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ABSTRACT

The search space represents the most important component of Neural Architec-
ture Search. It defines the ranges of performance, encapsulating the potential for
discovering optimal architectures. This paper presents a framework for evaluat-
ing these spaces based on size, performance diversity, architecture diversity, and
multi-task ability. Our comparative analysis across seven established benchmarks
highlights their complexity and adaptability to target multiple tasks, offering a
comprehensive tool for NAS strategy assessment 1.

1 INTRODUCTION & RELATED WORKS

Neural Architecture Search (NAS) (Cai et al., 2019; Liu et al., 2019) is pivotal in driving automated
neural network design. Yet, assessing NAS methods is challenged by the complexity and uncharted
nature of their search spaces. Current NAS methodologies oscillate between proposing novel search
spaces and relying on pre-defined benchmarks, each exhibiting distinct characteristics. We evalu-
ate these spaces based on size, performance diversity, architecture diversity, and multi-task ability.
Despite large search spaces, our analysis indicates that limited diversity can simplify exploration.

Existing studies recognize the importance of search space complexity, particularly operator impor-
tance (Lopes et al., 2023). This paper introduces a framework to evaluate NAS search spaces without
training, featuring a scoring mechanism that gauges strategy efficiency across complexity levels, ad-
dressing the lack of systematic search space assessment in current literature.

2 SEARCH SPACE COMPLEXITY SCORING

In this section, we detail how each property is measured.

- Search Space Size: The size is quantified simply as the total number of unique architectures within
the search space.

- Performance Diversity refers to the variance in the effectiveness of different architectures within
the space. A large performance diversity is desirable. It indicates a wide range of effectiveness
among different architectures, offering greater opportunities to discover highly efficient models.

We utilize the variance of jacob cov estimation strategy (Abdelfattah et al., 2021). jacob cov mea-
sures the correlation of activations within a network when subject to different inputs within a mini-
batch of data – the lower the correlation, the better the network is expected to perform as it can
differentiate between different inputs well. Figure 1 compares this variance to the variance of the
actual performance post-training, to validate the correlation between predicted and realized perfor-
mance diversities in different benchmark. We define performance diversity score, denoted as PDS,
using Cohen’s d measure (Kotz et al., 2005) to compare the variance of the jacobian covariance met-
ric and the actual accuracy in a search space. The jacob cov measure performs badly at evaluating
the ranking of the architectures, as reflected by the low values of the kendal Tau Correlation (red),
in figure 1. However, comparing the variances reflected in the low PDS (blue), indicates its efficacy
as a reliable estimator of the overall distribution of performance within different search spaces.

1Code will be available in the Camera ready.
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Figure 2: Property analysis for common NAS benchmarks.

We detail PDS computation as follows:

PDS =
|SDjacob cov − SDaccuracy|

SDpooled
(1)

where SDjacob cov and SDaccuracy denote the standard devi-
ation for both the Jacobian covariance and the actual ac-
curacy metrics respectively. The pooled standard deviation
(SDpooled), is the average of these two standard deviations:
SDpooled =

SDjacob cov+SDaccuracy

2 Figure 1: Performance diversity Com-
parison.

- Architecture Diversity is critical as it expands the scope for innovation by encompassing a broad
spectrum of structural design possibilities. We construct a vector representing each architecture’s
features, derived from an analysis of models in a model zoo. This vector includes elements like
convolutional layers with their kernel sizes, attention layers, feedforward networks (ffn) layers, PvT
blocks, residual blocks, MBConv blocks, etc. We then calculate the variance in these vectors across
the search space, providing a quantitative measure of architectural diversity.

- The final property, Multi-task Ability, evaluates the capacity of architectures within the space to
efficiently handle multiple tasks. This allows multi-task search for backbone architectures able to
adapt to different tasks, making the search more complex. This is measured by the number of distinct
tasks that the architectures within a benchmark or search space are designed to target.

3 COMPARISON OF SOTA SEARCH SPACES

Figure 2 showcases a comparison across multiple NAS benchmarks based on our first properties.
NAS-Bench-101 (Ying et al., 2019), with its considerable number of architectures, offers a wide
range of designs, yet its performance and architectural diversity are not as extensive. NAS-Bench-
201 (Dong & Yang, 2020) shows greater architectural uniformity, which might limit its adaptability
across different tasks and renders the search simple. We consider these two benchmarks as not
complex.

DARTS (Liu et al., 2019) and ProxylessNAS (Cai et al., 2019), both known for continuous search
spaces, show moderate performance diversity, suggesting a reasonable spread in model efficacy
without extreme outliers. This may reflect a balance between exploration and exploitation in their
search strategies. While building a supernetwork allows for an extensive search space, the continu-
ous space restricts architecture diversity.

When it comes to NAS-Bench-NLP (Klyuchnikov et al., 2022) and NAS-Bench-ASR (Mehrotra
et al., 2021), despite having fewer architectures, they exhibit significant performance diversity. This
suggests a low architecture modification may reflect on significant performance improvement for
NLP and Speech tasks.

Finally, NAS-Bench-360 (Tu et al., 2022) stands out in its multi-task ability, as indicated by the
spider chart. This benchmark appears to be the most complex and versatile, likely due to its design
that integrates diverse datasets and tasks, making it a comprehensive choice for evaluating NAS
methods.

4 CONCLUSION

In this work, we introduced a systematic framework to evaluate the complexity of NAS search
spaces, underscoring the significance of architecture diversity as a catalyst for innovation. This work
complements NAS best practices (Lindauer & Hutter, 2020) with a dedicated search space analysis.
Future work will extend our framework to include hardware efficiency metrics, examining the impact
of search spaces on latency and energy consumption, crucial factors for real-world deployment.
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A NAS BENCHMARKS

In this section, we describe each benchmark evaluated in this paper.

• NAS-Bench-101: (Ying et al., 2019) The first architecture dataset for NAS research, con-
taining over 423,000 unique convolutional architectures evaluated on CIFAR-10, providing
performance metrics and training times.

• NAS-Bench-201: (Dong & Yang, 2020) A tabular benchmark for NAS that extends upon
NAS-Bench-101, covering three datasets (CIFAR-10, CIFAR-100, and ImageNet-16-120)
and offering a fixed search space of 15,625 neural cell-based architectures.

• DARTS: (Liu et al., 2019) Differentiable Architecture Search introduces a gradient-based
optimization method for NAS, focusing on a continuous search space that allows efficient
architecture selection through gradient descent. The search space is extensive and targets
ImageNet task.

• ProxylessNAS: (Cai et al., 2019) A method that directly learns architectures for large-scale
target tasks and hardware platforms, eliminating the need for proxy tasks, thus named for
its ability to bypass proxy stages common in other NAS methods. They proposed a search
space of over 6.64x1017 composed of convolutional blocks.

• NAS-Bench-NLP: (Klyuchnikov et al., 2022) A benchmark specifically designed for Nat-
ural Language Processing tasks, containing a collection of architectures for evaluating re-
current neural networks (RNNs) on language modeling.

• NAS-Bench-ASR: (Mehrotra et al., 2021) Tailored for Automatic Speech Recognition, this
benchmark provides a platform to study the architectures of RNNs and their performance
in speech-related tasks. It provides 8242 different architectures with their performance
metrics.

• NAS-Bench-360: (Tu et al., 2022) A recent benchmark aimed at generalizing NAS studies
across diverse data modalities and tasks, offering a 360-degree view of NAS performance
across various domains beyond vision and language. It is heavily based on DARTS.

B EXPERIMENTAL SETUP

Given these established NAS benchmarks, we conduct a comparison and analysis of each one. The
sizes of each benchmark are available in the corresponding papers and verified either using the
available code or by confirming the search space definition. For the performance diversity, the PDS
metric was computed using all the architectures in the search spaces. For DARTS and proxyless-
NAS, because of the huge size, we average the PDS over 5 randomly sampled 10,000 architectures.
The architectural diversity, required the definition of a list of different architectural blocks. This list
was extracted from 168 architectures from Model Zoo 2, targeting multiple tasks. Similarly the the
performance diversity, the variance to measure architectural diversity was measured using the full
size of the search spaces, except for DARTS and proxylessNAS.

2https://modelzoo.co/framework/pytorch

4


	Introduction & Related Works
	Search Space Complexity Scoring
	Comparison of SOTA search spaces
	Conclusion
	NAS Benchmarks
	Experimental Setup

