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Abstract

Large language models trained on biomolecular sequences—DNA, RNA, and1

proteins—exhibit impressive in silico scaling trends, yet their practical util-2

ity in laboratory protein engineering remains under-explored. We assemble a3

million-example, wet-lab-validated dataset comprising 31 rounds of directed evolu-4

tion on the tRNA-specific adenosine deaminase (TadA) that underlies adenine base5

editors. To harmonize labels across rounds, we introduce Seq2Graph, a scalable6

graph-based reconciliation algorithm that mitigates sequencing noise. Leveraging7

this resource, we propose TadABench-1M, an application-oriented benchmark that8

tasks models with ranking candidate variants for the next evolutionary round, given9

data from previous rounds. State-of-the-art biological language models achieve10

a Spearman correlation of only ρ ≈ 0.1 under this realistic setup, contrasting11

sharply with ρ ≈ 0.8 on a random split of this dataset, revealing a striking gap12

between computational metrics and wet-lab success. Controlled ablations show13

that sequence diversity and round coverage, rather than raw data density, dominate14

performance, pinpointing key bottlenecks for next-generation biological language15

models. TadABench-1M provides a large-scale, realistic foundation for developing16

and evaluating pre-trained language models. We will release the data and code.17

1 Introduction18

Language models pre-trained on biomolecular sequences, DNA [13], RNA [28], and proteins [37, 35],19

have recently exhibited scaling behaviour analogous to that observed in natural-language process-20

ing [3, 24, 7, 17, 18, 43]. As parameter count and corpus size grow, the computational evaluation,21

such as perplexity and masked-token accuracy, steadily improves. We refer to these models collec-22

tively as biological language models (BLMs). Despite their impressive in silico results, the real-world23

value of BLMs remains unclear. In a recent crowdsourced antibody-design challenge [11], models24

with state-of-the-art computational metrics nonetheless produced low-affinity binders, highlighting a25

troubling gap between numerical scores and wet-lab success.26

In this work, we interrogate the practical utility of BLMs for protein engineering. Our case study27

is tRNA-specific adenosine deaminase (TadA), the catalytic core of widely used adenine base28

editors [30, 21]. We first assemble a rigorously standardized, million-scale dataset of TadA variants29

and their in-cell editing activities. The dataset is generated over 31 rounds of directed evolution by30

coupling phage-assisted non-continuous evolution (PANCE) with degenerate sequence synthesis (see31

Appendix A). To harmonize labels across rounds, we introduce Seq2Graph, a scalable graph-based32

algorithm that reconciles replicate measurements and suppresses sequencing noise.33

Leveraging this dataset, we formulate TadABench-1M, an application-oriented benchmark that34

mirrors how BLMs are deployed in practice: given data from previous rounds, predict the relative35

activity of variants synthesised in the next round. Strikingly, state-of-the-art BLMs achieve only a36
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Figure 1: TadABench-1M is derived from extensive wet-lab protein evolution experiments encom-
passing 31 iterative rounds. The left panel illustrates the functional role of TadA as a key enzyme in
base editing. The central panel presents the in vitro evolution process of TadA, which enabled the
generation of comprehensive deep sequencing data. The right panel outlines the construction of our
dataset using the Seq2Graph method, followed by its evaluation with biological language models.

Spearman correlation of ρ ≈ 0.1 under this realistic setting, whereas the same models reach ρ ≈ 0.837

on a conventional i.i.d. random split of TadABench-1M. These results echo the antibody-design38

failure [11] and reveal that standard in silico evaluations may overestimate the performance of BLMs.39

To probe the origin of this gap, we conduct a controlled study that systematically varies the density40

(number of randomly retained variants), diversity (sequence-similarity-based sampling), and round41

coverage of the training data. We find that the largest gains arise from incorporating additional42

evolutionary rounds or maximizing sequence diversity, rather than merely increasing the number43

of training examples. These results suggest that BLMs benefit most from training data with broad44

sequence diversity to effectively capture the attributes required for downstream tasks. From a data45

curation perspective, this highlights the importance of expanding experimental coverage and ensuring46

diversity across the vast sequence space, rather than focusing solely on dataset size.47

Contributions.48

• We release a million-example, wet-lab-validated dataset of TadA activity obtained from 31 standard-49

ized rounds of directed evolution. It is built by our Seq2Graph, a scalable graph-based algorithm50

that enforces cross-round label consistency and mitigates sequencing noise.51

• We establish TadABench-1M, an application-oriented benchmark spanning protein, DNA, and52

RNA language models. Experiments reveal a large gap between in-silico evaluation and real-world53

performance, where the dataset split for a practical scenario is much harder than the random split.54

• Through controlled ablation, we show that BLMs need higher sequence diversity and round55

coverage, rather than raw data density, to dominate downstream performance.56

2 Related Work57

2.1 Protein Activity Benchmark58

While structural benchmarks in protein research have achieved notable success [69, 41, 23, 4],59

functional benchmarks are still in nascent stages. These benchmarks are primarily categorized into60

two groups [62], biophysical properties and deep mutational scanning (DMS) data. The benchmarks61

for biological properties [1, 65, 73, 44, 49, 58] include metrics like enzymatic activity, fluorescence,62

thermodynamics, and solubility; however, their broad focus limits their utility in precise evaluations.63

DMS benchmarks [20, 29, 22], which utilize large-scale mutagenesis and high-throughput sequencing,64

offer detailed insights into fitness landscapes for protein mutations. Researchers [45, 14, 51] also65

leverage diverse DMS datasets to construct the comprehensive benchmark, but may introduce66

inconsistency since the way data is treated varies widely within the community [45]. In conclusion,67

the above benchmarks are for general purposes without a specific application. In contrast, TadABench-68

1M is from a real-world application scenario. Besides, it has a significantly higher sequence diversity69
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Figure 2: Our TadABench-1M dataset provides three key advantages over related benchmarks. First,
it is purposefully curated from practical TadA evolution. Second, it comprises 1,027,200 unique
TadA variants spanning 31 diverse rounds, with sequence differences reaching up to 25 amino acid
mutations (and over 150 at the DNA level). Third, our standardized wet-lab protocols and algorithmic
pipeline (Seq2Graph) ensure data consistency suitable for machine learning applications.

than the traditional mutation-based dataset. Finally, it is guaranteed with strict consistency by70

standardized wet-lab experiments and our novel algorithm Seq2Graph, as illustrated in Figure 2.71

2.2 Base Editing Dataset72

Current datasets focusing on deaminase enzyme optimization in base editing are relatively sparse and73

often fragmented. Most available resources [15, 66, 38, 56, 64, 32] emphasize the optimization of base74

editors through the lens of their interactions with CRISPR-associated proteins (Cas) and single-guide75

RNAs (sgRNAs), rather than through a systematic exploration of the deaminase variants themselves.76

These datasets are typically derived from narrow experimental conditions, thereby limiting their77

generalizability and scalability for machine learning (ML)-based modeling and prediction. Several78

research groups have published improved or novel deaminase protein sequences through directed79

evolution or rational design [50, 34, 57, 48, 10], but with various wet-lab experimental conditions.80

Recent aggregation platforms such as CRISPRbase [19] aim to centralize base editing datasets across81

various publications and labs. While this is a significant step forward in data accessibility, it introduces82

significant batch effects due to diverse experimental protocols [45], compromising the accuracy of83

models under real experimental conditions. In contrast, we introduce a large-scale wet-lab TadA84

dataset, TadABench-1M, by our standardized in vitro experiments and our cross-round consistency85

control algorithm Seq2Graph. It is designed to simulate real-world laboratory conditions consistently,86

thereby enhancing the precision in deaminase evolution and evaluating biological language models.87

3 TadABench-1M Construction by Seq2Graph88

This section presents our dataset construction method, Seq2Graph, shown in Figure 3. It processes89

31 large-scale deep sequencing results collected in our wet lab. The pipeline comprises three key90

stages: directed graph construction (Section 3.1), inconsistency elimination (Section 3.2), and activity91

assignment (Section 3.3). Finally, we visualize the benchmark and dataset in Appendix C.1.92

3.1 Directed Graph Construction93

In our wet experiments, phages encoding TadA variants with enhanced activity propagate faster,94

resulting in increased read counts during next-generation sequencing (NGS)1 of the final populations,95

shown on the left of Figure 3. For each NGS data, researchers build a dataset with normalized read96

1Next-Generation Sequencing (NGS) is a broad technology platform that enables deep sequencing, which
refers to generating high coverage of sequencing reads for a target region. In this paper, we use NGS and deep
sequencing interchangeably.
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Figure 3: Pipeline of Seq2Graph. (a) We integrate deep sequencing data from 30 rounds of protein
evolution into a directed acyclic graph. (b) We apply the Feedback Arc Set algorithm to resolve
inconsistencies across experimental rounds. (c) We assign activity values to each TadA variant
following a breadth-first traversal order to minimize sequencing noise along relative relationships.

counts for each NGS result [59, 36, 52]. However, normalization cannot merge NGS data from 3197

rounds into one consistent super-large dataset. Although each round uses the same standardized wet98

experiment protocol, the inherent randomness of biological experiments leads to inconsistencies.99

To solve such limitations, we propose to model the relative activity of variants in a directed graph,100

rather than the common practice of absolute activity after normalization, shown in Figure 3 (a). In101

the directed graph, G = (V,E), the DNA sequence of each variant obtained from NGS is taken as a102

node vi. For the list of growth multiples for read counts, the number of edges in G can be up to |V |2.103

Considering the computational complexity, we require a sparse and weakly connected graph.104

Specifically, we sort the list of growth multiples for read counts and only add edges for nodes with105

adjacent count values along the list. Besides, we perform average edge pruning with no more than106

100,000 edges between nodes of two adjacent growth multiples. Each edge points from nodes with107

higher activity to those with lower activity, which means the edge weight is always greater than 1.108

The weight of edge ei→j represents the relative activity of vi over vj , wij =
C(vi)
C(vj)

, where C() is the109

growth multiples for read counts.110

In our protein evolution, we conduct a new round based on the best-performing variants in previous111

rounds. Hence, the graph constructed from all rounds of NGS is connected such that it can capture112

the activity relationships between each pair of sequence variants. Besides, record the experimental113

round information in the node attributes, where each node belongs to 1.58 rounds on average.114

3.2 Inconsistency Elimination115

Owing to the inherent randomness of biological experiments, inconsistencies occur among 31 rounds,116

though each round uses the same standardized wet experiment protocol. As shown in Figure 3 (b),117

the red node indicates the presence of strongly connected components in the directed graph, caused118

by conflicting relative activity relationships across diverse rounds. To eliminate inconsistency, we119

should remove cycles in the current directed graph. Since the read count of NGS data is accumulated120

with detected sequences during sequencing, the higher count represents higher reliability concerning121

individual sequencing error. In other words, edges with higher weights are considered more reliable.122

Hence, it can be formalized as a weighted feedback arc set problem in Equation (1).123

min
F⊆E

∑
e∈F

we

s.t. G′ = (V,E \ F ) is acyclic
(1)

Since our graph has more than one million nodes, we choose a fast heuristic algorithm [16] to solve124

this problem. It recursively selects vertices based on the difference between their in-degree and125

out-degree to construct an acyclic ordering, approximating the minimum feedback arc set. This126

method efficiently reduces cycles while maintaining scalability. Furthermore, we apply it on the127
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subgraph built from each strongly connected component for speedup, rather than on the whole graph.128

Hence, we formulate a directed acyclic graph with the node number unchanged but fewer edges.129

3.3 Activity Assignment130

In protein engineering, the practical demand is to select sequences with higher activity among massive131

candidates. Therefore, we use relative activity rather than the absolute value. To assign activity132

values to each sequence variant, we designate the relative activity of the initial reference sequence133

(TadA8e [50]) as 1.0. Subsequently, as shown in Figure 3 (c), we assign relative activity values to the134

sequence variants based on the ratios of growth multiples for read counts between sequences, i.e., the135

edge weights. We take the logarithm level assignment since the phage replication roughly follows an136

exponential growth.137

To assign relative activity values to sequence variants, we take the breadth-first order since paths with138

more intermediate nodes may accumulate more biological noise and uncertainty. This approach is139

necessary because there may exist multiple paths between any two variants, potentially leading to140

conflicting activity estimates. If a node is encountered again through an alternative path, its value141

remains unchanged, as the initial assignment is assumed to have higher confidence. Hence, we obtain142

the DNA version of TadABench-1M, with 1,027,200 DNA sequences with consistent activity labels.143

In our evolution experiments, the functioning of proteins occurs after the DNA transcription and144

protein translation. Since the activity of folded protein is hard to directly capture, the common145

observation of one protein is at the DNA level. To obtain the activity at the protein level, we average146

over all of its DNA variants in our graph. Notably, DNA variants of one protein have different147

observed activities owing to multiple complex effects, such as synonymous codon usage on sequence148

activity. Finally, we obtain a protein dataset consisting of 409,869 annotated protein sequences. We149

provide the visualization of TadABench-1M in Figure 6. The left protein structure is one variant in150

our TadABench-1M, folded using ESMFold [35].151

3.4 Robustness of Seq2Graph152

To demonstrate the rigorous uncertainty quantification for Seq2Graph, we perform two bootstrapping153

analyses. We randomly remove 50% of the rounds (15 of 31) and re-run the entire Seq2Graph154

construction pipeline to create a new dataset, TadABench-half. We then identify the sequences155

common to both the full TadABench-1M and TadABench-half datasets and calculate the correlation156

of their assigned activity labels. The Spearman’s ρ between the activity labels of the common157

sequences is 0.90, with a p-value of 0.0000 (SCIPY.STATS.SPEARMANR). Furthermore, removing158

50% of sequencing reads within each round and re-running our full pipeline yield a Spearman’s ρ159

of 0.95 and a p value of 0.0000. This extremely high correlation demonstrates that our Seq2Graph160

construction method is robust and stable, even when a substantial portion of the input data is removed.161

4 Experiment162

This section involves the evaluation on our TadABench-1M. We elaborate on detailed experimental163

settings in Section 4.1. A comprehensive evaluation is conducted among biological language models164

in Section 4.2. Furthermore, we provide the result of a random split in Section 4.3 to demonstrate165

that our dataset is learnable, but hard in a practical scenario. Finally, we systematically explore which166

matters more in data fractions among density, diversity, and round in Section 4.4.167

4.1 Experimental Settings168

Dataset TadABench-1M is curated from NGS data of evolved TadA variants, yielding both169

DNA/RNA and protein sequence datasets (Section 3.3). We emulate a practical protein engineering170

scenario by splitting the data chronologically: rounds 1–27 for training, round 28 for validation, and171

rounds 29–31 for testing. The nucleic acid (DNA/RNA) dataset contains 729,302 training sequences,172

148,014 validation sequences, and 149,884 test sequences. The protein dataset comprises 256,429173

training sequences, 45,208 validation sequences, and 108,232 test sequences.174
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Table 1: Performance on TadABench-1M (DNA version). Data from rounds 1–27 is used for training,
round 28 for validation, and rounds 29–31 for testing. For each model, the best result is selected from
three different learning rates. The Bold numbers indicate the highest performance. We here report
the RNA language model, OmniGenome (OG), since the dataset is the same after changing T to U.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

Evo-7B 0.0490 0.1097 0.2604 0.0707 0.1005 0.3236
Evo-40B 0.0980 0.1157 0.2702 0.0675 0.1003 0.3244
NT-50M 0.0401 0.0959 0.2464 0.0166 0.0950 0.3109
NT-100M 0.0520 0.0982 0.2485 0.0045 0.0870 0.3048
NT-250M 0.0470 0.0858 0.2137 0.0006 0.0971 0.3085
NT-500M 0.0361 0.0985 0.2225 0.0189 0.1005 0.3079
OG-46M 0.0555 0.0911 0.2192 0.0079 0.1063 0.3158
OG-418M 0.0078 0.0949 0.2391 0.0048 0.0859 0.3042

Task and Evaluation While the training labels correspond to activity values, TadABench-1M175

’s objective is not pure regression. Instead, the task focuses on predicting relative activity trends176

across test variants, reflecting realistic protein engineering workflows. We evaluate models using177

Spearman’s rank correlation coefficient, normalized Discounted Cumulative Gain at the top 10%178

(nDCG@10%), and Recall@10%, adopting evaluation protocols from prior work [45]. Spearman’s179

coefficient captures the overall relative ordering of activities across test sequences. Recall@10%180

measures the fraction of true top 10% variants correctly identified in the top 10% of predicted scores.181

Complementing these, nDCG@10% assesses whether the predicted top variants are correctly ranked182

by activity within the top decile (see Appendix D.1 for details).183

Model We evaluate pre-trained biological language models (BLMs) spanning DNA, RNA, and184

protein domains. For DNA, we use models from the EVO2 [3] and NucleotideTransformer (NT) [13]185

families. For RNA, we include the OmniGenome (OG) [67] family. For protein, we consider186

ESM2 [35], ProtTrans [17], and ESMC [18] families. We extract representations from the final layer187

(or logits for EVO2 models) and perform linear probing to efficiently assess the encoded biological188

knowledge. Due to varying representation dimensions across models, the regression head’s parameter189

count differs substantially. To ensure fair comparison, we employ a two-layer MLP with hidden190

layer sizes tailored per model for an equal number of trainable parameters, with the ReLU activation191

between layers. More details are shown in Appendix C.3. Note that the DNA/RNA language models192

can not be compared with protein language models directly, owing to the dataset difference.193

4.2 Evaluation in Practical Scenarios194

Biological language models underperform in splits based on practical scenarios. We evaluate195

the performance of various models on the TadABench-1M dataset, considering both DNA and protein196

versions, as shown in Table 1 and Table 2. All biological language models exhibit poor performance in197

this realistic setting, with a Spearman correlation of only ρ ≈ 0.1. To further investigate, we include198

an experiment using one-hot encoding on the DNA version, which also yields low correlations, 0.0707199

on the validation set and 0.0459 on the test set. These results highlight the difficulty of accurately200

predicting variants in practical, out-of-distribution scenarios.201

4.3 Evaluation under Random Split202

Results from the random split validate TadABench-1M and highlight the need for practical,203

application-level evaluation. Due to the relatively low absolute values observed in the real-world204

split, we additionally evaluate performance on a random split of TadABench-1M, where the sequences205

are divided into training, validation, and test sets in an 8:1:1 ratio. As shown in Table 3, biological206

language models (BLMs) achieve a Spearman correlation coefficient of ρ ≈ 0.8 on both the validation207

and test sets. Their Recall@10% exceeds 0.2, significantly higher than the 0.1 level observed under208
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Figure 4: Performance by data scales in different modes of segmentation on diverse models. The
rough data scaling trend can be observed among all models, especially on the domain. Note that the
dataset of the DNA version (a, b) and protein version (c, d, e) is different.
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Table 2: Performance on TadABench-1M (protein version). Data from rounds 1–27 is used for
training, round 28 for validation, and rounds 29–31 for testing. For each model, the best result is
selected from three different learning rates. Bold numbers indicate the highest performance.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

ESM2-150M 0.1458 0.1420 0.6569 0.0416 0.1230 0.3068
ESM2-650M 0.1423 0.1473 0.6530 0.0479 0.1120 0.2791
Prot-BERT 0.1280 0.1128 0.6534 0.0214 0.1162 0.2980
Prot-XLNET 0.1570 0.1261 0.6589 0.0342 0.1175 0.2895
ESMC-300M 0.1498 0.1199 0.6495 0.0355 0.1151 0.2867
ESMC-600M 0.1452 0.1206 0.6397 0.0509 0.1180 0.2860

the practical-scenario split. It means that BLMs effectively capture the i.i.d. pattern under this209

setting, in stark contrast to the results presented in Table 2. These results suggest that the dataset is210

indeed learnable and that the underlying sequence patterns are detectable under idealized conditions.211

Consequently, the poor performance of BLMs in real-world scenarios stems from the substantial gap212

between conventional evaluation setups and the demands of real-world applications. In addition, the213

graph directly encodes the relative activity ranking among sequence variants, making it valuable to214

use BLMs for predicting sequence rankings (in Appendix D).215

4.4 Ablation Study on Data216

In prior experiments, we demonstrated the limitations of conventional evaluation setups and the217

mismatch between standard metrics and the requirements of real-world applications. Motivated by218

this gap, we investigate how characteristics of the training data influence downstream prediction219

performance in the next-round prediction. To this end, we partition the TadABench-1M dataset using220

three strategies—density, diversity, and round—to isolate which aspects most impact data scaling.221

The density strategy randomly subsamples the training data. The diversity strategy selects sequences222

with the highest similarity to those in the validation set, aiming to maximize coverage of the relevant223

functional space. The round strategy either retains or discards entire experimental rounds based on224

their aggregate similarity to the validation round. The validation and test sets remain fixed across all225

configurations. For consistency, we train with the same number of iterations across partitions.226

Data diversity, not density, drives performance in protein engineering tasks. As shown in227

Figure 4, the x-axis denotes training data size (log scale), and the y-axis reports test set Spearman228

correlation. Subplots (a) and (b) correspond to Evo2 family models and exhibit clear scaling behavior229

predominantly on the test set. In contrast, subplots (c)–(e), which include ESM2-650M, Prot-BERT,230

and ESMC-600M, show stronger scaling patterns in the validation set. Notably, the diversity and231

round-based splits consistently outperform random density-based ones, indicating a greater benefit232

from strategic data selection. These findings suggest that biologically pre-trained language models233

need more diverse data to capture the functional landscape relevant to downstream tasks. From a data234

curation standpoint, this underscores the importance of broadening experimental coverage across the235

sequence space, rather than merely increasing dataset size.236

5 Conclusion237

We present the million-example, wet-lab-validated dataset of TadA variants, a scalable label-238

reconciliation algorithm (Seq2Graph), and TadABench-1M, an application-oriented benchmark239

that exposes a stark gap between in silico metrics and laboratory reality for biological language mod-240

els. Our systematic ablations reveal that sequence diversity and evolutionary round coverage—rather241

than brute-force data density—are the key levers for closing this gap. These findings suggest that242

next-generation BLMs should move beyond static, randomly sampled corpora toward evolution-243

aware, diversity-oriented training data. Although comprehensive for TadA, our dataset is restricted to244

a single protein family and assay. Extending the framework to additional protein activity landscapes245

will be essential for broader generalization for the development of BLMs.246
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Appendix481

In Appendix B we introduce PANCE, our wet-lab data-collection framework. Appendix C supplies482

additional experimental settings and results. Finally, Appendix D describes the ranking track for a483

subset of TadABench-1M, provided only to showcase further results.484

A Preliminary485

TadA Gene editing is revolutionizing genetic disease treatment, agriculture, and personalized486

medicine. Among gene editing approaches, base editing provides a safer alternative to traditional487

CRISPR methods [12, 26] by enabling single-nucleotide conversions without inducing double-strand488

breaks, thereby enhancing editing precision [30, 21]. Base editors are divided into cytosine base489

editors, which convert C–G to T–A, and adenine base editors, which convert A–T to G–C. ABEs490

employ engineered variants of tRNA-specific adenosine deaminase (TadA) to catalyze adenosine-491

to-inosine (A-to-I) deamination, interpreted as guanine during DNA replication. TadA8e [50] is a492

high-efficiency variant commonly used for precise A-to-G editing and consists of 167 amino acids493

(501 nucleotides). Our TadABench-1M is built on TadA8e variants and encompasses large-scale494

mutagenesis, introducing over 25 amino-acid mutations (exceeding 150 nucleotide mutations).495

PANCE Phage-Assisted Non-Continuous Evolution (PANCE) [40, 71] is a directed evolution496

strategy that employs discrete manual dilutions of bacteriophage populations to impose controlled497

selection pressures, thereby enabling the rapid evolution of proteins with desired traits. In our498

implementation, phages encoding TadA variants with enhanced activity outcompete less active499

variants, leading to their preferential enrichment and higher read counts in next-generation sequencing500

(NGS) of the final populations (see Appendix B). Our TadABench-1M includes 31 rounds of PANCE,501

each comprising an independent evolution, where each corresponds to a distinct TadA variant library.502

Degenerate Sequence A degenerate sequence [33] is a DNA sequence that includes ambiguous503

nucleotide codes at defined positions, allowing a single sequence to represent tens of thousands504

of distinct variants simultaneously. Although PANCE provides automatic activity labeling via505

competition among TadA variants, constructing such expansive libraries through individual sequences506

is resource- and time-intensive. To address this, we employ degenerate sequence synthesis, in which507

one degenerate sequence generates a vast variant library at the cost of a single DNA synthesis.508

B Phage-Assisted Non-Continuous Evolution (PANCE)509

DNA Library Phage Library Bacteria Selection

Amplified PhageAmplified DNA

Phage 
Competition

Sequencing

Start

31	Rounds

In-vitro Protein Evolution

Figure 5: Overview of the PANCE workflow used to obtain TadA activity data. A large library of
TadA mutants is screened by an AI predictor, and high-activity candidates are selected for phage-
assisted evolution. Variants with higher activity trigger gIII expression, leading to phage propagation.
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Phage-Assisted Non-Continuous Evolution (PANCE) [40, 71] represents a sophisticated platform for510

the directed evolution of biomolecules. This methodology builds upon the principles of Darwinian511

evolution and leverages the powerful selection capabilities of bacteriophages. The strength of this512

approach lies in its high-throughput ability to identify the highest-activity protein variants from513

vast AI-generated starting sequences. In our study, we employed PANCE to evolve TadA, a critical514

enzyme used in CRISPR base editing, by systematically selecting variants with enhanced activity515

from vast AI-generated libraries. The convergence of advanced artificial intelligence for library516

design and PANCE for evolutionary selection represents a frontier in protein engineering, offering a517

high-throughput and scalable approach to optimize enzymatic functions.518

The core of this method is selecting protein variants with improved activity by coupling their519

function to the replication of bacteriophages. Phages lacking a key gene required for propagation are520

engineered to rely on the activity of the target protein within host cells to trigger their replication.521

Through iterative rounds of serial dilution, phages linked to protein variants with higher activity522

maintain their population, while low-activity counterparts are washed out, allowing for the gradual523

enrichment of high-performance variants.524

We engineered the M13 phage, a filamentous virus that propagates within Escherichia coli (E. coli),525

to lack the essential gene gIII, which encodes the phage protein pIII, responsible for facilitating the526

release of new virions from the host. The expression of gIII was made contingent on the activity of527

TadA within E. coli, such that TadA variants with sufficient activity would trigger gIII expression,528

enabling phage replication. Each round of PANCE involved the serial dilution of bacterial cultures.529

Over multiple cycles, variants with superior activity outcompeted their lower-performing counterparts,530

resulting in a highly refined population of phage-encoded TadA variants. This iterative process ensures531

that even minimal gains in activity are captured and amplified across generations, gradually evolving532

TadA to a high-performance state. Finally, we observe the activity of different TadA variants by533

analyzing the read counts from the NGS sequencing results of lysed Escherichia coli cultures. We are534

unable to release the detailed protocols due to company licensing restrictions.535
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×10,270,000

Figure 6: Visualization of TadABench-1M. The left part shows the folded structure of TadA obtained
from our wet-lab experiments, predicted using ESMFold [35]. The right part presents a t-SNE
visualization of the clustering results across 31 rounds of protein evolution.

C Details of TadABench-1M536

C.1 Visualization537

In summary, we propose an algorithm, Seq2Graph, to construct our dataset TadABench-1M based538

on the 31 rounds of NGS sequencing results. We construct a graph reflecting the relative activity539

relationships among sequence variants based on their read counts in the NGS data. To prevent540

conflicts in activity relationships, we apply a fast heuristic algorithm to eliminate inconsistencies.541

Finally, we assign each variant a relative activity value by incorporating the biological principle of542

exponential growth in the breadth-first order to preserve the most confident assignment strategy.543

We provide the visualization of TadABench-1M in Figure 6. The left protein structure is one variant544

in our TadABench-1M, folded using ESMFold [35]. To demonstrate the difference in our 31 rounds545

of protein evolution, we select 50 sequences from each round and show the t-SNE result on the right.546

Variants from diverse rounds have notable differences at the sequence level. We provide a rough547

tendency of sequence similarity across experimental rounds in the appendix (Figure 7).548

C.2 Similarity across Rouds549

Figure 7 depicts the sequence similarity dynamics across evolutionary rounds. We present a similarity550

matrix capturing the pairwise average sequence similarity between TadA protein variants across 31551

rounds of directed evolution in our TadABench-1M dataset. Each matrix entry reflects the average552

sequence similarity between all pairs of sequences from two rounds, normalized between 0 and 1.553

Notably, distinct blocks of higher intra-round similarity (diagonal) and variable inter-round similarities554

highlight the heterogeneous nature of sequence evolution. These observations underline the diverse555

mutational trajectories during the evolutionary process and provide a quantitative foundation for556

benchmarking protein sequence models under varying evolutionary pressures.557
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Figure 7: We show the overall sequence similarity matrix of each round. TadABench-1M contains
TadA variants from 31 rounds of protein evolution. Owing to the application, the sequence similarity
differs by rounds. The average of the sequence similarities is reported for each pair of rounds.

C.3 Experimental Settings558

Dataset TadABench-1M is curated from NGS data of evolved TadA variants, yielding both559

DNA/RNA and protein sequence datasets (Section 3.3). For both modalities, we emulate a practical560

protein engineering scenario by splitting the data chronologically: rounds 1–27 for training, round 28561

for validation, and rounds 29–31 for testing. The nucleic acid (DNA/RNA) dataset contains 729,302562

training sequences, 148,014 validation sequences, and 149,884 test sequences. The protein dataset563

comprises 256,429 training sequences, 45,208 validation sequences, and 108,232 test sequences.564

Task and Evaluation While the training labels correspond to activity values, TadABench-1M565

’s objective is not pure regression. Instead, the task focuses on predicting relative activity trends566

across test variants, reflecting realistic protein engineering workflows. We evaluate models using567

Spearman’s rank correlation coefficient, normalized Discounted Cumulative Gain at the top 10%568

(nDCG@10%), and Recall@10%, adopting evaluation protocols from prior work [45]. Spearman’s569

coefficient captures the overall relative ordering of activities across test sequences. Recall@10%570

measures the fraction of true top 10% variants correctly identified in the top 10% of predicted scores.571
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Complementing these, nDCG@10% assesses whether the predicted top variants are correctly ranked572

by activity within the top decile (see Appendix D.1 for details).573

Biological Language Models We evaluate a diverse set of pre-trained biological language models574

(BLMs) spanning DNA, RNA, and protein domains. For DNA, we use models from the EVO2 [3]575

and NucleotideTransformer (NT)[13] families. For RNA, we include the OmniGenome [67] family.576

For protein, we consider ESM2 [35], ProtTrans [17], and ESMC [18] families. We utilize DNA and577

RNA language models in the same manner by mapping T to U. The Evo2 40B model is accessed578

through the API2, while other models are deployed by the NVIDIA GeForce RTX 4090 GPU.579

Hyperparameters We extract representations from the final layer (or logits for EVO2 models)580

and perform linear probing to efficiently assess the encoded biological knowledge. Due to varying581

representation dimensions across models, the regression head’s parameter count differs substantially.582

To ensure fair comparison, we employ a two-layer MLP with hidden layer sizes tailored per model583

for an equal number of trainable parameters, with the ReLU activation between layers. For the Evo2584

family, we first take all the logits as input. However, the training is relatively unstable. Therefore, we585

use normalization on embedding-based models and only take the A/T/C/G four dimensions of logits586

as representations, largely facilitating the training stability. Besides, we keep the representations of587

all tokens to conserve more information, which has a similar performance to the average on tokens in588

our setting. Each head is trained for 20 epochs with a cosine learning rate scheduler and a 1-epoch589

warmup. We evaluate three learning rates (3e-5, 1e-4, 3e-4) and select the best-performing based on590

validation performance.591

C.4 Performance of Random Split592

We benchmark protein language models on the random split of TadABench-1M (protein version) in593

Table 3. We evaluate a range of protein language models using an 8:1:1 split for training, validation,594

and test sets. Performance is reported for the best result over three learning rates per model. Metrics595

include Spearman correlation and ranking-based metrics (Recall@10% and nDCG@10%) on both596

validation and test sets. ESMC-600M achieves the highest scores across most evaluation criteria,597

including the best Spearman correlation (0.8079), and competitive Recall@10% (0.2317)nDCG@10%598

(0.4949) on the test set, demonstrating superior ranking and correlation performance in protein variant599

prediction. Notably, smaller models such as ESM2-35M show competitive performance on correlation600

metrics, but lag in ranking-based retrieval.601

All biological language models (BLMs) achieve a Spearman correlation coefficient of approximately602

ρ ≈ 0.8 on both the validation and test sets. Their Recall@10% exceeds 0.2, which is significantly603

higher than the 0.1 level observed under the practical-scenario split. This indicates that BLMs604

effectively capture the i.i.d. pattern in this setting, in stark contrast to the results shown in Table 2.605

These findings suggest that the dataset is indeed learnable and that the underlying sequence patterns606

are detectable under idealized conditions. Accordingly, the poor performance of BLMs in real-world607

scenarios arises from a substantial gap between standard evaluation setups and the demands of608

real-world applications.609

D Ranking Task of TadABench-1M610

Apart from the experiments in TadABench-1M mentioned in the main text, we also run more611

experiments on a part of our dataset, TadABench-100K. Considering the practical application612

of protein engineering needs relative activity comparison among massive candidates, we support613

ranking-based evaluation to examine model performance without relying on the absolute activity614

scales. Specifically, we extract lists of sequences sorted from their activities and require the model to615

make correct rankings. In the evaluation process, we similarly use embeddings generated by BLMs616

and train a head module to predict the activity ranking of different sequence variants.617

2https://build.nvidia.com/arc/evo2-40b
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Table 3: Performance on TadABench-1M (protein version). The training, validation, and test sets
were obtained via an 8:1:1 random split. For each model, the best result is selected from three
different learning rates. Bold numbers indicate the highest performance.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

ESM2-35M 0.8032 0.1830 0.4824 0.8014 0.1617 0.4814
ESM2-150M 0.7386 0.2290 0.4364 0.7371 0.2324 0.4437
ESM2-650M 0.5360 0.1793 0.4740 0.5348 0.1710 0.4779
Prot-BERT 0.7910 0.2230 0.4879 0.7883 0.2262 0.4918
Prot-XLNET 0.8054 0.2264 0.4912 0.8030 0.2193 0.4965
ESMC-300M 0.8102 0.2439 0.4959 0.8067 0.2363 0.4995
ESMC-600M 0.8127 0.2446 0.5006 0.8079 0.2317 0.4949

D.1 Evaluation Metric: nDCG618

Normalized Discounted Cumulative Gain (nDCG) is a commonly used metric to evaluate the ranking619

quality of algorithms, particularly in information retrieval and recommendation systems [27]. It620

focuses on both the relevance of the ranked items and the position of these items in the ranking list.621

The relevance score of each item is assigned based on its importance or utility to the user. The gain is622

discounted logarithmically as the rank increases, meaning that highly relevant items appearing earlier623

in the ranking list contribute more to the overall score.624

The nDCG is normalized by dividing the DCG of the actual ranking by the DCG of the ideal ranking625

(IDCG), ensuring the score falls within the range of 0 to 1. The DCG (Discounted Cumulative Gain)626

is calculated as:627

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(2)

where p represents the position in the ranking (typically the top p items are evaluated) and i is628

the rank of the item in the list. The reli is the relevance score of the item at position i, which is629

the reverse ranking in our setting, i.e., the ranking list 1, 2, 3, . . . with a length of N has the reli630

as N,N − 1, N − 2, . . . . The log2(i + 1) is A logarithmic discounting factor that reduces the631

contribution of lower-ranked items.632

The normalized version, nDCG, is calculated as:633

nDCGp =
DCGp

IDCGp
(3)

where IDCGp is the ideal DCG for a perfect ranking.634

The nDCG is especially valuable for evaluating ranked retrieval systems because it accounts for the635

importance of the placement of relevant items within the list. This metric assigns greater weight to636

items at higher-ranked positions, ensuring that the ranking system’s effectiveness is measured more637

accurately by prioritizing top results, which are typically more relevant to the user. It is particularly638

suitable for our task of ranking protein activities because we focus more on the top-ranked proteins.639

D.2 Experimental Results640

On our TadABench-100K, a subset of TadABench-1M, we conduct additional experiments under641

the ranking-based setting, which reduces the impact of round-specific wet experiment noise. Even642

in this more controlled scenario, we observed that models still struggle to predict the next round’s643

outcomes based on data from the previous round, which further highlights the inherent difficulty and644

significance of this real-world task. We begin by introducing the models, data, and experimental645

settings used in the ranking-based experiments. Following the structure of the main paper, we first646

demonstrate the learnability of the dataset using randomly split data and highlight several properties647

of BLMs. We then present results under the more realistic evolutionary round setting, where BLMs648

still fall short in fully capturing application-level protein evolution tasks.649
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Table 4: Diverse BLMs are evaluated using linear probing in the ranking-based and random
data split setting. The top, middle, and bottom groups are protein, DNA, and RNA BLMs. ∗

indicates that a smaller batch size is employed due to the large size of the embeddings.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

One-hot 0.826 0.764 0.058 0.820 0.322 0.079 0.854 0.057 -0.009
Chai1 0.847 0.792 0.169 0.857 0.322 0.194 0.900 0.095 0.138
ESM2 0.831 0.771 0.082 0.844 0.322 0.175 0.907 0.050 0.252
ESM3 0.840 0.783 0.133 0.860 0.335 0.214 0.892 0.100 0.103
RFAA 0.838 0.780 0.120 0.858 0.323 0.205 0.890 0.050 0.158
SaProt 0.831 0.771 0.083 0.839 0.322 0.144 0.864 0.042 0.085
LucaOne 0.830 0.770 0.078 0.839 0.313 0.146 0.901 0.029 0.218
ProtTrans 0.831 0.771 0.085 0.844 0.325 0.172 0.886 0.038 0.185

One-hot 0.819 0.754 0.017 0.822 0.281 0.072 0.854 0.052 0.027
NT 0.836 0.777 0.109 0.845 0.307 0.180 0.884 0.030 0.182
EVO∗ 0.830 0.770 0.080 0.850 0.317 0.190 0.895 0.007 0.153
Chai1 0.848 0.794 0.175 0.868 0.322 0.224 0.901 0.086 0.222
AgroNT 0.831 0.772 0.086 0.839 0.304 0.156 0.868 0.096 0.123
GenSLM∗ 0.836 0.777 0.109 0.857 0.327 0.204 0.904 0.043 0.233
LucaOne∗ 0.835 0.776 0.106 0.843 0.303 0.165 0.888 0.037 0.165
HyenaDNA 0.831 0.771 0.085 0.848 0.314 0.178 0.883 0.029 0.132
DNABERT-2 0.816 0.750 0.001 0.814 0.295 0.038 0.861 0.026 0.018
DNABERT-S 0.817 0.752 0.007 0.812 0.301 0.028 0.853 0.040 0.017
DNABERT-1 0.835 0.776 0.105 0.845 0.299 0.163 0.893 0.075 0.236

One-hot 0.819 0.754 0.017 0.822 0.281 0.072 0.854 0.052 0.027
Chai1 0.845 0.790 0.161 0.867 0.316 0.225 0.897 0.124 0.217
CaLM 0.834 0.775 0.099 0.847 0.309 0.178 0.882 0.062 0.146
RNA-FM 0.830 0.770 0.079 0.846 0.315 0.187 0.880 0.026 0.117
RiNALMo∗ 0.843 0.787 0.148 0.870 0.326 0.235 0.904 0.049 0.198
RNAErnie∗ 0.837 0.780 0.119 0.867 0.326 0.230 0.906 0.056 0.237
RNA-MSM 0.832 0.773 0.090 0.850 0.317 0.197 0.902 0.045 0.253
SpliceBERT 0.833 0.774 0.095 0.844 0.308 0.167 0.890 0.051 0.203
3UTRBERT∗ 0.840 0.784 0.135 0.870 0.324 0.244 0.908 0.044 0.256
ERNIE-RNA∗ 0.836 0.778 0.113 0.860 0.327 0.230 0.909 0.041 0.213
OmniGenome∗ 0.838 0.781 0.122 0.868 0.320 0.239 0.910 0.059 0.207

Model The evaluation is based on protein, DNA, and RNA modalities, since these 3 forms play650

important roles in the natural transcription and translation process, and all contain important informa-651

tion. In TadABench-1M, DNA sequences obtained from biological sequencing data are translated652

into RNA and protein sequences according to biological principles. These transformed sequences are653

inputs for the corresponding biological language models (BLMs).654

As for protein modality, we test the ESM2 [35], ESM3 [24], ProtTrans [17], SaProt [54], and655

RFAA [31]. Our DNA modality evaluation involves the EVO [42], NucleotideTansformer (NT) [13],656

AgroNT [39], GenSLMs [76], HyenaDNA [43], DNABERT-1 [28], DNABERT-2 [74], and657

DNABERT-S [75]. For RNA modality, TadABench-1M tests the RNA-FM [8], SpliceBERT [9],658

3UTRBERT [68], OmniGenome [67], CaLM [46], ERNIE-RNA [70], RNAErnie [60], RNA-659

MSM [72], and RiNALMo [47]. We also include LucaOne [25] and Chai1 [6] as representatives of660

multimodal BLMs, reflecting the popular concept of multimodality in the foundation models domain.661

Overall, we test 80 models across 24 papers 3. For linear probing, we use multimodal BLMs such as662

LucaOne and Chai1 to tackle three modalities of input sequence input independently, referred to as663

three BLMs for convenience. We extract features of the last trunk for folding models such as Chai1664

and RoseTTAFold-All-Atom. Owing to space limitations, we only report one model for each paper665

in Table 4.666

3There are some other BLMs that we do not include, such as Atom-1 [2], UNI-RNA [61], and RFamGen [55],
since their codebases or model weights have not been released.
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Figure 8: BLMs using different modalities perform comparably using linear probing on the
@100 ranking track. The performance gap between the 3 modalities of BLMs is not obvious, which
means the knowledge of DNA and RNA BLMs is also important in the protein evolution task.
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Figure 9: The scaling law behavior is demonstrated in the ranking-based task for selected BLM
families among three modalities. We select BLM families across three modalities, protein, DNA,
and RNA. The x-axis represents the parameter number and the y-axis reflects the nDCG@100 score.

Model and Data Consistent with our main paper, our evaluation spans a diverse set of BLMs,667

including models specialized for DNA, RNA, and protein modalities, along with several multimodal668

architectures. We take a 3-layer fully connected network with a hidden size of 128 as the head669

module, using a cross-entropy ListNet loss [5]. We adopt linear probing and fine-tuning to evaluate670

the performance of various BLMs without introducing complexity. We experiment on TadABench-671

100K, a subset of TadABench-1M, comprising 100,000 sequences with annotated activities.672

Ranking Metrics We offer three tracks, @2, @10, and @100 for different ranking lists with673

corresponding lengths. We adopt three common ranking evaluation metrics to assess the effective-674

ness of the predicted rankings within a population of size x, normalized discounted cumulative675

gain (nDCG@x) [27], mean Reciprocal Rank (mRR@x) [63], and Spearman’s Rank Correlation676

(SP@x) [53]. The nDCG measures the accuracy of ranking results, with greater emphasis placed on677

higher-ranked items. The mRR focuses exclusively on the accuracy of predictions for the top-ranked678

sample. SP evaluates the predicted rankings’ overall distribution.679

D.2.1 Random Data Split680

Consistent with our main paper, we randomly shuffle the data from the first and second rounds of681

evolution and split it into training and test sets using a standard 7:3 ratio. Each data point is a list of x682

sequences, and the objective is to predict their correct activity ranking. In Table 4, we present the683

activity ranking prediction results for a subset of BLMs, with ranking list lengths of 2, 10, and 100.684

Here, we primarily take the linear probing with a batch size of 64, freezing the parameters of BLMs,685

and using the output embeddings to train head modules. Given the influence of different embedding686
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Table 5: Under the random data split setting, BLMs perform well on the ranking-based task
using linear probing and fine-tuning. The table shows the result of @100 track with a batch size of
1×100 sequences. For most selected models except 3UTRBERT-6mer, fine-tuning provides better
results than linear probing.

Modality Model
Random Initialization Linear Probing Fine-tuning
nDCG↑ SP↑ nDCG↑ SP↑ nDCG↑ SP↑

Protein
ESM2-650M 0.844 -0.050 0.875 0.138 0.902 0.208
ESM2-150M 0.856 0.050 0.866 0.075 0.898 0.187

DNA
DNABERT-1-6mer 0.856 0.017 0.893 0.236 0.908 0.226
HyenaDNA-T-d256 0.865 0.053 0.886 0.200 0.908 0.205

RNA
RNA-Ernie 0.855 0.003 0.906 0.237 0.907 0.239
3UTRBERT-6mer 0.836 -0.015 0.908 0.256 0.902 0.210

lengths on the learning rate, we specify 3 learning rates for each experiment, 1e-5, 1e-4, and 1e-3,687

and choose the optimal result as its reported result. We use one-hot vectors of the sequences as the688

baseline to compare with the embeddings of BLMs.689

Under the ranking-based setting, we observe conclusions consistent with those reported in our690

main paper. Compared to training classification heads directly using sequence one-hot vectors, using691

embeddings extracted from pre-trained BLMs significantly enhances the test performance. This692

demonstrates that BLMs are well-suited for protein activity prediction tasks on TadABench-1M,693

aligning with experiences in the language model field. The complete evaluation of 80 models can694

be found in Tables 6 to 8. We have also fine-tuned the BLMs (as shown in Table 5), which further695

improves performance. This aligns well with a general understanding of language models, while it is696

not the main focus of this paper.697

Modality DNA and RNA BLMs demonstrate performance comparable to protein BLMs on698

nDCG@100, as shown in Figure 8. It demonstrates that the nucleotide BLMs also gain knowl-699

edge about protein functionality on DNA or RNA sequences. Since proteins, DNA, and RNA700

fundamentally form an integrated system within organisms and each plays a crucial role in protein701

expression, models across all three modalities significantly outperform those trained on one-hot702

vectors of the sequences.703

Additionally, the performance of multimodal models is consistent with the conclusions reported in704

the main paper. LucaOne achieves nDCG@100 scores of 0.901 for protein and 0.888 for nucleotide,705

whereas Chai1 attains scores of 0.900 and 0.897, respectively. These results indicate that Chai1706

achieves better modality unification, as its performance across modalities is more consistent, while707

LucaOne shows a notable advantage in protein performance over nucleotide.708

D.2.2 Scaling Law709

The Scaling Law behavior of BLMs is also observed under the ranking-based setting. We observe710

that most BLM model families in Figure 9 demonstrate the scaling law.711

D.2.3 K-mer712

K-mer in BLMs sequence of k consecutive nucleotides used to capture local sequence patterns and713

the context in biological modeling analysis. 3UTRBERT is an RNA BLM model family composed714

of different k-mer models. Considering the test nDCG@10 in in-domain ranking, the results for715

6-mer, 5-mer, 4-mer, and 3-mer are respectively 0.870, 0.860, 0.869, and 0.870. We observe that716

the results for 3-mer and 6-mer are higher than those for 4-mer and 5-mer. In biological terms, a717

protein is encoded by three nucleotides, demonstrating that TadABench-1M aligns well with the718

actual biological k-mer patterns. It also indicates that RNA BLMs are significant in protein-related719

tasks, provided that an appropriate k-mer is selected.720
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Table 6: Evaluation on protein BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

ESM2-8M 0.828 0.767 0.069 0.836 0.321 0.136 0.874 0.053 0.176
ESM2-35M 0.829 0.769 0.074 0.833 0.314 0.133 0.855 0.048 0.012
ESM2-150M 0.828 0.768 0.070 0.839 0.322 0.154 0.866 0.084 0.075
ESM2-650M 0.830 0.770 0.080 0.840 0.324 0.162 0.875 0.075 0.138
ESM2-3B 0.832 0.772 0.090 0.842 0.318 0.163 0.902 0.046 0.222
ESM2-15B 0.831 0.771 0.082 0.844 0.322 0.175 0.907 0.050 0.252
ESM3 0.840 0.783 0.133 0.860 0.335 0.214 0.892 0.100 0.103
SaProt-650M-AF2 0.828 0.766 0.066 0.837 0.307 0.137 0.862 0.034 0.067
SaProt-650M-PDB 0.831 0.771 0.083 0.839 0.322 0.144 0.864 0.042 0.085
SaProt-35M-AF2 0.832 0.773 0.091 0.835 0.311 0.134 0.877 0.069 0.144
SaProt-35M-AF2-Seq 0.830 0.769 0.077 0.837 0.323 0.143 0.870 0.058 0.066
LucaOne 0.830 0.770 0.078 0.839 0.313 0.146 0.901 0.029 0.218
RosettaFold-STATE 0.823 0.760 0.040 0.817 0.299 0.058 0.851 0.078 0.010
RosettaFold-MSA 0.838 0.780 0.120 0.858 0.323 0.205 0.890 0.050 0.158
ProstT5 0.827 0.766 0.064 0.842 0.320 0.156 0.865 0.087 0.081
ProstT5-fp16 0.827 0.765 0.060 0.840 0.329 0.166 0.872 0.052 0.147
Prot-T5-XL-U50 0.832 0.773 0.090 0.835 0.320 0.144 0.880 0.053 0.160
Prot-T5-XL-Half 0.834 0.775 0.102 0.835 0.309 0.143 0.868 0.048 0.098
Chai1 0.844 0.788 0.152 0.858 0.322 0.203 0.896 0.035 0.140
Chai1-ESM 0.847 0.792 0.169 0.857 0.322 0.194 0.900 0.095 0.138
Prot-Bert 0.824 0.761 0.046 0.828 0.303 0.098 0.871 0.068 0.134
Prot-ss3 0.823 0.760 0.039 0.825 0.301 0.084 0.867 0.030 0.050
Prot-Membrane 0.830 0.770 0.079 0.829 0.316 0.119 0.862 0.062 0.028
Prot-Localization 0.826 0.765 0.060 0.829 0.314 0.114 0.858 0.021 0.055
Prot-T5-XXL-U50 0.832 0.773 0.090 0.842 0.320 0.177 0.882 0.045 0.154
Prot-Generator 0.830 0.770 0.079 0.842 0.322 0.169 0.882 0.062 0.148
Prot-Discriminator 0.831 0.771 0.084 0.844 0.322 0.174 0.881 0.137 0.140
Prot-T5-XL-BFD 0.831 0.772 0.086 0.839 0.319 0.162 0.882 0.102 0.170
Prot-Bert-BFD 0.827 0.766 0.065 0.839 0.308 0.141 0.869 0.086 0.141
Prot-T5-XXL-BFD 0.831 0.771 0.085 0.844 0.325 0.172 0.886 0.038 0.185
Prot-Xlnet 0.830 0.769 0.077 0.833 0.314 0.141 0.880 0.060 0.110
Prot-Albert 0.831 0.771 0.086 0.836 0.311 0.132 0.883 0.049 0.105

Fine-tuned BLMs In the ranking-based task, we also report the fine-tuning performance under721

the random data split setting, shown in Table 5. Firstly, linear probing and fine-tuning effectively722

surpass the random init in nDCG@100 and SP. Secondly, fine-tuning provides better results than723

linear probing for most selected models except 3UTRBERT-6mer. Thirdly, SP and n@DCG can724

provide different tendencies, demonstrating the different concentrations for distinct metrics, shown725

in Appendix D.2. For example, the nDCG of linear probing in 3UTRBERT-6mer is higher than726

fine-tuning, while the SP is the opposite. The linear probing performs better at the top sequences,727

while the fine-tuning shows better rankings on 100 sequences.728

Full Results of Random Data-Split Ranking-Based Task In this paragraph, we report the perfor-729

mance of a broad range of BLMs on the ranking-based task with randomly split data. In Tables 6 to 8,730

we report the performance of protein, RNA, and DNA BLMs separately.731

D.2.4 Real-World Evolution Scenario732

Consistent with our main paper, for the ranking-based task, we also assess the real-world cross-round733

evolution by training a linear probe on first-round evolution data and testing it on second-round data.734

The train-test data splitting is shown in Table 9.735

As discussed in our main paper, although the real-world evolution setting is a challenging task, it736

aligns well with the underlying logic of real-world protein evolution processes. Despite extensive737

hyperparameter tuning and fine-tuning efforts, this setting remains highly challenging for BLMs.738
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Table 7: Evaluation on RNA BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

mRNA-FM 0.830 0.770 0.079 0.846 0.315 0.187 0.880 0.026 0.117
RNA-FM 0.831 0.771 0.084 0.838 0.293 0.146 0.879 0.026 0.161
RNA-MSM 0.832 0.773 0.090 0.850 0.317 0.197 0.902 0.045 0.253
RNA-Ernie 0.837 0.780 0.119 0.867 0.326 0.230 0.906 0.056 0.237
RiNaLMo 0.843 0.787 0.148 0.870 0.326 0.235 0.904 0.049 0.198
ERNIERNA 0.836 0.778 0.113 0.860 0.327 0.230 0.909 0.041 0.213
ERNIERNA.ss 0.837 0.779 0.115 0.860 0.323 0.226 0.906 0.031 0.234
Chai1 0.845 0.790 0.161 0.867 0.316 0.225 0.897 0.124 0.217
OmniGenome-418M 0.838 0.781 0.122 0.868 0.320 0.239 0.910 0.059 0.207
OmniGenome-186M 0.839 0.782 0.127 0.861 0.313 0.210 0.896 0.061 0.213
OmniGenome-52M 0.831 0.771 0.083 0.846 0.327 0.184 0.886 0.041 0.207
3UTRBERT-6mer 0.840 0.784 0.135 0.870 0.324 0.244 0.908 0.044 0.256
3UTRBERT-5mer 0.834 0.775 0.102 0.861 0.323 0.231 0.906 0.046 0.232
3UTRBERT-4mer 0.840 0.784 0.134 0.869 0.326 0.243 0.906 0.047 0.234
3UTRBERT-3mer 0.841 0.785 0.138 0.870 0.323 0.246 0.906 0.041 0.226
SpliceBERT 0.829 0.768 0.072 0.836 0.307 0.140 0.872 0.058 0.114
SpliceBERT-H.510nt 0.833 0.774 0.095 0.844 0.308 0.167 0.890 0.051 0.203
SpliceBERT.510nt 0.830 0.770 0.080 0.838 0.310 0.152 0.874 0.036 0.121
CaLM 0.834 0.775 0.099 0.847 0.309 0.178 0.882 0.062 0.146

This indicates that even in the ranking-based task designed to reduce wet experimental noise, model739

performance does not improve significantly, suggesting the presence of more fundamental limitations.740

We will report the experimental results in detail below.741

Experimental Results We benchmark all of the BLMs using the linear probing approach here. The742

results are presented separately for protein, DNA, and RNA BLMs in Tables 10 to 12, respectively.743

Across all modalities, most BLMs perform poorly in the real-world evolution ranking task, with results744

barely surpassing those of random guess ranking, which is highly consistent with the conclusions745

presented in the main paper. This suggests that even under the ranking-based setting with lower wet-746

experiment noise, the models show limited improvement, pointing to deeper, underlying limitations.747

This poor performance stands in stark contrast to the outcomes observed in the random-split setting,748

where nearly all BLMs achieve results consistent with expectations. These results confirm that the749

embeddings generated by BLMs are meaningful and effective in in-domain tasks, demonstrating no750

apparent issues related to the curse of dimensionality or loss of information during the embedding751

process. The disparity between in-domain ranking and out-of-domain ranking performance suggests752

that the challenges faced by BLMs in out-of-domain ranking are not due to the embeddings themselves753

but are likely attributed to the difficulty of generalizing to out-of-domain data. While the embeddings754

remain useful within the context of in-domain ranking tasks, their transferability and robustness755

across varying experimental conditions in out-of-domain ranking are limited. This emphasizes the756

need for more advanced strategies to enhance the generalization ability of BLMs when faced with757

out-of-domain ranking tasks.758
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Table 8: Evaluation on DNA BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

EVO-8k 0.829 0.769 0.075 0.851 0.308 0.183 0.891 0.045 0.153
EVO-131k 0.830 0.770 0.080 0.850 0.317 0.190 0.895 0.007 0.153
LucaOne 0.835 0.776 0.106 0.843 0.303 0.165 0.888 0.037 0.165
Chai1 0.848 0.794 0.175 0.868 0.322 0.224 0.901 0.086 0.222
NT-2-50M 0.833 0.774 0.097 0.845 0.305 0.179 0.879 0.057 0.137
NT-2-100M 0.836 0.777 0.109 0.843 0.306 0.171 0.872 0.068 0.118
NT-2-250M 0.830 0.770 0.078 0.845 0.312 0.171 0.866 0.081 0.088
NT-2-500M 0.834 0.776 0.102 0.849 0.313 0.202 0.880 0.027 0.176
NT-500M-human-ref 0.836 0.777 0.109 0.840 0.292 0.154 0.892 0.098 0.195
NT-500M-1000G 0.833 0.774 0.097 0.847 0.314 0.191 0.864 0.034 0.107
NT-2B5-1000G 0.836 0.777 0.109 0.845 0.307 0.180 0.884 0.030 0.182
NT-2B5-multi-species 0.828 0.767 0.069 0.838 0.291 0.145 0.872 0.035 0.110
AgroNT 0.831 0.772 0.086 0.839 0.304 0.156 0.868 0.096 0.123
GenSLMs 2.5B 0.836 0.777 0.109 0.857 0.327 0.204 0.904 0.043 0.233
GenSLMs 250M 0.836 0.777 0.109 0.856 0.326 0.204 0.907 0.040 0.249
GenSLMs 25M 0.831 0.771 0.084 0.837 0.322 0.160 0.892 0.072 0.178
DNABERT-2-117M 0.816 0.750 0.001 0.814 0.295 0.038 0.861 0.026 0.018
DNABERT-S 0.817 0.752 0.007 0.812 0.301 0.028 0.853 0.040 0.017
DNABERT-1-3mer 0.830 0.770 0.081 0.841 0.303 0.163 0.879 0.144 0.085
DNABERT-1-4mer 0.830 0.770 0.080 0.836 0.299 0.138 0.872 0.043 0.089
DNABERT-1-5mer 0.837 0.779 0.114 0.849 0.313 0.179 0.874 0.043 0.142
DNABERT-1-6mer 0.835 0.776 0.105 0.845 0.299 0.163 0.893 0.075 0.236
HyenaDNA-T 0.832 0.773 0.092 0.844 0.314 0.178 0.864 0.032 0.037
HyenaDNA-T-d256 0.835 0.776 0.104 0.848 0.325 0.195 0.886 0.043 0.200
HyenaDNA-T-d128 0.830 0.770 0.079 0.843 0.313 0.166 0.864 0.025 0.112
HyenaDNA-S 0.830 0.770 0.081 0.842 0.306 0.177 0.870 0.069 0.098
HyenaDNA-M-160k 0.831 0.771 0.083 0.848 0.314 0.186 0.884 0.037 0.115
HyenaDNA-M-450k 0.832 0.772 0.089 0.845 0.309 0.172 0.873 0.064 0.113
HyenaDNA-L 0.831 0.771 0.085 0.848 0.314 0.178 0.883 0.029 0.132

Table 9: The real-world evolution ranking task is highly challenging as it is based on actual
in-vitro evolution rounds. We provide three tracks, @2, @10, and @100, where the lengths of
ranking lists are 2, 10, and 100, respectively.

Track #List #DNA #Protein
Train Test Train Test Train Test

@100 7 99 682 9822 661 9159
@10 1155 4563 8745 41264 5398 24906
@2 27754 44322 38114 63445 16461 28800

Fine-tuned BLMs for Real-World Evolution Ranking We also fine-tuned selected BLMs on the759

fine-tuned BLMs for the real-world evolution ranking task, training the BLM backbones and their760

ranking heads to ensure that performance limitations are not solely due to linear probing. We report761

the results in Table 13. Although fine-tuning provides improvements over the random init, most BLMs762

do not show substantial performance gains. This indicates that when BLMs face real-world evolution763

ranking tasks in our benchmark, i.e., predicting the outcomes of the next round of protein evolution764

based on results from the current round, they are almost incapable. This reflects the considerable765

challenge posed by our benchmark in real-world evolution ranking tasks with existing BLMs. Such766

challenges align with the logic of actual biological experiments and represent real difficulties that767

need resolution in practical applications.768
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Table 10: Protein BLMs fail to solve the real-world evolution ranking task using linear probing.

Model
@2 @10 @100

nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

ESM2-8M 0.811 0.744 -0.023 0.815 0.310 0.061 0.856 0.053 0.014
ESM2-35M 0.810 0.743 -0.028 0.803 0.298 -0.005 0.858 0.055 0.060
ESM2-150M 0.811 0.744 -0.024 0.808 0.293 0.023 0.856 0.057 0.028
ESM2-650M 0.814 0.747 -0.010 0.802 0.293 -0.004 0.845 0.049 0.016
ESM2-3B 0.815 0.750 -0.001 0.808 0.308 0.027 0.838 0.037 -0.018
ESM2-15B 0.815 0.749 -0.002 0.801 0.300 0.000 0.834 0.064 -0.071
ESM3 0.819 0.755 0.018 0.802 0.298 -0.004 0.864 0.054 0.069
SaProt-650M-AF2 0.813 0.747 -0.011 0.797 0.284 -0.036 0.853 0.055 0.060
SaProt-650M-PDB 0.817 0.752 0.006 0.802 0.294 -0.009 0.836 0.063 -0.046
SaProt-35M-AF2 0.817 0.751 0.006 0.812 0.306 0.046 0.845 0.057 -0.029
SaProt-35M-AF2-Seq 0.821 0.757 0.029 0.802 0.297 -0.016 0.854 0.079 0.025
LucaOne 0.823 0.761 0.044 0.798 0.291 -0.021 0.846 0.069 0.007
RosettaFold-STATE 0.812 0.746 -0.017 0.801 0.282 -0.018 0.837 0.044 -0.055
RosettaFold-MSA 0.811 0.745 -0.022 0.800 0.285 -0.022 0.844 0.077 0.001
ProstT5 0.817 0.752 0.006 0.804 0.289 -0.004 0.843 0.041 -0.038
ProstT5-fp16 0.816 0.750 0.002 0.801 0.300 -0.006 0.852 0.043 0.012
Prot-T5-XL-U50 0.815 0.749 -0.003 0.807 0.307 0.019 0.852 0.053 0.040
Prot-T5-XL-Half 0.810 0.742 -0.031 0.803 0.287 -0.010 0.855 0.038 0.008
Chai1 0.814 0.748 -0.008 0.802 0.290 -0.008 0.857 0.055 0.062
Chai1-ESM 0.808 0.740 -0.042 0.803 0.296 -0.008 0.842 0.033 -0.050
Prot-Bert 0.819 0.755 0.021 0.817 0.304 0.059 0.843 0.047 -0.024
Prot-ss3 0.813 0.747 -0.012 0.804 0.290 0.000 0.840 0.047 -0.035
Prot-Membrane 0.822 0.758 0.033 0.805 0.298 -0.001 0.853 0.067 0.035
Prot-Localization 0.807 0.738 -0.048 0.802 0.296 -0.005 0.841 0.050 -0.033
Prot-T5-XXL-U50 0.816 0.751 0.003 0.799 0.305 -0.020 0.857 0.062 0.039
Prot-Generator 0.818 0.754 0.015 0.804 0.301 0.003 0.849 0.073 0.013
Prot-Discriminator 0.816 0.750 0.000 0.801 0.290 -0.090 0.851 0.051 -0.005
Prot-T5-XL-BFD 0.815 0.750 0.000 0.799 0.297 -0.016 0.844 0.069 -0.012
Prot-Bert-BFD 0.814 0.748 -0.010 0.803 0.291 -0.001 0.837 0.039 -0.044
Prot-T5-XXL-BFD 0.813 0.746 -0.015 0.808 0.299 0.024 0.841 0.049 -0.025
Prot-Xlnet 0.813 0.747 -0.012 0.803 0.292 0.004 0.839 0.054 0.003
Prot-Albert 0.812 0.745 -0.020 0.796 0.288 -0.037 0.838 0.044 -0.036

26



Table 11: RNA BLMs fail to solve the real-world evolution ranking task using linear probing.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

mRNA-FM 0.814 0.748 -0.006 0.809 0.291 0.015 0.847 0.045 0.003
RNA-FM 0.813 0.747 -0.013 0.814 0.303 0.045 0.852 0.037 0.020
RNA-MSM 0.821 0.757 0.029 0.811 0.299 0.021 0.844 0.060 0.007
RNA-Ernie 0.815 0.750 -0.001 0.803 0.298 -0.007 0.837 0.056 -0.039
RiNALMo 0.817 0.751 0.006 0.807 0.291 0.017 0.832 0.046 -0.037
ERNIE-RNA 0.816 0.750 0.001 0.803 0.293 -0.010 0.853 0.065 0.050
ERNIE-RNA.ss 0.817 0.751 0.006 0.807 0.296 0.007 0.864 0.076 0.070
Chai1 0.814 0.748 -0.006 0.809 0.293 0.018 0.853 0.075 0.044
OmniGenome-418M 0.817 0.752 0.009 0.799 0.287 -0.037 0.840 0.042 -0.017
OmniGenome-186M 0.819 0.755 0.019 0.810 0.297 0.017 0.842 0.088 -0.036
OmniGenome-52M 0.814 0.749 -0.006 0.812 0.296 0.036 0.835 0.076 -0.040
3UTRBERT-6mer 0.812 0.745 -0.019 0.811 0.293 0.029 0.849 0.074 0.025
3UTRBERT-5mer 0.819 0.755 0.020 0.811 0.293 0.026 0.842 0.044 0.028
3UTRBERT-4mer 0.820 0.756 0.024 0.800 0.285 -0.029 0.850 0.055 0.017
3UTRBERT-3mer 0.815 0.750 0.000 0.809 0.299 0.299 0.842 0.045 -0.056
SpliceBERT 0.814 0.748 -0.008 0.802 0.298 -0.011 0.856 0.049 0.035
SpliceBERT-H.510nt 0.814 0.748 -0.008 0.805 0.297 0.004 0.839 0.045 -0.077
SpliceBERT.510nt 0.817 0.752 0.007 0.801 0.294 -0.015 0.847 0.065 -0.005
CaLM 0.817 0.752 0.009 0.800 0.285 -0.031 0.840 0.080 -0.056

Table 12: DNA BLMs fail to solve the real-world evolution ranking task using linear probing.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

EVO-8k 0.809 0.741 -0.036 0.799 0.286 -0.022 0.831 0.043 -0.079
EVO-131k 0.809 0.741 -0.037 0.802 0.293 -0.016 0.833 0.054 -0.080
LucaOne 0.816 0.750 0.001 0.808 0.289 0.006 0.839 0.055 0.013
Chai1 0.820 0.756 0.025 0.802 0.292 -0.015 0.851 0.063 0.009
NT-2-50M 0.812 0.746 -0.017 0.802 0.291 -0.019 0.837 0.035 -0.025
NT-2-100M 0.818 0.753 0.011 0.800 0.290 -0.024 0.857 0.070 0.052
NT-2-250M 0.818 0.753 0.013 0.805 0.288 0.004 0.849 0.037 0.007
NT-2-500M 0.816 0.751 0.005 0.804 0.289 -0.013 0.843 0.047 -0.044
NT-500M-human 0.812 0.745 -0.021 0.806 0.291 0.005 0.829 0.051 -0.108
NT-500M-1000G 0.816 0.751 0.004 0.804 0.295 0.001 0.841 0.059 -0.025
NT-2B5-1000G 0.815 0.749 -0.003 0.805 0.301 0.005 0.856 0.034 0.046
NT-2B5 0.820 0.757 0.027 0.803 0.297 -0.008 0.840 0.026 -0.033
AgroNT 0.815 0.749 -0.003 0.815 0.298 0.038 0.830 0.056 -0.083
GenSLMs-2.5B 0.810 0.743 -0.029 0.810 0.300 0.027 0.857 0.043 0.066
GenSLMs-250M 0.812 0.746 -0.018 0.799 0.289 -0.028 0.853 0.049 0.020
GenSLMs-25M 0.819 0.755 0.020 0.807 0.298 0.007 0.841 0.050 0.002
DNABERT-2 0.813 0.747 -0.015 0.802 0.285 -0.024 0.863 0.062 0.072
DNABERT-S 0.812 0.745 -0.019 0.801 0.288 -0.026 0.851 0.043 0.036
DNABERT1-3mer 0.818 0.753 0.014 0.801 0.289 -0.023 0.851 0.041 0.039
DNABERT1-4mer 0.815 0.749 -0.002 0.804 0.288 -0.007 0.840 0.043 -0.026
DNABERT1-5mer 0.818 0.753 0.011 0.806 0.297 0.007 0.850 0.062 -0.001
DNABERT1-6mer 0.811 0.744 -0.025 0.809 0.296 0.019 0.843 0.060 -0.049
HyenaDNA-T 0.816 0.751 0.004 0.808 0.294 0.006 0.828 0.046 -0.124
HyenaDNA-T-d128 0.817 0.753 0.011 0.800 0.286 -0.044 0.845 0.039 -0.024
HyenaDNA-T-d256 0.816 0.750 0.002 0.803 0.286 -0.007 0.851 0.038 0.029
HyenaDNA-S 0.817 0.752 0.006 0.816 0.292 0.047 0.857 0.076 0.027
HyenaDNA-M-160k 0.817 0.752 0.010 0.800 0.282 -0.023 0.850 0.042 -0.003
HyenaDNA-M-450k 0.819 0.755 0.021 0.803 0.284 -0.027 0.844 0.060 -0.052
HyenaDNA-L 0.814 0.748 -0.008 0.804 0.288 -0.019 0.861 0.045 0.061
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Table 13: BLMs struggle to solve the real-world evolution tasks using linear probing and fine-
tuning. The table shows the result of @100 track with a batch size of 4×100 sequences. Although
fine-tuning can help a little, most BLMs cannot solve the task well with a similar performance of
random initialization.

Modality Model
Random Initialization Linear Probing Fine-tuning
nDCG↑ SP↑ nDCG↑ SP↑ nDCG↑ SP↑

Protein
ESM2-650M 0.847 0.017 0.845 0.016 0.869 0.114
ESM2-150M 0.851 0.010 0.846 0.007 0.859 0.051

DNA
DNABERT-1-6mer 0.845 -0.057 0.843 -0.049 0.846 0.009
HyenaDNA-T-d256 0.854 0.018 0.851 0.029 0.860 0.068

RNA
RNAErnie 0.841 0.007 0.837 -0.039 0.844 -0.003
3UTRBERT-6mer 0.842 -0.042 0.849 0.025 0.845 0.007
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