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ABSTRACT

Overparameterization, the condition where models have more parameters than
necessary to fit their training loss, is a crucial factor for the success of deep learn-
ing. However, the characteristics of the features learned by overparameterized
networks are not well understood. In this work, we explore this question by
comparing models with the same architecture but different widths. We first ex-
amine the expressivity of the features of these models, and show that the feature
space of overparameterized networks cannot be spanned by concatenating many
underparameterized features, and vice versa. This reveals that both overparame-
terized and underparameterized networks acquire some distinctive features. We
then evaluate the performance of these models, and find that overparameterized
networks outperform underparameterized networks, even when many of the latter
are concatenated. We corroborate these findings using a VGG-16 and ResNet18
on CIFAR-10 and a Transformer on the MNLI classification dataset. Finally, we
propose a toy setting to explain how overparameterized networks can learn some
important features that the underparamaterized networks cannot learn.

1 INTRODUCTION

Overparameterized neural networks, which have more parameters than necessary to fit the training
data, have achieved remarkable success in various tasks, such as image classification (He et al.,
2016; Krizhevsky et al., 2017), object detection (Girshick et al., 2014; Redmon et al., 2016) or
text classification (Zhang et al., 2015; Johnson & Zhang, 2016). However, the theoretical under-
standing of why these networks outperform underparameterized ones, which have fewer parameters
and less capacity, is still limited. Several works have attempted to explain the advantages of over-
parametrization from various perspectives, such as the neural tangent kernel (Arora et al., 2019), the
lottery ticket hypothesis (Frankle & Carbin, 2018), or the implicit regularization (Neyshabur et al.,
2014). Most of these papers claim that overparameterized networks are more powerful due to their
greater number of parameters. In this paper, we aim to go beyond this perspective, focusing on the
case where overparameterized and underparameterized networks are compared on an equal footing.
More specifically, we analyze their features, which are the representations learned by the hidden
layers of the networks, and ensure that both overparameterized and underparameterized have the
same number of features in our comparison. Analyzing neural networks features is a common in
deep learning (Kornblith et al., 2021; Raghu et al., 2021; Cianfarani et al., 2022) to unveil important
properties of the networks, such as generalization ability, robustness, or interpretability.

A few existing works have taken this approach to characterize overparameterized networks. Nguyen
et al. (2020) studied how varying depth and width affects features and discovered a distinctive block
structure in overparameterized networks. Morcos et al. (2018) observed that wider networks learn
more similar features. However, these works do not study a direct comparison between overpa-
rameterized and underparameterized networks features, which could reveal if overparameterized
networks capture unique features compared to underparameterized networks, and vice versa. Our
paper aims to address the following question:

Even after many concatenations of independently trained underparameterized networks, can we
fully retrieve the expressive power and the performance of overparameterized networks?

Our answer to this question is negative, and we summarize our contributions as follows:
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– Section 2 introduces our feature analysis methods. Our first approach, called feature span error
(FSE), uses ridge regression to measure how well overparameterized features capture underpa-
rameterized network features, and vice versa. We also introduce the feature performance (FP)
method to assess feature accuracy in task performance through linear probing.

– To ensure a fair comparison between the two sets of features, we compare the features of a sin-
gle overparameterized network with those concatenated from many underparameterized networks
trained with different initializations. As such, both sets are of comparable size.

– Section 3 presents our numerical results. FSE and FP demonstrate that i) overparameterized and
concatenations of underparameterized networks learn distinct features and ii) linear probing with
the concatenated features of underparameterized networks do not reach the same test accuracy as
linear probing with overparameterized features.

– We further demonstrate that the part of overparameterized features that concatenations of under-
parameterized networks features cannot capture, which we name overparameterized residuals, are
essential in the high performance of overparameterized networks. Conversely, the underparame-
terized residuals do not improve the performance of a model.

– Section 4 proposes a toy setting to illustrate how overparameterized networks can learn some
important features differently from underparameterized networks. Our setting partially covers
the observations made in Section 3 since we do not show that overparameterized networks cannot
learn some features learned by underparameterized ones. Nevertheless, it conveys crucial insights.

RELATED WORK

Scaling the size of neural networks. In this paper, we construct our smaller networks by scaling
down the widths of a base overparameterized network while keeping the depth fixed. Studying
neural networks with scaling widths or depths has been widely done in the literature. Cybenko
(1989); Hanin & Sellke (2017) analyzed the effect of varying width on the expressiveness of neural
networks. On the empirical side, the effect of scaling width on the performance has been extensively
studied (Zagoruyko & Komodakis, 2016; Kaplan et al., 2020) Closer to our work, (Morcos et al.,
2018; Nguyen et al., 2020) study the effect of scaling width and/or depth on the features of a network.
While (Nguyen et al., 2020) investigates the features across all hidden layers, (Morcos et al., 2018)
demonstrates that the wider networks learn similar last layer features. We also investigate the last
layer features, but with a focus on directly comparing underparameterized and overparameterized
network features.

Analyzing the features to gain insights in neural networks. Many research has focused on an-
alyzing and understanding the representations learned by neural networks (Merchant et al., 2020;
Cianfarani et al., 2022). Many of these works provide insights about interpretability, generalization,
model comparison, transfer learning, and model improvement. Utilizing similarity metrics is a com-
mon approach for analyzing features to compare different models. Nguyen et al. (2020) employ the
centered kernel alignment (CKA) metric, while Morcos et al. (2018) utilize the projection weighted
CCA metric to measure the similarity between features. In this paper, our focus lies on the expres-
sivity of the features of one network compared to another, rather than solely on their similarity. To
that end, we introduce the feature span error (FSE) metric, which is based on ridge regression. While
using regression as a similarity metric is mentioned in (Kornblith et al., 2019), its application, to the
best of our knowledge, has not been explored.

Notations. Throughout the paper, we use the upper case M to refer to a neural network, the cal-
ligraphic M to refer to its features and the lower case m to its feature mapping. For a matrix A,
we refer to A[i, :] as its i-th row and A[:, j] as its j-th column and for a vector v, v[k] is its k-th
component. For two matrices A ∈ Rm×NA ,B ∈ Rm×NB , (A;B) ∈ Rm×(NA+NB) refers to the
concatenation along the column axis. For C > 0 and a vector x ∈ RC , σ(x) ∈ RC is the softmax
vector defined as σ(x)[c] = exp(x[c])/(

∑C
j=1 exp(x[j])). In Section 3, we use the r superscript to

indicate that the model is only randomly initialized (and not trained). In Section 4, we say that a
random event E occurs with high probability if P[E] ≥ 1− e−poly(d).
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2 SETTING

2.1 SCALED MODELS AND FEATURES

This paper aims to obtain insights into the features of overparameterized networks in comparison to
the underparameterized ones given their superior performance. For this comparison, we utilize

– Base network (High-width): We start with a base overparameterized (with respect to the dataset)
network M1 with L layers and widths n1, . . . , nL

– Low-width networks: We then create scaled models Mα with α ∈ [0, 1), which have the same
architecture as M1 but with scaled widths ⌊α · n1⌋, . . . , ⌊α · nL⌋. This width scaling ensures that
all the models have the same inductive bias (essential good performance).

We explore how the features of the base model compare to those of low-width networks as we
change α. While the low-width networks may not always be underparameterized for each α, this
comparison provides insights into impact of the degree of parameterization as α decreases.

We focus on a multi-classification setting with C classes, where a model is trained on the dataset
Dtrain and evaluated on the test dataset Dtest. Given a datapoint xk ∈ Rd, a neural network Mβ

predicts the class c ∈ {1, . . . , C} with probability

P[ŷk = c] = σ(Mβ(xk))[c] = σ(W (L+1)mβ(xk))[c] = σ
( αnL∑

s=1

W (L+1)[c, s]mβ(xk)[s]
)
, (2.1)

where mβ : Rd → RβnL is the function computing the activation at layer L (which we also name
feature mapping) and W (L+1) ∈ RC×βnL are the weights of the last layer. The model Mβ makes
predictions based on a linear combination of the features {mβ(xk)[s]}βnL

s=1 , which capture the infor-
mation extracted from the input by the network.
Definition 2.1 (Features). Let Mβ be a model with β ∈ [0, 1] and {(xi, yi)}Ni=1 be a dataset. Let
mβ : Rd → RβnL be the feature mapping of Mβ . Then, we define the the set of features Mβ as

Mβ :=
{

Mβ [:, 1], . . . ,Mβ [:, nL]
}
, (2.2)

where Mβ = [mβ(x1)
⊤, . . . ,mβ(xN )⊤] ∈ RN×βnL .

2.2 FEATURE SPAN ERROR

We are interested in understanding how the features learned by overparameterized networks differ
from the features learned by low-width networks. In particular, we want to answer the following
questions: Do the features of overparameterized networks exhibit greater expressivity than the fea-
tures of low-width networks, given that they tend to perform better? As we have seen, the model
Mβ makes predictions based on a linear combination of the features {mβ(xk)[s]}αnL

s=1 . Therefore,
one of the goals of this paper is to investigate whether the features learned by underparameterized
networks can be span by the features learned by low-width networks.
Definition 2.2. [FSE(Mβ → Mγ)] Let Mβ and Mγ be two models where β, γ > 0. Consider the
following ridge regression problems for each j ∈ {1, . . . , γnL},

min
c(j)∈RβnL

∥∥∥ βnL∑
k=1

c
(j)
k Mβ [:, k]−Mγ [:, j]

∥∥∥2
2
+

λ

2
∥c(j)∥22 := L(c(j)), where λ > 0. (Reg)

Let (R2)j be the R2-error for the regression (Reg). The feature span error FSE(Mβ → Mγ) is:

FSE(Mβ → Mγ) :=
1

γnL

γnL∑
j=1

[1− (R2)(j)]. (2.3)

Definition 2.2 quantifies how well the features Mβ span the features Mγ . To understanding the
implications of a smaller FSE score, consider the following. When FSE(Mβ → Mγ) = 0, Mβ

can perfectly fit Mγ , making Mβ is more expressive than Mγ . As such, the span of Mβ can express
the same prediction distribution (2.1) as Mγ . In appendix, we describe how we solve (Reg).
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Using the FSE, we thus measure whether a model that uses the linear combination of its features can
approximate the features of a target model. Therefore, in this paper, the expressivity of the model
is measured through the linear combination of its learned features. This definition of expressivity
is different from literature’s classical definition for a neural network’s expressivity which defines it
as the set of functions a neural network can express for any choice of parameters. This classical
definition does not consider the factors (such as optimization bias) which may make different width
neural networks learn some distinct features.

2.3 CONCATENATION OF LOW-WIDTH NETWORKS

While it is believable that low-width networks features are less expressive just because they have
fewer features or parameters, in this paper, we ask a more challenging question: even if we con-
catenate a large number of low-width networks trained independently with different initializations,
so that the total number of features/parameters match that of the overparameterized network, do the
concatenated low-width features have the same expressivity as the overparameterized ones?

Definition 2.3 (Concatenation of features). Let M (1)
α , . . . ,M

(U)
α be low-width networks with the

same architecture that have been independently trained with different initializations. The concate-
nation of features S(U)

α is defined as S(U)
α := (M(1)

α , . . . ,M(U)
α ) ∈ Rm×αnLU .

For U in Definition 2.3, we consider the two following values:

– Ū : the smallest integer such that S(Ū)
α has at least as many features as M1, i.e., Ū = ⌈1/α⌉.

– U∗: the smallest integer such that the models M (1)
α , . . . ,M

(U)
α collectively have at least the same

number of parameters as M1.

2.4 FEATURE PERFORMANCE

While the FSE method provides insights into the feature expressivity, it does not exactly inform us
on the predictive power of the features. Therefore, we introduce the feature performance (FP) to
measure the performance obtained by a set of features on a given task.
Definition 2.4 (Feature performance). Let Dtrain and Dtest be training and test datasets of a task.
Let M be a set of features. Assume that we train a linear classifier on top of the features M on
Dtrain. Then, the feature performance FP (M) is the accuracy of this classifier on Dtest.

A plausible hypothesis to explain the superior performance of overparameterized networks over low-
width ones is: S(U)

α cannot fully learn the features M1 and this uncaptured part in the M1 features
may be responsible for the superior performance of overparameterized networks. We refer to the
part of the features that the other model cannot capture as feature residuals. These residuals are
what enable overparameterized and low-width networks to express unique functions.
Definition 2.5 (Feature residuals). After solving (Reg) with regressors Mβ and targets Mγ , we
obtain the prediction M̂γ [j, :] =

∑nL

k=1 ĉ
(j)
k Mβ [k, :]. The feature residuals R(Mβ → Mγ) are

R(Mβ → Mγ) := Mγ − M̂γ . (2.4)

In Section 3, we focus on the overparameterized feature residuals R(S(U)
α → M1) –the features

of overparameterized that low-width cannot fully capture– and on the low-width feature residuals
R(M1 → S(U)

α ) –the features of low-width that overparameterized cannot fully capture.

3 NUMERICAL EXPERIMENTS

We state our main results in this section. We apply the FSE and FP methods to image and text
classification settings and state our empirical results.

3.1 EXPERIMENTAL SETUP

For the computer vision experiments, we trained VGG-16 (Simonyan & Zisserman, 2014) and
ResNet-18 models (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) as our base models. Ad-
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Figure 1: FSG with respect to overparameterized features (after training). Figures 1a, 1b and 1c display
FSE(S(U∗)

α → M1) in blue line and FSE(M1 → M1) in red line in the Transformer, ResNet and VGG
settings. While mildly low-width networks (α = 1/2) can fit the features of a trained overparameterized
network well, low-width models (α = 1/8 or α = 1/16) have significantly lower performance.

ditionally, we conducted natural language processing (NLP) experiments by training a Transformer
model with 4 hidden layers, hidden size 128, MLP dimension 1024, and 4 attention heads (base
model) on the MNLI text classification dataset (Williams et al., 2018). The aforementioned mod-
els are overparameterized since they have more parameters than the number of training examples.
The scaled models are denoted as VGGα, RNα, and Tα for VGG-19, ResNet-18, and Transformer
models, respectively. In this paper, we focus on small-scale settings because computing FSE is
computationally expensive. Indeed, solving (Reg) involves a multi-target regression problem with
a large number of regressors and targets. Moreover, we report the FSE results using the validation
errors although our empirical findings are consistent with the test errors. All the results are averaged
over 4 seeds. Further experimental details can be found in the Appendix.

3.2 CONCATENATION OF LOW-WIDTH NETWORKS CANNOT FULLY CAPTURE THE FEATURES
OF OVERPAMETRIZED ONES AFTER TRAINING

FSE(S(U)
α → M1) alone does not necessarily reveal whether width-α networks features can capture

overparameterized network features (up to a good degree). In this context, a good point of reference
is FSE(M1 → M1), in which a network fits another of the same type but with different initial-
ization. Indeed, this latter indicates the minimum error (due to different randomness used in the
training) that can be achieved by networks with the same structure and parameterization. Therefore,
we introduce the feature span gap (FSG):

FSG(S(U)
α → M1) := FSE(S(U)

α → M1)− FSE(M1 → M1). (3.1)

A positive FSG indicates that width-[α] networks cannot fully capture the overparameterized fea-
tures well while a negative gap suggests the opposite. We now present our first result.

Empirical finding 3.1. For α < 1/2, concatenation of low-width network features S(U∗)
α cannot

fully capture the features of overparameterized networks M1.

Empirical finding 3.1 states that even when concatenating many low-width networks, S(U∗)
α does not

manage to capture M1 as well as another overparameterized network with a different initialization
would do. We choose U = U∗ from the two options given in Definition 2.3 to concatenate more
underparameterized networks and achieve a more robust empirical finding.

We establish Empirical finding 3.1 based on Figures 1 and 7, which provide the following observa-
tions:

– For trained networks, α decreases ⇒ FSG increases. In Figure 1, as we decrease α,
FSG(S(U)

α → M1) gets larger implying that S(U)
α gets worse at capturing M1.

– For random networks, α decreases ⇒ FSG decreases. We consider a baseline experiment
where we measure FSG(S(U),r

α → Mr
1) where S(U),r

α ,Mr
1 are the features at initialization. This

experiment verifies where Empirical finding 3.1 is specific to the trained networks. Figure 7 shows
that the random low-width features can capture the overparameterized ones. Since Mr

1, S(U),r
α

are sampled from the distribution, it is indeed expected that they share similar features.
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S(Ū)
α → Tα

(a)

1/2 1/4 1/8 1/16

α

0.0

0.2

0.4

E
rr

or

ResNet (FSE)

RN1 → RNα

S(Ū)
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Figure 2: FSG with respect to low-width concatenated networks features (after training). Figures 2a, 2b
and 2c display FSE(M1 → S(Ū)

α ) in blue line and FSE(S(Ū)
α → Mα) in red line in the Transformer, ResNet

and VGG settings. As α decreases, the models have lower width and M1 further struggles to capture Mα.
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Figure 3: Feature Performance. Figures 3a, 3b, 3c display the feature performance obtained by concatenated
low-width in blue line and by overparameterized networks in red line. As α decreases, low-width networks fail
to match the test accuracy of a single overparameterized network.

Empirical finding 3.1 alone does not necessarily imply that overparameterized models have a su-
perior expressivity over low-width models. Low-width models may also learn some features that
overparameterized models cannot express as well.

Overparameterized networks cannot fully capture the features of sufficiently low-width ones.
We establish this finding based on Figures 2 and 8. To strengthen our result, we set U = Ū (instead
of U = U∗) to decrease the ability of low-width networks to fit the features to get a more robust
result. In Figure 2, we observe that the FSG is large for sufficiently low-width models (α = 1/8 or
α = 1/16), while it is close to zero for mildly low-width models. In Figure 8, we observe that the
FSE is almost negligible, which is consistent with the observations in Figure 7.

In summary, we have showed that the low-width networks cannot fully capture the features of over-
parameterized networks and the converse also holds.

3.3 CONCATENATIONS OF LOW-WIDTH NETWORKS CANNOT ACHIEVE THE PERFORMANCE
OF A SINGLE OVERPARAMETERIZED NETWORK

Subsection 3.2 focused on the expressivity of overparameterized and low-width networks features.
In this section, we investigate the performance of these two feature sets.

Empirical finding 3.2. For α < 1/2, we observe that the features of low-width networks S(U∗)
α

cannot perform as well as the overparameterized features M1 i.e. for some small constant δ > 0,

FP(M1)− FP(S(U∗)
α ) ≥ δ. (3.2)

Empirical finding 3.2 is based on Figure 3. We observe that FP(S(U)
α ) is significantly lower than

FP(M1), and the performance gap between them increases as α decreases. Overall, Empirical
findings 3.1 and 3.2 demonstrate that the low-width features do not capture certain parts of the
features of overparameterized networks –which are the overparameterized feature residuals– that
contribute to their superior performance. With that insight, we now investigate the contribution of
feature residuals to the model performance.

Impact of the feature residuals on the performance. Empirical finding 3.2 suggests that the
feature residuals R(S(U)

α → M1) significantly improve the performance of the model contrary to
the residuals R(M1 → S(U)

α ). We empirically validate this hypothesis using Figures 4.
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Figure 4: Contribution of feature residuals to test accuracy. Figures 4a and 4b compares the concatenated
low-width network S(U∗)

α (red line) with the same model to which we append feature residuals R(S(U∗)
α →

M1) –shortly R
(U∗)
α→1 – in blue line. These plots show that as α decreases, the test accuracy gains brought by

the residuals increases. Figures 4c and 4d show that adding the residuals R(M1 → S(U∗)
α ) –shortly R

(U∗)
1→α –

does not increase or lowers the performance of M1 (a result of adding redundant features).

– In Figures 4a and 4b, the feature concatenation (R(S(U)
α → M1);S(U)

α ) outperforms S(U)
α . Thus,

R(S(U)
α → M1) helps low-width models to span new functions that improve their performance.

– In Figures 4c and 4d, adding R(M1 → S(U)
α ) to M1 does not improve the performance of M1.

4 HOW DO WIDE MODELS CAPTURE FEATURES THAT SHALLOW ONES CANNOT?

Our empirical results highlight a main observation: overparameterized networks can learn some es-
sential features that low-width models cannot capture. In this section, we present a toy setting to
illustrate this observation. We demonstrate that certain features can only be learned by overparam-
eterized networks, while the concatenation of low-width networks fails to capture them effectively.
Note that our setting partially covers the results from Section 3, since we do not show that overpa-
rameterized networks cannot learn some features learned by underparameterized networks. Lastly,
our setting involves deep neural networks and because the analysis of their dynamics is an open
question, we only validate the mechanism empirically and leave the formal proof for future work.

Data distribution. Let v1, . . . ,v5 ∈ Rd be an orthonormal set of vectors which we name signal
vectors. Each sample consists of an input X and a label y such that:

1. X = (X[1], . . . ,X[7]) ∈ R7d, where each patch X[j] ∈ Rd.

2. Sample s1, . . . , s5 such that each sj is uniformly distributed over {−1, 1}.
3. The label y is defined by y = sgn(s1 + s2 + s3 · s4 · s5).
4. Signal patches: Uniformly sample indices ℓ1(X), . . . , ℓ5(X) such that

X[ℓj(X)] = sj · vj ,

5. Noisy patches: X[j] ∼ N (0, ξ2(Id −
∑5

i=1 viv
⊤
i )), for the remaining patches.

We refer to the signal vectors vj whose sign sj are involved in the addition (resp. multiplication)
operator in item 3 as the addition (resp. multiplication) signal vectors. These signal vectors represent
the features of the task but we do not refer to them as such to avoid a confusion with Definition 2.1.
Our setting is a binary classification problem on a synthetic dataset of images, where each image is
made of 7 patches. Each patch is either a random Gaussian vector or a signal vector. The highlight
of our setting is that the label is a linear combination of a sum and product over the signs sj . This
choice leads overparameterized networks to learn some features that low-width ones cannot capture
as we explain below. We choose d = 17 in our experiments.

Learner model. We train a model M which is a 4-hidden layer multilayer perceptron with ReLU
activation. Given an input X , the output of M is

fM (X) = g ◦ ReLU(W1X − 17d). (MLP)

where W1 denotes the first layer weights, and g represents the subsequent three layers. (MLP) is a
standard MLP except that we substract the pre-activation of the first layer by 1P ·d, which is key to
discriminate the learning of low-width and overparameterized models as explained below.
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Table 1: Performance of concatenations of
low-width and overparameterized networks
Our study focus on analyzing first layer only
where networks learn signal patches, not the
upper layers that learn multiplication and ad-
dition of the signs. Hence, U∗ is calculated ac-
cording to the first layer. We refer to the largest
three network as overparameterized while re-
ferring to the others as underparameterized.

n1 U∗ Average train Average test
accuracy (%) accuracy (%)

100 300 75.01± 0.07 74.12± 0.88

250 120 75.12± 0.25 74.23± 0.74

10,000 3 100.00± 0.00 100.00± 0.00

15,000 2 100.00± 0.00 100.00± 0.00

30,000 1 100.00± 0.00 100.00± 0.00

Initialization. The way we initialize neurons in
the first layer plays a crucial role in our setting.
We initialize as W

(0)
1 [j, :] ∼ N (0, χ2Id) where

the variance χ2 is chosen such that:

– The activation of a neuron j by a signal vector vk

(i.e., ⟨|W (0)
1 [j, :]|,vk⟩ > 1) is a rare event.

– As such, wider networks are likely to have more
neurons activated by the signal vectors vk.

– While the activation of a neuron by a noisy patch
is a rare event, it is still more likely to occur com-
pared to activation by a signal vector –since the ex-
pected norm of noisy patches is slightly larger than
the norm of the signal vectors.

Furthermore, all signal vectors are orthogonal to
each other and to the noisy patches. This con-
straints the activation of a neuron j in several ways.
First, a neuron is likely to be activated by at most one single signal vector at initialization. Besides,
because of weight decay, the norm of the neuron is constrained throughout the training. As such, it
is unlikely to be simultaneously activated by two different signal vectors later on. Lastly, for similar
reasons, a neuron activated by a noisy patch at initialization is unlikely to be activated by a signal
later on. See the Appendix for more details.

Training. We train our model using binary cross entropy and normalized stochatic gradient de-
scent for faster convergence. See the Appendix for more details.

We measure the performance of a model through their ability to learn the signal vectors. A model
M learns the signal vector vk if it has at least one activated neuron j which is highly correlated with
vk,〈 |W (final)

1 [j, :]|
∥W (final)

1 [j, :]∥2
,vk

〉
≥ 1− δ (correlation) and ⟨W (final)

1 [j, :],vk⟩ > 1 (activated), (4.1)

where W
(final)
1 are the first layer weights after training and δ > 0 is some small constant. On the

other hand, M does not learn vk if ⟨W (final)
1 [j, :],vk⟩ ≤ 1.

Empirical finding 4.1. Let M1 be overparameterized network and M
(1)
α , . . . ,M

(U∗)
α be low-width

networks with different initialization. After independently training these models, we observe that

1. M1 learns all the signal vectors.
2. The concatenation of low-width networks learn the addition signal vectors. However, none of the

networks in the concatenation learns the multiplication signal vectors.

We now describe some important dynamics of the learning process as follows:

– Initialization: In order to learn vk, the network needs to have some neurons that are activated.

– Neuron deactivation by weight decay: A neuron is subjected to two forces: weight decay, which
attracts the neuron to have a zero norm and leads to its deactivation and the gradient, which pushes
the neuron in a direction that potentially increases its correlation with vk (see Figure 6).

– Irreversibility of Deactivation: Neurons that becomes deactivated (or not activated before) are
unlikely to be activated by vk during training. Indeed, for deactivated neurons, the only term in the
gradient is the one arising from weight decay, which makes the neuron shrink further.

– Low-width networks have a few neurons activated by signal vectors at initialization: Each
small network have at most a few neurons that are activated by signal vectors (see Figure 9). This is
due to their small number of neurons.

– Overparameterized networks have many activated neurons at initialization: because of their
large width, for each signal vector vk, there exists many neurons that are activated.
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Figure 5: Figures 5a and 5b display the total number of activated neurons by v1 (addition signal vector) and v3

(multiplication signal vector) throughout the training process. We display these curves for overparameterized
(α = 1) and low-width concatenations (α ∈ {1/300, 1/120, 1/3, 1/2}) networks. Both models learn the
addition vectors but the low-width ones fail to learn v3 since the curves for α ∈ {1/300, 1/200} quickly
collapse to 0. Figure 5c displays the evolution of the correlation between an overparameterized model’s neurons
and the signal vectors. The correlations gradually increase to 1, meaning that M1 has learned the signal vectors.

During the training, overparameterized models learn all the signal vectors while the neurons of
concetenations of low-width networks unlearn some signal vectors.

Figure 6: Sketch of a three neurons at
initialization. The grey and white areas re-
spectively represent the areas where neurons
are activated and deactivated by the signal
vector vk. W (0)[2, :] is deactivated while
W (0)[3, :] is far from the activation hyper-
plane and is likely to stay activated during
training. W (0)[1, :] is also activated but
may eventually get deactivated because of
the weight decay and nosier signal from the
gradient, particularly during the early stages
of training with active noisy patches.

– Both models learn the addition signal vectors. Low-
width and overparameterized networks keep a non-zero
correlation with v1 by the end of the training (Figure 5a).

– Low-width networks unlearn the multiplication sig-
nal vectors: Figure 5b shows that the neurons’ corre-
lations with v3 collapse to zero for low-width networks
while it stays non-zero for overparameterized ones.

What is special about the multiplication features? A
model can independently learn the addition signal vectors
v1 and v2 for an improved model accuracy. However, the
model must learn the multiplication vectors v3, v4, and
v5 simultaneously for improved accuracy:

– Addition case: assume that a model M has learned
v1. Then, it can predict its sign s1, and the accuracy is
P(X,y)[Y = y|s1] = 0.75, better than random predictor.

– Multiplication case: assume a model has learned v3,v4

and not v5. Its accuracy is then P(X,y)[Y = y|s3, s4] =
0.5, the same as the random predictor. Learning all but
one provides no value.

5 CONCLUSION AND FUTURE WORK

In this work, we study the difference between overparameterized and underparameterized networks
in terms of expressivity and performance. Through experiments on CIFAR-10 and MNLI, we have
demonstrated that even after concatenating many models, underparameterized features cannot cover
the span nor retrieve the performance of overparameterized features. Our work suggests some future
work. We consider a deep network in Section 4 since our labeling function involves a multiplication
operation. It is known that these labels cannot be recovered by a 1-hidden layer network with finite
width (Allen-Zhu & Li, 2020). It would be interesting to find a 1-hidden layer network setting where
we can prove the benefits of overparameterized features. Lastly, our setting does not exactly match
with our empirical results since we do not demonstrate that underparameterized networks learn some
features that overparameterized ones cannot capture.
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A ADDITIONAL DETAILS AND RESULTS ON THE FSG METHOD

In this section, we provide additional implementation details on the FSG method and present some
experiments that were mentioned in the main paper. In Equation Reg, we present the method to
solve the regression problem equation Reg. In Subsection A.2, we present additional details about
our experiments. Lastly, in Subsection A.3, we present our FSG results on randomly initialized
networks. These results were mentioned in Section 3.

A.1 METHODOLOGY TO SOLVE THE REGRESSION PROBLEM.

The regression problem equation Reg is defined in the context of a particular task with fixed train-
ing and test datasets, which we denote by Dtrain and Dtest, respectively. We now explain some
important details about how we implement the regression.

– Why adding a L2-regularization?: We add a L2-regularization in equation Reg for multiple rea-
sons. First, it helps with multicollinearity and ill-conditioning. Second, it provides regularization,
which leads to better out-of-sample predictions. Finally, it has a closed-form solution that makes
it possible to solve the regression problem for all target variables simultaneously, which is com-
putationally more efficient than solving the regression problem for each target variable separately.
The closed-form solution requires the inversion of a matrix that can be precomputed once and
used to solve the regression problem for any target variable, making it faster.

– Cross-validation: We independently solve equation Reg for each j ∈ {1, . . . , ⌊αnL⌋} by using
the RidgeCV function from the scikit-learn package (Pedregosa et al., 2011). It implements leave-
one-out cross-validation (LOOV) to tune the penalty parameter λ. In our experiments we tune λ
over the interval [1e− 5, 3e5].

– Datasets in the regression: The training (resp. test) dataset of the regression consists of the
features extracted from the training (resp. test) dataset Dtrain (resp. Dtest) of the task.

– Reporting FSE: We only present the validation errors of equation Reg for FSE in our empirical
findings of section 3. That is because the training dataset is much larger compared to the test
dataset, and the relationship between the features of different width networks may differ between
the datasets Dtrain and Dtest due to the weights of the trained models (for that matter the fea-
tures of the networks) being dependent on Dtrain but not Dtest. We discuss this issue further
in Subsection D.4, where we present regression results using a training dataset consisting of data
points from both Dtrain and Dtest (training and test datasets of the task). Nevertheless, the em-
pirical findings remain consistent for the test errors (Subsection D.3), although there may be a gap
between the test and validation errors in some cases.

A.2 ADDITIONAL DETAILS ABOUT EXPERIMENTAL SETUP

Regarding the training procedure of the vision experiments, all the models are trained with stan-
dard augmentations techniques and using SGD with momentum 0.9, a tuned weight-decay, a tuned
learning-rate and a linear decay step-size scheduler (applied by the factor of 0.1 at epochs 180 and
255). We run all the experiments for 300 epochs, with batch size 128 otherwise. For NLP, we run
all the experiments for 30 epochs, using AdamW with a tuned weight-decay, a tuned learning-rate,
and a cosine learning rate scheduler. Table 2 displays the average training and test accuracies of the
networks used in the experiments.

We note that for each different model, we tune the learning-rate and weight-decay for a single seed
and use the same hyperparameters for all other models of the same kind but with a different initializa-
tion. In our computer vision experiments, our range of learning rates is {0.02, 0.04, 0.06, 0.08, 0.1}
and for weight decay, the range is {7e−4, 5e−4, 9e−4, 3e−4, 5e−4, 5e−4} and use dropout=0.1. In
our NLP experiments, our range of learning rates is {5e−6, 1e−5, 5e−5, 9e−5, 1e−4, 5e−4, 9e−
4, 5e−3} and for weight decay, {1e−6, 1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 1e−2, 5e−3, 5e−2}.

To create low-width networks from ResNet-18 and VGG-16 vision models, we reduce the number
of filters or channels in each layer compared to the original architecture. Specifically, we achieve the
scaled model Mα by adjusting the number of filters in each layer, multiplying the original number
of filters by a factor of α < 1. Similarly, for the transformer model, the hidden size is modified by
scaling it down by a factor of α < 1. This process results in the low-width model Mα.
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Remark about the NLP experiments. The primary focus of this paper is to analyze the impact
of overparameterization on network features, driven by their superior performance. As a result,
we specifically investigate scenarios where overparameterized networks exhibit significantly better
performance than low-width networks. In our NLP experiments, we observed that when using a
transformer model, there was no notable difference in performance between low-width and over-
parameterized networks. We attribute this lack of distinction to the embedding layer, which has a
vocabulary size of approximately 50k, causing low-width networks to have an excessive number
of parameters. To address this, we removed the embedding layer from the models studied in this
paper. Additionally, we leveraged a pre-trained network to process the data and provide its hidden
representation as input to these models.

A.3 MEASURING THE FSG FOR RANDOM NETWORKS
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Figure 7: FSG with respect to overparameterized features (random networks). FSE(S(U∗),r
α → Mr

1) and
FSE(Mr

1 → Mr
1) are displayed by blue and red lines, respectively, in the settings of Transformer, ResNet,

and VGG. Unlike trained networks, the concatenated random low-width network features are capable of fitting
overparameterized network features effectively, regardless of their size. In fact, we observe that the fitting
improves as the value of α decreases.
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Figure 8: FSG with respect to low-width concatenated networks features (random networks).
FSE(S(U∗),r

α → Mr
1) and FSE(Mr

1 → Mr
1) are displayed by blue and red lines, respectively, in the set-

tings of Transformer, ResNet, and VGG. Unlike trained networks, the concatenated random low-width network
features exhibits no difference compared to overparameterized networks in capturing overparamaeterized net-
work features.

B ADDITIONAL DETAILS ABOUT FEATURE PERFORMANCE

In the feature performance experiments in Subsection 3.3, the models are trained with standard
augmentations techniques (only for the vision experiments) and using SGD with momentum 0.9,
a tuned weight-decay, a tuned learning-rate and a linear decay step-size scheduler. We run all the
experiments with 40 or 80 epochs and ensure that at the end of training, the training loss is constant
in all the cases.

C ADDITIONAL DETAILS FOR OUR THEORETICAL SETTING

In this section, we provide some technical information about our initialization scheme. We then
display the number of neurons activated by each feature at initialization (Figure 9).
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RNα VGGα Tα

Average training Average test Average training Average test Average training Average test
α Ū U∗ accuracy (%) accuracy (%) U∗ accuracy (%) accuracy (%) U∗ accuracy (%) accuracy (%)

1 - - 99.99± 0.01 95.29± 0.14 - 99.98± 0.01 94.00± 0.01 - 86.49± 0.16 81.06± 0.18

1/2 2 4 99.98± 0.01 94.56± 0.13 4 99.80± 0.02 92.82± 0.13 4 83.64± 0.20 79.72± 0.36

1/4 4 16 99.81± 0.02 92.72± 0.25 16 98.11± 0.06 90.27± 0.25 15 79.66± 0.29 77.63± 0.21

1/8 8 64 96.12± 0.10 89.30± 0.28 64 90.12± 0.14 85.90± 0.21 59 74.93± 0.25 73.77± 0.21

1/16 16 254 86.81± 0.19 84.30± 0.28 251 75.66± 0.52 76.47± 0.63 - - -

Table 2: Average training and test accuracies of trained models: U∗ is shown with respect to the largest
model (α = 1). Accuracies are rounded to the nearest second digit after decimal.

C.1 INITIALIZATION SCHEME

Initialization. We assume that the first layer is initialized for all j ∈ [n1] as W
(0)
1 [j, :] ∼

N (0, χ2Id) where χ = d−(5/12). The remaining parameters may be initialized as in standard ReLU
neural networks, e.g., by using Kaiming initialization (He et al., 2015).

Justification of the parameters choice. We here justify the multiple choices made in the setting
described above:

– Variances ξ2, χ2 and activation in in the first layer: these choices are made for two reasons. First,
with high probability, the norm of the noisy patches are slightly bigger than the norm of the signal
ones. This incentivizes the model to have more signal-activated neurons than noise-activated
neurons. That, in turn, makes it possible for some (or possibly all) signal-activated neurons to get
de-activated especially early in the training when noise patches are more dominant in the objective
function.
Besides, under this parameters choice, neurons rarely activate a signal patch, i.e., for j ∈ [n1]

and p ∈ {ℓ1(X), . . . , ℓk(X)}, the event ”σ(W (0)
1 [j, :]⊤X[p] − 1) > 0” is rare. Indeed, by

concentration inequality, we have

P[W (0)
1 [j, :]⊤vp > χ

√
d ≈ 1] ≤ e−poly(d). (C.1)

– Orthogonality of features and noisy patches: given the orthogonal structure in D, a neuron

W
(0)
1 [j, :] can only activate a single feature. Indeed, by Pythagoras theorem, we have

|W (0)
1 [j, :]∥22 ≥

k∑
p=1

⟨W (0)
1 [j, :],vp⟩2 (C.2)

With high probability, we have |W (0)
1 [j, :]∥22 = χ2d = d0.02 ∈ [1, 2) and by definition, a neuron

activates a feature if ⟨W (0)
1 [j, :],vp⟩2 > 1. Thus, at initialization, a neuron can only activate a

single feature.
– Adding weight decay to the loss: weight decay usually leads to a solution with minimal L2-norm.

In our case, we show that if a neuron isn’t activated by any feature or noise in the beginning, then
its weight will keep shrinking and never get activated. This follows from the fact that in this case
the neuron’s weights is updated only by weight decay since gradient from the loss function is zero.

C.2 ADDITIONAL IMPLEMENTATION DETAILS

In our experiments in Section 4, we set the learning rate to 0.002 and weight decay to 0.003. Depend-
ing on the value of α, we train the model for a different time. For instance, for α ∈ {1/300, 1/120},
we train the models for 1000 epochs, α ∈ {1/3, 1/2}, we train for 2500 epochs and for α = 1, 4000
epochs. This explains why the lines are discontinuous in Figure 5. In every case, we ensure that the
training has ended by checking that the training loss is constant.
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Figure 9: Barplots 9a and 9b show the percentage of networks in which the first and second addition features
are activated at initialization, respectively, with 1 representing the percentage of networks with the correspond-
ing features activated. Barplot 9c categorizes the models by the number of multiplication features that are
activated at initialization.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present some empirical results that were briefly mentioned in the main paper. In
Subsection D.1, we measure the performance of the feature residuals. In Subsection D.2, we append
feature residuals to overparameterized and low-width networks and measure their contribution to the
task performance. While in the main paper we report the validation errors for the FSG method, we
report in Subsection D.3 the test errors. Lastly, in Subsection D.4, we present FSE results where the
features in the regression problem are obtained from a dataset that is a mix of training and test sets.

D.1 PERFORMANCE OF FEATURE RESIDUALS ALONE

Features Transformer ResNet VGG

FP(R(M1 → S(U∗)
α )) 31.47± 0.52 17.79± 0.73 40.05± 1.16

FP(S(U∗),r
α ) 46.98± 0.55 34.30± 0.04 47.48± 0.01

FP(R(S(U∗)
α → M1)) 50.97± 0.18 53.46± 0.03 56.42± 0.06

FP(Mr
1) 51.37± 0.28 28.73± 0.36 19.03± 1.03

Table 3: The performance (test accuracy) of residuals alone: Lowest α is picked for each model in this
experiment (1/16 for ResNet and VGG, and 1/8 for Transformer).

In Table 3, we present the performance of feature residuals together with the feature performance
of the random networks which serve as a baseline. In this experiment, only the feature residual
with the lowest α is used for each model (1/16 for ResNet and VGG, and 1/8 for Transformer).
We observe the the residuals of the overparameterized have better or similar performance compared
to the performance of its baseline (random overparameterized network features). By contrast, the
residual of the low-width networks underperform its baseline (concatenation of random low-width
network features).

D.2 CONTRIBUTION OF FEATURE RESIDUALS FOR VGG

This section shows the contribution of residuals for VGG.

D.3 TEST ERRORS FOR THE FSG METHOD

Figures 11, 12, 13, and 14 display the test errors corresponding to the figures in Sections 3 and A.3.
We observe that the test errors exhibit a similar trend to the validation errors, indicating consistent
empirical findings. However, there is a noticeable gap between test and validation errors in the
trained networks of vision experiments. We delve into the details of this disparity in Subsection D.4
to provide a more comprehensive analysis.

Furthermore, we noticed a significant disparity between the test and validation errors in the random
VGG experiment, as shown in Figures 7c and 12c. Upon closer examination, we discovered that
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Figure 10: Contribution of residuals to the test accuracy. Figure 10a compares the concatenated low-
width network S(U∗)

α (red line) with the same model to which we append feature residuals R(S(U∗)
α → M1)

–shortly R
(U∗)
α→1 – in blue line. This plots show that as α decreases, the test accuracy gains brought by the

residuals increases. Figure 10b show that adding the residuals R(M1 → S(U∗)
α ) –shortly R

(U∗)
1→α – does not

increase the performance of M1

certain features of the overparameterized network led to test errors that were notably larger than
one. To improve the statistical accuracy of our results, we decided to exclude the features that
resulted in a test error greater than 5. This amounted to only 12 out of the total 5120 features. Figure
12d illustrates the impact of removing these outliers on the test errors. We observe that the errors
depicted in Figure 12d align with those shown in Figure 7c. As a result, by removing the outliers,
we achieve consistent validation and test errors. We do not report on the change in the validation
error following the removal of outliers, as the change is deemed insignificant.
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Figure 11: Test Error: FSG with respect to overparameterized features (after training). This figure
displays the test errors corresponding to Figure 1.
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Figure 12: Test Error: FSG with respect to overparameterized features (random networks). Figures 12a
and 12b display the test errors of Transformer and ResNet corresponding to Figure 7. Figures 12c and 12d
display the test errors of VGG corresponding to Figure 7c.
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Figure 13: Test Error: FSG with respect to low-width concatenated networks features (after training).
This figure displays the test errors corresponding to Figure 2.
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Figure 14: Test Error: FSG with respect to low-width concatenated networks features (random net-
works). This figure displays the test errors corresponding to Figure 8.

D.4 SHUFFLED REGRESSION FOR VISION EXPERIMENTS

As shown in Subsection D.3, a non-negligible difference between validation and test errors is ob-
served in vision experiments for the trained networks. One explanation behind this gap could be that
training (resp. test) data used in training (resp. testing) the networks is the same as the training (resp.
test) data used in regression. Since weights of the trained networks, for that matter features of the
trained networks, is a function of training data, we may expect smaller errors with training data than
with test data for FSE. To further understand this effect, we run another regression, which we call
shuffled regression for vision experiments, where training data is created by randomly sub-sampling
from training and test data (85% from each) used in network training.

After comparing the regular and shuffled regression results presented in tables 4 and 5, we can ob-
serve a significant reduction in the gap between validation and test errors for the shuffled regression.
This observation is in line with our earlier intuition that the dependence of trained network weights
or features on the training data can lead to smaller errors on training data than on test data for FSE.
Thus, we can conclude that the FSE results are sensitive to the data type (training vs test data of the
task) used in the regression for vision experiments, unlike NLP experiments where a much larger
training dataset is available.

Regression Error FSE(RN1 → RN1) FSE(S(U∗)
1/2 → RN1) FSE(S(U∗)

1/4 → RN1) FSE(S(U∗)
1/8 → RN1) FSE(S(U∗)

1/16 → RN1)

Regular valid. 0.0236±0.000106 0.0201±3.1e− 05 0.0327±0.000165 0.0967±0.000294 0.1885±0.000111
test 0.0505±0.000747 0.041±0.000109 0.0607±0.00023 0.1212±0.000401 0.1845±0.000396

Shuffled valid. 0.0279±0.00019 0.0234±2.9e− 05 0.0372±0.000178 0.1004±0.000264 0.1871±7e− 05
test 0.0281±0.000259 0.0236±3.7e− 05 0.0376±0.000155 0.102±0.000384 0.1908±0.000731

Table 4: Shuffled Regression for Resnet
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Regression Error FSE(VGG1 → VGG1) FSE(S(U∗)
1/2 → VGG1) FSE(S(U∗)

1/4 → VGG1) FSE(S(U∗)
1/8 → VGG1) FSE(S(U∗)

1/16 → VGG1)

Regular valid. 0.0084±6.9e− 05 0.0079±3.3e− 05 0.0143±0.000119 0.0734±0.000126 0.2116±0.000362
test 0.0694±0.000778 0.0508±0.000267 0.0658±0.000426 0.1134±0.000214 0.209±0.003072

Shuffled valid. 0.0168±0.000129 0.0145±5.5e− 05 0.0224±0.000183 0.0791±0.000118 0.2101±0.000295
test 0.017±0.000168 0.0148±5.9e− 05 0.0236±0.000177 0.0833±0.000514 0.2124±0.000795

Table 5: Shuffled Regression for VGG
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