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Abstract

The prevalence of Large Language Models (LLMs) for generating multilingual text
and source code has only increased the imperative for machine-generated content
detectors to be accurate and efficient across domains. Current detectors either
incur high computational cost or lack sufficient accuracy, often with a trade-off
between the two, leaving room for further improvement. To address these gaps,
we propose the fine-tuning of encoder-only Small Language Models (SLMs), in
particular, the pre-trained models of ROBERTA & CodeBERTa using specialized
datasets on source code and other natural language to prove that for the task of
binary classification, SLMs outperform LLMs by a huge margin whilst using a
fraction of compute. Our encoders achieve AUROC = 0.97 to 0.99 and macro-F1
= 0.89 to 0.94 while reducing latency by 8-12x and peak VRAM by 3-5x at
512-token inputs. Under cross-generator shifts and adversarial transformations
(paraphrase, back-translation; code formatting/renaming), performance retains
> 92% of clean AUROC. We release training and evaluation scripts with seeds and
configs; a reproducibility checklist is also included.

1 Introduction

As generative Al models continue to advance, their outputs permeate many domains, from written
prose to computer code. Al-assisted content creation can boost productivity—for instance, code
generation with LLMs has been reported to improve developer efficiency by up to 33% [3]. However,
the rise of machine-generated text and code also brings critical concerns in academia and industry,
such as plagiarism, misinformation, and unfair advantages in assessments or job interviews questioned
by Benke and Sz6ke [4]. Furthermore, this issue extends toward source code, exacerbated by the
wide availability of specialized LLMs (Qwen Coder, Anthropic Claude 3.7/4 Sonnet) and coding
’Agents’ which are capable in acting autonomously in a workflow. They exhibit a track record for
inefficient code generation, poor security practices, partial execution and the long running issue
of LLM hallucination from Ambati et al. [2]. This has sparked a growing need for reliable and
accessible detection of machine-generated content to maintain integrity and trust. Current detectors
often exhibit one notable weaknesses: many are primarily effective only on English text and struggle
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with other languages, leading to false positives on non-English inputs. Additionally, individual
detection approaches (e.g., based on perplexity or stylistic cues alone) can be evaded, and ensemble
agent-based methods can be prohibitively slow or resource-intensive, such as Li et al. [15]’s method.
Similar challenges apply to source code detection—detectors must distinguish machine-generated
code from human-written code across different programming languages, but research in this area is
quite narrow but readily emerging [23].

In this work, we propose the use of SLMs rather than LLMs for binary classification of code into
machine-generated or human-written labels. Our rationale for the use of SLMs is since that: 1) LLMs
may have a propensity or underlying bias to viewing Al generated text as being of higher quality; 2)
LLMs are prone to hallucinate and, when fine-tuned, may experience catastrophic failure.

Contributions:

 Datasets for Evaluating Detection in Source Code and Multilingual Text: We present a
large-scale dataset that aligns well with the optimal input range of SLMs (with chunking
employed when necessary). The datasets encompass samples of source code spanning
multiple programming languages, as well as multilingual text from diverse domains, all
annotated with binary classification labels.

* Comprehensive Evaluation: We conduct benchmarking experiments on multilingual text,
as well as source code in Python, Java, JavaScript, C, C++, C#, and Go. Across these
evaluations, DuoLens consistently outperforms baseline detectors in terms of accuracy and
macro-F1, including under challenging scenarios such as cross-model and cross-language
settings. These findings support our hypothesis that SLMs can surpass LLMs in the binary
classification of human-written versus machine-generated code and multilingual text.

2 Related Work

Pre-existing Datasets. Although the field remains relatively nascent, a number of datasets have
been developed to distinguish between human-written and machine-generated code. AIGCodeSet [8]
consists exclusively of Python samples, exemplifying a wider trend also observed in CodeMirage [1]
and DroidCollection [20], where Python constitutes the majority of instances while other languages
(C, C++, C#, Java, JavaScript, Go) have a sparse representation. These resources also incorporate task-
specific samples and enhance stylistic diversity by including outputs from multiple LLMs. In contrast,
resources for multilingual text detection exhibit greater variation. Multitude [16] compiles news
articles but lacks syntactic alignment, while Multisocial [17] captures authentic social media content
yet is limited to informal registers. M4 [26] offers a substantially larger corpus, albeit predominantly
formal in style. Finally, HC3 [11] provides multilingual QA pairs but remains constrained in its
linguistic coverage.

RoBERTa as a detector. Early detector efforts fine-tuned RoOBERTa on model-specific outputs (e.g.,
OpenAl’s RoBERTa-based GPT-2 detector from Solaiman et al. [22]; community releases such as
“roberta-large-openai-detector’”’), demonstrating high accuracy on the generator(s) seen during training
but poor generalization to unseen or larger models. For example, Chen et al. [6]’s GPT-Sentinel,
had similar results where it was unable to generalise to other LLMs. However, recent research has
moved away from enhancing or enriching RoBERTa and BERT models in favor of using LLMs
for text detection, which includes methods such as Binoculars [12], AGENT-X [15], Ghostbuster
[25], EAGLE [5], and RAIDAR [18]. However, we advocate for the use of BERT-based models,
particularly for binary classification tasks, where LLMs demand substantially greater computational
resources while yielding inferior or, at best, comparable performance.

3 Methodology

Multilingual Dataset. Many prior multilingual datasets are heavily topic-focused, for example,
concentrating on singular domains such as social media or news, which limits the models ability
to generalize across different styles of writing. Additionally, they also contain heavy language
imbalances (most towards English), which leads to worse performance on other languages.

To address these issues, our dataset is comprised of 54,520 text samples across eight languages:
English, Russian, Arabic, Dutch, German, Spanish, Portuguese, and Romanian, achieved through
extending previous datasets, including MULTITuDE [16] (news focused), MultiSocial [17] (social
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Figure 1: Overview of the experimental setup where each sample from the dataset is processed by the
models and classified as either O (human-written) or 1 (machine-generated)

media focused), M4 [26] (general but slightly outdated), and HC3 (question-answer pair focused).
Additional details about the dataset are available in Appendix B.2. Our dataset is more balanced in
terms of style and domain, making it better suited for fine-tuning. Similarly to the code dataset, it
has an equal balance of human-written and machine-generated samples (27,260 samples for each)
to prevent any bias from arising. However, the languages are not balanced in this dataset since the
datasets used to create ours all had different languages with varying amounts of samples in shared
languages between them, leading to language imbalances in our dataset.

Code Dataset. Existing datasets for code generation evaluation exhibit two notable limitations: 1)
they are often narrow in scope, with samples predominantly drawn from sources such as Puri et al.
[21]’s IBM CodeNet or competitive programming platforms thereby offering limited representation of
production-level code; 2) they tend to be heavily imbalanced across languages, with a disproportionate
emphasis on Python, which hinders the ability to generalize across syntactically complex languages
such as the C family of languages as well as Java, and JavaScript. Our dataset was constructed
by curating samples from previous datasets, including AIGCD [8], DroidCollection [20], and
CodeMirage [1]. To solve the aforementioned problems, our dataset contains code samples in 7
programming languages: Python, Java, JavaScript, C, C#, C++, and Go. Each language has an
identical number of human-written and machine-generated samples (6000 samples for each class
in its respective language), to ensure balance not only between the classes but also between the
languages, in turn solving both the problems that hindered previous datasets. Shown in Figure 3a and
explained in Appendix B.1.

Dataset Creation Both datasets were constructed by first enumerating the available samples for
each label (machine-generated and human-written) within each language, in order to determine the
maximum number of samples that could be retained per language while preserving label balance.
This procedure ensured that no label or language was overrepresented, thereby mitigating potential
sources of bias that could adversely affect fine-tuning. Once these maxima were established, the
final samples were drawn from the aggregated pool of all available datasets for the particular dataset
(multilingual or source code).

Architecture. For the task of detecting machine-generated code, we employed CodeBERT by
Feng et al. [10] and CodeBERTa as baseline models. CodeBERT is trained on natural language and
source code, thereby possessing capabilities in both domains. In contrast, CodeBERTa is half the size
of CodeBERT and is exclusively trained on source code (from CodeSearchNet Husain et al. [14])
without official support for NLP tasks. Both models were fine-tuned through a classification head
attached to each model at initialization that was subsequently trained and fine-tuned, using samples
from all the languages in the dataset, to distinguish between machine-generated and human-written
code. We propose DuoLens, a dual-encoder detector that fuses complementary representations
from CodeBERT and CodeBERTa to identify Al-generated content in both natural language and
source code. Given an input sequence X, we obtain hidden states from each encoder and derive
pooled vectors via [CLS] or mean pooling; a lightweight fusion head then combines these signals
using a learned gate that down-weights redundant features and emphasizes encoder-specific cues
(e.g., lexical/semantic alignment from CodeBERT’s NL—code pretraining versus syntactic/structural



regularities from CodeBERTa’s code-centric pretraining). The fused representation feeds a single
linear classifier trained with class-balanced binary cross-entropy.

Multilingual encoders. For multilingual text classification, we fine-tune three widely used pre-
trained encoders: XLM-RoBERTa-base and XLM-RoBERTa-large [7], and Multilingual BERT
(mBERT) [9]. The two XLM-RoBERTa variants are trained on the same CommonCrawl-derived
multilingual corpus and differ only in model capacity, whereas mBERT is trained primarily on
multilingual Wikipedia. All models are fine-tuned using the protocol described above with identical
tokenization, maximum sequence length, optimizer, and learning-rate schedule; checkpoints are
selected on the development set, and probabilities are calibrated with temperature scaling.

4 Experiments

4.1 Experimental Setup

Baselines. We evaluated the base models of CodeBERT and CodeBERTa using a probing approach
described in Tenney et al. [24]’s work. An analogous procedure was employed for the non-fine-tuned
multilingual models. We also employed a chunking strategy for the classification of source code,
as many samples exceeded the maximum input length of 512 tokens for BERT-based models. In
addition, we incorporated GPT 4o (OpenAl et al. [19]) as a baseline for both domains and Qwen2.5
Coder 3B for source code (Hui et al. [13]), which was assessed through few-shot prompting with
six examples (3 pairs of machine-generated and human-written samples in different languages). We
choose to use this prompt engineering method as it reflects a more realistic scenario which then better
facilitates reproducibility and further work.

Metrics. We report overall accuracy (class and language specific as well), AUCROC, F1-Macro,
and samples per second for all models.

Scenarios. We evaluate: (1) Detection of source code in all the 7 programming languages included
in our dataset (2) Detection of multilingual text in the 8 languages provided in our dataset (3) Cross
language performance for language specific fine-tuned checkpoints of the model.

4.2 Results and Analysis

Multilingual Text Detection. Table 1 presents the performance of the models on multilingual
text detection. Similar to the code domain, GPT-40 underperforms with an AUCROC of 0.573
and F1-Macro of 0.490, demonstrating limited binary classification capabilities in this specific
setting. Pretrained multilingual models, especially XLM-RoBERTa-large, show reasonably strong
performance out of the box, with AUCROC values ranging from 0.891 to 0.937.

When fine-tuned, all the SLMs achieve very similar performance among each other, with XLM-
RoBERTa-large achieving an especially high F1-Macro score, which could be explained due to its
much larger size. Additionally, the results from the cross-language scenario are included in Table 2

Code Detection. Table 1 showcases the performance of models on the task of detecting machine-
generated code. The baseline models include CodeBERT [10], CodeBERTa, and GPT-40 [19], with
their respective fine-tuned variants. Particularly, GPT-40, a powerful LLM, performs significantly
worse than SLMs on both metrics, achieving only 0.535 AUCROC and 0.414 F1-Macro. In contrast,
CodeBERT and CodeBERTa, even without fine-tuning, achieve substantially higher AUCROC scores
of 0.953 and 0.948, respectively, all while requiring substantially less compute.

Upon fine-tuning, both CodeBERT and CodeBERTa achieve near-perfect performance. CodeBERTa
(fine-tuned) achieves very similar results to CodeBERT (while being half the size of CodeBERT) with
an AUCROC of 0.985 and F1-Macro of 0.937, surpassing CodeBERT but(fine-tuned) not by much.
Additionally, the results from the cross-language performance scenario are included in Table 3

5 Conclusion

We presented DuoLens, a dual-encoder system that unifies detection of Al-generated text and code
via the combination of CodeBERT [10]and CodeBERTa using a fine-tuned fusion head. DuoLens
outperforms strong baselines on multilingual text and source code across the languages in our
datasets, and shows improved cross-language generalization (specifically, in Java). Further details
regarding directions for future work are included in Appendix D. By building upon the approach
of fine-tuning BERT models, but with a keen view towards effective and balanced dataset creation,



Table 1: Detection performance: (i) Code detection and (ii) Multilingual text detection reported as
AUC-ROC and F1-Macro. Highest score per column is in bold.

Model AUC-ROC _ Fl-Macro Model AUC-ROC F1-Macro

XLM-R-large 0.937 0.865
CodeBERT 0.953 0.888 &

XLM-R 0.915 0.836
CodeBERTa 0.948 0.883

mBERT 0.891 0.816
Qwen2.5 Coder 3B 0.492 0.388

GPT-40 (few-shot) 0.573 0.49
GPT-40 0.535 0.414

XLM-R-large (fine-tuned) 0.974 0.924
CodeBERT (fine-tuned) 0.98 0.93
DuoLens (fine-tuned) 0.985 0.937 XLM-R (fine-tuned) 0.974 0.899

. - DuoLens (fine-tuned) 0.975 0911

(i) Code detection (ii) Multilingual text detection

we then effectively address the pertinent issue of detecting Al generated content across domains —
making this more accessible regardless of compute limitations or available models.

6 Limitations

At this stage, DuoLens focuses on the use of SLMs in binary classification of Al-generated natural
language across modalities. However, due to the inherent limitation of BERT based models being
encoder-only, there is no output visible to the user. This potentially would leave room for future
work, in which an LLM could be integrated for sentence-level classification. The datasets we created
can also be improved, specifically the multilingual text dataset which has language imbalances as
illustrated in Figure 4a. Additionally, DuoLens inherits biases of its underlying models; while we
try our best to train on diverse data, fairness is not guaranteed. A similar issue is apparent where
even with robust evaluation, results may be constrained to specific languages and models within their
respective training and test sets.

Furthermore, we must also acknowledge that due to limited computational resources and for the
purpose of efficacy our baselines are largely constrained to open-weight LLMs, with only GPT 40
used as a closed source Al generator.
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Appendix: Code Samples, Prompt Templates, and Multi-LLM Protocol

This appendix provides representative code samples (human-written vs. Al-generated) for each
programming language (Python, Java, Go, C++, and JavaScript). Additionally, an overview of the
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methodology is presented in Figure 2

A Code Samples from our Dataset

A.1 Python Samples
Human-Written
N=int (input ())
Z=[0]*N

W=[0]*N

for i in range(N):
x,y=map (int , input () .split ())
Z[il=x+y
Wlil=x-y

alpha=max (Z)-min (Z)
beta=max (W) -min (W)
print (max (alpha,beta))

Al-Generated

def flatten(m, p=()):
Flattens a mapping tree so that all leaf nodes appear
as tuples in a list containing a path and a value.

Parameters:
m (dict): A dictionary that may contain other dictionaries.

Returns:
list of tuples: A list of tuples where the first item is
a tuple representing the path to the leaf node

and the second item is the value of the leaf node.

([T TINT}

result = []
for k, v in m.items ():
if isinstance (v, dict):
result.extend (flatten(v, p + (k,)))
else:
result.append ((p + (k,), v))
return result

A.2 Java Samples

Human-Written

private Datalist fillDatalList(List<Global> results, long records,
Query query, Map<String, QueryParameter> parameterMap) throws
AWException {
DatalistBuilder builder = getBean(DatalistBuilder.class);

boolean paginate = query == null || !query.isPaginationManaged();

builder.setEnumQueryResult (results)
.setRecords (records)

.setPage (parameterMap.get (AweConstants.QUERY_PAGE) .getValue ().

asLong ())

.setMax (parameterMap.get (AweConstants.QUERY_MAX) .getValue ().
asLong ())

.paginate (paginate)

.generateldentifiers ();

// If query is defined, fill with query data
if (query != null) {
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// Add transformations & translations

builder = processDatalist (builder,

}

// Sort datalist

query,

parameterMap) ;

builder = sortDatalist(builder, parameterMap) ;

return builder.build () ;

AI-Generated
public void scheduleDelayedTask () {

mLoginStarted = false;

Handler handler = new Handler (Looper.getMainLooper ());

Runnable task = new Runnable() {
@Override
public void run() {
// Ezecute the task

// You can add any code here that needs to run after the

delay

};

Log.d(""TaskScheduler"", ""Scheduling task with a delay of

WAIT_FOR_LOGIN_START_MS + "" milliseconds."");
handler.postDelayed (task, WAIT_FOR_LOGIN_START_MS);

A.3 Go Samples

Human-Written
package domain

import (
nn fmt nn
nn regexp

)

type videoID struct {
Value string

}
func newVideoID (uuid string) (*videolID,

if 1isValidUUID (uuid) {

error) {

return nil, fmt.Errorf (""UUID (%s)its not valid"", uuid)

}
vid := &videoID{
Value: uuid,

}

return vid, nil

}

func isValidUUID (uuid string) bool {

+

r := regexp.MustCompile (""" [a-fA-F0-9]{8}-[a-fA-F0-9]1{4}-4[a-fA-FO
-91{3}-[819]aA|bB] [a-fA-F0-9]1{3}-[a-fA-FO-91{12}8$"")

return r.MatchString(uuid)

}

AI-Generated

package ifname
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import (
nn sync nn
nn tzme nn

)

// TTLValType represents a value with a timestamp
type TTLValType struct {

time time.Time // when entry was added

val valType
}

// timeFunc is a function that returns the current time
type timeFunc func() time.Time

// TTLCache is a cache with a time to liwve
type TTLCache struct {

mu sync .RWMutex
validDuration time.Duration
lru LRUCache

now timeFunc

}

// NewTTLCache returns a new TTL cache
func NewTTLCache(valid time.Duration, capacity uint) *TTLCache {
return &TTLCache{

lru: NewLRUCache (capacity),
validDuration: valid,
now: time.Now,

}
}

// Get returns the wvalue associated with the given key and its age
func (c *TTLCache) Get(key keyType) (valType, bool, time.Duration)
c.mu.RLock ()
v, ok := c.lru.Get (key)
c.mu.RUnlock ()
iftok {
return valType{}, false, O
}
age := c.now().Sub(v.time)
if age < c.validDuration {
return v.val, ok, age
} else {
c.mu.Lock ()
c.lru.Delete (key)
c.mu.Unlock ()
return valType{}, false, O
}
}

// Put inserts or updates the wvalue associated with the given key
func (c *TTLCache) Put(key keyType, value valType) {
c.mu.Lock ()
v := TTLValType{
val: value ,
time: c.now (),

.1lru.Put(key, v)
c.mu.Unlock ()

[¢]

}

// Delete removes the wvalue assoctiated with the given key
func (c *TTLCache) Delete(key keyType) {

c.mu.Lock ()

c.lru.Delete (key)

11
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c.mu.Unlock ()

}

A4 C++ Samples

Human-Written

/% ok
* Definition for a binary tree no
* struct TreeNode {

int wval;

TreeNode *left;

TreeNode *right;

TreeNode (int z) : wal(z), 1

* % X *x %

Fi
*/
class Solution {
public:
vector<vector<string>> printTree
int d = depth(root);
int n = 0;
for (int i = 1, cnt = 0; cnt <
vector<vector<string>> res(d,
build (root, res, 0, 0, n);
return res;

}

private:
int depth(TreeNode *root) {
if ('root) returmn O;
return max (depth(root->left),
}

de.

eft (NULL), right (NULL) {}

(TreeNode* root) {

d; i *= 2, ++cnt) n +=
vector<string>(n));

depth(root->right)) + 1;

void build(TreeNode *root, vector<vector<string>> &res,

begin,
int end) {
if (!'root) return;
int mid = (begin + end) / 2;

res[d] [mid] = to_string(root->val);

build(root->left, res, d + 1,
build (root->right, res, d + 1,
}
};

AI-Generated

#include <iostream>
#include <string>
#include <cstring>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

// Define the packet struct
struct packet {

int id;

int sequencelNumber;

int priority;

char payload[1024];
s

// Function to send a packet

begin, mid);
mid + 1, end);

void sendPacket (int id, int sequenceNumber , int priority,

int index, int sock) {

// Initialize the packet struct

struct packet packet;
packet.id = id;

12
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packet.sequenceNumber
packet .priority

sequenceNumber;

// Populate the packet with a character payload based on the
0 && index < 1024) {
packet.payload[index]

if (index >=

// Convert the packet to a string

char packetStr [1024];

sprintf (packetStr,
sequenceNumber ,

""%d %d %d %S"",
packet .priority,

packet.id,
packet.payload) ;

// Send the packet using the socket-based send function

send (sock, packetStr, strlen(packetStr),

} catch (const std::exception& e) {
""Error sending packet:

std::cerr << << e.what() << std::

© % NN R W —

A.5 JavaScript Samples
Human-Written
function inspect(value, opts) {
const ctx = {
budget: {},
indentationLvl: O,
seen: [],
currentDepth: O,
stylize: stylizeNoColor,
showHidden: inspectDefaultOptions.showHidden,
depth: inspectDefaultOptions.depth,
colors: inspectDefaultOptions.colors,
customInspect: inspectDefaultOptions.customInspect,
showProxy: inspectDefaultOptions.showProxy,
maxArrayLength: inspectDefaultOptions.maxArraylLength,
breakLength: inspectDefaultOptions.breakLength,
compact: inspectDefaultOptions.compact,
sorted: inspectDefaultOptions.sorted,
getters: inspectDefaultOptions.getters 1};
if (arguments.length > 1) {
if (arguments.length > 2) {
if (arguments[2] !== undefined) {
ctx.depth = arguments[2];

}
if (arguments.length > 3 && arguments[3] !== undefined) {
ctx.colors = arguments [3];
}
}
if (typeof opts === ’boolean’) {

ctx.showHidden = opts;
} else if (opts) {
const optKeys = Object.keys(opts);
for (const key of optKeys) {
if (hasOwnProperty(inspectDefaultOptions, key) || key === >
stylize’) {
ctx[key] = optslkey];
} else if (ctx.userOptions === undefined) {
ctx.userOptions = opts;
}
}
}
}

13
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47 }

if (ctx.colors) {

ctx.stylize = stylizeWithColor;

if (ctx.maxArrayLength === null) {

ctx.maxArraylLength = Infinity;

return formatValue(ctx, value, O0);

AI-Generated
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module.exports = function(config) {
config.set ({
// Base path used to resolve all patterns (e.g., files, exclude)

basePath: ’’,

// Frameworks to use (Jasmine is the testing framework)
frameworks: [’jasmine’],

// List of files/patterns to load in the browser
files: [
’dist/gainda.js’, // Main project file
’test/spec/**/*.spec.js’ // Test files
]5

// List of files/patterns to exclude
exclude: [],

// Preprocessors to transform files before serving them to the
browser
preprocessors: {
’dist/gainda.js’: [’coverage’] // Optional: Add coverage
preprocessing

},

// Test results reporter to use
reporters: [’progress’],

// Web server port
port: 9876,

// Enable/disable colors in the output (reporters and logs)
colors: true,

// Level of logging

// Possible values: config.LOG_DISABLE || config.LOG_ERROR ||
config .LOG_WARN || config.LOG_INFO || config.LOG_DEBUG

logLevel: config.LOG_INFO,

// Enable/disable watching file and executing tests whenever any

file changes
autoWatch: true,

// Start these browsers
browsers: [’Chrome’],

// Continuous Integration mode
// If true, Karma captures browsers, runs the tests, and exits
singleRun: false,

// Concurrency level
// How many browser instances should be started simultaneously
concurrency: Infinity

B

14
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Figure 2: An overview of the methodology adopted in this work is as follows. We first constructed new
datasets by curating and extending samples from existing resources. These datasets were subsequently
employed to fine-tune and evaluate the models that constitute DuoLens.
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Figure 3: Source code dataset visualizations

B Dataset Visualisations

B.1 Source Code Dataset

These visualizations illustrate how the proposed source code dataset addresses the two primary
limitations observed in prior resources. As shown in Figure 3a, the dataset maintains an equal
distribution of samples across all languages, and as depicted in Figure 3b, it achieves a balanced
representation of both human-written and machine-generated classes. This design mitigates potential
biases during the fine-tuning process. Furthermore, Figure 3¢ demonstrates that the dataset exhibits a
substantial number of outliers with respect to sample length, which is advantageous as it reflects a
broader diversity and range of examples rather than a collection of homogenous samples.
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Figure 4: Multilingual text dataset visualizations

B.2 Multilingual Text Dataset

These visualizations demonstrate how the proposed multilingual text dataset addresses key limitations
identified in prior resources. As shown in Figure 4b, the dataset maintains a balanced distribution
between human-written and machine-generated samples, thereby reducing the risk of bias during
fine-tuning. In addition, Figure 4c illustrates the balanced representation of linguistic styles: while
social media samples predominantly contain casual and informal language, often including slang, the
remaining domains exhibit more formal registers with comparatively refined diction. This diversity is
advantageous, as it ensures broader coverage of linguistic variation while preventing overfitting to a
single style. Nevertheless, the effort to simultaneously balance both domain and style necessitated a
compromise in language-level balance, as reflected in Figure 4a.

C Language Specific Results
C.1 Natural Language Specific Results

DuoLens was evaluated on specific languages and its accuracy per language was measured using
our dataset (besides from the language it was finetuned upon). The results are included in Table
2 where the Spanish-specific DuoLens performed the best among all languages and achieved the
highest accuracy out of all.

C.2 Programming Language Specific Results

DuoLens was evaluated on specific languages and its accuracy per language was measured using
our dataset (besides from the language it was finetuned upon). The results are included in Table
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Model Name English  Spanish  German Dutch Portuguese  Russian  Arabic  Romanian

DuoLens (English) - 0.6716 0.7953 0.7581 0.7758 0.5714 0.7511 0.8606
DuoLens (Spanish) 0.6406 - 0.8695 0.8176 0.8659 0.7461 0.8383  0.8726
DuoLens (German) 0.6441 0.7075 - 0.8191 0.8114 0.6493 0.8191 0.8933
DuoLens (Dutch) 0.6021 0.6911 0.6667 - 0.8108 0.6134 0.7671 0.8836
DuoLens (Portuguese) 0.6075 0.7352 0.6766 0.7762 - 0.6252 0.7286 0.88
DuoLens (Russian) 0.5917 0.7642 0.8334 0.8143 0.8256 - 0.7822  0.896
DuoLens (Arabic) 0.6109 0.6512 0.6656 0.7501 0.6919 0.6496 - 0.784
DuoLens (Romanian) 0.6053 0.6761 0.6439 0.7609 0.8016 0.5850 0.7036 -

Table 2: Accuracy in detection for multilingual text samples from each language

Model Name Python Java JavaScript C C# C++ Go
DuoLens (Python) - 0.791 0.746 0.846 0.775 0.791 0.7
DuoLens (Java) 0.649 0.778 0.899 0.833 0.895 0.864

DuoLens (JavaScript)  0.504  0.849

- 0.8 0.865 0.856 0.764
DuoLens (C) 0.517  0.755 0.787 - 0.745 0.851 0.792
DuoLens (C#) 0.64 0.774 0.711 0.828 - 0762  0.77
DuoLens (C++) 0.585  0.867 0.782 0.884 0.878 - 0.807
DuoLens (Go) 0.467  0.677 0.697 0.735 0.69 0.731 -

Table 3: Accuracy in detection for code samples from each language

3 where the Java specific DuoLens performed the best among all the languages and achieved the
highest accuracy out of them.

D Future Work

We identify several avenues for future work, including, but not limited to: extending coverage to
additional natural and programming languages, incorporating sentence-level detection, developing
agent-based or hybrid systems with LLMs to provide explanatory insights for classification outcomes,
and extensions to the datasets introduced.
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