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Abstract

Existing benchmarks for biological language models (BLMs) inadequately capture
the challenges of real-world applications, often lacking realistic out-of-distribution
(OOD) scenarios, evolutionary depth, and consistency in measurement. To address
this, we introduce TadABench-1M, a new benchmark based on a wet-lab dataset of
over one million variants of the therapeutically relevant TadA enzyme, purpose-
built to embody these three essential attributes. Generated across 31 rounds of
wet-lab evolution, it offers unparalleled evolutionary depth and naturally presents a
stringent OOD challenge. To ensure measurement consistency across this exten-
sive campaign, we developed Seq2Graph, a scalable graph-based algorithm that
systematically unifies multi-batch experimental data. Our high-fidelity benchmark
highlights a critical finding: while state-of-the-art BLMs excel on a standard ran-
dom split of the data (Spearman’s ρ ≈ 0.8), they fail dramatically on a realistic
temporal prediction task (ρ ≈ 0.1). This stark performance gap validates the
importance of our benchmark’s design principles and suggests that evolutionary
depth is critical for building models with realistic utility.

1 Introduction

Language models pre-trained on biomolecular sequences—DNA, RNA, and proteins—have recently
exhibited scaling laws [28, 4, 20]. As parameter count and corpus size grow, the computational
evaluation, such as perplexity and masked-token accuracy, steadily improves. However, despite this
in-silico success, their practical utility faces increasing scrutiny. A recent crowdsourced antibody-
design challenge, for example, found that models with state-of-the-art computational metrics failed to
generate high-affinity binders [6]. This highlights a critical disconnect between standard benchmarks
and real-world outcomes.

Addressing this gap requires a new class of benchmarks designed to mirror the challenges of real-
world protein engineering. We argue that such a benchmark must embody three key attributes as
shown in Figure 1:

1. Out-of-Distribution Challenge: Protein engineering inherently seeks novel variants, de-
manding that models generalize to unseen regions of the sequence space.

2. Evolutionary Depth: Unlike one-shot mutation scanning, engineering is an iterative process.
A benchmark must capture this trajectory, requiring models to extrapolate across sequences
with accumulating mutations—a challenge we term evolutionary depth.

3. Measurement Consistency: Large-scale, multi-round experiments are prone to batch effects
and noise. A reliable benchmark must therefore ensure that fitness labels are consistent and
comparable across the entire evolutionary campaign.
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Figure 1: Engineering for TadA protein is an iterative process of creating new protein variants
with higher activity. This process demands three key capabilities: realistic out-of-distribution
generalization, extrapolation across evolutionary depth, and high measurement consistency. We
introduce TadABench-1M as a benchmark built upon these attributes.

While existing benchmarks like ProteinGYM [33] and ProteinBench [49] have been invaluable, they
typically prioritize breadth (sampling diverse protein families) over the mutational depth needed to
simulate a focused, iterative engineering project. As a result, a model’s utility in guiding a multi-step
design cycle, a critical real-world capability, remains largely untested.

To address these challenges, we introduce TadABench-1M, a new benchmark built upon a wet-lab
dataset of over one million variants of tRNA-specific adenosine deaminase (TadA), the catalytic
engine of adenine base editors with significant therapeutic value [22, 16]. It is specifically designed to
embody the three key attributes we identified. By conducting 31 iterative rounds of directed evolution,
the dataset provides immense evolutionary depth with variants containing up to 25 mutations. This
multi-round process also naturally establishes a stringent OOD challenge: predicting fitness in future
rounds using data from the past. To ensure measurement consistency across such an extensive
campaign, we develop Seq2Graph, a method that unifies fitness labels by robustly correcting for
inter-round batch effects and mitigating experimental noise, a critical step for ensuring the reliability
of this large-scale benchmark.

The benchmark is designed around a practical temporal split that mirrors a real-world protein
engineering campaign, where the task is to predict the activity of variants in a future round of
evolution given data from all prior rounds. We demonstrate that while state-of-the-art BLMs perform
well on a conventional i.i.d. random split of our data (ρ ≈ 0.8), their performance collapses on our
temporal split, yielding a Spearman correlation of only ρ ≈ 0.1. Furthermore, our analysis reveals a
critical insight into data curation: generalization performance is primarily driven by the evolutionary
depth of the training data (i.e., the number of evolutionary rounds covered), not its raw volume.
Finally, we demonstrate the benchmark’s data consistency by both in vitro and in silico experiments.

Contributions.

• We introduce TadABench-1M, a new benchmark built upon a million-scale protein activity dataset
from 31 rounds of wet-lab evolution. To ensure its measurement consistency, we present Seq2Graph,
a scalable method for unifying and de-noising fitness labels across multi-round experiments.

• By incorporating a temporal split of the dataset, TadABench-1M establishes a realistic evaluation
protocol that mimics a real-world engineering campaign and reveals a stark generalization gap:
SOTA BLMs fail (ρ ≈ 0.1) despite excelling on a standard random split (ρ ≈ 0.8).

• Through systematic analysis, we demonstrate that sequence diversity and evolutionary depth are
more critical for OOD generalization than raw data volume. These results offer clear guidance for
future experimental design and data curation in real-world applications such as protein engineering.
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Figure 2: TadABench-1M simulates the realistic engineering process. It adopts a temporal data split
to reflect practical demands. Across 31 rounds of evolution, it includes over one million variants with
up to 25 mutations. Activity consistency is ensured through wet-lab experiments and Seq2Graph.

2 Related Work

2.1 Protein Activity Benchmark

While structural benchmarks in protein research have achieved notable success [49, 31, 18, 3],
functional benchmarks are still in nascent stages. These benchmarks are primarily categorized into
two groups [44], biophysical properties and deep mutational scanning (DMS) data. The benchmarks
for biological properties [1, 46, 51, 32, 36, 42] include metrics like enzymatic activity, fluorescence,
thermodynamics, and solubility; however, their broad focus limits their utility in precise evaluations.
DMS benchmarks [15, 21, 17], which utilize large-scale mutagenesis and high-throughput sequencing,
offer detailed insights into fitness landscapes for protein mutations. Researchers [33, 9, 38] also
leverage diverse DMS datasets to construct the comprehensive benchmark, but may introduce
inconsistency since the way data is treated varies widely within the community [33]. As shown in
Figure 2, TadABench-1M overcomes these limitations by uniquely combining three key features: a
realistic OOD challenge, high sequence diversity reflecting evolutionary depth, and strict measurement
consistency guaranteed by standardized wet-lab experiments and our Seq2Graph.

2.2 Base Editing Dataset

Current datasets focusing on deaminase enzyme optimization in base editing are relatively sparse and
often fragmented. Most available resources [10, 47, 29, 40, 45, 23] emphasize the optimization of base
editors through the lens of their interactions with CRISPR-associated proteins (Cas) and single-guide
RNAs (sgRNAs), rather than through a systematic exploration of the deaminase variants themselves.
These datasets are typically derived from narrow experimental conditions, thereby limiting their
generalizability and scalability for machine learning (ML)-based modeling and prediction. Several
research groups have published improved or novel deaminase protein sequences through directed
evolution or rational design [37, 25, 41, 35, 5], but with various wet-lab experimental conditions.
Recent aggregation platforms such as CRISPRbase [14] aim to centralize base editing datasets
across various publications and labs. While this is a significant step forward in data accessibility, it
introduces significant batch effects due to diverse experimental protocols [33], compromising the
accuracy of models under real experimental conditions.

3 Dataset Construction by Seq2Graph

Constructing a million-scale, well-annotated fitness landscape presents three primary challenges: (1)
generating a large number of meaningful fitness labels within each experimental round, (2) acquiring
data from a sufficient number of distinct evolution rounds to ensure dataset diversity and depth, and
(3) developing a robust algorithm to unify labels across these independent experiments.

While the first two challenges are met through our wet-lab protocol (detailed in Appendix B), this
paper focuses on the third, a computational challenge: developing a robust algorithm to unify labels
across these independent experiments. This section details our cross-experiment dataset construction
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method, Seq2Graph, illustrated in Figure 3. We begin by presenting the motivation for our approach
(Section 3.1). We then describe the three key stages of our method: directed graph construction
(Section 3.2), inconsistency elimination (Section 3.3), and activity assignment (Section 3.4).

3.1 Motivation

Conventional fitness quantification methods have proven effective for single-batch experiments,
typically relying on normalized read counts to measure variant activity [43, 27, 39]. However, they
face significant limitations in deep evolutionary experiments that involve multiple rounds, especially
when there is only partial overlap of the variant sets between rounds. The inherent stochasticity and
batch effects in protein engineering experiments introduce statistical bias when normalizing across
rounds. Specifically, variants observed in fewer rounds are based on fewer data points, which leads to
inaccurate estimations of their activity scores.

To overcome this challenge, we propose focusing on relative activity rankings within each round.
This strategy avoids the biases associated with direct normalization, offering a more reliable signal for
integrating data across rounds. Given the scale and depth of our dataset—comprising 31 evolutionary
rounds and over a million sequences—graph-based algorithms emerge as an ideal approach for
constructing a globally consistent fitness landscape. Our framework, Seq2Graph, leverages this
methodology by linking overlapping variants, forming a connected graph of relative activities. This
methodology offers a general solution for benchmarking in experiments with multiple rounds of data.

3.2 Directed Graph Construction

In our wet-lab experiments, protein variants with enhanced activity result in increased read count
enrichment during next-generation sequencing (NGS)2 of the final populations, shown on the left
of Figure 3. We model the relative activity of variants as a directed graph G = (V,E), where each
unique DNA sequence represents a node v ∈ V .

For each of the 31 rounds, we first rank all variants by their read count enrichment. To construct
the edges, we create a directed edge ei→j only between variants vi and vj if they are adjacent in
this sorted list. This design choice is critical for two reasons: (1) Reliability: adjacent variants
have similar read counts, making their ratio a more reliable and less noisy local signal compared to
the ratio between distant ranks. (2) Sparsity: this approach generates a sparse graph, ensuring the
computational tractability of subsequent steps.

Each edge points from the variant with the higher growth multiple (vi) to the one with the lower
multiple (vj), and its weight wij is defined as wij = C(vi)/C(vj) > 1, where C(·) is the read count
enrichment after each independent evolution. The final graph, aggregating edges from all 31 rounds,
is a single connected component due to sequence overlap between rounds.

3.3 Inconsistency Elimination

Inconsistencies arising from experimental noise across the 31 rounds manifest as cycles in the
aggregated graph in Figure 3 (b). For global consistency of activities, we resolve conflicts by
transforming the graph into a Directed Acyclic Graph (DAG). This is achieved by removing a
minimum-weight set of edges to break all cycles. We formalize this as the weighted Feedback Arc
Set (FAS) problem, where we aim to remove edges with the smallest weights:

min
F⊆E

∑
e∈F

we

s.t. G′ = (V,E \ F ) is acyclic
(1)

Since the FAS problem is NP-hard, we employ a greedy heuristic [11] for fast approximation. For
computational efficiency, we first identify all strongly connected components (SCCs) in the graph.
Since cycles can only exist within SCCs, we apply the heuristic independently to each SCC subgraph,
which is significantly faster than processing the entire graph.

2Next-Generation Sequencing (NGS) is a broad technology platform that enables deep sequencing, which
refers to generating high coverage of sequencing reads for a target region. In this paper, we use NGS and deep
sequencing interchangeably.
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Figure 3: Pipeline of Seq2Graph. (a) We integrate deep sequencing data from 31 independent
rounds of evolution into a directed acyclic graph. (b) We apply the Feedback Arc Set algorithm to
resolve inconsistencies across experimental rounds. (c) We assign activity values to each TadA variant
following a breadth-first traversal order to minimize sequencing noise along relative relationships.

3.4 Activity Assignment

With a DAG established, we assign a final activity score to each node in Figure 3(c). First, we anchor
the landscape by assigning a reference activity of 1.0 to the sequence TadA8e [37]. We then propagate
activity values throughout the graph. Since edge weights represent activity ratios and biological
growth is multiplicative, this propagation is performed in the log domain.

We traverse the graph from the reference node. For any node reachable via multiple paths, its activity
is determined by the shortest path. This strategy prioritizes the most direct comparisons and mitigates
the accumulation of noise that can occur over longer paths. We implement this assignment by using a
Breadth-First Search (BFS) and disregarding edge directions. This process yields the final DNA-level
dataset. To derive protein-level activities, we average the scores of all synonymous DNA variants
encoding the same protein sequence. This aggregation is non-trivial, as these variants often exhibit
subtle activity differences due to effects like codon usage bias.

3.5 Discussion of Methodology

Rationale for Guided Exploration Data. A key feature of our dataset is its origin from a guided,
multi-round TadA engineering rather than uniform random mutagenesis. In practice, it is infeasible
to perform saturation mutagenesis across 25+ positions (> 1015 variants). Effective engineering
leverages expert knowledge to explore promising regions of the sequence space. This knowledge-
driven process is precisely the real-world scenario we aim to benchmark for BLMs.

Generality of the Seq2Graph Framework. Seq2Graph is a task-agnostic and generalizable
framework. Its core principle of reconciling locally-consistent rankings via a graph is not specific to
our protein system. It is applicable to any high-throughput screen that generates quantitative readouts
across multiple independent experiments, batches, or even different labs. For example, we have also
built a Cas9 protein dataset using the same algorithm, as shown in Section C.4.

4 Experiment

In this section, we present a series of experiments designed to validate TadABench-1M as a chal-
lenging and reliable benchmark for guiding real-world protein directed evolution campaigns. Out-
of-distribution: We first establish that our proposed temporal data split poses a significant out-of-
distribution (OOD) generalization challenge, qualitatively different from standard random splits
(Section 4.1). Depth-Driven Generalization: We then investigate the source of this challenge.
Through a controlled scaling study in Section 4.2, we demonstrate that generalization performance
is primarily driven by the functional diversity (or evolutionary depth) of the training data. Internal
Consistency and Robustness: Finally, to confirm the integrity of our benchmark, we demon-
strate its large-scale consistency in Section 4.3 by experimentally validating both the fidelity of its
gold-standard biological assays and its computational robustness.
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4.1 Out-of-Distribution Challenge: The Temporal Split

To accurately reflect the challenges inherent in a real-world protein-directed evolution process, our
benchmark incorporates a temporal data split, specifically designed to assess how well models
generalize across an evolutionary trajectory. Unlike traditional benchmarks that rely on static, random
data splits, this approach simulates the iterative nature of protein engineering.

4.1.1 Experimental Settings

Dataset We emulate a practical protein engineering scenario by splitting the data temporally: rounds
1–27 for training, 28 for validation, and 29–31 for testing. The nucleic acid (DNA/RNA) dataset
contains 729,302 training sequences, 148,014 validation sequences, and 149,884 test sequences. The
protein dataset comprises 256,429 training sequences, 45,208 validation sequences, and 108,232 test
sequences. Crucially, our novel high-throughput wet-lab platform (in Section B) allows TadABench-
1M to be a continually evolving resource. As new rounds of data are generated, the current test set
can be integrated into the training data, and the new rounds will serve as a fresh, unseen test set. This
approach guarantees that the benchmark remains a realistic and challenging OOD task over time. To
this end, TadABench-1M is designed for ongoing expansion as a challenging resource.

Task and Evaluation The primary task is to predict the relative fitness of unseen protein variants, a
core challenge in engineering workflows. We evaluate models on their ability to rank variants correctly
using three standard metrics [33]: Spearman’s rank correlation (ρ) to assess overall monotonic trend
prediction, Recall@10% to measure the identification rate of top-tier candidates, and normalized
Discounted Cumulative Gain at 10% (nDCG@10%) to evaluate the ranking quality within this top
decile, offering a multi-faceted view of their performance.

Models We evaluate a suite of biological language models (BLMs) spanning DNA, RNA, and
protein domains. For DNA, we include models from the EVO2 [2] and NucleotideTransformer
(NT) [8] families. For RNA, we test the OmniGenome (OG) family [48]. For proteins, we consider
the ESM2 [26], ProtTrans [12], and ESMC [13] families. It is important to note that due to the
modality differences (nucleic acid vs. protein sequences), direct performance comparisons between
these model classes are not meaningful. Details on experimental settings are provided in Section D.1.

4.1.2 Random Split: TadABench-1M is learnable

To establish a baseline and verify that the fitness landscape of TadABench-1M is inherently learnable,
we first evaluated models under an ideal in-distribution (i.i.d.) scenario using a standard random
8:1:1 split (train:validation:test). As shown in Table 1, BLMs perform remarkably well under these
conditions, achieving a Spearman correlation of approximately ρ ≈ 0.8 on both the validation and test
sets. This strong performance confirms that the sequence-activity relationships within the benchmark
are coherent and effectively learnable in an i.i.d. setting. The resulting high-performance baseline of
ρ ≈ 0.8 thus serves as a crucial reference point, validating the benchmark’s fundamental learnability
and setting the stage for evaluating model generalization on more challenging splits.

4.1.3 Temporal Split: TadABench-1M is challenging

In stark contrast, when evaluated on the practical temporal split, all BLMs exhibit a dramatic
drop in performance as illustrated in Figure 4. As shown in Table 3 and Table 2, the Spearman
correlation for linear probing collapses to approximately ρ ≈ 0.1. This severe performance degrada-
tion highlights a critical generalization gap. Even a simple one-hot encoding baseline fails, yielding
correlations of 0.0707 on the validation set and 0.0459 on the test set, underscoring the profound
OOD difficulty. These results highlight the difficulty of practical OOD scenarios.

Fine-tuning and prompt tuning do not overcome the generalization gap. To investigate if
performance could be improved by training more parameters, we evaluated both full fine-tuning and
prompt tuning. As shown in Table 5, fine-tuning yielded no significant improvement over linear
probing. Similarly, an extensive search over prompt tuning hyperparameters—including varying
prompt length, position, initialization, and layer—also failed to lift the Spearman correlation above
the ρ ≈ 0.1 (Table 6). This suggests the bottleneck is a more fundamental generalization challenge.
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Table 1: Performance on TadABench-1M (protein version). The training, validation, and test sets
were obtained via an 8:1:1 random split. For each model, the best result is selected from three
different learning rates. Bold numbers indicate the highest performance.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

ESM2-35M 0.8032 0.1830 0.4824 0.8014 0.1617 0.4814
ESM2-150M 0.7386 0.2290 0.4364 0.7371 0.2324 0.4437
ESM2-650M 0.5360 0.1793 0.4740 0.5348 0.1710 0.4779
Prot-BERT 0.7910 0.2230 0.4879 0.7883 0.2262 0.4918
Prot-XLNET 0.8054 0.2264 0.4912 0.8030 0.2193 0.4965
ESMC-300M 0.8102 0.2439 0.4959 0.8067 0.2363 0.4995
ESMC-600M 0.8127 0.2446 0.5006 0.8079 0.2317 0.4949

ID (val)            OOD (val)            ID (test)            OOD (test)

ESM2-150M   ESM2-650M      Prot-BERT     Prot-XLNET   ESMC-300M   ESMC-600M
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Figure 4: The temporal split of our TadABench-1M, designed to simulate real-world TadA engi-
neering scenarios, presents a challenging task for protein language models. In this context, “ID”
refers to the in-distribution setting, represented by the random split, while “OOD” corresponds to
the out-of-distribution setting, indicated by the temporal split. The shallow color bars denote the
validation set, while the deeper color bars represent the test set.

4.2 Generalization is Driven by Evolutionary Depth

Building upon the established OOD challenge, this section investigates its underlying causes. We
hypothesize that the generalization gap arises not from the quantity of training data, but from its
functional diversity. In this context, functional diversity arises directly from the benchmark’s inherent
evolutionary depth, which spans multiple rounds of mutation and selection. To test our hypothesis,
we conduct a controlled scaling study where we vary the training set composition while keeping the
validation and test sets fixed. We partition the training data using three distinct strategies:

Density: A random subsample of the full training set. This simulates simply collecting more data
from the same evolutionary rounds.

Diversity: Sequences selected from all training rounds to maximize similarity with the validation
set. This prioritizes data functionally closer to the target.

Round: Entire experimental rounds selected based on their aggregate similarity to the validation set.
This preserves intra-round correlations while moving closer to the target task.

As shown in Figure 5, performance scales with the training data size (x-axis, log scale), but the
scaling law is entirely dependent on the curation strategy. For all tested models, the diversity and
round-based strategies consistently and significantly outperform the naive density-based strategy. For
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Table 2: Performance on TadABench-1M (DNA version). Data from rounds 1–27 is used for training,
round 28 for validation, and rounds 29–31 for testing. For each model, the best result is selected from
three different learning rates. The Bold numbers indicate the highest performance. We here report
the RNA language model, OmniGenome (OG), since the dataset is the same after changing T to U.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

Evo-7B 0.0490 0.1097 0.2604 0.0707 0.1005 0.3236
Evo-40B 0.0980 0.1157 0.2702 0.0675 0.1003 0.3244
NT-50M 0.0401 0.0959 0.2464 0.0166 0.0950 0.3109
NT-100M 0.0520 0.0982 0.2485 0.0045 0.0870 0.3048
NT-250M 0.0470 0.0858 0.2137 0.0006 0.0971 0.3085
NT-500M 0.0361 0.0985 0.2225 0.0189 0.1005 0.3079
OG-46M 0.0555 0.0911 0.2192 0.0079 0.1063 0.3158
OG-418M 0.0078 0.0949 0.2391 0.0048 0.0859 0.3042

Table 3: Performance on TadABench-1M (protein version). Data from rounds 1–27 is used for
training, round 28 for validation, and rounds 29–31 for testing. For each model, the best result is
selected from three different learning rates. Bold numbers indicate the highest performance.

Model
Validation Test

Spearman Recall@10% nDCG@10% Spearman Recall@10% nDCG@10%

ESM2-150M 0.1458 0.1420 0.6569 0.0416 0.1230 0.3068
ESM2-650M 0.1423 0.1473 0.6530 0.0479 0.1120 0.2791
Prot-BERT 0.1280 0.1128 0.6534 0.0214 0.1162 0.2980
Prot-XLNET 0.1570 0.1261 0.6589 0.0342 0.1175 0.2895
ESMC-300M 0.1498 0.1199 0.6495 0.0355 0.1151 0.2867
ESMC-600M 0.1452 0.1206 0.6397 0.0509 0.1180 0.2860

instance, a small, diversity-focused dataset often yields better performance than a much larger but
randomly sampled one. This strongly indicates that successfully bridging the OOD gap requires
exploring functionally diverse regions of the sequence space, rather than simply increasing density.

4.3 In Vitro and In Silico Data Consistency

The consistency of TadABench-1M is confirmed through two key validations: the accuracy of the
in vitro sequencing ranks and the robustness of the in silico Seq2Graph computation. This rigorous
validation ensures that the inherent OOD challenge are both genuine and reliable.

For wet experiments, we performed orthogonal validation using a low-throughput, gold-standard
assay to ensure that our high-throughput fitness labels are biologically meaningful. We engineered a
Green Fluorescent Protein (GFP) reporter system to reflect the protein activity. We selected several
key variants spanning a range of fitness score and independently measured their activity using this
GFP assay. The results provided strong validation: the rank ordering of variant activities determined
by the GFP assay showed an exceptionally high correlation with the rank ordering derived from our
high-throughput NGS read counts enrichment.

For dry experiments, we conduct two bootstrapping analyses to evaluate the robustness of Seq2Graph.
First, we randomly subsample 50% of the experimental rounds (15 of 31) and rerun the entire
construction pipeline. The resulting activity scores for sequences common to both datasets show
a Spearman’s rank correlation of ρ = 0.90 (p < 10−5). Second, we subsample 50% of sequences
within each round before running the pipeline, which yields a Spearman’s ρ = 0.95 (p < 10−5).
These high correlations demonstrate that our method is robust to variations in experimental input and
sequencing depth. Together, these in vitro and in silico validations confirm the internal consistency.
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Figure 5: Performance by data scales in different modes of segmentation on diverse models. The
rough data scaling trend can be observed among all models, especially on the domain. Note that the
dataset of the DNA version (a, b) and protein version (c, d) is different.

5 Conclusion

In this study, we introduce TadABench-1M, a benchmark designed to evaluate Biological Language
Models (BLMs) in out-of-distribution (OOD) settings, using the engineering of the TadA protein
as a case study. By incorporating temporal splits and evolutionary depth, we simulate real-world
challenges such as generalizing to unseen sequences, extrapolating across iterative mutations, and
ensuring consistent fitness measurements. Our experiments reveal a significant performance gap,
with state-of-the-art BLMs failing to generalize under realistic OOD conditions despite excelling in
standard IID evaluations. This work emphasizes the importance of evolutionary depth over sheer data
volume for OOD generalization and provides key insights for designing future benchmarks.
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Figure 6: TadABench-1M is derived from extensive wet-lab protein evolution experiments encom-
passing 31 iterative rounds. Left panel illustrates the functional role of TadA as a key enzyme in base
editing. Central panel presents the in vitro evolution process of TadA, which enabled the generation
of comprehensive deep sequencing data. Right panel outlines the construction of our dataset using
the Seq2Graph method, followed by its evaluation with biological language models.

Appendix

We first discuss the use of Large Language Models in Section A. Additionally, we introduce our
wet-lab data collection framework in Section B. Section C provides biological details on dataset
construction, while Section D presents additional experimental settings and results.

A The Use of Large Language Models

During the preparation of this paper, large language models (LLMs) such as GPT-5 [34] were utilized
to assist with various tasks, including grammar and error correction, enhancing wording and phrasing,
and providing recommendations for the visualization of tables and figures. These tools primarily
contributed to improving the linguistic quality of the manuscript and offering suggestions for more
effective visual representation of data. However, the LLMs were not involved in the scientific ideation
or the development of research concepts. Their contributions are disclosed here to ensure transparency
in the research methodology.

B Biological Assay

We provide a visual summary of our entire pipeline, from the biological experiments to the final
benchmark construction, illustrated in Figure 6.

B.1 Biological and Experimental Preliminaries

Adenine Base Editing and TadA: Base editing enables precise single-nucleotide conversions
without the double-strand breaks (DSBs) associated with traditional CRISPR methods, offering
improved safety and precision [7, 19, 22, 16]. Adenine base editors (ABEs), the focus of this work,
convert A•T to G•C base pairs. This is achieved using an engineered tRNA-specific adenosine
deaminase (TadA) enzyme, which catalyzes the deamination of adenosine (A) to inosine (I), an
intermediate interpreted as guanosine (G) during DNA replication. Our work centers on TadA8e [37],
a high-activity variant comprising 167 amino acids. Our benchmark, TadABench-1M, is constructed
from libraries of TadA8e variants generated through extensive mutagenesis.

PANCE for High-Throughput Activity Annotation: We employ Phage-Assisted Non-Continuous
Evolution (PANCE) [30, 50], a directed evolution method, to screen TadA variants for their activity at
scale. In this system, a library of TadA variants is encoded within a bacteriophage population. Phages
carrying variants with higher enzymatic activity replicate more efficiently, leading to their enrichment.
The relative abundance of each variant is then quantified via Next-Generation Sequencing (NGS),
where higher read counts serve as a proxy for superior activity. Our TadABench-1M dataset comprises
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data from 31 independent PANCE experiments, each screening a unique library of tens of thousands
of TadA variants.

Degenerate Sequences for Efficient Library Synthesis: Synthesizing large and diverse variant
libraries by creating each DNA sequence individually is prohibitively expensive. To overcome this,
we utilize degenerate sequence synthesis [24]. A degenerate sequence is a single oligonucleotide
template that contains ambiguous nucleotide codes (e.g., ’N’ representing A, C, G, or T) at specified
positions. This technique enables the cost-effective generation of a vast library containing thousands
of unique variants from a single synthesis reaction, which was essential for constructing the diverse
libraries screened in our PANCE experiments.

B.2 Experimental Workflow for Large-Scale Protein Fitness Dataset

Out-of-distribution (OOD) data is frequently encountered in real-world applications, such as protein
engineering. Our objective was to generate an extensive protein fitness dataset to evaluate the
OOD generalization of biological language models rigorously. Therefore, it required a scalable
and generalizable experimental workflow to map a sequence-function landscape far from naturally
occurring proteins.

We developed a general multi-stage workflow centered on Phage-Assisted Non-Continuous Evolution
(PANCE), which integrates expert-guided library design, high-throughput selection, and orthogonal
validation. The efficacy of this workflow was demonstrated by its primary outcome: the discovery of
a state-of-the-art TadA variant whose activity significantly surpasses published benchmarks [37]. This
result validates the biological relevance of our high-throughput fitness measurements and supports
the integrity of the generated dataset.

DNA Library Phage Library Bacteria Selection

Amplified PhageAmplified DNA

Phage 
Competition

Sequencing

Start

31	Rounds

In-vitro Protein Evolution

Figure 7: The workflow for general large-scale protein activity annotation. A large library of
mutants is synthesized by degenerate sequences, and activity candidates are labeled by phage-assisted
evolution. Variants with higher activity trigger gIII expression, leading to phage propagation.

B.2.1 Expert-Guided Library Design

A key departure from standard continuous evolution systems that rely on random mutagenesis is
our use of expert-designed libraries. To ensure the utility and generality of the OOD data, we
adopted a well-established pipeline common in industrial protein engineering. Each of the 31
experimental rounds began with a unique, rationally designed library of TadA variants. Protein
engineers, leveraging structural information and domain expertise, identified promising regions
for mutation and designed targeted libraries using degenerate sequence synthesis (e.g., using NNK
codons). This approach serves two critical functions:

Reflects Applied Engineering Practices: This approach introduces a knowledge-driven bias,
focusing exploration on promising regions of the sequence space. This strategy mirrors common
industrial practice, which favors targeted mutagenesis over uniformly random approaches.
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Establishes a Controlled Baseline: Degenerate synthesis ensures that all designed variants are
present at a uniform initial concentration. This experimental control is critical: by eliminating initial
abundance as a confounding variable, it greatly simplifies downstream fitness estimation.

B.2.2 Phage-Assisted Non-Continuous Evolution (PANCE)

We employed Phage-Assisted Non-Continuous Evolution (PANCE) [30, 50] as our high-throughput
selection engine. The core principle of PANCE is coupling the function of a target protein to the
replication of a bacteriophage. In our system, we engineered the M13 phage by deleting the essential
gene gIII, which encodes the pIII protein required for virion release. The expression of gIII was
placed under the control of a reporter system activated by the enzymatic activity of our target protein,
TadA. Consequently, only E. coli cells hosting a sufficiently active TadA variant can produce and
release new phages.

To ensure a robust selection process, each of the 31 rounds involved five cycles of serial dilution and
competitive regrowth. This iterative enrichment minimizes stochastic effects and ensures the final
phage population’s composition accurately reflects the relative fitness of the encoded variants. Phages
encoding high-activity proteins replicate more efficiently, ultimately dominating the population, while
those encoding low-activity variants are progressively eliminated.

B.2.3 Fitness Quantification and Robustness

We quantified the fitness of each TadA variant based on its read count enrichment, as determined by
deep Next-Generation Sequencing (NGS) of the enriched phage population. To guarantee precision
and minimize sampling noise, each round was sequenced at an exceptional depth of over 100G bases,
ensuring accurate quantification of variant frequencies.

B.2.4 Orthogonal Validation of Fitness Labels

To address the critical question of whether our high-throughput fitness labels are biologically mean-
ingful, we performed rigorous orthogonal validation using a low-throughput, gold-standard assay. We
engineered a Green Fluorescent Protein (GFP) reporter system in which a mutated, non-fluorescent
GFP gene could be repaired by the editing activity of a TadA variant, leading to a measurable
fluorescent signal.

We selected several key variants spanning a range of fitness scores from the PANCE screens and
independently measured their activity using this GFP assay. The results provided strong validation:
the rank ordering of variant activities determined by the GFP assay showed an exceptionally high
correlation (e.g., Spearman’s rank correlation ρ > 0.99) with the rank ordering derived from our
high-throughput NGS read counts enrichment. This confirmation anchors our large-scale dataset
in established biophysical measurements and affirms that the fitness labels in TadABench-1M are
reliable and biologically meaningful.

We are unable to release the full, detailed experimental protocols due to company licensing restric-
tions.

C Details of Seq2Graph

This section provides further biological and methodological details on the construction of Seq2Graph,
complementing the computational overview presented in Section 3.

C.1 Directed Graph Construction

In our directed evolution experiments, the activity of a TadA variant is proportional to its replication
rate, which is measured by read counts from Next-Generation Sequencing (NGS)3. A common
practice is to normalize these counts to estimate variant activities [43, 27, 39]. However, while our 31
experimental rounds followed a standardized protocol, inherent biological and technical stochasticity

3Next-Generation Sequencing (NGS) is a technology platform that enables high-throughput sequencing. In
this paper, we use NGS and deep sequencing interchangeably.
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introduces batch effects, making it impossible to aggregate normalized counts from different rounds
into a single, consistent dataset.

To solve such limitations, we propose to model the relative activity of variants in a directed graph,
rather than the common practice of absolute activity after normalization, shown in Figure 3 (a). In
the directed graph, G = (V,E), the DNA sequence of each variant obtained from NGS is taken as a
node vi. For the list of growth multiples for read counts, the number of edges in G can be up to |V |2.
Considering the computational complexity, We require a sparse graph that remains weakly connected,
as this property is essential for the relative activity assignment.

Specifically, we sort the list of growth multiples for read counts and only add edges for nodes with
adjacent count values along the list. To further manage computational complexity, we cap the number
of edges generated per experiment at 100,000. Each edge points from nodes with higher activity to
those with lower activity, which means the edge weight is always greater than 1. The weight of edge
ei→j represents the relative activity of vi over vj , wij =

C(vi)
C(vj)

, where C(·) is the growth multiples
for read counts.

Since the directed evolution process iteratively enriches for high-performing variants, some sequences
are present across multiple experimental rounds, acting as bridging nodes within the dataset. Conse-
quently, the graph composed of all 31 experimental datasets is weakly connected, ensuring a relative
activity path exists between nearly any two variants. We also store the experimental round as a node
attribute; on average, each node appears in 1.58 rounds.

C.2 Inconsistency Elimination

Aggregating pairwise comparisons from 31 rounds inevitably introduces conflicting relationships
(e.g., vi > vj , vj > vk, but vk > vi). These conflicts manifest as cycles, or strongly connected
components (SCCs), in the graph, as shown in Figure 3 (b). To ensure a globally consistent activity
ranking, these cycles must be eliminated.

We assume that edges with higher weights, corresponding to larger read count ratios, are more reliable
as they are less susceptible to measurement noise. We therefore frame the cycle removal task as the
weighted Feedback Arc Set (FAS) problem: finding a minimum-weight set of edges whose removal
makes the graph acyclic, shown in Equation (2).

min
F⊆E

∑
e∈F

we

s.t. G′ = (V,E \ F ) is acyclic
(2)

As the exact FAS problem is NP-hard and our graph is large, we employ a fast greedy heuristic [11]
that approximates the solution by iteratively ordering vertices based on their in- and out-degrees. For
efficiency, we apply this algorithm independently to each SCC. The result is a directed acyclic graph
(DAG) containing the original set of nodes but with fewer edges.

C.3 Activity Assignment

With the DAG established, we assign a consistent, relative activity score to each node. We anchor the
scale by setting the activity of the reference sequence (TadA8e [37]) to 1.0. Since phage replication
exhibits exponential growth, we propagate activity scores in a log-additive fashion along the graph
edges.

We traverse the graph from the reference node using a breadth-first search (BFS) to assign activities.
We chose BFS because it identifies the shortest path from a source to all other nodes. Shorter paths
involve fewer pairwise comparisons and are therefore less likely to accumulate experimental noise,
yielding the highest-confidence estimates. To implement this, the graph is treated as undirected
during the traversal. A node’s activity is calculated and permanently set upon its first visit, which
ensures the calculation is based exclusively on a single shortest path. This process yields the DNA
version of Seq2Graph, which contains 1,027,200 DNA sequences with their assigned activity labels.

Finally, to create a protein-level dataset, we map DNA-level activities to their corresponding protein
sequences. Since multiple DNA variants can encode the same protein, we compute the final activity
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×10,270,000

Figure 8: Visualization of our dataset of TadABench-1M. Left part shows the folded structure of
TadA obtained from our wet-lab experiments, predicted using ESMFold [26]. Right part presents a
t-SNE visualization of the clustering results across 31 rounds of protein evolution.

Table 4: Statistics of the Cas9 dataset created by Seq2Graph. The dataset is split into training,
validation, and test sets with a ratio of 8:1:1.

Train Val Test Total

DNA 255918 31989 31991 319898
RNA 255918 31989 31991 319898

Protein 131735 16466 16468 164669

for each protein by averaging the activities of all its corresponding DNA sequences. This averaging
is non-trivial, as synonymous DNA variants can exhibit different activities due to effects like codon
usage bias. This final step produces our protein dataset, comprising 409,869 annotated protein
sequences.

Based on Seq2Graph, we construct the final dataset, visualized in Figure 8. The t-SNE embedding on
the right, generated from 50 sequences sampled from each of the 31 rounds, reveals distinct clusters
corresponding to different rounds. It depicts that our multi-round experimental design explores
diverse regions of the sequence space, providing a broad dataset for a general evaluation.

C.4 The Cas9 Dataset Built by Seq2Graph

The Seq2Graph framework is a task-agnostic and generalizable method. Its core principle revolves
around reconciling locally-consistent rankings through a graph-based approach, which is inherently
not tied to any single protein system or specific dataset. This makes Seq2Graph applicable to a
broad range of tasks. Whether it involves large-scale labels across multiple independent experiments,
batches, or even different laboratories, the framework remains robust and versatile.

To demonstrate the generality and versatility of the Seq2Graph framework, we extend its application to
the creation of a Cas9 dataset, as presented in Table 4. This showcases the adaptability of Seq2Graph
in generating high-quality data representations across diverse domains. To further illustrate the power
of our approach, we provide a visualization of the generated labels in Figure 9, which highlights the
distribution of values across different modalities. This demonstrates the framework’s flexibility in
handling various biological data types, reinforcing its utility across different scientific domains and
tasks.
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Figure 9: The value distribution of the Cas9 dataset created by Seq2Graph. The left figure represents
the activity scores in the DNA/RNA modality, while the right figure corresponds to the protein
modality.

D Experimental Details of TadABench-1M

D.1 Dataset, Task, and Evaluation

Dataset and Task. TadABench-1M is derived from Next-Generation Sequencing (NGS) data
of evolved TadA variants, available as both nucleic acid (DNA/RNA) and protein sequences (see
Section 3.4). Our primary task mimics a realistic directed evolution scenario where models must
predict the relative fitness of novel variants. Success is measured not by precise regression of activity
values, but by the ability to correctly rank top-performing sequences. This is because experimental
validation capacity is limited, making the accurate identification of a small set of promising candidates
paramount.

Data Splits. We employ two distinct data-splitting strategies to evaluate model performance under
different conditions.

• Practical (Temporal) Split: To simulate a real-world, forward-in-time prediction scenario,
we split the data temporally: rounds 1–27 for training, round 28 for validation, and rounds
29–31 for testing. The nucleic acid dataset contains 729,302 training, 148,014 validation, and
149,884 test sequences. The protein dataset comprises 256,429 training, 45,208 validation,
and 108,232 test sequences.

• Random (ID) Split: To establish an idealized baseline, we create a standard independent
and identically distributed (ID) split by randomly partitioning the entire dataset into training
(80%), validation (10%), and test (10%) sets.

Evaluation Metrics. Following established practices in protein fitness prediction [33], we evaluate
models using three key metrics. Spearman’s rank correlation coefficient (ρ) measures the model’s
ability to capture the overall monotonic relationship between predicted and true activity scores. To
assess performance on identifying top candidates, we use Recall@10%, the fraction of true top-10%
variants identified in the predicted top 10%, and normalized Discounted Cumulative Gain at 10%
(nDCG@10%), which further evaluates the ranking quality within this top decile.

D.2 Models and Implementation Details

Pre-trained Models. We evaluate a diverse suite of pre-trained biological language models (BLMs).
For nucleic acids, we test models from the EVO2 [2] family (EVO2-7B, EVO2-40B) and Nu-
cleotideTransformer [8] family (NT-50M, NT-100M, NT-250M, NT-500M). For proteins, we include
models from ESM2 [26] (ESM2-35M, ESM2-150M, ESM2-650M), ProtTrans [12] (Prot-BERT,
Prot-XLNET), and ESMC [13] (ESMC-300M, ESMC-600M). When using RNA-specific models,
DNA sequences were processed by mapping Thymine (T) to Uracil (U).

Linear Probing Implementation. For our primary evaluation, we perform linear probing on fea-
tures extracted from pre-trained models. For most models, we use the final hidden state representation;
for EVO2 models, we use the output logits. To ensure a fair comparison across models with different
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Table 5: Performance on TadABench-1M using fine-tuning. Data from rounds 1–27 is used for
training, round 28 for validation, and rounds 29–31 for testing.

Model Learning Rate Spearman Recall@10% nDCG@10%

ESM2-8M
3e-5 0.0432 0.1260 0.3094
1e-4 0.0553 0.1270 0.3066
3e-4 0.0407 0.1000 0.2594

ESM2-35M
3e-5 0.0465 0.1136 0.2828
1e-4 0.0479 0.1157 0.2817
3e-4 0.0072 0.1033 0.2602

ESM2-150M
3e-5 0.0271 0.1418 0.3203
1e-4 0.0391 0.1127 0.2784
3e-4 0.0271 0.1418 0.3203

NT-50M
3e-5 0.0484 0.0899 0.3119
1e-4 0.0296 0.0850 0.3055
3e-4 0.0491 0.0848 0.3063

NT-100M
3e-5 0.0367 0.0871 0.3083
1e-4 0.0460 0.0887 0.3130
3e-4 0.0480 0.0907 0.3106

NT-250M
3e-5 0.0368 0.0841 0.3077
1e-4 0.0237 0.0840 0.3068
3e-4 0.0485 0.0862 0.3080

NT-500M
3e-5 0.0630 0.0913 0.3147
1e-4 0.0465 0.0853 0.3064
3e-4 0.0492 0.0888 0.3117

embedding dimensions, we train a two-layer MLP regression head on top of these features. The
hidden layer size of the MLP is adjusted for each model to maintain a consistent number of trainable
parameters, with a ReLU activation between layers. We found that using all logit dimensions for
EVO2 models led to training instability. We therefore stabilized training by using only the logits
corresponding to the four canonical nucleotides (A, T, C, G). For all models, we use the sequence
of token representations as input to the MLP, as this performed comparably to mean-pooling while
retaining more information. Each head is trained for 20 epochs using a cosine learning rate scheduler
with a 1-epoch warmup, selecting the best learning rate from {3e-5, 1e-4, 3e-4} based on validation
performance.

D.3 Performance on the Practical (Temporal) Split

To assess whether training a larger number of parameters could bridge the generalization gap observed
with linear probing, we evaluated both full model fine-tuning and prompt tuning. As shown in Table 5,
fine-tuning all model parameters provided no significant improvement over linear probing. Similarly,
despite an extensive hyperparameter search for prompt tuning (including prompt length, position, and
initialization), performance remained poor, with Spearman correlation failing to exceed ρ ≈ 0.1, as
shown in Table 6. These results suggest that the performance bottleneck is not the number of trainable
parameters but rather a more fundamental generalization failure of the pre-trained representations on
this out-of-distribution task.
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Table 6: Performance on TadABench-1M using prompt tuning with different hyper-parameters. Data
from rounds 1–27 is used for training, round 28 for validation, and rounds 29–31 for testing.

Model Prompt Init Prompt Position Prompt Length Prompt Layers Test Spearman

NT-50M

kaiming add 1 0 0.0405
uniform add 1 0 0.0683
uniform prepend 1 0 0.0617
uniform prepend 2 0 0.0653
uniform prepend 4 0 0.0652
uniform prepend 8 0 0.0735
uniform prepend 16 0 0.0656
uniform prepend 32 0 0.0754
uniform prepend 64 0 0.0606

ESMC-300M

uniform prepend 1 0 0.0182
uniform prepend 1 10 0.0266
uniform prepend 1 20 0.0239
uniform prepend 1 30 0.0193
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