.

* In the re-thinking mechanism, we furthermore
develop knowledge re-thinking, which engag-
ing the knowledge and queries re-examining
and in-depth reflecting on the relevance, find-
ing the minor knowledge noise.

* We evaluate re-thinking mechanism on vari-
ous reasoning benchmarks and LLMs. The
results demonstrate the effectiveness of re-
thinking.



2 Related Work

2.1 Prompting and In-Context Learning

Large Language Models (LLMs) have become a
focal point in Natural Language Processing (NLP)
(Liu et al., 2023; Brown et al., 2020; Schick and
Schiitze, 2020). However, their training and upkeep
are often prohibitively expensive. As a result, In-
Context Learning (ICL) (Wei et al., 2022), which
utilizes instruction prompts and adapts LLMs to
various tasks without additional training (Dong
et al., 2022), has gained popularity. Specifically,
a specific prompting strategy that prefixes queries
with zero-shot or few-shot example demonstrations,
enables models to make analogous predictions.

2.2 Reasoning with LLM

The field of reasoning with LLMs has evolved
significantly, leading to breakthroughs in several
reasoning benchmarks. Key advancements in rea-
soning tasks have been achieved through typically
decomposing complex queries into simpler, se-
quential steps, exemplified by Chain-of-Thought
(CoT) (Zhang et al., 2023b; Kojima et al., 2022)
prompting and its variations. For example, the
typical variations such as Self-Consistency (Chen
et al., 2023) use majority voting from multiple
chains, and Least-to-most prompting (Zhou et al.,
2022), which breaks down queries into simpler sub-
queries. More complex structures, such as CoRe
(Zhu et al., 2022) and heuristic-based search meth-
ods, have also been explored to enhance search
algorithms.

2.3 Retrieval-augmented LLM

Retrieval Augmentation Generation (RAG) (Lewis
et al., 2020a) represents a pivotal innovation in the
domain of LLMs, notably enhancing their gener-
ative capabilities and solving the hallucinations.
Key enhancing factors of RAG’s methodology in-
volve an initial retrieval phase, where LLMs con-
sult external databases to source relevant informa-
tion before generating responses (Lazaridou et al.,
2022). This approach anchors the outputs in factual
data, thereby markedly elevating their precision
and contextual relevance (Jiang et al., 2023), and
effectively mitigates the production of factually in-
accurate or "hallucinated" content (Jurafsky et al.,
2020; Lee et al., 2018). Generally, most research
focuses on designing different patterns for more
accurate retrieval knowledge. However, the erro-
neous knowledge noise brought by retrieval results

is inevitable, and handling knowledge noise after
retrieving is ignored by researchers.

3 Method

3.1 Overall Framework

The reasoning task using an LLM M can be for-
mally defined as y = M|z, prompt), where x rep-
resents the input query, prompt means the entering
instructions and y corresponds to the predicted re-
sponses. Considering the responses often encounter
hallucinations, due to the LLM memories outdated
knowledge, an additional knowledge retrieval mod-
ule is incorporated, which retrieval external latest
knowledge K into the reasoning process. There-
fore, the reasoning process can be re-formally de-
fined as y = M (K, x, prompt).

However, the noise existing in K hampers the
reasoning performance. With these concerns, the
knowledge noise will be substantially reduced
based on our proposed re-thinking framework,
which is a detailed analysis shown in Figure 3.
(1) Incorrect knowledge filtering: we prompt the
LLM to reason the relevance between the query and
retrieved knowledge to obtain the coarse-grained
clues, which aims to filter incorrect or unrelated
knowledge pieces. (2) Knowledge re-thinking: we
equip the input query again. Let the query and the
retrieved knowledge to have richer, back-and-forth
interactions, obtaining in-depth and fine-grained
correlation information, which gains fine-grained
clues that are beneficial to selecting knowledge.
(3) Missing knowledge reinforcing and response
prediction: based on correlation information, we
prompt LIL.M to generate fine-grained queries to
retrieve missing knowledge and finally to predicted
responses. In the following subsection, we provide
a detailed explanation.

3.2 Incorrect Knowledge Filtering

In this stage, the main goal is to select the retrieved
knowledge and filter incorrect knowledge at coarse-
grained level. We first utilize the retrieval APIs to
recall the query-related knowledge. The retrieved
knowledge is treated equally in the previous re-
searches. However, as exemplified in Figure 3, the
retrieved knowledge contains rich noise, which af-
fects the reasoning performance. So the retrieved
knowledge should be selectively distinguished. To
achieve the selection mechanism, various addi-
tional models are designed to infer the correlation
between the query and retrieved knowledge. How-
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Figure 3: The re-thinking framework, accompanied by a case presentation. With the given query, re-thinking mainly
consists of three parts: 1) Incorrect knowledge filtering; 2) Knowledge re-thinking; and 3) Missing knowledge

reinforcing and response prediction.

ever, the design of the models relies heavily on
prior features, and adding additional models will
increase the burden on LLM. To overcome this lim-
itation, we prompt LLM to automatically infer the
relevance due to its powerful semantic analysis and
understanding ability. Specifically, we enter the
query x and knowledge K with the prompt, which
contains instructions prompt; to determine the rel-
evance between the query and retrieved knowledge.
The above process is defined as follows:

Orelevance = M(xu K, promptl)- ()

LLMs will infer the correlation and output the
coarse-grained inference result O,.cjevance-

3.3 Knowledge Re-thinking

The coarse-grained selection clues are perfunctory
and superficial, based on the fact that the current
decoder-only casual language modeling architec-
ture typically works in a linear manner, which may
miss the richer, back-and-forth interactions. With
the coarse-grained correlation results, in this stage,
we re-think the retrieved knowledge, which reflects
the processed information and further infers the
correlation between the query and retrieved knowl-
edge at a fine-grained level to better identify the
knowledge noise. Specifically, we input the query

x again, then enter instructions prompt, to reason
the correlation and missing knowledge, which is
defined as:

Othinking = M(Orelevanceu x, K7 promth)- 2)

LLM will output fine-grained correlation analysis,
as well as the missing knowledge clues: Oyhinking

3.4 Missing Knowledge Reinforcing and

Response Prediction

Considering that the retrained knowledge may sup-
port partial query, at this stage, we further recall
the missing knowledge and finally predict the re-
sponses. We perform fine-grained decomposition
of the query, identify incomplete fragments, and
generate a retrieved sub-query for the incomplete
fragments. Specifically, we enter prompt instruc-
tions prompts that aim at letting the LLMs give
a most critical sub-query Ogyery that needs to be
retrieved, which is defined as:

Oquery = M(Othinking’ prompt?))‘ (3)

Based on the generated sub-query, we perform a
search again and obtain the missing knowledge K .
Finally, based on all the aforementioned inference
results, LLMs output the response Oycsponse Of the
input query.



4 [Experiments

In this section, we conduct a series of experi-
ments. We first provide an overall description of
the datasets, baselines and experimental details.
Then we perform experiments on a series of rea-
soning benchmarks and backend LLMs to prove
the effectiveness of re-thinking.

4.1 Datasets

We experiment on eight datasets and assign
them into three categories: (1) Multi-hop ques-
tion answering, including ComplexWebQuestions
(CWQ) (Talmor and Berant, 2018), GraphQues-
tions (GraphQ) (Su et al., 2016), KQAPro (Cao
et al., 2020) and GrailQA (Gu et al., 2021); (2)
Commonsense reasoning, including StrategyQA
(Gevaet al., 2021) and ARC-c (Clark et al., 2018);
(3) Arithmetic reasoning, including AQUA-RAT
(Ling et al., 2017), MultiArith (Roy and Roth,
2015). Arithmetic reasoning relies on the under-
standing of mathematical formulas and measure-
ment unit conversation, such as converting 1m/s to
3.6km/h. Considering the limited memory knowl-
edge of LLM parameters, arithmetic reasoning also
relies on external mathematical knowledge.

4.2 Backend LLM Methods

We utilize gpt-3.5-turbo-0301 and
gpt-3.5-turbo-0631 version of OpenAl
GPT (Ouyang et al., 2022) as the backend LLM.
Meanwhile, we also conduct experiments on
Gemini-Pro (Team et al., 2023) version of Google
Bard (Touvron et al., 2023b).

4.3 Compared Methods

From another perspective, we compare with ex-
isting popular reasoning frameworks to aspects
demonstrate the effectiveness of re-thinking. The
compared methods are listed as follows

(1) ITER-RETGEN (Shao et al., 2023a): A
retrieval-augmented method that synergizes re-
trieval and generation in an iterative manner. Un-
like this strategy, our proposed framework further
focuses on the retrieved knowledge and reduces
the slight knowledge noise. In ITER-RETGEN, we
concatenate the generated responses and queries
to conduct knowledge retrieval. For fair compari-
son, we only consider the two iterations, which is
represented as ITER-RETGEN 2.

(2) Plan-and-Solve (PS) (Wang et al., 2023b): A
plan-and-solve prompting strategy, which consists

of two components. First, devising a plan to divide
the entire task into smaller subtasks. Second, car-
rying out the subtasks according to the plan. We
retrieve external knowledge before executing this
prompting strategy.

(3) Self-Criticism (Kim et al., 2023): A simple rea-
soning architecture that prompts LLMs to find prob-
lems in their output and improves the output based
on what they find. We retrieve external knowledge
before executing this prompting strategy.

4.4 Experimental Details

We directly use the pre-trained dense retriever?.

and use the browser web page information as the
retrieval corpus for all datasets. Considering bal-
ancing model performance and computational cost,
we retrieve the top-3 paragraphs for each query. For
multi-hop question answering tasks, generated an-
swers are evaluated with the standard exact match
metric (EM score): a generated answer is consid-
ered correct if it matches any answer of the answer
list after normalization. For other tasks, we utilize
accuracy as an evaluation metric. For all evalua-
tion experiments, we use the complete validation
sets of the CWQ, AQUA-RAT and ARC-c datasets,
the complete test sets of the MultiArith datasets,
as well as the complete train sets and test sets of
the GraphQ datasets. Due to reasoning time con-
straints, we refer to the previous related work (Shao
et al., 2023b; Hao et al., 2023; Feng et al., 2023;
Wang et al., 2023a) and select the first 1000 sam-
ples in the validation sets of KQAPro and GrailQA,
the first 500 samples in the test set of StrategyQA
dataset. In Section 4.7, for efficiency, we select
the first 500 validation samples of CWQ dataset
for evaluation. To avoid the impact of randomness
introduced by the demonstrations in a few-shot set-
ting, we assess our method in a zero-shot setting.

4.5 Main Results

We experiment with the proposed framework and
baselines on eight datasets, which are assigned
into three categories: multi-hop question answer-
ing, commonsense reasoning and arithmetic rea-
soning. The results are shown in Table 1 and Table
2. Table 1 presents the evaluation results for multi-
hop question answering. From the experimental
results, it can be seen that our re-thinking frame-
work has achieved consistent performance improve-
ment on different benchmark LLMs and datasets.

2We use the same information retrieval tools, which are
detailed stated in the introduction section.



LLMs Methods CWQ GraphQ KQApro GrailQA
Vanilla 59.39 5195 45.70 39.40
Vanilla + RAG 46.40 41.20
gpt-3.5-turbo-0301  y, iila+ re-thinking 6283 5611 5220 4620
13.44  14.16 15.80 15.00
Vanilla 55.66  55.82 43.40 40.90
Gemini-Pro Vanilla + RAG 48.00 41.90
) Vanilla + re-thinking 7073  60.76 53.50 49.80
115.07  14.94 15.50 17.90

Table 1: Evaluation results with EM score on multi-hop question answering datasets.

LLMs Methods AQuA MultiArith StrategyQA ARC-c

Vanilla 3070 85.00 6120  81.93

Vanilla + RAG 37.79 82.27

gpt=3.5-turbo-0301 y, illa + re-thinking 5472 89.44 66.80 84.28
11693 1444 1560 12,01

Vanilla 3425 7111 6420  89.29

Gomini-Pra Vanilla + RAG 36.61

Vanilla + re-thinking 3779 90.00 6780  94.64

1118 118.89 1360 1535

Table 2: Evaluation results with accuracy score on arithmetic reasoning and commonsense reasoning datasets.

Specifically, GPT-based LLM, which equipped re-
thinking, has improved by 3.44%, 4.16%, 5.80%,
and 5.00% on the CWQ, GraphQ, KQApro and
GrailQA datasets, respectively. Similarly, the per-
formance of Gemini-Pro has been improved with
the help of re-thinking, raising 15.07%, 4.94%,
5.50%, and 7.90% respectively.

In addition, we discover that some Vanilla base-
lines’ performance drops after only utilizing RAG.
For example, compared to GPT-based LLM, using
RAG reduces 1.25% on the CWQ dataset. Through
analysis, we find that the retrieved knowledge con-
tains rich noise, which is shown in Figure 1. The
above phenomenon leads to a direct decrease in
RAG performance. Unlike RAG, re-thinking infers
and thinks the retrieved knowledge again, in-depth
identifying any contradictions or missing pieces
of knowledge, later picking effective knowledge.
Therefore, re-thinking significantly reduces the in-
terference of knowledge noise.

Table 2 exhibits the evaluation results for arith-
metic reasoning and commonsense reasoning. For
LLMs in commonsense reasoning scenarios, re-
trieving some additional knowledge can enhance
their cognition of commonsense queries, thereby

improving their reasoning ability. For arithmetic
reasoning, although this scenario measures the
LLMs’ mathematical calculation ability, the ad-
ditional retrieval knowledge, such as "To solve for
distance use the formula for distance d = st or
distance = speed x time", can inspire LLMs to
solve mathematical queries. Therefore, from the
experimental results, we find that our re-thinking
framework can consistently improve the reason-
ing ability of arithmetic reasoning and common-
sense reasoning scenarios. Specifically, GPT-based
LLM, which equipped re-thinking, has improved
by 16.93% and 4.44% on the AQUA-RAT and Mul-
tiArith datasets, respectively. In addition, we find
that some methods only equipped with RAG had
reduced reasoning ability. For example, GPT-based
LLM, which utilizes RAG, reduces 1.12% and
4.2% on the MultiArith and StrategyQA datasets.
This phenomenon indicates that if too much noise
exists in the retrieved knowledge, it will actually
hamper LLM and affect its reasoning ability.

4.6 Ablation Study

To measure the contribution of the main compo-
nents in re-thinking, we conduct ablation experi-



Methods CWQ GraphQ KQApro GrailQA
Gemini-Pro + re-thinking 70.73 60.76 53.50 49.80
— w/o incorrect knowledge filtering 67.54 57.26 53.10 48.80
— w/o knowledge re-thinking 60.81 54.08 51.40 46.90
— w/o missing knowledge reinforcing  68.57 59.38 51.20 48.90
Gemini-Pro 55.66 55.82 43.40 40.90
ChatGPT + re-thinking 62.83 56.11 52.20 46.20
— w/o incorrect knowledge filtering 61.35 52.87 51.20 44.50
— w/o knowledge re-thinking 58.60 50.80 48.90 43.20
— w/o missing knowledge reinforcing  62.42 54.48 51.50 45.10
ChatGPT 59.39 51.95 45.70 39.40
Table 3: Ablation experimental results of our re-thinking mechanism.
LLMs Methods CWQ which indicates that only coarse-grained knowl-
. edge filter and noise selection are not complete
Self-Criticism 64.2
) and the results may be perfunctory and superfi-
(Kim et al., 2023) cial. With the knowledge re-thinking module, we
turbo-0301 ITER-RETGEN 2 65.0 allow the query and the retrieved knowledge to
(Shao et al., 2023a) have richer, back-and-forth interactions, obtaining
PS (Wang et al., 2023b)  69.8 . . . .
A in-depth and fine-grained correlation information,
re-thinking 719 which can detect the slight knowledge noise
Self-Criticism 62.6 (3) Knowledge re-thinking module may discover
turbo-0613 ITER-RETGEN 2 554 missing knowledge, and using the Missing Knowl-

PS 63.4
re-thinking 65.6

Table 4: Evaluation results of comparing re-thinking
with other well-known frameworks on different backend
LLMs.

ments on different LLMs and datasets. Specifically,
we remove incorrect knowledge filtering, knowl-
edge re-thinking, and missing knowledge rein-
forcing modules from re-thinking framework re-
spectively. The experimental results are presented
in Table 3. From the results, we can draw some
conclusions:

(1) After removing the incorrect knowledge fil-
tering module, the performance of re-thinking is
consistently decreased. For example, Gemini-Pro
based re-thinking drops 3.19% on the CWQ dataset.
This indicates that making a coarse-grained filter
of the retrieved knowledge is beneficial, which
exports coarse-grained clues for subsequent fine-
grained reasoning between the query and knowl-
edge to further discover slight noise of retrieved
knowledge.

(2) Without knowledge re-thinking module, the
performance of re-thinking is expectable decreased.

edge Reinforcing module can retrieve and recall
missing knowledge, improving the LLM’s reason-
ing ability.

4.7 Comparing with other Reasoning
Frameworks

We compare the proposed model re-thinking
with existing well-known reasoning frame-
works based on two different backend LLM:s:
gpt-3.5-turbo-0301 and gpt-3.5-turbo-0631.
The evaluation results are shown in Table 4. From
the results, we find that re-thinking is consistently
higher than other compared frameworks. PS
focuses on task planning for a given query,
while Self-Criticism pays more attention to the
criticism of predicted responses. Although these
strategies can enhance reasoning ability, they
ignore the concerns about retrieved knowledge.
ITER-RETGEN concatenates the generated
responses and queries to perform knowledge
retrieval through multiple iterations. However,
this strategy neglects fine-grained analysis of
the retrieved knowledge at each iteration, which
cannot effectively analyze the noise and missing
information in the retrieved knowledge, resulting
in unsatisfactory iteration prediction results.
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Buying a used phone lis relevant

... Loss=CP-SP ...

the loss is contained in the
retrieved knowledge.

Prediction: The answer is A) 5.

AQUA-RAT Dataset
Query: If a cellphone is purchased for Rs.490 and sold for Rs.465.50, find the loss percentage?
Candidate Answer: "A)5", "B)10", "C)15", "D)20", "E)25”.

- - b
I ... The second retrieved knowledge |
...We need additional |
Inecessary information about

:calculating the loss percentage ... :

(a)The formula for calculating o  (b)The unrelated knowledge is filtered,
@ re-thinking the missing knowledge: the
formula to calculate loss percentage.

... Loss percentage =
(Loss x 100) / CP ...

(c)The formula for calculating

() loss percentage based on the loss
is contained in the retrieved
knowledge.

re-thinking

...Baltimore Ravens'
Mascot The Poe...

(a)The team name of mascot
()Poe is contained in the

retrieved knowledge. coach name.

CWQ Dataset
Query: Who is the coach of the sports team with team mascot Poe?

: ... The first retrieved knowledge isI
; relevant...additional information
| such as what is the name of the
| coach of Baltimore Ravens...

o (b)The unrelated knowledge is filtering,
re-thinking the missing knowledge: the

Prediction: The coach of the sports team with team mascot Poe is John Harbaugh.

...John Harbaugh is
the head coach of the
Baltimore Ravens...

(c)The coach name of team
() Baltimore Raven is contained
in the retrieved knowledge.

Figure 4: We display two examples of re-thinking on the AQUA-RAT and CWQ datasets. The (b) recognizes the
knowledge noise recalled by the (a), and then infers the missing knowledge. The (c) retrieves the missing knowledge
and ultimately predicts the response. Some unimportant information is not shown for brevity.

Unlike aforementioned frameworks, re-thinking
allows questions and the retrieved knowledge to
have richer, back-and-forth interactions, obtaining
in-depth and fine-grained correlation or slight
differences, further gathering the noise and missing
knowledge.

4.8 Case Study

To present re-thinking more intuitively, we have
presented two examples in Figure 4. The first exam-
ple relies on reasoning for numerical calculations,
while the second example relies on reasoning for
multi-hop questions. For the first example, the re-
trieved knowledge with previous methods includes
the calculation formula of Loss, but it is still in-
sufficient to answer the question, as shown in (a).
Re-thinking can measure the relevance between the
query and retrieved knowledge, eliminates noise
information, and further infers missing informa-
tion: "how fto calculate the loss percentage with the
loss". With the retrieved formula information "Loss
percentage = (Loss x 100) / CP", LLM can infer

the correct answer. The above analysis also exists
in the second example. With re-thinking, LLM can
think deeply, find the first retrieved knowledge is
relevant. LLM re-thinks the missing knowledge
"The coach name of Baltimore Ravens", and then
searches for richer and more important knowledge
"John Harbaugh is the head coach of the Ravens",
and ultimately obtain the correct answer.

5 Conclusion

In this paper, we focus on the RAG and propose
a simple yet highly effective prompting strategy:
re-thinking, which aims to denoise the retrieved
knowledge and further enhance the RAG ability.
Specifically, we develop a fine-grained interaction
mechanism, which allows queries and the retrieved
knowledge to have richer, back-and-forth interac-
tions, obtaining in-depth and fine-grained correla-
tions. Experiments prove the validity of re-thinking.
We hope re-thinking mechanism can be a strong
baseline for future research on RAG.



Ethical Consideration

We propose a simple yet highly effective prompt-
ing strategy: re-thinking, which aims to fine-grain
analysis of the noise existing in the retrieved knowl-
edge. All experiments utilized publicly accessible
datasets that are widely employed in the field of
reasoning research. We confirm that we contribute
to society without any harm.

Limitations

re-thinking has been evaluated on three categories
of datasets: multi-hop question answering, com-
monsense reasoning and arithmetic reasoning, with
no experiments on more diverse types of datasets.
At the same time, we only apply re-thinking on
two backend LLMs. In the future, we will further
apply re-thinking on more black-box models, such
as GPT-4, or locally deployable models, such as
Llama2, proving the universality and adaptability
of re-thinking.
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