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Abstract

Large language models trained on biomolecular sequences—DNA, RNA, and
proteins—exhibit impressive in silico scaling trends, yet their practical util-
ity in laboratory protein engineering remains under-explored. We assemble a
million-example, wet-lab-validated dataset comprising 31 rounds of directed evolu-
tion on the tRNA-specific adenosine deaminase (TadA) that underlies adenine base
editors. To harmonize labels across rounds, we introduce Seq2Graph, a scalable
graph-based reconciliation algorithm that mitigates sequencing noise. Leveraging
this resource, we propose TadABench-1M, an application-oriented benchmark that
tasks models with ranking candidate variants for the next evolutionary round, given
data from previous rounds. State-of-the-art biological language models achieve
a Spearman correlation of only p = 0.1 under this realistic setup, contrasting
sharply with p ~ 0.8 on a random split of this dataset, revealing a striking gap
between computational metrics and wet-lab success. Controlled ablations show
that sequence diversity and round coverage, rather than raw data density, dominate
performance, pinpointing key bottlenecks for next-generation biological language
models. TadABench-1M provides a large-scale, realistic foundation for developing
and evaluating pre-trained language models. We will release the data and code.

1 Introduction

Language models pre-trained on biomolecular sequences, DNA [13]], RNA [28]], and proteins [37,1335]],
have recently exhibited scaling behaviour analogous to that observed in natural-language process-
ing [13} 124,17, 17, 18} 43]]. As parameter count and corpus size grow, the computational evaluation,
such as perplexity and masked-token accuracy, steadily improves. We refer to these models collec-
tively as biological language models (BLMs). Despite their impressive in silico results, the real-world
value of BLMs remains unclear. In a recent crowdsourced antibody-design challenge [11]], models
with state-of-the-art computational metrics nonetheless produced low-affinity binders, highlighting a
troubling gap between numerical scores and wet-lab success.

In this work, we interrogate the practical utility of BLMs for protein engineering. Our case study
is tRNA-specific adenosine deaminase (TadA), the catalytic core of widely used adenine base
editors [30,21]]. We first assemble a rigorously standardized, million-scale dataset of TadA variants
and their in-cell editing activities. The dataset is generated over 31 rounds of directed evolution by
coupling phage-assisted non-continuous evolution (PANCE) with degenerate sequence synthesis (see
Appendix [A)). To harmonize labels across rounds, we introduce Seq2Graph, a scalable graph-based
algorithm that reconciles replicate measurements and suppresses sequencing noise.

Leveraging this dataset, we formulate TadABench-1M, an application-oriented benchmark that
mirrors how BLMs are deployed in practice: given data from previous rounds, predict the relative
activity of variants synthesised in the next round. Strikingly, state-of-the-art BLMs achieve only a
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Figure 1: TadABench-1M is derived from extensive wet-lab protein evolution experiments encom-
passing 31 iterative rounds. The left panel illustrates the functional role of TadA as a key enzyme in
base editing. The central panel presents the in vitro evolution process of TadA, which enabled the
generation of comprehensive deep sequencing data. The right panel outlines the construction of our
dataset using the Seq2Graph method, followed by its evaluation with biological language models.

Spearman correlation of p ~ (0.1 under this realistic setting, whereas the same models reach p ~ 0.8
on a conventional i.i.d. random split of TadABench-1M. These results echo the antibody-design
failure [11] and reveal that standard in silico evaluations may overestimate the performance of BLMs.

To probe the origin of this gap, we conduct a controlled study that systematically varies the density
(number of randomly retained variants), diversity (sequence-similarity-based sampling), and round
coverage of the training data. We find that the largest gains arise from incorporating additional
evolutionary rounds or maximizing sequence diversity, rather than merely increasing the number
of training examples. These results suggest that BLMs benefit most from training data with broad
sequence diversity to effectively capture the attributes required for downstream tasks. From a data
curation perspective, this highlights the importance of expanding experimental coverage and ensuring
diversity across the vast sequence space, rather than focusing solely on dataset size.

Contributions.

* We release a million-example, wet-lab-validated dataset of TadA activity obtained from 31 standard-
ized rounds of directed evolution. It is built by our Seq2Graph, a scalable graph-based algorithm
that enforces cross-round label consistency and mitigates sequencing noise.

* We establish TadABench-1M, an application-oriented benchmark spanning protein, DNA, and
RNA language models. Experiments reveal a large gap between in-silico evaluation and real-world
performance, where the dataset split for a practical scenario is much harder than the random split.

» Through controlled ablation, we show that BLMs need higher sequence diversity and round
coverage, rather than raw data density, to dominate downstream performance.

2 Related Work

2.1 Protein Activity Benchmark

While structural benchmarks in protein research have achieved notable success [69, 41} 23] 4],
functional benchmarks are still in nascent stages. These benchmarks are primarily categorized into
two groups [62], biophysical properties and deep mutational scanning (DMS) data. The benchmarks
for biological properties [1}165] 73] 4449, 158] include metrics like enzymatic activity, fluorescence,
thermodynamics, and solubility; however, their broad focus limits their utility in precise evaluations.
DMS benchmarks [20}29}[22], which utilize large-scale mutagenesis and high-throughput sequencing,
offer detailed insights into fitness landscapes for protein mutations. Researchers [45} [14}151]] also
leverage diverse DMS datasets to construct the comprehensive benchmark, but may introduce
inconsistency since the way data is treated varies widely within the community [45]. In conclusion,
the above benchmarks are for general purposes without a specific application. In contrast, Tad ABench-
1M is from a real-world application scenario. Besides, it has a significantly higher sequence diversity
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Figure 2: Our TadABench-1M dataset provides three key advantages over related benchmarks. First,
it is purposefully curated from practical TadA evolution. Second, it comprises 1,027,200 unique
TadA variants spanning 31 diverse rounds, with sequence differences reaching up to 25 amino acid
mutations (and over 150 at the DNA level). Third, our standardized wet-lab protocols and algorithmic
pipeline (Seq2Graph) ensure data consistency suitable for machine learning applications.

than the traditional mutation-based dataset. Finally, it is guaranteed with strict consistency by
standardized wet-lab experiments and our novel algorithm Seq2Graph, as illustrated in Figure 2]

2.2 Base Editing Dataset

Current datasets focusing on deaminase enzyme optimization in base editing are relatively sparse and
often fragmented. Most available resources [[15} 6638 56) emphasize the optimization of base
editors through the lens of their interactions with CRISPR-associated proteins (Cas) and single-guide
RNAs (sgRNAs), rather than through a systematic exploration of the deaminase variants themselves.
These datasets are typically derived from narrow experimental conditions, thereby limiting their
generalizability and scalability for machine learning (ML)-based modeling and prediction. Several
research groups have published improved or novel deaminase protein sequences through directed
evolution or rational design [50} [10]], but with various wet-lab experimental conditions.
Recent aggregation platforms such as CRISPRbase aim to centralize base editing datasets across
various publications and labs. While this is a significant step forward in data accessibility, it introduces
significant batch effects due to diverse experimental protocols [43]], compromising the accuracy of
models under real experimental conditions. In contrast, we introduce a large-scale wet-lab TadA
dataset, TadABench-1M, by our standardized in vitro experiments and our cross-round consistency
control algorithm Seq2Graph. It is designed to simulate real-world laboratory conditions consistently,
thereby enhancing the precision in deaminase evolution and evaluating biological language models.

3 TadABench-1M Construction by Seq2Graph

This section presents our dataset construction method, Seq2Graph, shown in Figure[3] It processes
31 large-scale deep sequencing results collected in our wet lab. The pipeline comprises three key
stages: directed graph construction (Section [3.1)), inconsistency elimination (Section[3.2), and activity
assignment (Section [3.3). Finally, we visualize the benchmark and dataset in Appendix [C.1}

3.1 Directed Graph Construction

In our wet experiments, phages encoding TadA variants with enhanced activity propagate faster,
resulting in increased read counts during next-generation sequencing (NGSE of the final populations,
shown on the left of Figure @ For each NGS data, researchers build a dataset with normalized read

'Next-Generation Sequencing (NGS) is a broad technology platform that enables deep sequencing, which
refers to generating high coverage of sequencing reads for a target region. In this paper, we use NGS and deep
sequencing interchangeably.
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Figure 3: Pipeline of Seq2Graph. (a) We integrate deep sequencing data from 30 rounds of protein
evolution into a directed acyclic graph. (b) We apply the Feedback Arc Set algorithm to resolve
inconsistencies across experimental rounds. (c) We assign activity values to each TadA variant
following a breadth-first traversal order to minimize sequencing noise along relative relationships.

counts for each NGS result 59,136 52]]. However, normalization cannot merge NGS data from 31
rounds into one consistent super-large dataset. Although each round uses the same standardized wet
experiment protocol, the inherent randomness of biological experiments leads to inconsistencies.

To solve such limitations, we propose to model the relative activity of variants in a directed graph,
rather than the common practice of absolute activity after normalization, shown in Figure 3| (a). In
the directed graph, G = (V, E), the DNA sequence of each variant obtained from NGS is taken as a
node v;. For the list of growth multiples for read counts, the number of edges in G can be up to |V|?.
Considering the computational complexity, we require a sparse and weakly connected graph.

Specifically, we sort the list of growth multiples for read counts and only add edges for nodes with
adjacent count values along the list. Besides, we perform average edge pruning with no more than
100,000 edges between nodes of two adjacent growth multiples. Each edge points from nodes with
higher activity to those with lower activity, which means the edge weight is always greater than 1.

The weight of edge e;_, ; represents the relative activity of v; over v;, w;; = %, where C/() is the
growth multiples for read counts.

In our protein evolution, we conduct a new round based on the best-performing variants in previous
rounds. Hence, the graph constructed from all rounds of NGS is connected such that it can capture
the activity relationships between each pair of sequence variants. Besides, record the experimental
round information in the node attributes, where each node belongs to 1.58 rounds on average.

3.2 Inconsistency Elimination

Owing to the inherent randomness of biological experiments, inconsistencies occur among 31 rounds,
though each round uses the same standardized wet experiment protocol. As shown in Figure 3] (b),
the red node indicates the presence of strongly connected components in the directed graph, caused
by conflicting relative activity relationships across diverse rounds. To eliminate inconsistency, we
should remove cycles in the current directed graph. Since the read count of NGS data is accumulated
with detected sequences during sequencing, the higher count represents higher reliability concerning
individual sequencing error. In other words, edges with higher weights are considered more reliable.
Hence, it can be formalized as a weighted feedback arc set problem in Equation (T).

min D we
eceF (1)
st. G'=(V,E\ F)is acyclic

Since our graph has more than one million nodes, we choose a fast heuristic algorithm [16] to solve
this problem. It recursively selects vertices based on the difference between their in-degree and
out-degree to construct an acyclic ordering, approximating the minimum feedback arc set. This
method efficiently reduces cycles while maintaining scalability. Furthermore, we apply it on the
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subgraph built from each strongly connected component for speedup, rather than on the whole graph.
Hence, we formulate a directed acyclic graph with the node number unchanged but fewer edges.

3.3 Activity Assignment

In protein engineering, the practical demand is to select sequences with higher activity among massive
candidates. Therefore, we use relative activity rather than the absolute value. To assign activity
values to each sequence variant, we designate the relative activity of the initial reference sequence
(TadA8e [50]) as 1.0. Subsequently, as shown in Figure[3|(c), we assign relative activity values to the
sequence variants based on the ratios of growth multiples for read counts between sequences, i.e., the
edge weights. We take the logarithm level assignment since the phage replication roughly follows an
exponential growth.

To assign relative activity values to sequence variants, we take the breadth-first order since paths with
more intermediate nodes may accumulate more biological noise and uncertainty. This approach is
necessary because there may exist multiple paths between any two variants, potentially leading to
conflicting activity estimates. If a node is encountered again through an alternative path, its value
remains unchanged, as the initial assignment is assumed to have higher confidence. Hence, we obtain
the DNA version of TadABench-1M, with 1,027,200 DNA sequences with consistent activity labels.

In our evolution experiments, the functioning of proteins occurs after the DNA transcription and
protein translation. Since the activity of folded protein is hard to directly capture, the common
observation of one protein is at the DNA level. To obtain the activity at the protein level, we average
over all of its DNA variants in our graph. Notably, DNA variants of one protein have different
observed activities owing to multiple complex effects, such as synonymous codon usage on sequence
activity. Finally, we obtain a protein dataset consisting of 409,869 annotated protein sequences. We
provide the visualization of TadABench-1M in Figure[6] The left protein structure is one variant in
our TadABench-1M, folded using ESMFold [35]].

3.4 Robustness of Seq2Graph

To demonstrate the rigorous uncertainty quantification for Seq2Graph, we perform two bootstrapping
analyses. We randomly remove 50% of the rounds (15 of 31) and re-run the entire Seq2Graph
construction pipeline to create a new dataset, TadABench-half. We then identify the sequences
common to both the full TadABench-1M and TadABench-half datasets and calculate the correlation
of their assigned activity labels. The Spearman’s p between the activity labels of the common
sequences is 0.90, with a p-value of 0.0000 (SCIPY.STATS.SPEARMANR). Furthermore, removing
50% of sequencing reads within each round and re-running our full pipeline yield a Spearman’s p
of 0.95 and a p value of 0.0000. This extremely high correlation demonstrates that our Seq2Graph
construction method is robust and stable, even when a substantial portion of the input data is removed.

4 Experiment

This section involves the evaluation on our TadABench-1M. We elaborate on detailed experimental
settings in Section 4.1} A comprehensive evaluation is conducted among biological language models
in Section[4.2] Furthermore, we provide the result of a random split in Section {f.3|to demonstrate
that our dataset is learnable, but hard in a practical scenario. Finally, we systematically explore which
matters more in data fractions among density, diversity, and round in Section§.4]

4.1 Experimental Settings

Dataset TadABench-1M is curated from NGS data of evolved TadA variants, yielding both
DNA/RNA and protein sequence datasets (Section [3.3). We emulate a practical protein engineering
scenario by splitting the data chronologically: rounds 1-27 for training, round 28 for validation, and
rounds 29-31 for testing. The nucleic acid (DNA/RNA) dataset contains 729,302 training sequences,
148,014 validation sequences, and 149,884 test sequences. The protein dataset comprises 256,429
training sequences, 45,208 validation sequences, and 108,232 test sequences.
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Table 1: Performance on TadABench-1M (DNA version). Data from rounds 1-27 is used for training,
round 28 for validation, and rounds 29-31 for testing. For each model, the best result is selected from
three different learning rates. The Bold numbers indicate the highest performance. We here report
the RNA language model, OmniGenome (OG), since the dataset is the same after changing T to U.

Model Validation Test
Spearman Recall@10% nDCG@10% | Spearman Recall@10% nDCG@10%

Evo-7B 0.0490 0.1097 0.2604 0.0707 0.1005 0.3236
Evo-40B 0.0980 0.1157 0.2702 0.0675 0.1003 0.3244
NT-50M 0.0401 0.0959 0.2464 0.0166 0.0950 0.3109
NT-100M 0.0520 0.0982 0.2485 0.0045 0.0870 0.3048
NT-250M 0.0470 0.0858 0.2137 0.0006 0.0971 0.3085
NT-500M 0.0361 0.0985 0.2225 0.0189 0.1005 0.3079
0G-46M 0.0555 0.0911 0.2192 0.0079 0.1063 0.3158
OG-418M | 0.0078 0.0949 0.2391 0.0048 0.0859 0.3042

Task and Evaluation While the training labels correspond to activity values, TadABench-1M
’s objective is not pure regression. Instead, the task focuses on predicting relative activity trends
across test variants, reflecting realistic protein engineering workflows. We evaluate models using
Spearman’s rank correlation coefficient, normalized Discounted Cumulative Gain at the top 10%
(nDCG@10%), and Recall@10%, adopting evaluation protocols from prior work [45]. Spearman’s
coefficient captures the overall relative ordering of activities across test sequences. Recall@10%
measures the fraction of true top 10% variants correctly identified in the top 10% of predicted scores.
Complementing these, nDCG @ 10% assesses whether the predicted top variants are correctly ranked
by activity within the top decile (see Appendix [D.I]for details).

Model We evaluate pre-trained biological language models (BLMs) spanning DNA, RNA, and
protein domains. For DNA, we use models from the EVO2 [3] and NucleotideTransformer (NT) [13]
families. For RNA, we include the OmniGenome (OG) [67]] family. For protein, we consider
ESM2 [35], ProtTrans [17], and ESMC [18] families. We extract representations from the final layer
(or logits for EVO2 models) and perform linear probing to efficiently assess the encoded biological
knowledge. Due to varying representation dimensions across models, the regression head’s parameter
count differs substantially. To ensure fair comparison, we employ a two-layer MLP with hidden
layer sizes tailored per model for an equal number of trainable parameters, with the ReLU activation
between layers. More details are shown in Appendix [C.3] Note that the DNA/RNA language models
can not be compared with protein language models directly, owing to the dataset difference.

4.2 Evaluation in Practical Scenarios

Biological language models underperform in splits based on practical scenarios. We evaluate
the performance of various models on the TadABench-1M dataset, considering both DNA and protein
versions, as shown in Table[T|and Table[2] All biological language models exhibit poor performance in
this realistic setting, with a Spearman correlation of only p ~ 0.1. To further investigate, we include
an experiment using one-hot encoding on the DNA version, which also yields low correlations, 0.0707
on the validation set and 0.0459 on the test set. These results highlight the difficulty of accurately
predicting variants in practical, out-of-distribution scenarios.

4.3 Evaluation under Random Split

Results from the random split validate TadABench-1M and highlight the need for practical,
application-level evaluation. Due to the relatively low absolute values observed in the real-world
split, we additionally evaluate performance on a random split of TadABench-1M, where the sequences
are divided into training, validation, and test sets in an 8:1:1 ratio. As shown in Table |3} biological
language models (BLMs) achieve a Spearman correlation coefficient of p ~ 0.8 on both the validation
and test sets. Their Recall@10% exceeds 0.2, significantly higher than the 0.1 level observed under
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Figure 4: Performance by data scales in different modes of segmentation on diverse models. The
rough data scaling trend can be observed among all models, especially on the domain. Note that the
dataset of the DNA version (a, b) and protein version (c, d, e) is different.
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Table 2: Performance on TadABench-1M (protein version). Data from rounds 1-27 is used for
training, round 28 for validation, and rounds 29-31 for testing. For each model, the best result is
selected from three different learning rates. Bold numbers indicate the highest performance.

Model Validation Test
Spearman Recall@10% nDCG@10% | Spearman Recall@10% nDCG@10%

ESM2-150M 0.1458 0.1420 0.6569 0.0416 0.1230 0.3068
ESM2-650M 0.1423 0.1473 0.6530 0.0479 0.1120 0.2791
Prot-BERT 0.1280 0.1128 0.6534 0.0214 0.1162 0.2980
Prot-XLNET | 0.1570 0.1261 0.6589 0.0342 0.1175 0.2895
ESMC-300M | 0.1498 0.1199 0.6495 0.0355 0.1151 0.2867
ESMC-600M | 0.1452 0.1206 0.6397 0.0509 0.1180 0.2860

the practical-scenario split. It means that BLMs effectively capture the i.i.d. pattern under this
setting, in stark contrast to the results presented in Table 2] These results suggest that the dataset is
indeed learnable and that the underlying sequence patterns are detectable under idealized conditions.
Consequently, the poor performance of BLMs in real-world scenarios stems from the substantial gap
between conventional evaluation setups and the demands of real-world applications. In addition, the
graph directly encodes the relative activity ranking among sequence variants, making it valuable to
use BLMs for predicting sequence rankings (in Appendix D).

4.4 Ablation Study on Data

In prior experiments, we demonstrated the limitations of conventional evaluation setups and the
mismatch between standard metrics and the requirements of real-world applications. Motivated by
this gap, we investigate how characteristics of the training data influence downstream prediction
performance in the next-round prediction. To this end, we partition the TadABench-1M dataset using
three strategies—density, diversity, and round—to isolate which aspects most impact data scaling.
The density strategy randomly subsamples the training data. The diversity strategy selects sequences
with the highest similarity to those in the validation set, aiming to maximize coverage of the relevant
functional space. The round strategy either retains or discards entire experimental rounds based on
their aggregate similarity to the validation round. The validation and test sets remain fixed across all
configurations. For consistency, we train with the same number of iterations across partitions.

Data diversity, not density, drives performance in protein engineering tasks. As shown in
Figure ] the x-axis denotes training data size (log scale), and the y-axis reports test set Spearman
correlation. Subplots (a) and (b) correspond to Evo2 family models and exhibit clear scaling behavior
predominantly on the test set. In contrast, subplots (c)—(e), which include ESM2-650M, Prot-BERT,
and ESMC-600M, show stronger scaling patterns in the validation set. Notably, the diversity and
round-based splits consistently outperform random density-based ones, indicating a greater benefit
from strategic data selection. These findings suggest that biologically pre-trained language models
need more diverse data to capture the functional landscape relevant to downstream tasks. From a data
curation standpoint, this underscores the importance of broadening experimental coverage across the
sequence space, rather than merely increasing dataset size.

5 Conclusion

We present the million-example, wet-lab-validated dataset of TadA variants, a scalable label-
reconciliation algorithm (Seq2Graph), and TadABench-1M, an application-oriented benchmark
that exposes a stark gap between in silico metrics and laboratory reality for biological language mod-
els. Our systematic ablations reveal that sequence diversity and evolutionary round coverage—rather
than brute-force data density—are the key levers for closing this gap. These findings suggest that
next-generation BLMs should move beyond static, randomly sampled corpora toward evolution-
aware, diversity-oriented training data. Although comprehensive for TadA, our dataset is restricted to
a single protein family and assay. Extending the framework to additional protein activity landscapes
will be essential for broader generalization for the development of BLMs.
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Appendix

In Appendix [B|we introduce PANCE, our wet-lab data-collection framework. Appendix |C|supplies
additional experimental settings and results. Finally, Appendix [D|describes the ranking track for a
subset of TadABench-1M, provided only to showcase further results.

A Preliminary

TadA Gene editing is revolutionizing genetic disease treatment, agriculture, and personalized
medicine. Among gene editing approaches, base editing provides a safer alternative to traditional
CRISPR methods [12,26] by enabling single-nucleotide conversions without inducing double-strand
breaks, thereby enhancing editing precision [30} [21]. Base editors are divided into cytosine base
editors, which convert C—G to T-A, and adenine base editors, which convert A-T to G—-C. ABEs
employ engineered variants of tRNA-specific adenosine deaminase (TadA) to catalyze adenosine-
to-inosine (A-to-I) deamination, interpreted as guanine during DNA replication. TadAS8e [50] is a
high-efficiency variant commonly used for precise A-to-G editing and consists of 167 amino acids
(501 nucleotides). Our TadABench-1M is built on TadA8e variants and encompasses large-scale
mutagenesis, introducing over 25 amino-acid mutations (exceeding 150 nucleotide mutations).

PANCE Phage-Assisted Non-Continuous Evolution (PANCE) [40, [71] is a directed evolution
strategy that employs discrete manual dilutions of bacteriophage populations to impose controlled
selection pressures, thereby enabling the rapid evolution of proteins with desired traits. In our
implementation, phages encoding TadA variants with enhanced activity outcompete less active
variants, leading to their preferential enrichment and higher read counts in next-generation sequencing
(NGS) of the final populations (see Appendix [B). Our TadABench-1M includes 31 rounds of PANCE,
each comprising an independent evolution, where each corresponds to a distinct TadA variant library.

Degenerate Sequence A degenerate sequence [33] is a DNA sequence that includes ambiguous
nucleotide codes at defined positions, allowing a single sequence to represent tens of thousands
of distinct variants simultaneously. Although PANCE provides automatic activity labeling via
competition among TadA variants, constructing such expansive libraries through individual sequences
is resource- and time-intensive. To address this, we employ degenerate sequence synthesis, in which
one degenerate sequence generates a vast variant library at the cost of a single DNA synthesis.

B Phage-Assisted Non-Continuous Evolution (PANCE)

DNA Library = Phage Library = Bacteria Selection

!
N (_%ég (_

Sequencing  Amplified DNA  Amplified Phage 31 Rounds

Phage

L\
Start k j Competition

Figure 5: Overview of the PANCE workflow used to obtain TadA activity data. A large library of
TadA mutants is screened by an Al predictor, and high-activity candidates are selected for phage-
assisted evolution. Variants with higher activity trigger glII expression, leading to phage propagation.
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Phage-Assisted Non-Continuous Evolution (PANCE) [40\ [71] represents a sophisticated platform for
the directed evolution of biomolecules. This methodology builds upon the principles of Darwinian
evolution and leverages the powerful selection capabilities of bacteriophages. The strength of this
approach lies in its high-throughput ability to identify the highest-activity protein variants from
vast Al-generated starting sequences. In our study, we employed PANCE to evolve TadA, a critical
enzyme used in CRISPR base editing, by systematically selecting variants with enhanced activity
from vast Al-generated libraries. The convergence of advanced artificial intelligence for library
design and PANCE for evolutionary selection represents a frontier in protein engineering, offering a
high-throughput and scalable approach to optimize enzymatic functions.

The core of this method is selecting protein variants with improved activity by coupling their
function to the replication of bacteriophages. Phages lacking a key gene required for propagation are
engineered to rely on the activity of the target protein within host cells to trigger their replication.
Through iterative rounds of serial dilution, phages linked to protein variants with higher activity
maintain their population, while low-activity counterparts are washed out, allowing for the gradual
enrichment of high-performance variants.

We engineered the M 13 phage, a filamentous virus that propagates within Escherichia coli (E. coli),
to lack the essential gene glII, which encodes the phage protein pllIl, responsible for facilitating the
release of new virions from the host. The expression of gIII was made contingent on the activity of
TadA within E. coli, such that TadA variants with sufficient activity would trigger gIII expression,
enabling phage replication. Each round of PANCE involved the serial dilution of bacterial cultures.
Over multiple cycles, variants with superior activity outcompeted their lower-performing counterparts,
resulting in a highly refined population of phage-encoded TadA variants. This iterative process ensures
that even minimal gains in activity are captured and amplified across generations, gradually evolving
TadA to a high-performance state. Finally, we observe the activity of different TadA variants by
analyzing the read counts from the NGS sequencing results of lysed Escherichia coli cultures. We are
unable to release the detailed protocols due to company licensing restrictions.
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Figure 6: Visualization of TadABench-1M. The left part shows the folded structure of TadA obtained
from our wet-lab experiments, predicted using ESMFold [35]. The right part presents a t-SNE
visualization of the clustering results across 31 rounds of protein evolution.

C Details of TadABench-1M

C.1 Visualization

In summary, we propose an algorithm, Seq2Graph, to construct our dataset Tad ABench-1M based
on the 31 rounds of NGS sequencing results. We construct a graph reflecting the relative activity
relationships among sequence variants based on their read counts in the NGS data. To prevent
conflicts in activity relationships, we apply a fast heuristic algorithm to eliminate inconsistencies.
Finally, we assign each variant a relative activity value by incorporating the biological principle of
exponential growth in the breadth-first order to preserve the most confident assignment strategy.

We provide the visualization of TadABench-1M in Figure[6] The left protein structure is one variant
in our TadABench-1M, folded using ESMFold [35]]. To demonstrate the difference in our 31 rounds
of protein evolution, we select 50 sequences from each round and show the t-SNE result on the right.
Variants from diverse rounds have notable differences at the sequence level. We provide a rough
tendency of sequence similarity across experimental rounds in the appendix (Figure 7).

C.2 Similarity across Rouds

Figure[7]depicts the sequence similarity dynamics across evolutionary rounds. We present a similarity
matrix capturing the pairwise average sequence similarity between TadA protein variants across 31
rounds of directed evolution in our TadABench-1M dataset. Each matrix entry reflects the average
sequence similarity between all pairs of sequences from two rounds, normalized between O and 1.
Notably, distinct blocks of higher intra-round similarity (diagonal) and variable inter-round similarities
highlight the heterogeneous nature of sequence evolution. These observations underline the diverse
mutational trajectories during the evolutionary process and provide a quantitative foundation for
benchmarking protein sequence models under varying evolutionary pressures.
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Figure 7: We show the overall sequence similarity matrix of each round. TadABench-1M contains
TadA variants from 31 rounds of protein evolution. Owing to the application, the sequence similarity
differs by rounds. The average of the sequence similarities is reported for each pair of rounds.

C.3 Experimental Settings

Dataset TadABench-1M is curated from NGS data of evolved TadA variants, yielding both
DNA/RNA and protein sequence datasets (Section [3.3). For both modalities, we emulate a practical
protein engineering scenario by splitting the data chronologically: rounds 1-27 for training, round 28
for validation, and rounds 29-31 for testing. The nucleic acid (DNA/RNA) dataset contains 729,302
training sequences, 148,014 validation sequences, and 149,884 test sequences. The protein dataset
comprises 256,429 training sequences, 45,208 validation sequences, and 108,232 test sequences.

Task and Evaluation While the training labels correspond to activity values, TadABench-1M
’s objective is not pure regression. Instead, the task focuses on predicting relative activity trends
across test variants, reflecting realistic protein engineering workflows. We evaluate models using
Spearman’s rank correlation coefficient, normalized Discounted Cumulative Gain at the top 10%
(nDCG@10%), and Recall@10%, adopting evaluation protocols from prior work [43]]. Spearman’s
coefficient captures the overall relative ordering of activities across test sequences. Recall@10%
measures the fraction of true top 10% variants correctly identified in the top 10% of predicted scores.
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Complementing these, nDCG @ 10% assesses whether the predicted top variants are correctly ranked
by activity within the top decile (see Appendix for details).

Biological Language Models We evaluate a diverse set of pre-trained biological language models
(BLMs) spanning DNA, RNA, and protein domains. For DNA, we use models from the EVO2 [3]]
and NucleotideTransformer (NT)[13] families. For RNA, we include the OmniGenome [67]] family.
For protein, we consider ESM2 [335]], ProtTrans [17], and ESMC [18]] families. We utilize DNA and
RNA language models in the same manner by mapping T to U. The Evo2 40B model is accessed
through the AP while other models are deployed by the NVIDIA GeForce RTX 4090 GPU.

Hyperparameters We extract representations from the final layer (or logits for EVO2 models)
and perform linear probing to efficiently assess the encoded biological knowledge. Due to varying
representation dimensions across models, the regression head’s parameter count differs substantially.
To ensure fair comparison, we employ a two-layer MLP with hidden layer sizes tailored per model
for an equal number of trainable parameters, with the ReLU activation between layers. For the Evo2
family, we first take all the logits as input. However, the training is relatively unstable. Therefore, we
use normalization on embedding-based models and only take the A/T/C/G four dimensions of logits
as representations, largely facilitating the training stability. Besides, we keep the representations of
all tokens to conserve more information, which has a similar performance to the average on tokens in
our setting. Each head is trained for 20 epochs with a cosine learning rate scheduler and a 1-epoch
warmup. We evaluate three learning rates (3e-5, le-4, 3e-4) and select the best-performing based on
validation performance.

C.4 Performance of Random Split

We benchmark protein language models on the random split of TadABench-1M (protein version) in
Table[3] We evaluate a range of protein language models using an 8:1:1 split for training, validation,
and test sets. Performance is reported for the best result over three learning rates per model. Metrics
include Spearman correlation and ranking-based metrics (Recall@10% and nDCG@ 10%) on both
validation and test sets. ESMC-600M achieves the highest scores across most evaluation criteria,
including the best Spearman correlation (0.8079), and competitive Recall@10% (0.2317)nDCG@10%
(0.4949) on the test set, demonstrating superior ranking and correlation performance in protein variant
prediction. Notably, smaller models such as ESM2-35M show competitive performance on correlation
metrics, but lag in ranking-based retrieval.

All biological language models (BLMs) achieve a Spearman correlation coefficient of approximately
p ~ 0.8 on both the validation and test sets. Their Recall@10% exceeds 0.2, which is significantly
higher than the 0.1 level observed under the practical-scenario split. This indicates that BLMs
effectively capture the i.i.d. pattern in this setting, in stark contrast to the results shown in Table 2]
These findings suggest that the dataset is indeed learnable and that the underlying sequence patterns
are detectable under idealized conditions. Accordingly, the poor performance of BLMs in real-world
scenarios arises from a substantial gap between standard evaluation setups and the demands of
real-world applications.

D Ranking Task of TadABench-1M

Apart from the experiments in TadABench-1M mentioned in the main text, we also run more
experiments on a part of our dataset, TadABench-100K. Considering the practical application
of protein engineering needs relative activity comparison among massive candidates, we support
ranking-based evaluation to examine model performance without relying on the absolute activity
scales. Specifically, we extract lists of sequences sorted from their activities and require the model to
make correct rankings. In the evaluation process, we similarly use embeddings generated by BLMs
and train a head module to predict the activity ranking of different sequence variants.

*https://build.nvidia.com/arc/evo2-40b
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Table 3: Performance on TadABench-1M (protein version). The training, validation, and test sets
were obtained via an 8:1:1 random split. For each model, the best result is selected from three
different learning rates. Bold numbers indicate the highest performance.

Model Validation Test
Spearman Recall@10% nDCG@10% | Spearman Recall@10% nDCG@10%

ESM2-35M 0.8032 0.1830 0.4824 0.8014 0.1617 0.4814
ESM2-150M 0.7386 0.2290 0.4364 0.7371 0.2324 0.4437
ESM2-650M 0.5360 0.1793 0.4740 0.5348 0.1710 0.4779
Prot-BERT 0.7910 0.2230 0.4879 0.7883 0.2262 0.4918
Prot-XLNET | 0.8054 0.2264 0.4912 0.8030 0.2193 0.4965
ESMC-300M | 0.8102 0.2439 0.4959 0.8067 0.2363 0.4995
ESMC-600M | 0.8127 0.2446 0.5006 0.8079 0.2317 0.4949

D.1 Evaluation Metric: nDCG

Normalized Discounted Cumulative Gain (nDCG) is a commonly used metric to evaluate the ranking
quality of algorithms, particularly in information retrieval and recommendation systems [27]]. It
focuses on both the relevance of the ranked items and the position of these items in the ranking list.
The relevance score of each item is assigned based on its importance or utility to the user. The gain is
discounted logarithmically as the rank increases, meaning that highly relevant items appearing earlier
in the ranking list contribute more to the overall score.

The nDCG is normalized by dividing the DCG of the actual ranking by the DCG of the ideal ranking
(IDCG), ensuring the score falls within the range of 0 to 1. The DCG (Discounted Cumulative Gain)
is calculated as:

p grel; __ 1
DCG, = —_ 2
P ; log,(i + 1) @

where p represents the position in the ranking (typically the top p items are evaluated) and ¢ is
the rank of the item in the list. The rel; is the relevance score of the item at position %, which is
the reverse ranking in our setting, i.e., the ranking list 1,2, 3, ... with a length of N has the rel;
as NN —1,N —2,.... The log,(i + 1) is A logarithmic discounting factor that reduces the
contribution of lower-ranked items.

The normalized version, nDCG, is calculated as:

3)

where IDCG, is the ideal DCG for a perfect ranking.

The nDCG is especially valuable for evaluating ranked retrieval systems because it accounts for the
importance of the placement of relevant items within the list. This metric assigns greater weight to
items at higher-ranked positions, ensuring that the ranking system’s effectiveness is measured more
accurately by prioritizing top results, which are typically more relevant to the user. It is particularly
suitable for our task of ranking protein activities because we focus more on the top-ranked proteins.

D.2 Experimental Results

On our TadABench-100K, a subset of TadABench-1M, we conduct additional experiments under
the ranking-based setting, which reduces the impact of round-specific wet experiment noise. Even
in this more controlled scenario, we observed that models still struggle to predict the next round’s
outcomes based on data from the previous round, which further highlights the inherent difficulty and
significance of this real-world task. We begin by introducing the models, data, and experimental
settings used in the ranking-based experiments. Following the structure of the main paper, we first
demonstrate the learnability of the dataset using randomly split data and highlight several properties
of BLMs. We then present results under the more realistic evolutionary round setting, where BLMs
still fall short in fully capturing application-level protein evolution tasks.
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Table 4: Diverse BLMs are evaluated using linear probing in the ranking-based and random
data split setting. The top, middle, and bottom groups are protein, DNA, and RNA BLMs. *
indicates that a smaller batch size is employed due to the large size of the embeddings.

Model @2 @10 @100
nDCGT mRRt SPt nDCGT mRR{ SPt nDCG! mRR{ SPt
One-hot 0.826 0.764 0058 0820 0322 0079 0854 0.057 -0.009
Chail 0.847 0792 0.169 0857 0322 0.194 0900 0.095 0.138
ESM2 0.831 0771 0082 0844 0322 0.175 0907 0.050 0252
ESM3 0.840 0783 0.133 0.860 0335 0214 0.892 0.100 0.103
RFAA 0.838 0.780 0.120 0.858 0323 0205 0.890 0.050 0.158
SaProt 0.831 0.771 0083 0839 0322 0.144 0864 0.042 0.085
LucaOne 0.830 0.770 0.078 0839 0313 0.146 0901 0.029 0.218
ProtTrans 0.831 0.771 0085 0844 0325 0.172 0886 0.038 0.185
One-hot 0.819 0754 0017 0822 0281 0072 0854 0.052 0027
NT 0.836  0.777 0.109 0.845 0307 0.180 0.884 0.030 0.182
EVO* 0.830 0.770 0.080 0.850 0317 0.190 0.895 0.007 0.153
Chail 0.848 0.794 0.175 0868 0322 0224 0901 0.086 0.222
AgroNT 0.831 0.772 0.086 0839 0304 0.156 0868 0.096 0.123
GenSLM* 0.836  0.777 0.109 0857 0327 0204 0904 0.043 0.233
LucaOne* 0.835 0.776 0.106 0843 0303 0.165 0888 0.037 0.165

HyenaDNA 0.831 0.771 0.085 0.848 0314 0.178 0.883  0.029 0.132
DNABERT-2 0.816 0.750 0.001 0.814 0.295 0.038 0.861 0.026 0.018
DNABERT-S 0.817 0.752 0.007 0.812 0301 0.028 0.853 0.040 0.017
DNABERT-1 0.835 0.776 0.105 0.845 0299 0.163 0.893 0.075 0.236

One-hot 0.819 0.754 0.017 0.822 0.281 0.072 0.854 0.052 0.027
Chail 0.845 0.790 0.161 0.867 0316 0225 0.897 0.124 0.217
CaLM 0.834 0.775 0.099 0.847 0309 0.178 0.882 0.062 0.146
RNA-FM 0.830 0.770 0.079 0.846 0315 0.187 0.880 0.026 0.117
RiNALMo* 0.843 0.787 0.148 0.870 0326 0.235 0.904 0.049 0.198
RNAETrie* 0.837 0.780 0.119 0.867 0326 0.230 0.906 0.056 0.237

RNA-MSM 0.832 0.773 0.090 0.850 0317 0.197 0902 0.045 0.253
SpliceBERT 0.833 0.774 0.095 0.844 0308 0.167 0.890 0.051 0.203
3UTRBERT" 0.840 0.784 0.135 0.870 0324 0.244 0908 0.044 0.256
ERNIE-RNA*  0.836 0.778 0.113 0.860 0.327 0.230 0909 0.041 0.213
OmniGenome* 0.838  0.781 0.122 0.868  0.320 0.239 0910 0.059 0.207

Model The evaluation is based on protein, DNA, and RNA modalities, since these 3 forms play
important roles in the natural transcription and translation process, and all contain important informa-
tion. In TadABench-1M, DNA sequences obtained from biological sequencing data are translated
into RNA and protein sequences according to biological principles. These transformed sequences are
inputs for the corresponding biological language models (BLMs).

As for protein modality, we test the ESM2 [35]], ESM3 [24], ProtTrans [17], SaProt [54]], and
RFAA [31]. Our DNA modality evaluation involves the EVO [42], NucleotideTansformer (NT) [13],
AgroNT [39]], GenSLMs [76], HyenaDNA [43], DNABERT-1 [28], DNABERT-2 [74], and
DNABERT-S [75]. For RNA modality, TadABench-1M tests the RNA-FM [§8]], SpliceBERT [9],
3UTRBERT [68]], OmniGenome [67], CaLM [46], ERNIE-RNA [70], RNAErnie [60], RNA-
MSM [72], and RiNALMo [47]. We also include LucaOne [25]] and Chail [6]] as representatives of
multimodal BLMs, reflecting the popular concept of multimodality in the foundation models domain.

Overall, we test 80 models across 24 papers|’} For linear probing, we use multimodal BLMs such as
LucaOne and Chail to tackle three modalities of input sequence input independently, referred to as
three BLMs for convenience. We extract features of the last trunk for folding models such as Chail
and RoseTTAFold-All-Atom. Owing to space limitations, we only report one model for each paper
in Table

3There are some other BLMs that we do not include, such as Atom-1 [2]], UNI-RNA [61]], and RFamGen [33]],
since their codebases or model weights have not been released.
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Figure 8: BLMs using different modalities perform comparably using linear probing on the
@100 ranking track. The performance gap between the 3 modalities of BLMs is not obvious, which
means the knowledge of DNA and RNA BLMs is also important in the protein evolution task.
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Figure 9: The scaling law behavior is demonstrated in the ranking-based task for selected BLM

families among three modalities. We select BLM families across three modalities, protein, DNA,
and RNA. The x-axis represents the parameter number and the y-axis reflects the nDCG@ 100 score.

Model and Data Consistent with our main paper, our evaluation spans a diverse set of BLMs,
including models specialized for DNA, RNA, and protein modalities, along with several multimodal
architectures. We take a 3-layer fully connected network with a hidden size of 128 as the head
module, using a cross-entropy ListNet loss [5]]. We adopt linear probing and fine-tuning to evaluate
the performance of various BLMs without introducing complexity. We experiment on TadABench-
100K, a subset of TadABench-1M, comprising 100,000 sequences with annotated activities.

Ranking Metrics We offer three tracks, @2, @10, and @100 for different ranking lists with
corresponding lengths. We adopt three common ranking evaluation metrics to assess the effective-
ness of the predicted rankings within a population of size z, normalized discounted cumulative
gain (nDCG @x) [27]], mean Reciprocal Rank (mRR@z) [63]], and Spearman’s Rank Correlation
(SP@z) [33]. The nDCG measures the accuracy of ranking results, with greater emphasis placed on
higher-ranked items. The mRR focuses exclusively on the accuracy of predictions for the top-ranked
sample. SP evaluates the predicted rankings’ overall distribution.

D.2.1 Random Data Split

Consistent with our main paper, we randomly shuffle the data from the first and second rounds of
evolution and split it into training and test sets using a standard 7:3 ratio. Each data point is a list of =
sequences, and the objective is to predict their correct activity ranking. In Table 4] we present the
activity ranking prediction results for a subset of BLMs, with ranking list lengths of 2, 10, and 100.

Here, we primarily take the linear probing with a batch size of 64, freezing the parameters of BLMs,
and using the output embeddings to train head modules. Given the influence of different embedding
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Table 5: Under the random data split setting, BLMs perform well on the ranking-based task
using linear probing and fine-tuning. The table shows the result of @100 track with a batch size of
1x 100 sequences. For most selected models except 3UTRBERT-6mer, fine-tuning provides better
results than linear probing.

Modality Model Random Initialization = Linear Probing Fine-tuning
nDCG?T SPt nDCG?T SPt nDCGt SPt
Protein ESM2-650M 0.844 -0.050 0.875 0.138 0902 0.208
ESM2-150M 0.856 0.050 0.866 0.075 0.898 0.187
DNA DNABERT-1-6mer  0.856 0.017 0.893 0236 0908 0.226
HyenaDNA-T-d256  0.865 0.053 0.886 0.200 0.908  0.205
RNA RNA-Ernie 0.855 0.003 0.906 0237 0907 0.239
3UTRBERT-6mer 0.836 -0.015 0.908 0256 0902 0.210

lengths on the learning rate, we specify 3 learning rates for each experiment, le-5, le-4, and le-3,
and choose the optimal result as its reported result. We use one-hot vectors of the sequences as the
baseline to compare with the embeddings of BLMs.

Under the ranking-based setting, we observe conclusions consistent with those reported in our
main paper. Compared to training classification heads directly using sequence one-hot vectors, using
embeddings extracted from pre-trained BLMs significantly enhances the test performance. This
demonstrates that BLMs are well-suited for protein activity prediction tasks on TadABench-1M,
aligning with experiences in the language model field. The complete evaluation of 80 models can
be found in Tables[6]to[8] We have also fine-tuned the BLMs (as shown in Table [5), which further
improves performance. This aligns well with a general understanding of language models, while it is
not the main focus of this paper.

Modality DNA and RNA BLMs demonstrate performance comparable to protein BLMs on
nDCG @100, as shown in Figure [§] It demonstrates that the nucleotide BLMs also gain knowl-
edge about protein functionality on DNA or RNA sequences. Since proteins, DNA, and RNA
fundamentally form an integrated system within organisms and each plays a crucial role in protein
expression, models across all three modalities significantly outperform those trained on one-hot
vectors of the sequences.

Additionally, the performance of multimodal models is consistent with the conclusions reported in
the main paper. LucaOne achieves nDCG@ 100 scores of 0.901 for protein and 0.888 for nucleotide,
whereas Chail attains scores of 0.900 and 0.897, respectively. These results indicate that Chail
achieves better modality unification, as its performance across modalities is more consistent, while
LucaOne shows a notable advantage in protein performance over nucleotide.

D.2.2 Scaling Law

The Scaling Law behavior of BLMs is also observed under the ranking-based setting. We observe
that most BLM model families in Figure [9]demonstrate the scaling law.

D.2.3 K-mer

K-mer in BLMs sequence of k consecutive nucleotides used to capture local sequence patterns and
the context in biological modeling analysis. 3UTRBERT is an RNA BLM model family composed
of different k-mer models. Considering the test nDCG@ 10 in in-domain ranking, the results for
6-mer, S-mer, 4-mer, and 3-mer are respectively 0.870, 0.860, 0.869, and 0.870. We observe that
the results for 3-mer and 6-mer are higher than those for 4-mer and 5-mer. In biological terms, a
protein is encoded by three nucleotides, demonstrating that TadABench-1M aligns well with the
actual biological k-mer patterns. It also indicates that RNA BLMs are significant in protein-related
tasks, provided that an appropriate k-mer is selected.
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Table 6: Evaluation on protein BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100
nDCGT mRRT SPt nDCG?T mRRtT SPt nDCG?T mRRfT SPt

ESM2-8M 0.828 0.767 0.069 0.836 0.321 0.136 0.874 0.053 0.176
ESM2-35M 0.829 0.769 0.074 0.833 0.314 0.133 0.855 0.048 0.012
ESM2-150M 0.828 0.768 0.070 0.839 0.322 0.154 0.866 0.084 0.075
ESM2-650M 0.830 0.770 0.080 0.840 0.324 0.162 0.875 0.075 0.138
ESM2-3B 0.832 0.772 0.090 0.842 0.318 0.163 0902 0.046 0.222
ESM2-15B 0.831 0.771 0.082 0.844 0.322 0.175 0907 0.050 0.252
ESM3 0.840 0.783 0.133 0.860 0.335 0.214 0.892 0.100 0.103
SaProt-650M-AF2 0.828 0.766 0.066 0.837 0.307 0.137 0.862 0.034 0.067
SaProt-650M-PDB 0.831 0.771 0.083 0.839 0.322 0.144 0.864 0.042 0.085
SaProt-35M-AF2 0.832 0.773 0.091 0.835 0.311 0.134 0.877 0.069 0.144
SaProt-35M-AF2-Seq  0.830 0.769 0.077 0.837 0.323 0.143 0.870 0.058 0.066
LucaOne 0.830 0.770 0.078 0.839 0.313 0.146 0901 0.029 0.218
RosettaFold-STATE 0.823 0.760 0.040 0.817 0.299 0.058 0.851 0.078 0.010
RosettaFold-MSA 0.838 0.780 0.120 0.858 0.323 0.205 0.890 0.050 0.158
ProstT5 0.827 0.766 0.064 0.842 0.320 0.156 0.865 0.087 0.081
ProstT5-fpl6 0.827 0.765 0.060 0.840 0.329 0.166 0.872 0.052 0.147
Prot-T5-XL-U50 0.832 0.773 0.090 0.835 0.320 0.144 0.880 0.053 0.160
Prot-T5-XL-Half 0.834 0.775 0.102 0.835 0.309 0.143 0.868 0.048 0.098
Chail 0.844 0.788 0.152 0.858 0.322 0.203 0.896 0.035 0.140
Chail-ESM 0.847 0.792 0.169 0.857 0.322 0.194 0900 0.095 0.138
Prot-Bert 0.824 0.761 0.046 0.828 0.303 0.098 0.871 0.068 0.134
Prot-ss3 0.823 0.760 0.039 0.825 0.301 0.084 0.867 0.030 0.050
Prot-Membrane 0.830 0.770 0.079 0.829 0.316 0.119 0.862 0.062 0.028
Prot-Localization 0.826 0.765 0.060 0.829 0.314 0.114 0.858 0.021 0.055
Prot-T5-XXL-U50 0.832 0.773 0.090 0.842 0.320 0.177 0.882 0.045 0.154
Prot-Generator 0.830 0.770 0.079 0.842 0.322 0.169 0.882 0.062 0.148
Prot-Discriminator 0.831 0.771 0.084 0.844 0.322 0.174 0.881 0.137 0.140
Prot-T5-XL-BFD 0.831 0.772 0.086 0.839 0.319 0.162 0.882 0.102 0.170
Prot-Bert-BFD 0.827 0.766 0.065 0.839 0.308 0.141 0.869 0.086 0.141
Prot-T5-XXL-BFD 0.831 0.771 0.085 0.844 0.325 0.172 0.886 0.038 0.185
Prot-Xlnet 0.830 0.769 0.077 0.833 0.314 0.141 0880 0.060 0.110
Prot-Albert 0.831 0.771 0.086 0.836 0.311 0.132 0.883 0.049 0.105

Fine-tuned BLMs In the ranking-based task, we also report the fine-tuning performance under
the random data split setting, shown in Table[5] Firstly, linear probing and fine-tuning effectively
surpass the random init in nDCG@ 100 and SP. Secondly, fine-tuning provides better results than
linear probing for most selected models except 3UTRBERT-6mer. Thirdly, SP and n@DCG can
provide different tendencies, demonstrating the different concentrations for distinct metrics, shown
in Appendix For example, the nDCG of linear probing in 3UTRBERT-6mer is higher than
fine-tuning, while the SP is the opposite. The linear probing performs better at the top sequences,
while the fine-tuning shows better rankings on 100 sequences.

Full Results of Random Data-Split Ranking-Based Task In this paragraph, we report the perfor-
mance of a broad range of BLMs on the ranking-based task with randomly split data. In Tables|[6]to[8]
we report the performance of protein, RNA, and DNA BLMs separately.

D.2.4 Real-World Evolution Scenario

Consistent with our main paper, for the ranking-based task, we also assess the real-world cross-round
evolution by training a linear probe on first-round evolution data and testing it on second-round data.
The train-test data splitting is shown in Table 0]

As discussed in our main paper, although the real-world evolution setting is a challenging task, it
aligns well with the underlying logic of real-world protein evolution processes. Despite extensive
hyperparameter tuning and fine-tuning efforts, this setting remains highly challenging for BLMs.
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Table 7: Evaluation on RNA BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100

nDCGt mRRT SPt+ nDCGt mRRT SPt nDCGT mRRT SPt
mRNA-FM 0830 0.770 0.079 0.846 0315 0.187 0.880 0.026 0.117
RNA-FM 0831 0771 0084 0.838 0293 0.146 0.879 0026 0.161
RNA-MSM 0832  0.773 0.090 0.850 0317 0.197 0902 0045 0.253
RNA-Ernie 0.837 0780 0.119 0.867 0326 0230 0906 0.056 0.237
RiNaLMo 0.843  0.787 0.148 0870 0326 0235 0904 0.049 0.198
ERNIERNA 0836 0778 0.113 0860 0327 0230 0909 0041 0213
ERNIERNA ss 0837 0779 0.115 0860 0323 0226 0906 0031 0234
Chail 0.845 0790 0.161 0867 0316 0225 0897 0.124 0217

OmniGenome-418M  0.838  0.781 0.122 0.868 0320 0.239 0910 0.059 0.207
OmniGenome-186M  0.839  0.782 0.127 0.861 0313 0.210 0.896 0.061 0.213
OmniGenome-52M 0.831 0.771 0.083 0.846 0327 0.184 0.886 0.041 0.207
3UTRBERT-6mer 0.840 0.784 0.135 0.870 0324 0.244 0908 0.044 0.256
3UTRBERT-5mer 0.834 0.775 0.102 0.861 0323 0.231 0906 0.046 0.232
3UTRBERT-4mer 0.840 0.784 0.134 0.869 0326 0243 0906 0.047 0.234
3UTRBERT-3mer 0.841 0.785 0.138 0.870 0323 0.246 0906 0.041 0.226
SpliceBERT 0.829 0.768 0.072 0.836 0307 0.140 0.872 0.058 0.114
SpliceBERT-H.510nt  0.833  0.774 0.095 0.844 0308 0.167 0.890 0.051 0.203
SpliceBERT.510nt 0.830 0.770 0.080 0.838 0310 0.152 0.874 0.036 0.121
CaLM 0.834 0.775 0.099 0.847 0309 0.178 0.882 0.062 0.146

This indicates that even in the ranking-based task designed to reduce wet experimental noise, model
performance does not improve significantly, suggesting the presence of more fundamental limitations.
We will report the experimental results in detail below.

Experimental Results We benchmark all of the BLMs using the linear probing approach here. The
results are presented separately for protein, DNA, and RNA BLM:s in Tables [I0]to[I2] respectively.
Across all modalities, most BLMs perform poorly in the real-world evolution ranking task, with results
barely surpassing those of random guess ranking, which is highly consistent with the conclusions
presented in the main paper. This suggests that even under the ranking-based setting with lower wet-
experiment noise, the models show limited improvement, pointing to deeper, underlying limitations.

This poor performance stands in stark contrast to the outcomes observed in the random-split setting,
where nearly all BLMs achieve results consistent with expectations. These results confirm that the
embeddings generated by BLMs are meaningful and effective in in-domain tasks, demonstrating no
apparent issues related to the curse of dimensionality or loss of information during the embedding
process. The disparity between in-domain ranking and out-of-domain ranking performance suggests
that the challenges faced by BLMs in out-of-domain ranking are not due to the embeddings themselves
but are likely attributed to the difficulty of generalizing to out-of-domain data. While the embeddings
remain useful within the context of in-domain ranking tasks, their transferability and robustness
across varying experimental conditions in out-of-domain ranking are limited. This emphasizes the
need for more advanced strategies to enhance the generalization ability of BLMs when faced with
out-of-domain ranking tasks.
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Table 8: Evaluation on DNA BLMs using the linear probing for random-data-split ranking.

Model @2 @10 @100
nDCG? mRR? SPt nDCGT mRRt SPt nDCGt mRR{ SPt
EVO-8k 0.829 0769 0.075 0.851 0308 0.183 0.891 0.045 0.153
EVO-131k 0.830 0770 0.080 0.850 0317 0.190 0.895 0.007 0.153
LucaOne 0.835 0776 0.106 0.843 0303 0.165 0.888 0.037 0.165
Chail 0.848 0794 0.175 0.868 0322 0224 0901 0.086 0.222
NT-2-50M 0.833 0774 0.97 0845 0305 0.179 0.879 0.057 0.137
NT-2-100M 0.836 0.777 0.109 0.843 0306 0.171 0872 0.068 0.118
NT-2-250M 0.830 0770 0.078 0.845 0312 0.171 0.866 0.081 0.088
NT-2-500M 0.834 0776 0.102 0.849 0313 0202 0880 0.027 0.176
NT-500M-human-ref ~ 0.836  0.777 0.109 0.840 0292 0.154 0.892 0.098 0.195
NT-500M-1000G 0.833 0774 0.097 0847 0314 0.191 0864 0.034 0.107
NT-2B5-1000G 0.836 0777 0.109 0.845 0307 0.180 0.884 0.030 0.182
NT-2BS-multi-species  0.828  0.767 0.069 0.838 0291 0.145 0.872 0.035 0.110
AgroNT 0.831 0772 0.086 0.839 0304 0.156 0.868 0.096 0.123
GenSLMs 2.5B 0.836 0777 0.109 0.857 0327 0204 0904 0.043 0233
GenSLMs 250M 0.836 0777 0.109 0856 0326 0204 0907 0.040 0.249
GenSLMs 25M 0.831 0771 0.084 0837 0322 0.160 0.892 0.072 0.178
DNABERT-2-117M 0816 0750 0.001 0.814 0295 0.038 0.861 0026 0.018
DNABERT-S 0.817 0752 0.007 0812 0301 0.028 0.853 0.040 0.017

DNABERT-1-3mer 0.830  0.770 0.081 0.841 0.303 0.163 0.879 0.144 0.085
DNABERT-1-4mer 0.830 0.770 0.080 0.836 0299 0.138 0.872 0.043 0.089
DNABERT-1-5mer 0.837 0779 0.114 0.849 0313 0.179 0.874 0.043 0.142
DNABERT-1-6mer 0.835 0.776 0.105 0.845 0299 0.163 0.893 0.075 0.236
HyenaDNA-T 0.832  0.773 0.092 0.844 0314 0.178 0.864 0.032 0.037
HyenaDNA-T-d256 0.835 0.776 0.104 0.848 0.325 0.195 0.886 0.043 0.200
HyenaDNA-T-d128 0.830  0.770 0.079 0.843 0.313 0.166 0.864 0.025 0.112
HyenaDNA-S 0.830 0.770 0.081 0.842 0306 0.177 0.870 0.069 0.098
HyenaDNA-M-160k 0.831 0.771 0.083 0.848 0.314 0.186 0.884 0.037 0.115
HyenaDNA-M-450k 0.832 0.772 0.089 0.845 0309 0.172 0.873 0.064 0.113
HyenaDNA-L 0.831 0.771 0.085 0.848 0.314 0.178 0.883  0.029 0.132

Table 9: The real-world evolution ranking task is highly challenging as it is based on actual
in-vitro evolution rounds. We provide three tracks, @2, @10, and @100, where the lengths of
ranking lists are 2, 10, and 100, respectively.

Track #List #DNA #Protein
ac Train  Test  Train Test  Train  Test
@100 7 99 682 9822 661 9159

@10 1155 4563 8745 41264 5398 24906
@2 27754 44322 38114 63445 16461 28800

Fine-tuned BLMs for Real-World Evolution Ranking We also fine-tuned selected BLMs on the
fine-tuned BLMs for the real-world evolution ranking task, training the BLM backbones and their
ranking heads to ensure that performance limitations are not solely due to linear probing. We report
the results in Table[I3] Although fine-tuning provides improvements over the random init, most BLMs
do not show substantial performance gains. This indicates that when BLMs face real-world evolution
ranking tasks in our benchmark, i.e., predicting the outcomes of the next round of protein evolution
based on results from the current round, they are almost incapable. This reflects the considerable
challenge posed by our benchmark in real-world evolution ranking tasks with existing BLMs. Such
challenges align with the logic of actual biological experiments and represent real difficulties that
need resolution in practical applications.
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Table 10: Protein BLMs fail to solve the real-world evolution ranking task using linear probing.

Model @2 @10 @100
nDCGt mRR? SPt nDCG? mRRt SPt nDCG! mRR{ SPt
ESM2-8M 0.811 0744 -0.023 0.815 0310 0061 0.856 0.053 0.014
ESM2-35M 0.810 0.743 -0.028 0.803 0298 -0.005 0.858 0.055 0.060
ESM2-150M 0.811 0744 -0.024 0.808 0293 0.023 0.856 0.057 0.028
ESM2-650M 0.814 0747 -0.010 0.802 0293 -0.004 0.845 0.049 0.016
ESM2-3B 0.815 0750 -0.001 0.808 0308 0.027 0.838 0.037 -0.018
ESM2-15B 0.815 0749 -0.002 0.801 0300 0.000 0.834 0.064 -0.071
ESM3 0.819 0755 0.018 0.802 0298 -0.004 0.864 0.054 0.069
SaProt-650M-AF2 0.813 0747 -0.011 0797 0284 -0.036 0.853 0.055 0.060
SaProt-650M-PDB 0.817 0752 0006 0.802 0294 -0.009 0.836 0.063 -0.046
SaProt-35M-AF2 0.817 0751 0006 0.812 0306 0.046 0.845 0.057 -0.029
SaProt-35M-AF2-Seq  0.821 0757 0.029 0.802 0297 -0.016 0.854 0.079 0.025
LucaOne 0.823 0761 0.044 0798 0291 -0.021 0.846 0.069 0.007
RosettaFold-STATE ~ 0.812  0.746 -0.017 0.801 0.282 -0.018 0.837 0.044 -0.055
RosettaFold-MSA 0.811 0745 -0.022 0.800 0285 -0.022 0844 0.077 0.001
ProstTS 0.817 0752 0.006 0.804 0289 -0.004 0.843 0.041 -0.038
ProstT5-fp16 0.816 0750 0.02 0.801 0300 -0.006 0.852 0.043 0.012
Prot-T5-XL-U50 0.815 0749 -0.003 0.807 0307 0.019 0.852 0.053 0.040
Prot-T5-XL-Half 0.810 0742 -0.031 0.803 0287 -0.010 0.855 0.038 0.008
Chail 0.814 0748 -0.008 0.802 0290 -0.008 0.857 0.055 0.062
Chail-ESM 0.808 0740 -0.042 0.803 0296 -0.008 0.842 0.033 -0.050
Prot-Bert 0.819 0755 0021 0817 0304 0.059 0.843 0.047 -0.024
Prot-ss3 0.813 0747 -0.012 0.804 0290 0.000 0.840 0.047 -0.035
Prot-Membrane 0.822 0758 0.033 0.805 0298 -0.001 0.853 0.067 0.035
Prot-Localization 0.807 0.738 -0.048 0.802 0296 -0.005 0.841 0.050 -0.033
Prot-T5-XXL-U50 0.816 0.751 0.003 0799 0305 -0.020 0.857 0.062 0.039
Prot-Generator 0.818 0754 0015 0.804 0301 0.003 0849 0.073 0013
Prot-Discriminator 0.816 0750 0.000 0.801 0290 -0.090 0.851 0.051 -0.005
Prot-T5-XL-BFD 0.815 0750 0.000 0799 0297 -0.016 0.844 0.069 -0.012
Prot-Bert-BFD 0.814 0748 -0.010 0.803 0291 -0.001 0.837 0.039 -0.044
Prot-T5-XXL-BFD 0.813 0746 -0.015 0.808 0299 0.024 0.841 0.049 -0.025
Prot-Xlnet 0.813 0747 -0.012 0.803 0292 0.004 0839 0.054 0.003
Prot-Albert 0.812 0745 -0.020 0796 0288 -0.037 0.838 0.044 -0.036
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Table 11: RNA BLMs fail to solve the real-world evolution ranking task using linear probing.

Model @2 @10 @100
nDCG? mRRt SPf nDCGt mRRT SPt nDCGT mRRt  SPt
mRNA-FM 0814 0.748 -0.006 0.809 0291 0015 0.847 0045 0.003
RNA-FM 0813 0747 -0.013 0814 0303 0045 0852 0037 0.020
RNA-MSM 0.821 0.757 0.029 0811 0299 0.021 0844 0060 0.007
RNA-Ernie 0815 0.750 -0.001 0.803 0298 -0.007 0.837 0.056 -0.039
RiNALMo 0817 0.751 0.006 0.807 0291 0.017 0832 0.046 -0.037
ERNIE-RNA 0816 0.750 0.001 0.803 0293 -0.010 0853 0.065 0.050
ERNIE-RNA ss 0817 0.751 0.006 0.807 0296 0.007 0864 0076 0.070
Chail 0814 0.748 -0.006 0.809 0293 0018 0853 0075 0.044

OmniGenome-418M  0.817  0.752 0.009 0.799 0.287 -0.037 0.840 0.042 -0.017
OmniGenome-186M  0.819  0.755 0.019 0.810 0.297 0.017 0.842 0.088 -0.036
OmniGenome-52M 0.814 0.749 -0.006 0.812 0.296 0.036 0.835 0.076 -0.040
3UTRBERT-6mer 0.812 0.745 -0.019 0.811 0.293 0.029 0.849 0.074 0.025
3UTRBERT-5mer 0.819 0.755 0.020 0.811 0.293 0.026 0.842 0.044 0.028
3UTRBERT-4mer 0.820 0.756 0.024 0.800 0.285 -0.029 0.850 0.055 0.017
3UTRBERT-3mer 0.815 0.750 0.000 0.809 0.299 0299 0.842 0.045 -0.056
SpliceBERT 0.814 0.748 -0.008 0.802 0.298 -0.011 0.856 0.049 0.035
SpliceBERT-H.510nt  0.814  0.748 -0.008 0.805 0.297 0.004 0.839 0.045 -0.077
SpliceBERT.510nt 0.817 0.752 0.007 0.801 0.294 -0.015 0.847 0.065 -0.005
CaLM 0.817 0.752 0.009 0.800 0.285 -0.031 0.840 0.080 -0.056

Table 12: DNA BLMs fail to solve the real-world evolution ranking task using linear probing.

Model @2 @10 @100
nDCGT mRRt SPt nDCGt mRRt SPt nDCG? mRRf SPt
EVO-8k 0.809 0741 -0.036 0.799 0286 -0.022 0831 0.043 -0.079
EVO-131k 0.809 0741 -0.037 0.802 0293 -0.016 0833 0054 -0.080
LucaOne 0.816 0750 0.001 0.808 0289 0.006 0839 0055 0.013
Chail 0.820 0756 0.025 0802 0292 -0015 0851 0.063 0.009
NT-2-50M 0.812 0746 -0017 0802 0291 -0019 0837 0035 -0.025
NT-2-100M 0.818 0753 0.011 0800 0290 -0.024 0857 0.070 0.052
NT-2-250M 0.818 0753 0.013 0805 0288 0.004 0849 0037 0.007
NT-2-500M 0.816 0751 0.005 0804 0289 -0.013 0843 0047 -0.044

NT-500M-human 0.812 0.745 -0.021 0.806 0291 0.005 0.829 0.051 -0.108
NT-500M-1000G 0.816 0.751 0.004 0.804 0295 0.001 0.841 0.059 -0.025

NT-2B5-1000G 0.815 0.749 -0.003 0.805 0.301 0.005 0.856 0.034 0.046
NT-2B5 0.820 0.757 0.027 0.803 0.297 -0.008 0.840 0.026 -0.033
AgroNT 0.815 0.749 -0.003 0.815 0298 0.038 0.830 0.056 -0.083
GenSLMs-2.5B 0.810 0.743 -0.029 0.810 0.300 0.027 0.857 0.043 0.066
GenSLMs-250M 0.812 0.746 -0.018 0.799 0.289 -0.028 0.853  0.049 0.020
GenSLMs-25M 0.819 0.755 0.020 0.807 0.298 0.007 0.841  0.050 0.002
DNABERT-2 0.813 0.747 -0.015 0.802 0.285 -0.024 0.863 0.062 0.072
DNABERT-S 0.812 0.745 -0.019 0.801 0.288 -0.026 0.851 0.043 0.036

DNABERT1-3mer 0.818 0.753 0.014 0.801 0289 -0.023 0.851 0.041 0.039
DNABERT1-4mer 0.815 0.749 -0.002 0.804 0.288 -0.007 0.840 0.043 -0.026
DNABERT1-5mer 0.818 0.753 0.011 0.806 0.297 0.007 0.850 0.062 -0.001
DNABERT1-6mer 0.811 0.744 -0.025 0.809 0296 0.019 0.843 0.060 -0.049
HyenaDNA-T 0.816 0.751 0.004 0.808 0.294 0.006 0.828 0.046 -0.124
HyenaDNA-T-d128 0.817 0.753 0.011 0.800 0.286 -0.044 0.845 0.039 -0.024
HyenaDNA-T-d256  0.816  0.750 0.002 0.803 0.286 -0.007 0.851 0.038 0.029
HyenaDNA-S 0.817 0.752 0.006 0.816 0.292 0.047 0.857 0.076 0.027
HyenaDNA-M-160k  0.817  0.752 0.010 0.800 0.282 -0.023 0.850 0.042 -0.003
HyenaDNA-M-450k  0.819 0.755 0.021 0.803  0.284 -0.027 0.844 0.060 -0.052
HyenaDNA-L 0.814 0.748 -0.008 0.804 0.288 -0.019 0.861 0.045 0.061
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Table 13: BLMs struggle to solve the real-world evolution tasks using linear probing and fine-
tuning. The table shows the result of @100 track with a batch size of 4x 100 sequences. Although
fine-tuning can help a little, most BLMs cannot solve the task well with a similar performance of
random initialization.

Modality Model Random Initialization = Linear Probing Fine-tuning
nDCG?T SPt nDCGT SPt nDCGtT SPt
Protein ESM2-650M 0.847 0.017 0.845 0.016 0869 0.114
ESM2-150M 0.851 0.010 0.846  0.007 0.859 0.051
DNA DNABERT-1-6mer  0.845 -0.057 0.843 -0.049 0.846  0.009
HyenaDNA-T-d256  0.854 0.018 0.851 0.029 0.860  0.068
RNA RNAE-rnie 0.841 0.007 0.837 -0.039 0.844 -0.003
3UTRBERT-6mer 0.842 -0.042 0.849 0.025 0.845 0.007
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