
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUSS: MULTILEVEL SUBSET SELECTION FOR RELE-
VANCE AND DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of relevant and diverse subset selection has a wide range of ap-
plications, including recommender systems and retrieval-augmented generation
(RAG). For example, in recommender systems, one is interested in selecting rele-
vant items, while providing a diversified recommendation. Constrained subset se-
lection problem is NP-hard, and popular approaches such as Maximum Marginal
Relevance (MMR) are based on greedy selection. Many real-world applications
involve large data, but the original MMR work did not consider distributed selec-
tion. This limitation was later addressed by a method called DGDS which allows
for a distributed setting using random data partitioning. Here, we exploit structure
in the data to further improve both scalability and performance on the target appli-
cation. We propose MUSS, an efficient method that uses a multilevel approach to
relevant and diverse selection. In a recommender system application, our method
can not only improve the performance up to 4 percent points in precision, but is
also 20 to 80 times faster. Our method is also capable of outperforming baselines
on RAG-based question answering accuracy. We present a novel theoretical ap-
proach for analyzing this type of problems, and show that our method achieves
a constant factor approximation of the optimal objective. Moreover, our analysis
also results in a ×2 tighter bound for DGDS compared to previously known bound.

1 INTRODUCTION

Relevant and diverse subset selection plays a crucial role in a number of machine learning (ML)
applications. In such applications, relevance ensures that the selected items are closely aligned with
task-specific objectives. E.g., in recommender systems these can be items likely to be clicked on,
and in retrieval-augmented generation (RAG) these can be sentences that are likely to contain an
answer. On the other hand, diversity addresses the issue of redundancy by promoting the inclusion
of varied and complementary elements, which is essential for capturing a broader spectrum of infor-
mation. Together, relevance and diversity are vital in applications like feature selection (Qin et al.,
2012), document summarization (Fabbri et al., 2021), neural architecture search (Nguyen et al.,
2021; Schneider et al., 2022), deep reinforcement learning (Parker-Holder et al., 2020; Wu et al.,
2023b), and recommender systems (Clarke et al., 2008; Coppolillo et al., 2024; Carraro & Bridge,
2024). Instead of item relevance, one can also consider item quality. Thus sometimes, we will refer
to the problem as high quality and diverse selection.

Challenges of relevant and diverse selection arise due to combinatorial nature of subset selection
and the inherent trade-off in balancing these two objectives. Enumerating all possible subsets is
impractical even for moderately sized datasets due to exponential number of possible combinations
(He et al., 2012; Gong et al., 2019; Maharana et al., 2023; Acharya et al., 2024). In addition, the
combined objective of maximizing relevance and diversity is often non-monotonic, further compli-
cating optimization. For instance, the addition of a highly relevant item might significantly reduce
diversity gains. In fact, common formulations of relevant and diverse selection lead to an NP-hard
problem (Ghadiri & Schmidt, 2019).

Existing approaches consider different approximate selection techniques, including clus-
tering, reinforcement learning, determinantal point process, and maximum marginal rele-
vance (MMR). Among these MMR has become a widely used framework for balanc-
ing relevance and diversity (Guo & Sanner, 2010; Xia et al., 2015; Luan et al., 2018;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Hirata et al., 2022; Wu et al., 2023a). This greedy algorithm iteratively selects the
next item that maximizes gain in weighted combination of the two terms. The di-
versity is measured with (dis-)similarity between the new and previously selected items.

0.1M 0.5M 2M
Data size

0

20

40

60

80

100

Ti
m

e
(M

in
ut

es
)

x20 - x80 faster than MMR

Computational Time with Dataset Size

MMR
MUSS k'=500
MUSS k'=50

k'=50 k'=500

35%

50%
Time

Reduction %

DGDS
MUSS

Figure 1: Our MUSS is not only capable of achiev-
ing better performance on the target task as baselines,
but also can be 20× to 80× faster. The insert shows
the relative speed improvement against DGDS. Note
that MMR is not a distributed method. Here, the task
has been to select k candidate items for recommen-
dation from catalogs of different sizes and k′ denotes
the number of intermediate items to be selected within
each cluster for MUSS and DGDS.

MMR algorithm is interpretable and easy
to implement. However, the original MMR
work did not consider distributed selec-
tion, while many real-world ML applica-
tions deal with large-scale data. This lim-
itation was later addressed by a method
called DGDS (Ghadiri & Schmidt, 2019).
The authors of DGDS also provided theo-
retical analysis showing that their method
achieves a constant factor approximation of
the optimal solution. DGDS allows for a
distributed setting using random data par-
titioning. Items are then independently se-
lected from each partition, which can be
performed in parallel. Subsets selected
from the partitions are then combined be-
fore the final selection is performed. Thus,
the final selection step becomes a perfor-
mance bottleneck if the number of parti-
tions and the number of selected items in
each partition are large. We refer to Ap-
pendix Section A for further discussion on
related work and summarize the computa-
tional complexity in Table 1.

In our work, we explore the question whether we can further improve both scalability and perfor-
mance on the target application by leveraging structure in the data. We address the final selection
bottleneck by introducing clustering-based data pruning. Moreover, our novel theoretical analysis,
such as Lemmas 1 and 5, allowed us to relate the cluster-level and item-level selection stages and
derive an approximation bound for the proposed method. In summary, the contributions of our work
are as follows

• We propose MUSS, an efficient distributed method that uses a multilevel approach to high
quality and diverse subset selection.

• We provide a rigorous theoretical analysis and show that our method achieves a constant-
factor approximation of the optimal objective. We show how this bound can be affected by
clustering structure in the data.

• We utilize our new theoretical findings to tighten the bound of DGDS, improving from the
existing factor of 1

31 to 1
16 . Moreover, the improved bound does not rely on the condition

of k ≥ 10 required in DGDS (Ghadiri & Schmidt, 2019).
• We demonstrate the utility of our method on popular ML applications of item recommenda-

tion and RAG-based question answering. For item recommendation, our method not only
improves up to 4 percent points in precision upon baselines, but is also 20 to 80 times faster
(Figure 1). MUSS has been deployed in production for real-world candidate retrieval on a
large-scale e-commerce platform serving million customers daily.

2 MUSS: MULTILEVEL SUBSET SELECTION

2.1 PROBLEM FORMULATION

Consider a universe of objects represented as set U of size |U| = n. Let q : U → R+ denote a non-
negative function representing either quality of an object, relevance of the object, or a combination of
both. Next, consider a distance function d : U×U → R+. Here we implicitly assume that the objects
can be represented with embeddings in a metric space. Appendix Table 5 summarizes our notation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: MUSS reduces time complexity by only
considering a subset of clusters. Here, we com-
pare average-case time complexity of methods for
selecting subsets of size k from a set of n items.
We use l to denote the number of clusters, m for
the number of selected clusters, k′ for the number
of items to be selected in each cluster and p for the
number of parallel cores. Typically n ≫ l ≫ m;
l for DGDS does not have to be the same as l for
MUSS. Complexity of MUSS is discussed in Sec-
tion 2.2. For DGDS and MUSS partitioning and
clustering steps can be performed once and are not
considered here.

Method Computational Complexity
K-DPP O(k2n+ k3)
MMR O(k2n)

DGDS O
(

(k′)2n
p + k2(k′l)

)
MUSS O

(
m2l + (k′)2nm

lp + k2(k′m+ k)
)

Our goal is to select a subset S ⊆ U of size
|S| = k ≤ n from the universe U , such that the
objects are both of high quality and diverse. In
particular, we consider the following optimiza-
tion problem

O = arg max
S⊆U,|S|=k

F (S | k, λ) (1)

where O is the global optimum, and the objec-
tive function is defined as

F (S) =λ
∑
u∈S

q(u) + (1− λ)
∑

u,v∈S
d(u,v)

=λQ(S) + (1− λ)D(S). (2)

The first term Q measures the quality of selec-
tion, while the second term D measures the di-
versity of the selection. Coefficient 0 ≥ λ ≥ 1
controls the trade-off between quality (or rele-
vance) and diversity. A higher value of λ in-
creases the emphasis on quality, while a lower
value emphasizes diversity thus reducing re-
dundancy. We use O to denote the global maxi-
mizer of the above problem parameterized by k and λ. For brevity, we may omit k and λ throughout
the paper and write F (S).
Note that the entire objective can be multiplied by a positive constant without changing the op-
timal solution. As such, different scaled variations of the diversity term can be represented
with the same objective. For example, one can consider using an average distance for di-
versity, and this would lead to the same optimization problem with a different choice of λ.

Selected clusters

Selected points

Quality
High

Low

Figure 2: MUSS performs clustering following by
a multilevel selection. Here, S̄ is a set of selected
clusters, Um denotes cluster m, and Sm denotes
items selected from that cluster.

The optimization involves maximizing a func-
tion with a cardinality constraint, which is a
well-known NP-hard problem. Therefore, our
solution uses a greedy selection strategy simi-
lar to MMR. However, a direct application of
MMR might not be practical for large sets. Dis-
tributed approach of DGDS partially addresses
this problem, but it still has a bottleneck in the
final selection from the union of points selected
from partitions.

2.2 MULTILEVEL SELECTION

We address this bottleneck by considerably re-
ducing the size of this union without compro-
mising quality of selection. To this end, we pro-
pose MUSS, a method that performs selection in
three stages: (i) selecting clusters, (ii) selecting
objects within each selected cluster, and (iii) se-
lecting the final set from the union of objects
selected from the clusters (Figure 2). We show that MUSS achieves a constant factor approximation
of the optimal solution.

Step 1: While in previous literature greedy selection has been applied to items, our key observation
is that greedy selection can also be used to select entire clusters that are both diverse and of high-
quality while filtering out other clusters thus reducing the total pool of candidate items.

Therefore, we can use KMEANS algorithm to partition the data into clusters U =
⋃l

i=1 Ui.
Other clustering algorithms could also be used at this step. Next, we view clusters as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a set of items C = {c1, . . . , cl}. The distance d(ci, cj) between two clusters is de-
fined as the distance between cluster centroids. Next, the quality of the cluster is de-
fined as the median quality score of items in this cluster, i.e., q(ci) = median({q(a) :
a ∈ Ui}). We then apply Algorithm 1 with the set of clusters C as input.

Algorithm 1 Greedy Selection
Input: set T , #items to select k, parameter λ ∈ [0, 1]
Output: set S ⊆ T , s.t. |S| = k
// start with the highest quality item

1 S = {argmaxt∈T q(t)}
2 for i = 2, . . . , k do
3 s = argmaxt∈T \S λq(t)+(1−λ)

∑
u∈S d(t,u)

4 S = S ∪ {s}

Step 2: Using greedy selection at the
cluster level will result in a subset of
m selected clusters, where each cluster
ci contains items Ui ⊂ U . For each
selected cluster, we independently apply
Algorithm 1 to select Si = ALG1

(
Ui|k′

)
where |Si| = k′. We can set k′ < k for
computational speed up (see Fig. 1). Im-
portantly, selections within different clus-
ters can be executed in parallel.

Step 3: Different from DGDS, our final
selection includes the top k items with the highest overall quality.1 That is, we collect S∗ =
argmaxA⊆U, |A|=k

∑
u∈A q(u). We then select the final set of items by applying Algorithm 1

on the union of item sets obtained in the previous step combined with S∗. Our final selection is
S = ALG1 (∪m

i=1Si ∪ S∗|k) where |S| = k. The entire approach is summarized in Algorithm 2.

Algorithm 2 MUSS

Input: set U ; item-level parameters: #items to se-
lect within each cluster kw and globally k, trade-off
λ; cluster-level parameters: #clusters l, #clusters to
select m, trade-off λc

Output: S ⊆ U with |S| = k
1 Apply KMEANS(U , l) to cluster U into {Ui}li=1
2 Let C denote a set of clusters. The distance and qual-

ity of clusters are defined in Section 2.2.
3 S̄ = ALG1

(
C|m,λc

)
4 for Ui ∈ S̄ do

// selection within in each cluster

55 Si = ALG1
(
Ui|k′, λ

)
// the top k highest quality items

66 S∗ = argmaxA⊆U, |A|=k

∑
u∈A q(u)

// refinement for final selection
77 S = ALG1 (∪m

i=1Si ∪ S∗|k, λ)

Computational complexity: We discuss
the average-case time complexity of MUSS.
Here “average-case” means assuming clus-
ter sizes of n

l when clustering n items into
l clusters. The complexity of standard it-
erative implementation of KMEANS algo-
rithm (Lloyd, 1982) is O(nkt), where t is
the number of iterations. Selecting the top
k highest quality items S∗ is precomputed
in the candidate retrieval task. In cases of
computing them from scratch with a dis-
tributed setting, it costs O(n + pk log k)
using min-heap where p is the number of
parallel cores. Greedy selection of k out of
n items can be performed in O(k2n) time.
Therefore, selecting m out of l clusters re-
sults in O(m2l). Next, selection of k′ ≤ k

points within one cluster gives O((k
′)2n
l).

This will only be performed for m selected
clusters and the computation can be dis-
tributed across p cores resulting in O((k

′)2nm
lp). Combining subsets from the clusters and the top

k highest quality items results in a pool of k′m + k items. Thus the final selection step results in
O
(
k2(k′m + k)

)
complexity. Clustering and global top-k quality selection are performed once.

Thus at query time, average-case complexity is O
(
m2l + (k′)2nm

lp + k2(k′m+ k)
)

. Since our ap-
proach does not train a separate model for data selection, it does not require extra space. Therefore,
the memory complexity is linear in the data size.

2.3 THEORETICAL PROPERTIES

We now present theoretical analysis of the proposed algorithm. We show that MUSS achieves a
constant factor approximation of the optimal solution. Our main results are Theorem 4 and 8 which
use additional lemmas to bound diversity and quality terms. In addition to results for the proposed
MUSS, we present new derivations tightening the known bound for DGDS with a factor of ×2 .
Since MUSS uses both cluster and object-level selection, our bounds rely on Lemma 5 that relates

1The addition of the top k items has been motivated by Lemma 7 for a tighter approximation bound. Em-
pirically, our method achieves a similar performance with and without the top k addition (Appendix C.7).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

objectives at different levels. This lemma is one of our main theoretical innovation points, along
with new proof approach for Lemma 1. All proofs are provided in Appendix B.
Lemma 1. Apply Algorithm 1 to select S = ALG1(T |k). Let t ∈ T \ S. The following inequalities
hold

∆(t,S) ≡ Q(S ∪ {t})−Q(S) ≤ 1

kλ
F (S) (3)

min
z∈S

d
(
t, z

)
≤ 2.5

k(k − 1)(1− λ)
F (S). (4)

We derive the next two lemmas enabling improved bounds for DGDS.
Lemma 2. For each partition, apply Algorithm 1 to select Si = ALG1(Ui). We have

D(O) ≤ 6F
(

OPT(∪l
i=1Si)

)
. (5)

Lemma 3. For each partition, apply Algorithm 1 to select Si = ALG1(Ui). We have

Q(O) ≤ 2F
(

OPT(∪l
i=1Si)

)
. (6)

Theorem 4. With the above lemmas in place, we obtain the 1
16 -approximation solution for maxi-

mizing F (S) subject to |S| = k

F
(

DGDS(U)
)
≥ 1

16
F (O). (7)

We now return to MUSS. Using OPT(.) to denote the selection that maximizes the objective F , we
proceed to the following lemma.
Lemma 5. Let k ≥ m, we have that

F
(

ALG1
(
C|m,λc, (1− λc)

))
≤ F

(
OPT(∪m

i=1Si)|k
)
+ rm(m− 1). (8)

Lemma 5 connects objective functions at the cluster level and at the item level. In turn, this allows us
to obtain lower bounds on the diversity term and the quality term when the multilevel Algorithm 2
is used to select S = ALG2(U).
Lemma 6. If k ≥ m, we have

D(O) ≤ rk(k − 1)
[
4 +

5

1− λc

]
+ F

(
OPT(∪m

i=1Si)|k
)[5k(k − 1)

(1− λc)m(m− 1)
+

1

(1− λ)

]
. (9)

Lemma 7. Let S∗ = argmaxA⊆U, |A|=k

∑
u∈A q(u) denote the set of k highest quality items from

U . We have

Q(O) ≤ 1

λ
F
(

OPT
(
∪m
i=1Si ∪ S∗)). (10)

Finally, our main theoretical result follows.
Theorem 8. In Line 7 of ALG2, instead of invoking ALG1 with λ and 1− λ, let use parameters σλ,
1− λ. If σ = 0.5, k ≥ m, ALG2σ gives a constant-factor approximation to the optimal solution for
maximizing F (S) s.t. |S| = k.

F
(

ALG2σ(U)
)
≥ 1

α
F (O)− r

β

α
. (11)

Here, α(k,m, λ, λc), β(k,m, λ, λc) are intermediate quantities defined in the proof in the interest
of space.

2.4 DISCUSSION

Theoretical considerations. In the above theorem, intermediate quantities α and β are functions
of algorithm parameters k, m, λ, λc. For fixed parameter values, α and β are positive constants. In
particular, if we set k = m and λ = λc, we get α = 14. This results in a better scaler compared

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to Eq. (7), but our bound also has the second term as the by product of the clustering and cluster
selection.

We emphasize that our theoretical analysis does not make any assumptions about the quality of clus-
tering. Instead, we note that the bound improves as r gets smaller. Growing the number of clusters
l will make this radius smaller, but will increase time required for selecting clusters (Table 1). The
ideal case is when the data naturally forms a small number of clusters, such that l and r are both low.

Next, the bound can be explicitly maximized as a function of m and λc. However, in practice, we
simply evaluate results for different values of λc, while m is selected to balance objective value with
computational time.

Lastly, note that parameters k and λ are included in the objective function (Eq. 2). However, these
parameters are application-driven, and should not be used to “optimize” the approximation bound.
E.g., for a given application, the best λ value is the one that results in strongest correlation between
an application-specific performance metric and the objective F .

Practical considerations. One of the benefits of the proposed approach is that clustering can be
performed in advance at a preprocessing stage. Each time a selection is required, a pre-existing
clustering structure is leveraged. For large datasets, one can use scalable clustering methods, such
as MiniBatchKmeans (Sculley, 2010) or FAISS (Douze et al., 2024). If new data arrives, an online
clustering update can be used. In a simple case, one can store pre-computed cluster centroids and
assign each newly arriving point to the nearest center.

In practice, we use the same parameter λ when selecting items either within clusters (Line 5 of
Algorithm 2) or from the union of selections (Line 7 of Algorithm 2). However, our method is
flexible, and one can consider different λ values for these selection stages. Next, during the greedy
selection, we normalize the sum of distances by the current selection size |S| for robustness.

Theorem 8 assumes σ = 0.5, i.e., a scaler in Line 7 of the Algorithm 2. Importantly, the approxi-
mation bound still holds when running the algorithm with different values of σ and selecting result
that maximizes F . Indeed, our preliminary results indicated that using σ = 1 (i.e., no scaling) leads
to a stronger performance. Therefore MUSS is defined without the scaler. Also note that the original
DGDS baseline does use scaling by 0.5. In our evaluation, removing this scaling resulted in better
DGDS results which we report here.

Benefits of cluster selection. Since item selection within clusters can be performed in parallel, the
main performance bottleneck is item selection from the union of subsets derived from different clus-
ters. To reduce the size of this union, we introduce a novel idea of relevant and diverse selection of
clusters. This step can dramatically reduce the number of items at the final selection with minimum
impact on the selection quality. To the best of our knowledge, previous approaches did not consider
the idea of “pruning” the set of clusters.

Preliminary elimination of a large number of clusters (Line 3 of Algorithm 2) will not only allow
for more efficient selection from the union of points (running time and memory for Line 7 of Al-
gorithm 2), but can lead to improved accuracy. This is because the greedy algorithm will be able
to focus on relevant items after redundancy across clusters has been reduced. This is particularly
useful for large scale dataset size, as shown in our experiments. Moreover, novel theoretical analy-
sis, such as Lemma 5, allows us to relate cluster-level and item-level selection stages and derive an
approximation bound for the proposed MUSS.

3 EXPERIMENTS

The goals of our experiments have been to (i) test whether the proposed MUSS can be useful in
practical applications; (ii) understand the impact of different components of our method, and (iii)
understand scalability and parameter sensitivity of the proposed approach. Item recommendation
and retrieval-augmented generation are among the most prominent applications of our subset selec-
tion problem. In the next two sections, we consider these applications, and compare MUSS with a
number of baselines.

Baselines. We consider the following methods for the task of high quality and diverse subset selec-
tion: random selection, K-DPP (Kulesza & Taskar, 2011), clustering-based selection, MMR as per

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Precision on the candidate retrieval task for k = 500 items. ✗ indicates that the method
did not complete after 12 hours. Results are reported for λ that maximizes precision achieved by
MMR (i.e., favoring the baseline). For any value of λc, our method achieves higher performance than
baselines and faster running time.

Home (|U| = 4737, λ = 0.9) Amazon100k (|U| = 108, 258, λ = 0.9)
Method λc Precision ↑ Time ↓ Method λc Precision ↑ Time ↓
random 50.3± 2.4 0.0 random 11.2± 1.5 0.0
K-DPP 56.3± 2.7 7.9 K-DPP ✗ ✗
clustering 60.6± 1.8 0.7 clustering 28.2± 1.1 10
MMR 72.0 13.5 MMR 39.4 311
DGDS 73.5± 0.2 13.7 DGDS 39.4± 0.1 271
MUSS (rand.A) 73.9± 0.3 6.7 MUSS (rand.A) 42.8± 0.3 49
MUSS (rand.B) 74.1± 0.2 6.6 MUSS (rand.B) 41.6± 0.2 53

MUSS 0.1 74.5± 0.2 7.1 MUSS 0.1 44.8± 0.5 55
MUSS 0.3 74.2± 0.3 7.8 MUSS 0.2 42.8± 0.8 54
MUSS 0.5 74.0± 0.3 7.8 MUSS 0.5 43.5± 0.5 54
MUSS 0.7 74.1± 0.3 8.8 MUSS 0.7 44.4± 0.4 53
MUSS 0.9 74.8 ± 0.2 8.1 MUSS 0.9 45.2 ± 0.6 53

Algorithm 1, and the distributed selection method called DGDS (Ghadiri & Schmidt, 2019). We do
not consider RL baselines here because we focus on selection methods that are potentially scalable,
and also can be easily incorporated within existing ML systems. RL-based selection approaches
require setting up a feedback loop and defining rewards which might not be trivial in a given ML
application.

Key differences between DGDS and MUSS are that (i) we propose clustering rather than random
partitioning, (ii) we select a subset of clusters, rather than using all of them (iii) in the final selection,
MUSS takes into account the top k highest quality items while DGDS does not. To understand the
impact of these differences, we introduce two additional variations of our method. First, in “MUSS
(rand.A)”, we perform clustering, but pick m clusters at random rather than using greedy selection.
Second, in “MUSS (rand.B)”, we perform random partitioning instead of clustering, but otherwise
follow our Algorithm 2.

We report mean± st.err. from 5 independent runs. In each run, randomness is due to partitioning,
clustering or sampling (K-DPP). There are no repeated runs for MMR, since this method doesn’t use
partitioning nor randomness. Additional experimental details are given in Appendix C.1.

3.1 CANDIDATE RETRIEVAL FOR PRODUCT RECOMMENDATION

Context. Modern recommender systems typically consist of two stages. First, candidate retrieval
aims at efficiently identifying a subset of relevant items from a large catalog of items (El-Kishky
et al., 2023; Rajput et al., 2023). This step narrows down the input space for the second, more
expensive, ranking stage. Since the ranking will not even consider items missed by candidate re-
trieval, it is crucial for the candidate retrieval stage to maximize recall — ensuring that most relevant
items are included in the retrieved subset — while maintaining computational efficiency. The pro-
posed MUSS has been deployed in production at a large-scale ecommerce platform serving million
customers daily, referring to Appendix C.2 for further information.

Setup. We use four datasets with sizes ranging from 4K to 2M (Table 2 and Appendix Table 6).
These internally collected datasets represent either individual product categories, or larger collec-
tions of items across categories. Each data point corresponds to a product available at an online
shopping service. For each product, an external ML model predicts the likelihood of an item being
clicked on. The model takes into account product attributes, embedding, and historical performance.
Likelihood predictions are treated as product quality scores, while actual clicks data is used as bi-
nary labels. We select k = 500 items from a given dataset. For a fixed k recall is proportional to
precision@k, and we evaluate selection performance using Precision@500.

Results are shown in Table 2, and Appendix Table 6. First, higher values of the objective from
Eq. (2) generally indicate higher precision, which further justifies our problem formulation. Next,
it is clear that random selection or naive clustering-based strategy are not effective for this task as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy of question answering over different knowledge bases given a fixed LLM, but
varying methods for RAG selection. λ values were optimized on MMR accuracy, thus favoring this
baseline. For MUSS (rand.B) variation we use λc that maximized performance of this method. MUSS
outperforms all baselines. We are interested in accuracy rather than timing, since the response time
is dominated by the LLM call.

DevOps (|U| = 4722, λ = 0.5) StackExchange (|U| = 1025, λ = 0.5)
Method λc Accuracy ↑ Method λc Accuracy ↑
random 50.0± 1.1 random 41.6± 2.0
K-DPP 47.6± 1.8 K-DPP 40.4± 1.5
clustering 51.2± 0.5 clustering 54.8± 4.4
MMR 58 MMR 64
DGDS 58.0± 0.0 DGDS 62.8± 0.5
MUSS (rand.A) 52.0± 2.2 MUSS (rand.A) 55.2± 4.8
MUSS (rand.B) 53.2± 2.1 MUSS (rand.B) 55.6± 4.7
MUSS 0.1 58.8± 0.5 MUSS 0.1 65.2± 0.8
MUSS 0.3 58.8± 1.0 MUSS 0.3 65.2± 0.8
MUSS 0.5 58.8± 0.5 MUSS 0.5 65.6 ± 1.0
MUSS 0.7 59.6 ± 0.7 MUSS 0.7 64.8± 0.8
MUSS 0.9 58.0± 0.6 MUSS 0.9 64.8± 0.5

all other methods significantly outperform these baselines. Here, we use λ = 0.9 which maximizes
precision resulted from using MMR. Even with this λ choice, MUSS achieves consistently higher
precision (+4%) across various λc values. This improvement is due to the property of MUSS to per-
form selection within each subgroup, allowing the selection process to better capture local structure
and diversity specific to each subgroup than handling all items globally. Importantly, MUSS achieves
this results 80× faster than MMR (Amazon2M) and 35% faster than DGDS. Improved scalability can
be observed on datasets of different sizes (Figure 1 and Appendix Figure 7).

3.2 Q&A USING RETRIEVAL-AUGMENTED GENERATION

Context. Recently, Large Language Models (LLM) have gained significant popularity as core
methods for a range of applications, from question answering bots to code generation. Retrieval-
augmented Generation (RAG) refers to a technique where information relevant to the task is retrieved
from a knowledge base and added to the LLM’s prompt. Given the importance of RAG, we have
also evaluated MUSS for RAG entries selection.

Setup. We consider the task of answering questions over a custom knowledge corpus, and we
use two datasets of varying degrees of difficulty (Table 3). StackExchange and DevOps datasets
represent more specialized knowledge.2 These datasets were derived, respectively, from an online
technical question answering service, and from AWS Dev Ops troubleshooting pages (Guinet et al.,
2024).

Each dataset consists of a knowledge corpus and a number of multiple choice questions. For a given
question, we compute relevance to entities in the corpus, and then use different methods for selecting
k = 3 relevant and diverse entities to be added to LLM’s prompt. For a fixed LLM we vary selection
methods, and report proportion of correct answers over 50 questions.

In this section, we are interested in accuracy of the answers rather than timing. We assume that
given a question, one can effectively narrow down relevant scope of knowledge and the response
time might be dominated by the LLM call.

Results are presented in Table 3. In all cases, accuracy can be improved compared to random
selection. Parameter λ (item-level selection trade-off) is optimized for MMR performance, thus
favoring this baseline. Maximum accuracy is achieved with an intermediate value of the parameter,
i.e., both relevance and diversity are important. Random selection and K-DPP baselines emphasize
diversity over relevance and achieve the weakest performance.

We can see that our method is capable of outperforming all baselines, particularly at any λc value.
Note that the two datasets involve complex technical questions, and RAG approach itself might stop

2https://github.com/amazon-science/auto-rag-eval

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Precision (for Home and Amazon100k) or Accuracy (other datasets) achieved by MUSS
with different number of clusters l, number of selected clusters m, and fixed λ = λc = 0.7.

l m Home Amazon100k l m DevOps StackExchange
100 50 74.6 41.6 50 10 46 62
200 50 74.8 41.2 50 20 46 62
200 100 74.8 44.0 100 10 44 62
500 50 73.3 42.8 100 20 46 62
500 100 74.0 44.2 200 10 46 62
500 200 74.2 44.2 200 20 44 62

being effective past certain performance level. Nonetheless, our findings suggest that as long as
RAG continues to contribute to performance gains, our method can further enhance accuracy.

3.3 ABLATIONS, PARAMETER SENSITIVITY, AND SCALABILITY

Ablation Study. Note that variations “MUSS (rand.A)”, and “MUSS (rand.B)” constitute ablations
of our method. In the former, we select clusters at random instead of using cluster-level greedy
selection. We observe that using greedy selection consistently improves performance. Next, in
“MUSS (rand.B)”, we use random partitioning instead of clustering. Again, we consistently observe
improved performance when clustering is applied, and the gains can be significant. We conclude that
leveraging natural structure in data is important for this problem. This is consistent with observed
patterns discussed in Appendix C.3.

Sensitivity w.r.t. λ and λc. Table 2, Table 3, and Appendix Table 6 show performance at different
levels of λc (cluster-level trade-off). Overall, for any dataset, there is little variation in performance.
We also study how the diversity term D(S), the quality term Q(S), and the objective function F (S)
varies with λ and λc in Appendix C.4. Consistent with the previous observation, we find that for
any fixed λ, the variation due to λc is relatively small. Next, as expected, small values of λ (item-
level trade-off) favor D(S) while larger λ promote Q(S). The optimal choice of this parameter is
application-specific. A practical way of setting the value could be cross-validation at some fixed λc.

Sensitivity w.r.t. number of clusters l and number of selected clusters m. We consider broad
ranges for these parameter values. For example, we scale l by 4 to 5 times, and m by 2 to 4
times (while keeping both λs fixed). Despite broad parameter ranges, in most cases, performance
differences between different settings are within 3 percent points (Table 4). Larger deviations are
typically observed as settings become more extreme (e.g., number of clusters is becoming too little
for a dataset with 100k items).

Scalability. Figure 1 demonstrates scalability of the proposed MUSS. Specifically, given the dataset
of size |U| = 2M , our method is up to 80 times faster than MMR achieving the same objective
function of 0.97. Here, all methods use the same λ = 0.5 and we fix the hyperparameters to some
constant values (m = 100, l = 500, λc = 0.5). Further analysis into scalability shows that compared
to DGDS, our approach leads to time savings both during selection within partitions and during the
final selection from the union of items (Appendix C.5 and Appendix Figure 7).

4 CONCLUSION

We propose a novel method for distributed relevant and diverse subset selection. We complement our
method with theoretical analysis that relates cluster- and item-level selection and enables us to derive
an approximation bound. Our evaluation shows that the proposed MUSS can considerably outper-
form baselines both in terms of scalability and performance on the target applications. The problem
of relevant and diverse subset selection has a wide range of applications, e.g., recommender systems
and retrieval-augmented generation (RAG). This problem is NP-hard, and popular approaches such
as Maximum Marginal Relevance (MMR) are based on greedy selection. Later methods, such as
DGDS considered a distributed setting using random data partitioning. In contrast, in our work, we
leverage clustering structure in the data for better performance. Finally, the proposed MUSS has been
deployed in production on a large-scale e-commerce retail platform.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details and
experimental protocols throughout the paper and appendices. Due to the simplicity nature of the
proposed method, all algorithms are fully specified: Algorithm 2 details MUSS implementation and
Algorithm 1 describes the MMR selection – as one of the key step inside MUSS.

All hyperparameters and computational configuration are specified in Appendix C.1. The public
datasets used for RAG experiment are described in Section 3.2 and the datasets used for candidate
retrieval tasks are described in Section C.2.

The mathematical foundations, including all proofs for Theorems and Lemmas are provided in Ap-
pendix B. The computational runtimes are shown in Fig. 7. We attach the source code in the supple-
mentary material. To support transparency and broader use, we will release this code and evaluation
scripts to Github upon publication, enabling full reproducibility of the reported results.

REFERENCES

Abhinab Acharya, Dayou Yu, Qi Yu, and Xumin Liu. Balancing feature similarity and label vari-
ability for optimal size-aware one-shot subset selection. In Forty-first International Conference
on Machine Learning, 2024. 1, 14

Ricardo Baeza-Yates. Applications of web query mining. In European Conference on Information
Retrieval, pp. 7–22. Springer, 2005. 14

Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power of randomization: Dis-
tributed submodular maximization on massive datasets. In International Conference on Machine
Learning, pp. 1236–1244. PMLR, 2015. 14

Allan Borodin, Aadhar Jain, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone
submodular functions, and dynamic updates. ACM Transactions on Algorithms (TALG), 13(3):
1–25, 2017. 17, 20

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval, pp. 335–336, 1998. 14,
20, 24

Diego Carraro and Derek Bridge. Enhancing recommendation diversity by re-ranking with large
language models. ACM Transactions on Recommender Systems, 2024. 1

Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin Ashkan, Stefan
Büttcher, and Ian MacKinnon. Novelty and diversity in information retrieval evaluation. In Pro-
ceedings of the 31st annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 659–666, 2008. 1

Erica Coppolillo, Giuseppe Manco, and Aristides Gionis. Relevance meets diversity: A user-centric
framework for knowledge exploration through recommendations. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 490–501, 2024. 1

Yashar Deldjoo, Zhankui He, Julian McAuley, Anton Korikov, Scott Sanner, Arnau Ramisa, René
Vidal, Maheswaran Sathiamoorthy, Atoosa Kasirzadeh, and Silvia Milano. A review of modern
recommender systems using generative models (gen-recsys). In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6448–6458, 2024. 20

Michal Derezinski, Daniele Calandriello, and Michal Valko. Exact sampling of determinantal point
processes with sublinear time preprocessing. Advances in neural information processing systems,
32, 2019. 14

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024. 6

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ahmed El-Kishky, Thomas Markovich, Kenny Leung, Frank Portman, Aria Haghighi, and Ying
Xiao. k nn-embed: Locally smoothed embedding mixtures for multi-interest candidate retrieval.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 374–386. Springer,
2023. 7

Mohamed Elfeki, Camille Couprie, Morgane Riviere, and Mohamed Elhoseiny. Gdpp: Learning
diverse generations using determinantal point processes. In International conference on machine
learning, pp. 1774–1783. PMLR, 2019. 14

Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence research, 22:457–479, 2004. 14

Alexander R Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391–409, 2021. 1

Matthew Fontaine and Stefanos Nikolaidis. Differentiable quality diversity. Advances in Neural
Information Processing Systems, 34:10040–10052, 2021. 14

Hang Gao and Yongfeng Zhang. Vrsd: Rethinking similarity and diversity for retrieval in large
language models. arXiv preprint arXiv:2407.04573, 2024. 14

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang,
Boxing Chen, Hao Yang, et al. Clustering and ranking: Diversity-preserved instruction selection
through expert-aligned quality estimation. arXiv preprint arXiv:2402.18191, 2024. 14

Mehrdad Ghadiri and Mark Schmidt. Distributed maximization of submodular plus diversity func-
tions for multi-label feature selection on huge datasets. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 2077–2086. PMLR, 2019. 1, 2, 7, 14, 17

Zhiqiang Gong, Ping Zhong, and Weidong Hu. Diversity in machine learning. Ieee Access, 7:
64323–64350, 2019. 1

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated evalu-
ation of retrieval-augmented language models with task-specific exam generation. arXiv preprint
arXiv:2405.13622, 2024. 8

Shengbo Guo and Scott Sanner. Probabilistic latent maximal marginal relevance. In Proceedings
of the 33rd international ACM SIGIR conference on Research and development in information
retrieval, pp. 833–834, 2010. 1

Jingrui He, Hanghang Tong, Qiaozhu Mei, and Boleslaw Szymanski. Gender: A generic diversified
ranking algorithm. Advances in neural information processing systems, 25, 2012. 1

Kohei Hirata, Daichi Amagata, Sumio Fujita, and Takahiro Hara. Solving diversity-aware maximum
inner product search efficiently and effectively. In Proceedings of the 16th ACM Conference on
Recommender Systems, pp. 198–207, 2022. 2, 14

Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pp. 1193–1200, 2011. 6

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286, 2012. 14

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 14

Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Efficient sampling for k-determinantal point pro-
cesses. In Artificial Intelligence and Statistics, pp. 1328–1337. PMLR, 2016. 14

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982. 4

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

WenJing Luan, GuanJun Liu, ChangJun Jiang, and MengChu Zhou. Mptr: A maximal-marginal-
relevance-based personalized trip recommendation method. IEEE Transactions on Intelligent
Transportation Systems, 19(11):3461–3474, 2018. 1

Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing
diversity and difficulty in data pruning. arXiv preprint arXiv:2310.07931, 2023. 1

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. The Journal of Machine Learning Research, 17(1):8330–8373, 2016. 14

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978. 14

Vu Nguyen, Tam Le, Makoto Yamada, and Michael A Osborne. Optimal transport kernels for se-
quential and parallel neural architecture search. In International Conference on Machine Learn-
ing, pp. 8084–8095. PMLR, 2021. 1, 14

Antiopi Panteli and Basilis Boutsinas. Improvement of similarity–diversity trade-off in recom-
mender systems based on a facility location model. Neural Computing and Applications, 35
(1):177–189, 2023. 14

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020. 1

Marc Pickett, Jeremy Hartman, Ayan Kumar Bhowmick, Raquib-ul Alam, and Aditya Vempaty.
Better RAG using relevant information gain. arXiv preprint arXiv:2407.12101, 2024. 14

L Qin, JX Yu, and L Chang. Diversifying top-κ results. Proceedings of the VLDB Endowment,
2012. 1

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with gen-
erative retrieval. Advances in Neural Information Processing Systems, 36:10299–10315, 2023.
7

Lennart Schneider, Florian Pfisterer, Paul Kent, Juergen Branke, Bernd Bischl, and Janek Thomas.
Tackling neural architecture search with quality diversity optimization. In International Confer-
ence on Automated Machine Learning, pp. 9–1. PMLR, 2022. 1

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international conference
on World wide web, pp. 1177–1178, 2010. 6

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008. 22

Xiaojun Wan and Jianwu Yang. Multi-document summarization using cluster-based link analysis.
In Proceedings of the 31st annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pp. 299–306, 2008. 14

Yutong Wang, Ke Xue, and Chao Qian. Evolutionary diversity optimization with clustering-based
selection for reinforcement learning. In International Conference on Learning Representations,
2021. 14

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H Chi, and Jennifer Gillen-
water. Practical diversified recommendations on youtube with determinantal point processes. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, pp. 2165–2173, 2018. 14

Chun-Ho Wu, Yue Wang, and Jie Ma. Maximal marginal relevance-based recommendation for
product customisation. Enterprise Information Systems, 17(5):1992018, 2023a. 2

Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, Qiang Fu, and Yang Wei.
Quality-similar diversity via population based reinforcement learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023b. 1

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Learning maximal marginal rel-
evance model via directly optimizing diversity evaluation measures. In Proceedings of the 38th
international ACM SIGIR conference on research and development in information retrieval, pp.
113–122, 2015. 1, 14

Ye Yuan and Kris M Kitani. Diverse trajectory forecasting with determinantal point processes. In
International Conference on Learning Representations, 2020. 14

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 RELEVANT AND DIVERSE SELECTION

Given the importance of the problem, there has been a number of approaches proposed in the liter-
ature. Determinantal Point Process (DPP) is a probabilistic model that selects diverse subsets by
maximizing the determinant of a kernel matrix representing item similarities (Kulesza et al., 2012).
DPPs are effective in summarization, recommendation, and clustering tasks (Wilhelm et al., 2018;
Elfeki et al., 2019; Yuan & Kitani, 2020; Nguyen et al., 2021). As discussed in reference (Li et al.,
2016; Derezinski et al., 2019), the computational complexity of k-DPP can be O(k2n+ k3). Next,
clustering-based methods ensure that different “regions” of the dataset are covered by the selec-
tion. Such methods cluster items (e.g., documents or features) and then select representatives from
each cluster (Baeza-Yates, 2005; Wang et al., 2021; Panteli & Boutsinas, 2023; Ge et al., 2024). This
approach is commonly used in text and image summarization. We use clustering in our method, but
we depart from previous work in many other aspects (e.g., how we select within clusters, pruning
clusters, theoretical analysis).

Reinforcement learning (RL) frameworks can be used to optimize diversity and relevance in se-
quential tasks such as recommendation and active learning. However, achieving an optimal balance
between exploring diverse solutions and exploiting high-quality ones can be challenging, often lead-
ing to suboptimal convergence or increased training time (Levine et al., 2020; Fontaine & Nikolaidis,
2021). Model-based methods use application-specific probabilistic models or properties of rele-
vance, quality, and diversity (Gao & Zhang, 2024; Pickett et al., 2024; Hirata et al., 2022; Acharya
et al., 2024).

Maximum Marginal Relevance (MMR) is one of the most popular approaches for balancing rele-
vance and diversity (Carbonell & Goldstein, 1998). Effectiveness of MMR has been demonstrated in
numerous studies (Erkan & Radev, 2004; Wan & Yang, 2008; Xia et al., 2015). The algorithm was
introduced in the context of retrieving similar but non-redundant documents for a given query q. Let
U denote document corpus and S denote items selected so far. In each iteration, MMR evaluates all
remaining candidates and selects item s ∈ U \ S that maximizes criterion:

MMR(s) = λ · Sim(s, q)− (1− λ) ·max
t∈S

Sim(s, t),

where Sim(., .) measures similarity between two items, and λ controls the trade-off between rele-
vance and diversity.

A.2 DISTRIBUTED GREEDY SELECTION

The problem of subset selection can be viewed as maximization of a set-valued objective that assigns
high values to subsets with desired properties (e.g., relevance of elements). Submodular functions
is a special class of such objectives that has attracted significant attention. In particular, for a non-
negative, monotone submodular function f : 2U → R and a cardinality constraint k, the solution
Sg obtained by the greedy algorithm satisfies: f(Sg) ≥

(
1− 1

e

)
f(S∗) where S∗ is the optimal

solution of size at most k (Nemhauser et al., 1978).

Distributed submodular maximization is an approach to solve submodular optimization problems
in a distributed manner, e.g., when the dataset is too large to handle on a single machine (Mirza-
soleiman et al., 2016; Barbosa et al., 2015). The authors provide theoretical analysis showing that
under certain conditions one can achieve performance close to the non-distributed approach.

Since the addition of the diversity requirement results in a non-submodular objective for relevant
and diverse selection, researchers had to relax the requirement for submodularity.

Beyond submodular maximization Ghadiri and Schmidt consider distributed maximization of so-
called “submodular plus diversity” functions (Ghadiri & Schmidt, 2019). The authors introduce a
framework, called DGDS, for multi-label feature selection that balances relevance and diversity in the
context of large-scale datasets. Their work addresses computational challenges posed by traditional
submodular maximization techniques when applied to high-dimensional data. The authors propose
a distributed greedy algorithm that leverages the additive structure of submodular plus diversity
functions. This framework enables the decomposition of the optimization problem across multiple
computational nodes, significantly reducing running time while preserving effectiveness.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Notation used throughout the paper.

Variable Definition

ui = (xi, qi) an item as a pair (embedding xi ∈ Rd, quality score qi ∈ R+)
U = {ui}ni=1 universe of items, dataset of size n from which we select items

U1, . . . ,Um, . . . ,Ul partitioned data, i.e., ∪l
i=1Ui = U

r ≥ 0 maximum radii from an item to its cluster centre
p ∈ N the number of CPUs or computational threads for parallel jobs

S ⊆ U , k a set of selected items; number of items to select, |S| = k
C, l,m a set of clusters (partitions); # clusters; # clusters to be selected, l ≥ m.

0 ≤ λ, λc ≤ 1 trade-off parameters between quality and diversity at different levels
S̄ = ALG1

(
C|m

)
m clusters selected from C using Algorithm 1

Si = ALG1
(
Ui|k

)
k items selected from Ui using Algorithm 1

Q(S), D(S) quality and diversity of subset S
∆(t,S) = Q(S ∪ {t})−Q(S) gain in quality score of subset S resulted from adding t to this subset

However, items selected from different partitions are ultimately combined to perform the final se-
lection step. Selecting objects in each partition, along with the final selection step becomes a perfor-
mance bottleneck. Therefore, we further improve scalability of distributed selection by exploiting
natural clustering structure in the data (Table 1).3 Moreover, we complement our method with a
novel theoretical analysis of clustering-based selection.

B PROOFS OF LEMMAS AND THEOREMS

In this appendix, we present proofs of lemmas and the theorem that represents our main result.
Throughout the proofs, we make technical assumptions that k > 1, λ ̸= 0, and λ ̸= 1 to avoid zero
denominators. Key notation used throughout the paper is summarized in Appendix Table 5.

B.1 PROOF OF LEMMA 1

Proof. Let ALG1 denote Algorithm 1. For any z ∈ U and S ⊆ U , let ∆(z,S) := Q(S ∪ {z}) −
Q(S). Next, let z1, . . . ,zk denote items that the algorithm ALG1 selected in the order of selection.
Define Si := {z1, . . . ,zi} and S0 := ∅. Finally, let t ∈ T \ALG1

(
T |k, λ

)
.

Due to the greedy selection mechanism, we have the following
λ∆(z1,S0) ≥λ∆(t,S0) (12)

λ∆(z2,S1) + (1− λ)d(z2, z1) ≥λ∆(t,S1) + (1− λ)d(t, z1) (13)
. . .

λ∆(zk,Sk−1) + (1− λ)

k−1∑
i=1

d(zk, zi) ≥λ∆(t,Sk−1) + (1− λ)

k−1∑
i=1

d(t, zi). (14)

Adding these inequalities together gives us

λQ(Sk) +
(1− λ)

2
D(Sk) ≥(1− λ)

k−1∑
i=1

(k − i)d(t, zi) + λ

k−1∑
i=0

∆(t,Si). (15)

Since (1− λ)D(Sk) ≥ (1−λ)
2 D(Sk), we have

λQ(Sk) + (1− λ)D(Sk) ≥(1− λ)

k−1∑
i=1

(k − i)d(t, zi) + λ

k−1∑
i=0

∆(t,Si) (16)

F (Sk) ≥(1− λ)

k−1∑
i=1

(k − i)d(t, zi) + λk∆(t, Sk) (17)

3For particular relevance and diversity definitions, complexity of greedy selection used in MMR, DGDS, and
MUSS can be reduced to O(kn), but the main benefit of MUSS, which is reducing dependency on n, still applies.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where the second inequality is due to submodularity of Q. This immediately gives ∆(t,Sk) ≤
1
kλF (Sk) which concludes the first part of the Lemma.

Next, introduce intermediate quantities TA =
∑k−1

i=1 (k− i)d(t, zi) and TB =
∑k

i=2(i− 1)d(t, zi).

Since d(., .) is a metric, we have the triangle inequalities

d(t, zk) ≤ d(zk, z1) + d(t, z1)

d(t, zk) ≤ d(zk, z2) + d(t, z2)

d(t, zk) ≤ d(zk, z3) + d(t, z3)

. . .

d(t, zk) ≤ d(zk, zk−1) + d(t, zk−1)

. . .

d(t, zk−1) ≤ d(zk−1, z1) + d(t, z1)

d(t, zk−1) ≤ d(zk−1, z2) + d(t, z2)

. . .

d(t, z2) ≤ d(z2, z1) + d(t, z1) (18)

Adding these inequalities together gives TB ≤ 1
2D(Sk) + TA.

We plug this result into Eq. (17) to have

F (Sk) ≥ (1− λ)TA (19)
F (Sk) + (1− λ)TB ≥ (1− λ)TA + (1− λ)TB (20)

F (Sk) +
1− λ

2
D(Sk) + (1− λ)TA ≥ (1− λ)TA + (1− λ)TB (21)

F (Sk) +
1− λ

2
D(Sk) + F (Sk) ≥ (1− λ)TA + (1− λ)TB (22)

2.5F (Sk) ≥ (1− λ)TA + (1− λ)TB (23)

2.5F (Sk) ≥ (1− λ)(k − 1)

k∑
i=1

d(t, zi) (24)

2.5

k − 1
F (Sk) ≥ (1− λ)

k∑
i=1

d(t, zi) (25)

where we apply Eq. (19) to obtain Eq. (22). We utilize TA + TB = (k − 1)
∑k

i=1 d(t, zi) in Eq.
(24).

Finally, we have that

2.5

k(k − 1)
F (Sk) ≥ (1− λ)

1

k

k∑
i=1

d(t, zi) ≥ (1− λ) min
i=1,...,k

d(t, zi). (26)

This is because the minimum of positive values is not greater than their average. This concludes the
proof.

The same way as ALG1 can be used for selection of both clusters and individual items, this Lemma
applies at both cluster and individual item levels.

B.2 PROOF OF LEMMA 2

Proof. Let h(u) denote a mapping where each data point u ∈ O ∩ Ui is mapped to the nearest
selected point from the same partition, thus h(u) ∈ Si. Note that for points already in O∩Si this is
the identity mapping.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since d(., .) is a metric, we have

D(O) =
∑

u,v∈O
d(u,v) (27)

≤
∑
u∈O

∑
v∈O,v ̸=u

(
d
(
u, h(u)

)
+ d

(
v, h(v)

)
+ d

(
h(u), h(v)

))
(28)

=(k − 1)
∑
u∈O

d
(
u, h(u)

)
+ (k − 1)

∑
v∈O

d
(
v, h(v)

)
+

∑
u,v∈O

d
(
h(u), h(v)

)
. (29)

Consider the first term. For any point u ∈ O ∩ Ui, if u ∈ O ∩ Si then d
(
u, h(u)

)
= 0. Else,

according to Lemma 1we have that d(u, h(u)) ≤ 2.5
k(k−1)F (Si). Thus, the first term is bounded by

2.5F (∪l
i=1Si). The same argument applies to the second term.

Finally, consider the last term. By definition of mapping h(.), we have that h(u) ∈ ∪l
i=1Si for any

u. Thus we have
∑

u,v∈O d(h(u), h(v)) ≤ D
(
∪l
i=1Si

)
≤ F

(
∪l
i=1Si

)
.

We conclude that

D(O) ≤ 6F
(
∪l
i=1Si

)
≤ 6F

(
OPT(∪l

i=1Si)
)
. (30)

B.3 PROOF OF LEMMA 3

Proof. Denote ∆(q,S) = Q(S ∪ {q}) − Q(S). Let o1, . . . , ok be an ordering of elements of the
optimal set O. For z = oi ∈ O define Oz = {o1, . . . , oi − 1} and Oo1 = ∅. Finally, recall that Ui

denotes a data partition, and Si = ALG1
(
Ui

)
.

We bound the quality term by decomposing the optimal set O into points being selected and points
not being selected.

Q(O) =Q
(
O ∩ (∪l

i=1Si)
)
+

∑
z∈O\(∪l

i=1Si)

∆
(
z,Oz ∪

(
O ∩ (∪l

i=1Si)
))

(31)

≤F
(

OPT(∪l
i=1Si)

)
+

∑
z∈O\(∪l

i=1Si)

∆(z,Oz) (32)

=F
(

OPT(∪l
i=1Si)

)
+

l∑
i=1

∑
z∈O∩Ui\Si

∆(z,Oz ∪ Si) + ∆(z,Oz)−∆(z,Oz ∪ Si) (33)

≤F
(

OPT(∪l
i=1Si)

)
+

l∑
i=1

∑
z∈O∩Ui\Si

1

k
F (Si) (34)

≤2F
(

OPT(∪m
i=1Si)

)
. (35)

In Eq. (34), we use the fact that ∆(z,Oz)−∆(z,Oz∪Si) = Q(z)−Q(z) = 0 and ∆(z,Oz∪Si) ≤
∆(z,Si) and also apply Lemma 1.

B.4 PROOF OF THEOREM 4

Proof. Recall that F (O) = D(O) + Q(O). Using new results from Lemma 2 and Lemma 3
we readily obtain F (O) ≤ 8F

(
OPT(∪m

i=1Si)
)
. Let AltGreedy() and DGDS() denote, respectively,

Algorithm 2 and Algorithm 3 from the DGDS paper (Ghadiri & Schmidt, 2019). We can use Theorem
1 from Borodin et al. (Borodin et al., 2017) to obtain F

(
OPT(∪m

i=1Si)
)
≤ 2F

(
AltGreedy(∪m

i=1Si)
)
.

This gives F (O) ≤ 16F
(

DGDS(U)
)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.5 PROOF OF LEMMA 5

Proof. Without loss of generality, suppose that ALG1
(
C|m,λc)

)
selected clusters c1, . . . , cm. For

each cluster i, let Ui ⊆ U denote objects that belong to that cluster, and let s∗i denote an object with
the highest quality score in that cluster, i.e., s∗i = argmaxs∈Ui q(s).

Next, let Si denote objects selected from that cluster by the algorithm, i.e., Si = ALG1(Ui|k, λ). It is
clear that s∗i ∈ Si. Also recall that we define quality score for the clusters as q(ci) = median({q(a) :
a ∈ Ui}). This gives Q

(
ALG1(C)

)
≤ Q

(
{s∗1, . . . , s∗m}

)
.

Location of cluster i is represented with cluster centroid µi. We have d(s∗i , µi) ≤ r due to the
definition of the radius r as the distance from cluster centroid to the furthest point in the cluster.
Therefore,

D
(

ALG1(C)
)
= D

(
{µ1, . . . , µm}

)
≤ D

(
{s∗1, . . . , s∗m}

)
+ rm(m− 1). (36)

We have that

F
(

ALG(C)|m
)
≤ F

(
{s∗1, . . . , s∗m}|m

)
+ rm(m− 1). (37)

Suppose {s∗1, . . . , s∗m} ⊆ OPT(∪m
i=1Si). Then, due to the nature of our objective function

F
(
{s∗1, . . . , s∗m}|m

)
≤ F

(
OPT(∪m

i=1Si)|k
)
. (38)

Finally, suppose {s∗1, . . . , s∗m} ̸⊆ OPT(∪m
i=1Si), and k ≥ m. Then if F

(
{s∗1, . . . , s∗m}|m

)
>

F
(

OPT(∪m
i=1Si)|k)

)
, we could have replaced m arbitrary points in OPT(∪m

i=1Si) to get a higher
value of F (.|k). This would contradict the definition of OPT(∪m

i=1Si) being the optimal set. Thus,
again, we have

F
(
{s∗1, . . . , s∗m}|m

)
≤ F

(
OPT(∪m

i=1Si)|k
)
. (39)

Combining this inequality with Eq. (37) gives the statement of the Lemma.

B.6 PROOF OF LEMMA 6

Proof. Our method clusters embeddings of objects in U . Let C denote the set of clusters, and λc

denote the hyperparameter for cluster selection. We select clusters using ALG1
(
C|m,λc

)
. We then

select objects from each cluster, and finally select objects from the union of selections. We use λ to
denote the hyperparameter for objects selection.

Consider the union of points from selected clusters. The subset selected from this union that maxi-
mizes the objective is denoted as OPT(∪m

i=1Si).

Next, consider any item u ∈ U , and let µu denote the centroid of the cluster u belongs to. We
introduce an auxiliary mapping hu defined as follows. If the cluster of u is selected, hu equals to
µu. If the cluster of u is not selected, hu equals to the nearest centroid among the selected clusters.

With these definitions in mind, and recalling that d(., .) is a metric, we have

D(O) =
∑
u∈O

∑
v∈O,v ̸=u

d(u,v) (40)

≤
∑
u∈O

∑
v∈O,v ̸=u

(
d(u, µu) + d(µu, hu) + d(hu, hv) + d(hv, µv) + d(µv,v)

)
(41)

=2(k − 1)
∑
z∈O

d(z, µz) + 2(k − 1)
∑
z∈O

d(µz, hz) +
∑
u∈O

∑
v∈O,v ̸=u

d(hu, hv). (42)

We now bound the three terms separately. Let r denote the maximum radius among all clusters. We
have that

2(k − 1)
∑
z∈O

d(z, µz) ≤ 2k(k − 1)r. (43)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now consider the middle term. If the cluster of z is selected, hz equals to µz and d(z, µz) = 0. If
the cluster of u is not selected, Lemma 1 gives an upper bound. Therefore

2(k − 1)
∑
z∈O

d
(
µz, hu

)
≤ 5k(k − 1)

(1− λc)m(m− 1)
F
(

ALG1(C)
)

(44)

≤ 5k(k − 1)

(1− λc)m(m− 1)

(
F
(

OPT(∪m
i=1Si)

)
+ rm(m− 1)

)
. (45)

Finally, we bound the third term
∑

u∈O
∑

v∈O,v ̸=u d(hu, hv).

Let i = 1, . . . ,m index selected clusters in arbitrary order. Recall that Si denotes objects selected
from cluster i. Now consider an auxiliary set Saux, such that |Saux| = k, Saux ⊆ ∪m

i=1Si, and
|Saux ∩Si| > 0 for any i. In other words, Saux contains at least one object from each selected cluster.

Due to the above definitions, for any hu we know that (i) it is a centroid of a selected cluster, and
(ii) we can find an object within that cluster that is included in Saux. Let u′ and v′ be such objects
from clusters of hu and hv , respectively.

We have that ∑
u∈O

∑
v∈O,v ̸=u

d(hu, hv) ≤
∑
u∈O

∑
v∈O,v ̸=u

[
d
(
u′(hu),v

′(hv)
)
+ 2r

]
(46)

≤2rk(k − 1) +
1

(1− λ)
F
(
Saux|k

)
(47)

≤2rk(k − 1) +
1

(1− λ)
F
(

OPT(∪m
i=1Si)|k

)
. (48)

Combining the three bounds gives

D(O) <
(5k(k − 1)

(1− λc)m(m− 1)
+

1

1− λ

)
F
(

OPT(∪m
i=1Si)

)
+

(5

1− λc
+ 4

)
rk(k − 1). (49)

B.7 PROOF OF LEMMA 7

Proof. Let S∗ denote the set of k highest quality items from U , i.e., S∗ =
argmaxA⊆U, |A|=k argmax

∑
u∈A q(u). Clearly, we can upper bound

Q(O) ≤Q(S∗) ≤ 1

λ
F (S∗) (50)

≤ 1

λ
F
(

OPT(S∗)
)

(51)

≤ 1

λ
F
(

OPT
(
∪m
i=1Si ∪ S∗)). (52)

B.8 PROOF OF THEOREM 8

Proof. Using Lemma 7, we have Q(O) ≤ 1
λF

(
OPT

(
∪m
i=1Si∪S∗)). Next, Lemma 6 gives D(O) ≤

rk(k − 1)
[
4 + 5

1−λc

]
+ F

(
OPT(∪m

i=1Si)
)[

5k(k−1)
(1−λc)m(m−1) +

1
(1−λ)

]
.

Note that F
(

OPT(∪m
i=1Si)

)
≤ F

(
OPT

(
∪m
i=1Si ∪ S∗)).

Let denote α
2 ≡ 5 k(k−1)

m(m−1)
(1−λ)
(1−λc)

+ 2 and β = k(k − 1)
[
4(1− λ) + 5 1−λ

1−λc

]
, we have that

F (O) =λQ(O) + (1− λ)D(O) (53)

≤α

2
F
(

OPT
(
∪m
i=1Si ∪ S∗))+ rβ. (54)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In other words,

F
(

OPT
(
∪m
i=1Si ∪ S∗)) ≥ 2

α
F (O)− 2r

β

α
. (55)

According to Borodin et al. (Borodin et al., 2017), greedy selection where the quality term is scaled
by 0.5 is the half approximation of the optimal selection. We conclude that when σ = 0.5

F
(

ALG2σ(U)
)
≥ 1

α
F (O)− r

β

α
. (56)

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 TECHNICAL DETAILS

The candidate retrieval task is performed using AWS instance ml.r5.16xlarge with 64 CPUs, 10
computational threads and 512 GB RAM. For Figure 1, we also utilize another larger AWS instance
ml.r5.24xlarge with 96 CPUs, 25 computational threads and 512 GB RAM. The embedding dimen-
sion for candidate retrieval is d = 1024.

For both candidate retrieval and question answering tasks, MMR performance was evaluated on λ
values in {0.1, 0.3, 0.5, 0.7, 0.9}.

For question answering task, we used us.anthropic.claude-3-5-haiku-20241022-v1:0, with the idea
that a smaller model complemented with RAG is a more cost-effective solution compared to using
a much larger model. Also using a smaller model enabled us to see the effect of RAG more clearly.
Next, prompt instructions included the following words:

1 You will be given a question and additional information to
consider. This information might or might not be relevant to
the question. Your task is to answer the question. Only use
additional information if it’s relevant.... (RAG results) ...
(question) ... In your response, only include the answer
itself. No tags, no other words.

For question and corpus embeddings, we used HuggingFaceEmbeddings.embed documents() with
default parameters. The embedding dimension is d = 768. Number of questions for each dataset
was 50.

In the results, MMR denotes greedy selection as per Algorithm 1. We have also evaluated greedy
selection using the original maximum similarity criterion (Carbonell & Goldstein, 1998). Overall
the results are slightly worse compared to the sum-based criterion, see Appendix Section C.6.

C.2 ADDITIONAL INFORMATION ON CANDIDATE RETRIEVAL TASK

Our setting comes from the large-scale e-commerce platform where the real-time recommendation
system (Deldjoo et al., 2024) includes two major steps: candidate retrieval (considered in this pa-
per) and candidate ranking. The proposed MUSS has been deployed in real-world production for
candidate retrieval, as part of the real-time recommendation, serving million customers daily.

We summarize the system in Figure 3. The first step: the candidate retrieval step returns 500 products
that are diverse and high quality. This candidate retrieval step is refreshed after every hour. The
quality score is defined using an external ML model predicting the likelihood of an item being
clicked on. This quality scores are precomputed offline and also refreshed after every hour. The
entire corpus will be scored using this likelihood prediction.

The second step: the real-time ranking (less than 100ms) will be run on top of the above 500 products
to return a sorted list of 20 products.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Comparison on candidate retrieval to select k = 500 items. ✗ denotes that the algorithm
did not complete within 12 hours of running. Our method achieves competitive performance and
is faster than MMR and DGDS. Note that we focus on the Precision and Time as the main metrics
for comparison while the other metrics are complementary. The highest precision score is in bold.
The groundtruth for Amazon2M dataset is not available for evaluating Precision. Thus, it is used to
compare running time.

Kitchen (|U| = 3872, λ = 0.9)
Method λc Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
random 50.0 0.687 0.693 0.638 0
K-DPP 46.4 0.749 0.762 0.636 5.88

clustering 61.6 0.879 0.906 0.641 0.59
MMR 83.6 0.959 0.998 0.625 12.1
DGDS 83.6 0.959 0.998 0.625 12.2

MUSS(rand.A) 84.0 0.960 0.998 0.631 5.42
MUSS(rand.B) 83.6 0.960 0.998 0.632 7.01

MUSS 0.1 95.5 0.954 0.998 0.644 6.34
MUSS 0.3 95.5 0.959 0.999 0.636 7.54
MUSS 0.5 95.7 0.959 0.999 0.633 8.11
MUSS 0.7 95.7 0.960 0.999 0.622 8.30
MUSS 0.9 95.7 0.960 0.999 0.618 8.24

Amazon100k (|U| = 108, 258, λ = 0.9)
Method λc Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
random 11.2 0.730 0.736 0.674 0.0
K-DPP ✗ ✗ ✗ ✗ ✗

clustering 28.2 0.963 0.995 0.677 9.92
MMR 39.4 0.970 0.999 0.711 311
DGDS 39.4 0.970 0.999 0.711 271

MUSS(rand.A) 42.8 0.969 0.999 0.698 49
MUSS(rand.B) 41.6 0.969 0.999 0.700 53

MUSS 0.1 44.8 0.969 0.999 0.702 56
MUSS 0.3 42.8 0.970 0.999 0.705 54
MUSS 0.5 43.5 0.970 0.999 0.706 54
MUSS 0.7 44.4 0.970 0.999 0.704 53
MUSS 0.9 45.2 0.970 0.999 0.704 53

Amazon2M (|U| = 2M , λ = 0.9)
Method λc Objective ↑ Quality ↑ Diversity ↑ Time ↓
random 0.659 0.515 0.659 0.0
K-DPP ✗ ✗ ✗ ✗

clustering 0.666 0.983 0.666 17
MMR 0.971 0.999 0.716 5870
DGDS 0.971 0.999 0.716 114

MUSS(rand.A) 0.970 0.999 0.710 72
MUSS(rand.B) 0.971 0.999 0.716 73

MUSS 0.1 0.968 0.998 0.713 76
MUSS 0.3 0.969 0.998 0.715 74
MUSS 0.5 0.971 0.999 0.716 74
MUSS 0.7 0.971 0.999 0.716 73
MUSS 0.9 0.971 0.999 0.715 73

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Data Repository

Embedding for representation

computed once

Diversity and Quality
selection

Quality score for product engagement

computed hourly

computed hourly

real-time

feedback loop

Candidate Generation

Figure 3: Flow chart of candidate retrieval module within the real-time ranking framework. The
goal is to select the subset of k products which are high quality and diverse every hour. We run this
retrieval step per category and is non-personalized.

80 60 40 20 0 20 40 60 80
x1

80

60

40

20

0

20

40

60

80

x2

[Home] k=100 tSNE Visualization
Not Selected
Selected

0.2

0.4

0.6

0.8

Qu
al

ity

80 60 40 20 0 20 40 60 80
x1

80

60

40

20

0

20

40

60

x2

[Kitchen] k=100 tSNE Visualization
Not Selected
Selected

0.2

0.4

0.6

0.8

Qu
al

ity

Figure 4: tSNE Visualization of selecting k = 100 items for “Home” and “Kitchen” datasets. Data
forms clusters. Our method performs high-quality and diverse selection as shown by the red dots.
The color scale indicates the quality score of the item.

Moreover, please note that items can typically be split into largely independent subsets (e.g., cate-
gories, such as books, baby food, etc.). Particularly, in our system, we retrieve 500 candidates per
product category.

C.3 ADDITIONAL RESULTS FOR CANDIDATE RETRIEVAL TASK

Full results for candidate item selection are presented in Table 6. The proposed MUSS consistently
performs the best while significantly reduce the computational time. We note that while MMR will
still find the highest objective function score since it directly maximizes Eq. (1), our MUSS also
achieves comparable objective scores across four datasets.

Moreover, we have performed tSNE Visualization (Van der Maaten & Hinton, 2008) for selecting
k = 100 items for “Home” and “Kitchen” datasets (Figure 4). We observe that the data forms
coherent clusters. Our method tends to selects data points which are of high quality while being
spread out within the space.

C.4 VARYING λ AND λc

In this study, we varied the trade-off parameters λc (cluster-level selection) and λ (item-level selec-
tion). We report the values of quality term Q(S), diversity term D(S), and the overall objective

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.94 0.95 0.96 0.96 0.96

0.97 0.99 0.99 0.99 0.99

0.98 0.99 0.99 0.99 0.99

0.98 1 1 1 1

0.98 1 1 1 1

[Kitchen] Quality Q(S) by and c

0.95

0.96

0.97

0.98

0.99

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.65 0.66 0.66 0.65 0.65

0.64 0.64 0.64 0.64 0.64

0.63 0.63 0.63 0.63 0.63

0.62 0.62 0.63 0.63 0.63

0.62 0.62 0.62 0.62 0.62

[Kitchen] Diversity D(S) by and c

0.620

0.625

0.630

0.635

0.640

0.645

0.650

0.655

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.68 0.69 0.69 0.68 0.68

0.74 0.74 0.75 0.74 0.74

0.8 0.81 0.81 0.81 0.81

0.87 0.89 0.89 0.89 0.89

0.94 0.96 0.96 0.96 0.96

[Kitchen] Objective F(S) by and c

0.70

0.75

0.80

0.85

0.90

0.95

Figure 5: Diversity, quality, and the objective as the function of λc and λ for Kitchen dataset

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.96 0.96 0.96 0.96 0.96

0.99 0.99 0.99 0.99 0.99

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

[Amazon100k] Quality Q(S) by and c

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.74 0.74 0.74 0.74 0.74

0.73 0.73 0.73 0.73 0.73

0.72 0.72 0.72 0.72 0.72

0.72 0.72 0.72 0.72 0.72

0.7 0.71 0.71 0.71 0.7

[Amazon100k] Diversity D(S) by and c

0.705

0.710

0.715

0.720

0.725

0.730

0.735

0.740

0.1 0.3 0.5 0.7 0.9
c

0.
1

0.
3

0.
5

0.
7

0.
9

0.76 0.77 0.77 0.77 0.77

0.81 0.81 0.81 0.81 0.81

0.86 0.86 0.86 0.86 0.86

0.91 0.91 0.91 0.91 0.91

0.97 0.97 0.97 0.97 0.97

[Amazon100k] Objective F(S) by and c

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Figure 6: Diversity, quality, and the objective as the function of λc and λ for Amazon100k dataset

function F (S) as defined in Eq. (1). Results are shown in Figures 5, and 6. As expected, when λ
increases, our objective function favours the quality term. Interestingly, for a fixed λ, the objective
remains relatively stable at all values of λc.

C.5 COMPUTATIONAL TIME FOR EACH COMPONENT IN DGDS AND MUSS

In Figure 7, we measure and report computational time spent in each component of Algorithm 2.
This includes clustering (Line 1), greedy cluster selection (Line 3), greedy item selection in each
selected cluster (Line 5), and the final selection S (Line 7). In this setting, we select k = 500 items
from Amazon2M datasets. We use different colors to indicate time spent in different steps. We
consider two cases k′ = 50 and k′ = 500.

We can see that the running time is significantly faster when using k′ = 50 (73 secs) against k′ =
500 (510 secs), resulting in comparable objective function score of 0.971 in Amazon2M dataset.
Thus, it is preferable in practice to use a smaller value of k′ < k.

While the DGDS does not spend time on clustering, it is slower than MUSS for two reasons: (i)
there are more partitions (l > m) to be selecting from, and (ii) accordingly, after the union step
∪l
i=1Si, the number of items is larger (l × k′ > m × k′ + k). In this setting, with the choices of

k = 500, l = 500,m = 100, k′ = 50, the number of items for DGDS (25, 000) is significantly
larger than MUSS (5, 500) in the final selection. We note that point (i) can be potentially addressed
for DGDS by using number of CPUs p = l. However, point (ii) remains a bottleneck for DGDS
irrespective of getting more CPUs.

C.6 COMPARING GREEDY OBJECTIVES

In our results, MMR denotes the sum-based greedy selection criterion as per Algorithm 1 (“sum-
distance” criterion). We have also evaluated greedy selection using the original maximum similarity

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

MUSS DGDS
0

20

40

60

80

100
Se

co
nd

s

[Amazon2M] Computational Time using k ′ = 50
Clustering
Clusters selection
Selection within clusters
Final selection

MUSS DGDS
0

200

400

600

800

1000

1200

1400

Se
co

nd
s

[Amazon2M] Computational Time using k ′ = 500
Clustering
Clusters selection
Selection within clusters
Final selection

Figure 7: Computational time taken by each component of the Algorithm 2, compared against simi-
lar steps of DGDS. Our method is more computationally efficient due to having a smaller number of
partitions and fewer data points in the final selection step (Line 7 Algorithm 2). Here, k′ is the num-
ber of data points selected within each cluster (Line 5 Algorithm 2). We note that if more number
of CPUs p = l is available for DGDS, then the time spent for selection within cluster (blue) will be
similar for both DGDS and MUSS. However, the final selection (red) is still the bottleneck for DGDS.

criterion (Carbonell & Goldstein, 1998).

MMR′(s) = λ · Sim(s, z)− (1− λ) ·max
t∈S

Sim(s, t). (57)

Here, z is the query for which MMR is performed, and S is the subset selected so far. For our quality
and distance functions this criterion becomes

MMR′(s) = λ · q(s) + (1− λ) ·min
t∈S

d(s, t). (58)

Overall the results were slightly worse compared to the “sum-distance” criterion, see Table 7.

C.7 ABLATION OF MUSS WITHOUT TOP k QUALITY ITEMS ADDITION

To facilitate the approximation bound analysis, the top K highest quality items S∗ have been added
in Line 7 of Algorithm 2, S = ALG1(∪m

i=1Si∪S∗) for the refinement of the final selection.

We design an ablation study to test the empirical effect of this addition on Home and Amazon100k
datasets. The comparison is presented in Table 8 using Precision as the key metric. Adding S∗ in
the final refinement results in a similar empirical performance. We propose to keep this addition as
this step helps to tighten the Lemma 7.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: Precision achieved by MUSS using either “sum distance” or “min distance” as the greedy
selection criterion.

Home (|U| = 4737, λ = 0.9)
λc Diversity Distance Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
0.1

sum distance 74.5 0.962 0.996 0.643 7.12
min distance 73.2 0.961 0.979 0.654 7.30

0.3
sum distance 74.2 0.962 0.997 0.646 7.86
min distance 72.2 0.961 0.989 0.647 7.71

0.5
sum distance 74.0 0.962 0.997 0.646 8.91
min distance 74.0 0.962 0.994 0.642 8.97

0.7
sum distance 74.1 0.962 0.997 0.647 9.17
min distance 73.4 0.962 0.994 0.638 9.14

0.9
sum distance 74.8 0.962 0.997 0.648 8.18
min distance 74.0 0.962 0.995 0.639 8.06

Amazon100K (|U| = 108, 258, λ = 0.9)
λc Diversity Distance Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
0.1

sum distance 44.8 0.970 0.999 0.703 56
min distance 40.8 0.967 0.999 0.687 55

0.3
sum distance 42.8 0.970 0.999 0.705 55
min distance 36.0 0.967 0.999 0.688 54

0.5
sum distance 43.5 0.970 0.999 0.706 55
min distance 38.4 0.968 0.999 0.687 54

0.7
sum distance 44.4 0.970 0.999 0.706 53
min distance 38.8 0.968 0.999 0.688 53

0.9
sum distance 45.2 0.970 0.999 0.705 53
min distance 39.2 0.970 0.999 0.710 53

Table 8: Precision achieved by considering different versions of MUSS: in Line 7 of Algorithm 2
using either (i) S = ALG1 (∪m

i=1Si∪S∗|k, λ) or (ii) S = ALG1 (∪m
i=1Si���∪S∗ |k, λ)

Home (|U| = 4737, λ = 0.9)
λc Diversity Distance Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
0.1

S = ALG1(∪m
i=1Si∪S∗) 74.5 0.962 0.996 0.643 7.12

S = ALG1(∪m
i=1Si���∪S∗) 72.7 0.961 0.979 0.654 7.30

0.3
S = ALG1(∪m

i=1Si∪S∗) 74.2 0.962 0.997 0.646 7.86
S = ALG1(∪m

i=1Si���∪S∗) 74.2 0.962 0.989 0.647 7.71

0.5
S = ALG1(∪m

i=1Si∪S∗) 74.0 0.962 0.997 0.646 8.91
S = ALG1(∪m

i=1Si���∪S∗) 73.7 0.961 0.994 0.642 8.97

0.7
S = ALG1(∪m

i=1Si∪S∗) 74.1 0.962 0.997 0.647 9.17
S = ALG1(∪m

i=1Si���∪S∗) 75.2 0.962 0.994 0.638 9.14

0.9
S = ALG1(∪m

i=1Si∪S∗) 74.8 0.962 0.997 0.648 8.18
S = ALG1(∪m

i=1Si���∪S∗) 74.8 0.962 0.995 0.639 8.06

Amazon100K (|U| = 108, 258, λ = 0.9)
λc Setting Precision ↑ Objective ↑ Quality ↑ Diversity ↑ Time ↓
0.1

S = ALG1(∪m
i=1Si∪S∗) 44.8 0.970 0.999 0.703 56

S = ALG1(∪m
i=1Si���∪S∗) 40.4 0.967 0.999 0.686 54

0.3
S = ALG1(∪m

i=1Si∪S∗) 42.8 0.970 0.999 0.705 55
S = ALG1(∪m

i=1Si���∪S∗) 42.8 0.967 0.999 0.694 55

0.5
S = ALG1(∪m

i=1Si∪S∗) 43.5 0.970 0.999 0.706 55
S = ALG1(∪m

i=1Si���∪S∗) 44.6 0.969 0.999 0.693 56

0.7
S = ALG1(∪m

i=1Si∪S∗) 44.4 0.970 0.999 0.706 53
S = ALG1(∪m

i=1Si���∪S∗) 45.8 0.968 0.999 0.685 54

0.9
S = ALG1(∪m

i=1Si∪S∗) 45.2 0.970 0.999 0.705 53
S = ALG1(∪m

i=1Si���∪S∗) 45.0 0.968 0.999 0.686 56

25

	Introduction
	muss: Multilevel Subset Selection
	Problem Formulation
	Multilevel Selection
	Theoretical Properties
	Discussion

	Experiments
	Candidate Retrieval for Product Recommendation
	Q&A using Retrieval-augmented Generation
	Ablations, Parameter Sensitivity, and Scalability

	Conclusion
	Related Work
	Relevant and Diverse Selection
	Distributed Greedy Selection

	Proofs of Lemmas and Theorems
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 8

	Additional Experimental Details
	Technical Details
	Additional Information on Candidate Retrieval Task
	Additional Results for Candidate Retrieval Task
	Varying and c
	Computational Time for each Component in dgds and muss
	Comparing Greedy Objectives
	Ablation of muss without Top k Quality Items Addition

